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Chapter 1

Introduction

The measurements that we report in this thesis were realized with the MAGIA-
Advanced (MAGIA-Adv) experimental apparatus at the Florence University and
INFN Florence. This apparatus is a vertical fountain Atom Interferometer originally
developed to perform the first determination of the Newtonian gravitational con-
stant G through atom interferometry. The apparatus is now used to perform other
high sensitivity gravitational tests and to develop novel experimental techniques in
the field of atom gravimetry and gradiometry, i.e. for the measurement of the gravity
acceleration and the gravity gradient respectively.

In this first chapter we intuitively introduce the notion of atom interferometry
and its similarities with the standard light interferometry experiments. We then
present the main applications of atom interferometers which derive from their high
sensitivity to inertial forces and briefly discuss the main motivation and importance
of a determination of G through atom interferometry. We conclude the chapter in-
troducing the new measurements realized in the last three years with the advanced
set-up.

1.1 Light interferometry - Atom interferometry

An Atom Interferometer (AI) [1], [2] is an instrument which, taking advantage of
the matter wave nature, generates the phenomenon of interference between two or
more matter wave-fronts and uses it to measure some quantity of interest. In this
regard an AI is conceptually analogous to a standard light interferometer, but the
role between matter and light is completely exchanged.

Indeed in a light interferometer a beam of coherent light is split and let propa-
gate through two different optical paths; the light beams are manipulated with the
use of material objects (glass beam-splitters, mirrors, gratings, etc...) and several
different arrangements are possible [3]. As soon as the light beams are recombined
their intensity shows an interference pattern as a function of the relative optical path
length.

Of all the possible interferometric geometries, we will focus mainly on the Mach-
Zehnder (MZ) configuration which is one of the most implemented geometries both
in light and atom interferometers1. In the case of a light interferometer the MZ geom-
etry is typically realized with the use of two glass beam-splitters and two mirrors;
an initial beam-splitter is used to define two interferometric arms by splitting the
incoming coherent light beam; the arms are then recombined with the use of two
mirrors in the final beam splitter and the light intensity from one output is finally
recorded. If the two optical paths have equal optical length there will be no phase

1The Mach-Zehnder configuration is also the one originally implemented in the MAGIA apparatus.
In the following we will always refer to this particular geometry unless stated otherwise.
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FIGURE 1.1: Comparison between a light (left) and an atom (right) interfer-
ometer in the Mach-Zehnder configuration. In the AI the π/2 pulses act as
beam-splitters (BS) for the matter-wave, while the π pulses act as mirrors (see
Sec. 2.1.1). From the figure we can note the complete analogy between the two
configurations. In the light interferometer the phase difference between the
two interferometric arms is mapped on the output light intensity while in the
AI it is mapped on the atomic population in states |1〉 and |2〉 detected after
the final π/2 pulse.

shift between them; however if the optical length of one path is changed, an extra
phase shift φ will emerge between the two interferometric arms and the light inten-
sity will manifest an interference pattern as a function of φ.

We show the described configuration in the left panel of Fig. 1.1 and compare it
with its atomic counterpart reported in the right panel of Fig. 1.1. In this case the
situation is exactly equivalent, but the atomic wave-function takes the place of the
coherent light beam while the material beam-splitters and mirrors are substituted
with pulses of coherent light. Considering the atom as a simple two-level system,
the so called π/2 and π pulses (see Sec. 2.1.1) act as beam-splitters and mirrors for
the atomic wave-function and are able to connect the two different atomic states |1〉
and |2〉 which generally differ both in the external or internal degrees of freedom
(i.e. atomic momentum or electronic energy level, respectively). The splitting of the
interferometric arms in the case of an AI can therefore be obtained both spatially
and on the internal atomic states2. At the moment of the final beam-splitter (final
π/2 pulse), when the wave-fronts are recombined, an interference pattern can be
observed in the atomic state population as a function of the phase difference φ accu-
mulated between the two interferometric paths. Indeed the probability of detecting
an atom in one of the two considered states can be written as P = 1

2 (1 + cos(φ)), i.e.
as an oscillatory function of the interferometric phase; the atomic population thus
shows a typical interferometric fringe.

The phase φ is sensitive to the different local forces that the wave-functions ex-
perience in the distinct interferometric arms. Furthermore, an atom is intrinsically
more sensitive to environmental conditions than a photon and since atoms are mas-
sive particles they are affected by gravitational fields. For these reasons an AI can be
used as a high sensitivity external field sensor and in particular as a high sensitivity
inertial and gravitational force sensor.

As we will analyse in Ch. 4 a typical AI experiment is composed of three dis-
tinct parts. Initially we have the preparation stage which can involve the trapping,

2As we will see this happens when the π and π/2 pulses are realized with Raman transitions.
However this is not always the case. Indeed if the manipulation pulses are implemented using multi-
photon Bragg transitions the separation of the arms will be only on the external atomic degrees of
freedom.
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cooling and launching of one or several atomic samples. Then the prepared ensem-
bles are interrogated in the chosen interferometric sequence applying subsequent
coherent light pulses. Finally the atomic population in the two states involved in the
interferometer is measured in order to retrieve the interferometric phase φ.

1.2 Atom interferometers as inertial sensors

The idea of a matter-wave interferometer is an old one. The first implementation
was realized by E. Fermi in 1947 [4] with slow neutrons; only a few years later came
the first MZ interferometer for electrons [5]. Already at that time it was clear that
in order to realize highly sensitive devices the use of neutral matter was preferable
to charged particles or photons. A neutral particle is indeed much less sensitive to
perturbing electric or magnetic fields and its speed can be reduced to values � c
(c is the speed of light) allowing a much longer interaction time. Neutrons were a
good candidate, but they resulted difficult to produce in laboratory since an accel-
erator was needed; the use of neutral atoms became feasible only in the 90’s even
if the idea was around from before [6], [7]. The first neutral atom interferometers
were demonstrated in 1991 by four different research groups. Two experiments still
used material beam-splitters realized with micro-fabricated slits [8] or gratings [9];
the other two experiments exploited the atom-light interaction to realize the beam-
splitters and mirrors for the matter-waves; one with single photon transitions [10],
the other with two-photon transitions [11].

After these first demonstrations, AIs experienced a rapid development; their
growing impact on practical applications derives from the great improvements in
the understanding of the atomic internal structure and consequently in the ability to
manipulate atoms with laser radiation. New experimental techniques in laser cool-
ing permitted to reach higher coherence levels of the atoms and also to increment
the interrogation time by orders of magnitude.

Nowadays AIs can be used to perform a wide variety of useful measurements
and their performances are comparable, if not superior to other competing instru-
ments. The most successful scheme proved to be the one first demonstrated at Stan-
ford [12] which uses two-photon Raman transitions to manipulate the neutral atoms.
This scheme finds important applications in particular in the measurement of inertial
forces. Following the first AI demonstration, the Earth rotation rate was measured
with a short term sensitivity of 6 × 10−10 rad/s after 1 s of integration [13], [14]
while the gravity acceleration was determined with a precision of 2× 10−8g with a
single measurement cycle of 1.3 s, 3× 10−9g after one minute of integration and of
1× 10−10g after an integration of two days [15]. The Earth gravity gradient was also
measured with a precision of 4× 10−8 s−2/

√
Hz [16], [17].

A precise determination of the gravitational acceleration g and of its gradient
have important applications in many scientific fields. Geophysics and metrology
are two common examples, but also more practical applications can be found in
prospecting for underground resources (oil, water, etc...). In this regard, transportable
and rugged apparatuses have been engineered and assembled for mapping Earth
mass anomalies, for monitoring volcanoes activity and also to measure gravitational
changes before earthquakes. The high sensitivity to inertial forces makes the trans-
portable AIs extremely interesting also for inertial navigation systems [18].

Furthermore AIs have been used for measurements of fundamental physics; sev-
eral examples are found in the determination of fundamental constants like h/mCs
[19], h/mNa [20], G [21] and the atomic polarizability [22], [23]; another example
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is the use of AIs for testing the Einstein Equivalence Principle [24], [25], the 1/r2

Newton’s law for short distances [26] and general relativity [27].

1.3 Measuring G with atom interferometry

The MAGIA apparatus was designed to provide a precise measurement of the New-
tonian gravitational constant G. The experiment was successfully completed in 2014
[21] and now the apparatus has been used to realize several other gravitational mea-
surements. However, in order to understand the particular design of the MAGIA
set-up it is important to briefly describe the principle of the G determination and
why this measurement is particularly relevant.

The Newtonian gravitational constant is the fundamental quantity known with
the highest relative uncertainty. The last CODATA recommended value is

G = 6.67384(80)× 10−11 m3kg−1s−2, (1.1)

with a relative uncertainty of 1.2× 10−4. This is due to the fact that independent
determinations of G are not consistent with each other by several parts in 10−4.

The particular nature of the gravitational force poses several difficulties in the
experimental determination of the constant G. Indeed gravity cannot be shielded or
compensated for; it is the dominating force in regimes of large neutral masses and
large distances, but due to its weakness the other forces can produce large systematic
effects in laboratory experiments. For these reasons all the classical determinations
of G which are based on macroscopic suspended masses, i.e. torsion pendulums, or
free-falling corner cubes suffer from systematics which are difficult to characterize;
atom interferometry represents an alternative method for measuring G with a com-
pletely different systematic budget from the classical experiments and it can be used
to validate one of the previous inconsistent measurements thus reducing the relative
uncertainty on G.

In the MAGIA experiment [28], [29] G is determined from the measurement of
the differential acceleration experienced by two samples of cold 87Rb atoms in pres-
ence of a well characterized set of source masses. The measurement is repeated for
two different and well known dispositions of the source masses; this permits to elim-
inate the contribution on the interferometer phase of the Earth gravitational field and
maintain only the effect of the masses. From the accurate knowledge of the source
mass density distribution its effect on the interferometric phase can be simulated
and the value of G can be determined.

In Fig. 1.2 we report the main vacuum system of the MAGIA apparatus and the
two configurations for the source masses used in the G measurement. Two atomic
samples are collected in the trap chamber and launched inside the 1 m long inter-
ferometric tube. The atomic interrogation with the interferometer happens simulta-
neously for both the ensembles with the same laser pulses and during the free fall
motion. The instrument is therefore sensitive to the differential acceleration between
the two samples; repeating the measurement in the two different masses configura-
tions the effect of the Earth gravitational field is cancelled through an additional
differential measurement stage.

The double differential measurement scheme allows to reject several systematic
contributions which appear as common mode noise between the simultaneous in-
terferometers. However, the major source of systematic uncertainty in the measure
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FIGURE 1.2: Overview of the MAGIA vacuum system and of the two different
source masses arrangements used for the double differential measurement of
G. 87Rb atoms are loaded in the trap chamber at the bottom of the set-up in a
3D-MOT; two samples are launched vertically inside the interferometric tube
producing the atomic fountain. When the clouds are near the apogees of the
parabolic trajectories their vertical acceleration is measured with a MZ atom
interferometer. The measurement is repeated in the two different configura-
tions of the source masses.

arises from the limited control on the position and velocity of the atoms in the ther-
mal cloud [30]. We will address this point and present an experimental method
which could in principle solve this issue in Sec. 5.4.

With the presented method the measured G value was

GAI = 6.67191(99)× 10−11 m3kg−1s−2, (1.2)

with a relative uncertainty of 150 parts per million.

1.4 Measurements with the MAGIA-Adv apparatus

The AI in the MAGIA apparatus was originally realized with two-photon Raman
transitions as atom-optical elements; these transitions couple the two levels of the
hyperfine ground state doublet of 87Rb and are able to transfer twice an optical pho-
ton momentum to the atoms. Recently we added the possibility of exciting multi-
photon Bragg processes; these processes do not change the internal atomic state and
can transfer more momentum to the atoms with respect to Raman transitions. This
can be advantageous in an AI since its sensitivity to inertial forces scales linearly
with the momentum imparted to the atoms. In order to excite Bragg transitions we
added a completely new laser system based on a high power fibre amplifier with
emission centred at 1560 nm. We will describe in detail the optical configuration of
this new laser system in Sec. 3.3.6.



6 Chapter 1. Introduction

We initially performed some characterization measurements in order to define
the best experimental conditions of the new Bragg interferometer. Later, we ex-
ploited the fact that Bragg transitions do not change the internal atomic state to
perform a Weak Equivalence Principle (WEP) test for 87Rb atoms in different en-
ergy states. AIs are indeed largely used to performs this kind of tests in which they
compare the free fall acceleration of different atoms [31]–[34] or of atoms in different
internal states [24], [35].

Our measurements improve by one order of magnitude the sensitivity achieved
in the WEP tests for 87Rb atoms in different internal states; more importantly they
also provide a conceptually new test of the WEP accessing genuine quantum aspects
of the principle [25] remained so far unexplored. Indeed we test the WEP using
atoms in a coherent superposition state, thus a state with no classical counterpart
and for which a specific quantum formulation of the WEP is needed.

After the measurements for the WEP test we present an experiment in which we
demonstrate a method to cancel the effects of gravity gradients (GGs) on the atom
interferometer phase shift. Indeed a GG produces a systematic phase shift which
depends on the atomic position and velocity at the start of the interferometer. This
effect can be problematic for highly sensitive measurements with AI; in this regard
we already mentioned that this is the major contribution in the systematic budget
for the G measurement with AIs. However a possible compensation strategy was
theoretically proposed in [36]; the principle of the method is simple and consists in
slightly modifying the amount of transferred momentum to the atoms during the
central mirror pulse of a MZ interferometer. In this way it is possible to make the
atomic trajectories perfectly symmetric with respect to the central π pulse and can-
cel the systematic shift. We implemented this solution in our Raman interferometer;
furthermore since in our apparatus we can realize two or three simultaneous inter-
ferometers we could use the compensation method as a technique to measure the
average gravity gradient over the separation baseline between the simultaneous in-
terferometers.

The final set of measurements that we present is the demonstration of a new
method to perform a gravimetric measure with an AI. The method is based on a
simpler interferometric scheme than the MZ one; we use the Ramsey interferometric
scheme which is composed of only two π/2 pulses closely spaced in time. The
time separation between the interferometric pulses in this configuration is about
three orders of magnitude smaller than the one used in the MZ geometry. This is
necessary since, without the mirror π pulse the atomic trajectories would not overlap
sufficiently at the moment of the closing π/2 pulse. With this configuration it is
possible to demonstrate that the interferometer phase shift depends on the atomic
velocity. We can thus extract the value of the gravitational acceleration from two
successive velocity measurements on the same freely falling sample, separated by a
well known time. We demonstrate both theoretically and experimentally that this
method is advantageous when performing gravimetric measurements in presence
of strong vibration noise with respect to the standard MZ interferometer.
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1.5 Organization of the thesis

In the next chapter we will present a brief theoretical introduction to the basic tools
necessary for understanding an AI. We will start with the mechanisms of light-
matter interaction focusing on two-photon Raman and multi-photon Bragg transi-
tions. We will then present two different formalism for the calculation of the com-
plete interferometric phase and consider the main contributions that can influence
the interferometer.

In Ch. 3 we will describe the experimental apparatus. We will focus mainly on
the laser system and describe the recent developments introduced for the stimula-
tion of multi-photon Bragg diffraction processes.

In Ch. 4 we will describe the main experimental sequence used during the mea-
surements starting from the atom trapping to the atomic detection. We will also
present the typical signals measured with the apparatus during an interferometric
measurement and introduce the analysis procedure.

Ch. 5 is dedicated to the experimental measurements realized in the three years
PhD period. In the first section we will present the measurements done with the
Bragg interferometer; we start with some characterization measurements and then
present a test of the Weak Equivalence Principle in the quantum regime. In the
second section we instead present the measurement realized with the Raman inter-
ferometer. The first one is the experimental demonstration of a novel method to
compensate for the effect of a gravity gradient on an atom interferometer. We use
this method to measure the average gravity gradient and the average gravity field
curvature. With the second set of measurements we demonstrate a new gravimetric
technique based on velocimetry measurements with atom interferometers.

In Ch. 6 we present a summary of the obtained results and the future prospects
for the experiment.
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Chapter 2

Theoretical formalisms for atom
interferometry

In this chapter we introduce some of the essential theoretical tools needed for the un-
derstanding of multi-photon atom interferometry. The starting point in the analysis
of the Atom Interferometer will be the theory of atom-light field interaction which
will allow us to introduce the formalism of π and π/2 pulses, i.e. the main building
blocks of any AI geometry. As we will see, these pulses allows the manipulation
of the atomic wave-function in strict analogy to what can be done with mirrors and
beam-splitters for a photon wave-function.

We initially present the simple, idealized case of a two-level atomic system in
interaction with a monochromatic light field [37], [38]; then, considering more com-
plex atomic structures, we analyse the theory of multi-photon processes focusing on
Raman [39] and Bragg transitions [40], [41]. These two processes are largely used
as atom-optic elements in atom interferometry and can both be implemented in our
experimental apparatus. It is important to notice that with the use of these multi-
photon interaction mechanisms the complex energy level structures of the atomic
systems employed can still be considered as composed by only two-levels under
typical experimental conditions.

In the case of Bragg diffraction we will see that in our experimental conditions
it is not possible to provide an exact analytic solution of the atomic population dy-
namics; however we provide some numerical simulations of the behaviour of the
atomic population versus different parameters of interest.

After the study of the atom-light field interaction processes we move on to the
analysis of a complete MZ interferometric sequence and present the main physi-
cal phenomena that can induce a phase shift in the interferometric signal. The AI
phase is derived with two different mathematical formalisms, the Feynman path in-
tegral formalism [42] and the sensitivity function approach [39], [43]. Even if these
formalisms are completely general and can be applied to any interferometer, in the
following we will always consider the MZ geometry; this is because it is one of the
most common AI configurations employed for the measurement of inertial forces
and because it is the one typically implemented in our experimental apparatus.

2.1 Atom-Light field interaction

2.1.1 Two-level atomic system and single-photon transitions

Let us consider a two-level atomic system in interaction with a monochromatic elec-
tric field. We recall that the two-level assumption is valid whenever the driving field
is resonant or nearly resonant only with the atomic transition considered. With this
assumption and in the so called dipole approximation, i.e. for field wavelengths
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larger than the atomic size, the atomic system is formally analogous to a spin-1/2
particle interacting with a time dependent magnetic field. Indeed, as the magnetic
field produces Rabi oscillations between the spin-up and spin-down states of the
particle, the driving electromagnetic field will produce optical Rabi oscillations be-
tween the two atomic levels.

The mathematical analysis of the problem will be carried out with a semi-classical
formalism. We start by writing the Hamiltonian for an electron (electronic charge e
and mass me) interacting with an external electromagnetic field

He =
1

2me

[
pe − eA(r, t)

]2
+ eU(r, t) + V(r), (2.1)

with pe the electron momentum operator, A(r, t) and U(r, t) the vector and scalar
potentials of the driving field respectively and V(r) the electron binding potential to
the nucleus located in r0. The functions A(r, t) and U(r, t) are gauge-dependent po-
tentials which are correlated to the gauge-independent electric and magnetic fields
as

El = −∇U − ∂A
∂t

,

Bl = ∇×A.
(2.2)

If the entire atom is immersed in the electromagnetic wave, the vector potential
can be written in the so called dipole approximation, valid when kl · r� 1 (kl is the
wave-vector of the electromagnetic field)

A(r0 + r, t) = A(t) exp[ikl · (r0 + r)] ' A(t) exp(ikl · r0). (2.3)

In the radiation gauge in which U(r, t) = 0 and∇ ·A = 0, the Schrödinger equation
for the electron wave-function ψe becomes[

− h̄2

2me

(
∇− ie

h̄
A(r0, t)

)2

+ V(r)
]

ψe(r, t) = ih̄
∂ψe(r, t)

∂t
. (2.4)

The equation above can be simplified with the substitution

ψe(r, t) = exp
[

ie
h̄

A(r0, t) · r
]

ϕe(r, t).

With this new wave-function we obtain the Schrödinger equation

ih̄
[

ie
h̄

Ȧ · rϕe(r, t) + ϕ̇e(r, t)
]

exp
(

ie
h̄

A · r
)

= exp
(

ie
h̄

A · r
)[

p2
e

2me
+ V(r)

]
ϕe(r, t).

(2.5)

The equations above can be simplified by defining the unperturbed Hamiltonian
H0 = p2

e /(2me)+V(r) which accounts only for the kinetic energy of the electron and
the binding potential to the nucleus and by factoring out the common exponential
factor. Using the results in Eq. 2.2 we obtain

ih̄ϕ̇e(r, t) = [H0 − er · El(r0, t)]ϕe(r, t). (2.6)



2.1. Atom-Light field interaction 11

The complete Hamiltonian is the sum of two terms, He = H0 +H1; H0 takes into
account the electron evolution in the binding potential of the nucleus, while the
atom-field interaction is considered in the termH1.

We now consider the interaction of a single mode of electromagnetic radiation
with a two-level atom. The electric field with frequency ωl can be written as

El(x, t) = E0 cos(kl · x−ωlt + φl). (2.7)

We label the two atomic levels as |a〉 and |b〉 for the ground and excited state re-
spectively; these two levels are eigenstates of the unperturbed HamiltonianH0 with
energy eigenvalues h̄ωa and h̄ωb. The resonant transition frequency can be defined
as ωab = ωb − ωa. The frequency detuning between the exciting electric field and
the resonant transition frequency is δ = ωl − ωab. Using the completeness relation
(|a〉〈a|+ |b〉〈b|) = 1 the HamiltonianH0 can be written as

H0 = (|a〉〈a|+ |b〉〈b|)H0(|a〉〈a|+ |b〉〈b|) = h̄ωa|a〉〈a|+ h̄ωb|b〉〈b|. (2.8)

We continue to analyse the problem in the basis which takes into account both
the external and internal atomic degrees of freedom [1], [44]; we will thus consider a
continuous basis for the atomic momentum |p〉 and a quantized basis for the atomic
energy eigenstates |a〉 and |b〉. With the specified basis an atomic state will be ex-
pressed as a tensor product |a, p1〉 = |a〉 ⊗ |p1〉 or |b, p2〉 = |b〉 ⊗ |p2〉.

The complete Hamiltonian of the system can be written introducing the external
atomic momentum operator p and the atomic dipole moment d = er as

H =
p2

2m
+ h̄ωa|a〉〈a|+ h̄ωb|b〉〈b| − d · El , (2.9)

with m the atomic mass. Considering that

exp(±ikl · x) =
∫

d3p exp(±ikl · x)|p〉〈p| =
∫

d3p|p± h̄kl〉〈p|, (2.10)

and Eqs. 2.7 and 2.9, we see that any event of photon absorption or stimulated emis-
sion is associated with a corresponding change in the external atomic momentum
by a discrete amount±h̄kl . Indeed we can identify a direct relationship between the
internal and external states of the atomic system. It is then convenient to introduce
the two eigenstates |1〉 and |2〉 defined as

|1〉 = |a, p〉 E1 = h̄ωa +
|p|2
2m

= h̄ω1,

|2〉 = |b, p + h̄kl〉 E2 = h̄ωb +
|p + h̄kl |2

2m
= h̄ω2.

The atomic wave-function can be written as a linear superposition of the two defined
eigenstates as

|ψ(t)〉 = C1(t)|1〉+ C2(t)|2〉, (2.11)

where C1,2(t) are the amplitude probabilities of detecting the atom in state |1〉 or |2〉
at time t. The coefficients C1,2(t) can be split in two terms; one due to the interaction
with the electric field and another one due to the free evolution of the atomic wave-
function

C1(t) = a1(t)e−iω1t, C2(t) = a2(t)e−iω2t. (2.12)
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With these new coefficients the atomic state becomes

|ψ(t)〉 = a1(t)e−iω1t|1〉+ a2(t)e−iω2t|2〉. (2.13)

This wave-function evolves according to the Hamiltonian 2.9 now defined as

H = h̄ω1|1〉〈1|+ h̄ω2|2〉〈2| − d · El . (2.14)

At this point it is useful to write the relevant frequencies as

ω0 = ω2 −ω1 = ωab +
p · kl

m
+

h̄|kl |2
2m

,

∆ = ωl −ω0.

With these definitions and using the Schrödinger equation ih̄ d
dt |ψ(t)〉 = H|ψ(t)〉 we

derive the following differential equations for the coefficients a(t) in the rotating
wave approximation [45]

ȧ1 = −i
Ω
2

e−iφl ei∆ta2(t),

ȧ2 = −i
Ω∗

2
e−iφl e−i∆ta1(t),

(2.15)

where Ω is the Rabi frequency defined as

Ω = −〈a|d · E0|b〉
h̄

. (2.16)

The exact solution for the equations of motion of the coefficients a1,2 can be written
introducing the generalized Rabi frequency as

Ω′ =
√

∆2 + Ω2. (2.17)

With this definition we obtain

a1(t) = ei ∆
2 t
{

a1(0)
[

cos
(

Ω′t
2

)
− i

∆
Ω′

sin
(

Ω′t
2

)]
+

a2(0)e−iφl

[
−i

Ω
Ω′

sin
(

Ω′t
2

)]}
,

a2(t) = e−i ∆
2 t
{

a1(0)eiφl

[
−i

Ω
Ω′

sin
(

Ω′t
2

)]
+

a2(0)
[

cos
(

Ω′t
2

)
+ i

∆
Ω′

sin
(

Ω′t
2

)]}
.

(2.18)

From the equations above we can see that the probability of finding the atom in
the ground state at time t, P1 = |a1(t)|2 or in the excited state P2 = |a2(t)|2, are
oscillatory functions with frequency Ω′ (see Fig. 2.1).

P1(t) =
(

Ω
Ω′

)2 1 + cos(Ω′t)
2

,

P2(t) =
(

Ω
Ω′

)2 1− cos(Ω′t)
2

.

(2.19)
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FIGURE 2.1: Behaviour of the atomic population in state |1〉 of a two-level
atomic system in interaction with a monochromatic electric field as a function
of the interaction time τ. The ideal case of perfect frequency matching (∆ =
0 ⇒ Ω′ = Ω) is shown with the black continuous line. In this case we observe
complete population transfer between the two energy levels |1〉 and |2〉 with
a frequency Ω. With the other colors we report the out of resonance cases in
which Ω′ 6= Ω.

The case of perfect frequency matching (∆ = 0) is particularly interesting and easy
to analyse. In this case we have

a1(t) = a1(0) cos
(

Ωt
2

)
− ia2(0)e−iφl sin

(
Ωt
2

)
,

a2(t) = a2(0) cos
(

Ωt
2

)
− ia1(0)eiφl sin

(
Ωt
2

)
.

(2.20)

From the two equations above we see that when a light pulse of temporal length τ is
sent on an atom initially in state |1〉 (i.e. a1(0) = 1, a2(0) = 0), the final state will be

|ψ(t)〉 = cos
(

Ωτ

2

)
|1〉+ e−i π

2 eiφl sin
(

Ωτ

2

)
|2〉. (2.21)

From Eq. 2.21 we see that, as a function of the interaction time τ, there is a complete
oscillation of the atomic population between the two states |1〉 and |2〉 with a fre-
quency Ω. This particular behaviour is called optical Rabi oscillation (see black trace
of Fig. 2.1).

It is now possible to define the formalism of the π and π/2 pulses. Considering
again Eq. 2.21 we see that when τ = π/Ω the atom will be transferred into state |2〉
with certainty; the complete population transfer defines the effect of a π pulse. Since
every time that there is a transition between |1〉 and |2〉 there is a momentum ex-
change between atom and light field the pulse acts as a mirror for the wave-function
(see Fig 2.2 right). On the contrary a π/2 pulse occurs when τ = π/(2Ω); in this case
the atom ends up in a linear superposition of the states |1〉 and |2〉with equal ampli-
tude probabilities. The pulse acts as a 50:50 beam-splitter for the wave-function on
the two states |1〉 and |2〉 (see Fig 2.2 left).
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FIGURE 2.2: Effect of a π/2 and a π pulse when applied on the two-level
system |1〉 and |2〉. The π/2 pulse can be considered as a 50:50 beam-splitter
for the matter-wave, while the π pulse as a mirror.

The two defined pulses are what is needed to realize a complete atom interferom-
eter. In our apparatus we employ a Mach-Zehnder interferometric geometry which
can be realized with a π/2− π − π/2 pulse sequence. First a π/2 pulse splits the
atomic wave-function in two parts evolving independently along different paths1;
after a time T a π pulse can be used to redirect the different paths towards each
other; finally, after another time T a last π/2 pulse is applied to recombine the inter-
ferometric arms (see Fig. 1.1 right).

In a real atom only the ground state has an infinite lifetime. For this reason, in
a real experiment the atomic level pair used in the AI is chosen in such a way that
the ideal two-level system described so far can be considered a good approximation.
For this to happen, the lifetime of the chosen level pair has to be orders of magnitude
longer than the experimental times.

In our apparatus the AI is realized with 87Rb atoms; for the manipulation of
atomic Rubidium the most used transition is the optical D2 line manifold (52S1/2 →
52P3/2), which occur around 780.241 nm. This wavelength is easily accessible with
standard laser diode technology, however the D2 line has a lifetime of 26 ns [46]
which makes it impractical as a two-level system for AIs. However a good two-
level system candidate is constituted by the doublet of the ground state hyperfine
splitting. For these two levels the energy splitting falls in the microwave range at
around 6.8 GHz. Using a microwave to directly address this transition and realize
the interferometer is a possible and commonly adopted solution. However since the
momentum transfer associated to a microwave photon is extremely low (transferred
velocity of 10−4 mm/s) this scheme is used only when the momentum separation
between the interferometric arms is not desired, e.g. in fountain clock experimental
schemes. In our case achieving a high momentum separation between the interfer-
ometric arms is fundamental. Indeed, when an atom interferometer is used as an
inertial sensor, its sensitivity is directly proportional to the momentum imparted on
the atoms; this rules out the possibility of using a microwave pulse to realize the
interferometric transitions.

A viable and largely exploited solution is represented by Raman transitions or
other multi-photon processes which are able to both couple the 87Rb hyperfine states
and transfer momentum in the optical photon range. As we will see in the next
section Raman transitions are realized with two counter-propagating light beams

1The two paths define the interferometric branches or interferometric arms. The branches can be
separated on the atomic external and internal degrees of freedom (like in the case of Raman atom in-
terferometers) or only on one of these two degrees of freedom (like in the case of Bragg interferometers
where only a momentum separation between the arms is obtained).
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with a relative detuning which equals the ground state hyperfine splitting. They
allow to consider the ground state hyperfine doublet as a good two-level system
and they can transfer twice an optical momentum (two-photon recoil velocity of
2vr = 11.8 mm/s).

In the next section we present the theory of two-photon Raman transitions, while
in Sec. 2.1.3 we introduce multi-photon Bragg transitions.

2.1.2 Two-photon Raman transitions

We now consider a three-level atomic system with two main energy levels, |a〉 and
|b〉 and an excited virtual level |i〉. In the case of 87Rb the levels |a〉 and |b〉 are the
two hyperfine levels with F = 1 and F = 2 of the 52S1/2 ground state, while the state
|i〉 can be considered as the superposition of all the hyperfine levels of the excited
52P3/2 state.

As anticipated in the previous section, we consider the interaction of the atomic
system with two counter-propagating light beams

El1(x, t) = El1,0 cos[kl1 · x−ωl1t + φl1],
El2(x, t) = El2,0 cos[kl2 · x−ωl2t + φl2],

(2.22)

with frequencies ωl1 and ωl2.
Like in the case of single-photon transitions we will use a basis of coupled exter-

nal and internal atomic degrees of freedom. We consider the following states

|1〉 = |a, p〉 E1 = h̄ωa +
|p|2
2m

= h̄ω1,

|2〉 = |b, p + h̄kl1 − h̄kl2〉 E2 = h̄ωb +
|p + h̄kl1 − h̄kl2|2

2m
= h̄ω2,

|i0〉 = |i, p + h̄kl1〉 Ei0 = h̄ωc +
|p + h̄kl1|2

2m
= h̄ωi0,

|i1〉 = |i, p + 2h̄kl1 − h̄kl2〉 Ei1 = h̄ωc +
|p + 2h̄kl1 − h̄kl2|2

2m
= h̄ωi1,

|i2〉 = |i, p + h̄kl2〉 Ei2 = h̄ωc +
|p + h̄kl2|2

2m
= h̄ωi2.

States |1〉 and |2〉 are the fundamental states which are coupled by the Raman tran-
sition. Starting from the state |1〉, state |2〉 is reached with the absorption of one
photon from the field El1 and the stimulated emission of a photon in the field El2.
The other three states are the ones in which the atom can be transferred into if start-
ing from one of the main levels and interacting with one of the two light fields. |i0〉
corresponds to the absorption of a photon from El1 when the atom is in |1〉 or to the
absorption of a photon from El2 when the atom is in |2〉. State |i1〉 corresponds to
the absorption of a photon from El1 when the atom is in |2〉, and finally state |i2〉 is
reached when the atom in |1〉 absorbs a photon from El2. We note that the momen-
tum transfer associated with the transition |1〉→|2〉 is h̄|kl1 − kl2| ' 2h̄kl1, i.e. two
optical photons momentum since the two light beams are counter-propagating.

The wave-function of the atomic system can be written as the linear superposi-
tion

|ψ(t)〉 = ∑
s

as(t)e−iωst|s〉, (2.23)

where s represents the five energy levels considered. The evolution of the atomic
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FIGURE 2.3: Schematic diagram of the atomic energy levels involved in a Ra-
man transition. Two light field of frequencies ωl1 and ωl2 couple the two
ground hyperfine states |1〉 and |2〉.

wave-function is regulated by the Hamiltonian (see Eq. 2.14)

H = ∑
s

h̄ωs|s〉〈s| − d · (El1 + El2), (2.24)

where d is again the electric dipole moment.
We now define some frequencies of interest (see Fig. 2.3): ω0 = ω2 − ω1 is the

atomic resonance frequency, δ = (ωl1 − ωl2)− ω0 is the detuning of the light fields
from the atomic resonance, ∆ is the common detuning from the excited state |i0〉,
while ∆1 and ∆2 are respectively the detuning of the light field El1 from the transition
|2〉 → |i0〉 and of the light field El2 from the transition |1〉 → |i0〉.

Considering the coupling between the states |m〉 (m = 1, 2) and the states |n〉
(n = i0, i1, i2) induced by the laser fields j = 1, 2, we can define the Rabi frequency
as

Ωmn,j =
〈n| − d · El j,0|m〉

h̄
. (2.25)

Applying the Schrödinger equation to the wave-function 2.23 with the Hamiltonian
2.24 we obtain the following equations of motion for the coefficients as in the rotating
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wave approximation

iȧ1(t) = ai0(t)
Ω∗1i0,1

2
ei(∆t−φl1) + ai2(t)

Ω∗1i2,2

2
ei(∆2t−φl2),

iȧ2(t) = ai0(t)
Ω∗2i0,2

2
ei(∆t−δt−φl2) + ai1(t)

Ω∗2i1,1

2
ei(∆1t−φl1),

iȧi0(t) = a1(t)
Ω1i0,1

2
ei(−∆t+φl1) + a2(t)

Ω2i0,2

2
ei(−∆t+δt+φl2),

iȧi1(t) = a2(t)
Ω2i1,1

2
ei(−∆1t+φl1),

iȧi2(t) = a1(t)
Ω1i2,2

2
ei(−∆2t+φl2).

It is possible to demonstrate that the coefficients of the excited levels oscillate
with frequency ∆ while the coefficients of the main levels vary much more slowly.
We can therefore adiabatically eliminate the three excited levels [47] by integrating
the three corresponding differential equations considering a1 and a2 constant. We
then obtain

iȧ1(t) = a1(t)
[
|Ω1i0,1|2

4∆
+
|Ω1i2,2|2

4∆2

]
+ a2(t)

[Ω∗1i0,1Ω2i0,2

4(∆− δ)
exp[−i(φl1 − φl2) + iδt]

]
,

iȧ2(t) = a1(t)
[Ω∗2i0,2Ω1i0,1

4∆
exp[i(φl1 − φl2)− iδt]

]
+ a2(t)

[
|Ω2i0,2|2
4(∆− δ)

+
|Ω2i1,1|2

4∆1

]
.

The equations above can be simplified and made similar to those obtained in Sec. 2.1.1
by defining the frequency light shifts of the two main states as

ΩAC
1 =

[
|Ω1i0,1|2

4∆
+
|Ω1i2,2|2

4∆2

]
,

ΩAC
2 =

[
|Ω2i0,2|2
4(∆− δ)

+
|Ω2i1,1|2

4∆1

]
,

(2.26)

and the effective quantities

ωeff = ωl1 −ωl2,
keff = kl1 − kl2,

φ0 = φl1 − φl2,

Ωeff =
Ω1i0,1Ω2i0,2

2∆
,

Ω′eff =
√

Ω2
eff + (δ− δAC)2.

We can then also define the total light shift ΩAC = ΩAC
1 + ΩAC

2 and the differential
light shift δAC = ΩAC

2 −ΩAC
1 . Finally, considering that δ� ∆ we can write

iȧ1(t) = a1(t)ΩAC
1 + a2(t)

Ω∗eff
2

e−iφ0
eiδt,

iȧ2(t) = a1(t)
Ω∗eff

2
eiφ0

e−iδt + a2(t)ΩAC
2 .

(2.27)
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It is now convenient to remove the time dependence of the off-diagonal terms with
the rotation of the coefficients

a1(t) = c1(t) exp
(

i
δ−ΩAC

2
t
)

, a2(t) = c2(t) exp
(
−i

δ + ΩAC

2
t
)

,

which produces the differential equations

iċ1(t) =
1
2

[
c1(t)(δ− δAC) + s2(t)Ωeffe−iφ0

]
,

iċ2(t) =
1
2

[
c1(t)Ωeffeiφ0 − s2(t)(δ− δAC)

]
.

(2.28)

From the solution of the equations above we derive the expression for the original
coefficients of the wave-function as

a1(t) = ei(δ−ΩAC)t/2
[

a1(0)
(

cos
(

Ω′efft
2

)
− i

δ− δAC

Ω′eff
sin
(

Ω′efft
2

))
+

a2(0)e−iφ0
(
−i

Ωeff

Ω′eff
sin
(

Ω′efft
2

))]
,

a2(t) = e−i(δ+ΩAC)t/2
[

a1(0)eiφ0
(
−i

Ωeff

Ω′eff
sin
(

Ω′efft
2

))
+

a2(0)
(

cos
(

Ω′efft
2

)
+ i

δ− δAC

Ω′eff
sin
(

Ω′efft
2

))]
.

(2.29)

In Tab. 2.1 we report the momentum transfers and phase shifts associated to each
transition, as derived from Eqs. 2.29. The phase term θ0 stands for the phase of the

complex factor
[

cos
(

Ω′efft
2

)
− i δ−δAC

Ω′eff
sin
(

Ω′efft
2

)]
which takes into account the effect

of the differential light-shift δAC.
The equations above can be simplified since experimentally it is possible to have

δ, δAC � Ωeff. We can thus write

a1(t) = ei(δ−ΩAC)t/2
[

a1(0) cos
(

Ωefft
2

)
− ia2(0)e−iφ0

sin
(

Ωefft
2

)]
,

a2(t) = e−i(δ+ΩAC)t/2
[

a2(0) cos
(

Ωefft
2

)
− ia1(0)eiφ0

sin
(

Ωefft
2

)]
.

(2.30)

The two equations above are similar to those obtained in Sec. 2.1.1 (see Eqs. 2.20).
Also for a Raman transition is therefore possible to define the formalism of the π/2
and π pulses. Indeed, if we consider an initial state such that a1(0) = 1 and a2(0) =
0, when |Ωeff|τ = π/2 we achieve a coherent equi-probable superposition of the
two hyperfine states; on the contrary if we consider a pulse such that |Ωeff|τ = π we
obtain a complete population transfer between the two main states and a momentum
transfer of h̄keff ' 2kl1, i.e. twice the momentum of an optical photon.

As we will see in Sec. 2.2 the interferometer phase shift and consequently the in-
terferometer sensitivity to inertial effects is proportional to the momentum imparted
on the atoms. It is therefore important to devise strategies to increase the transferred
momentum; this can be done implementing atom-optical techniques different from
Raman transitions which fall in the category of Large Momentum Transfer (LMT)
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TABLE 2.1: Momentum transfers and phase shifts as derived from Eqs. 2.29.

Transition Momentum Phase shift

|a〉 → |a〉 |p〉 → |p〉 θ0 + (δ−ΩAC)τ
2

|a〉 → |b〉 |p〉 → |p + h̄keff〉 − (δ+ΩAC)τ
2 + φ0 − π

2

|b〉 → |a〉 |p + h̄keff〉 → |p〉 (δ−ΩAC)τ
2 − φ0 − π

2

|b〉 → |b〉 |p + h̄keff〉 → |p + h̄keff〉 -θ0 − (δ+ΩAC)τ
2

processes. The next section analyses one of these processes, i.e. atomic Bragg diffrac-
tion.

2.1.3 Multi-photon Bragg transitions

We now theoretically examine the atomic Bragg diffraction process. The results de-
rived and presented here can be found and extended in [40], [41], [48]. In the last
part of this section we also provide numerical solutions for the atomic population
dynamics during Bragg transitions.

The phenomenon of Bragg diffraction was first formulated in 1913, by W. H.
Bragg and W. L. Bragg [49], who noted that some crystalline substances produced
peculiar and reproducible diffraction patterns when irradiated with X-ray light. From
these experimental observations the authors concluded that the observed diffraction
peaks were profoundly linked to the internal atomic structure of the irradiated crys-
tal and, in particular, to the separation between the lattice planes. The final result of
Bragg’s analysis is the famous diffraction condition

nλ = 2d sin θ, (2.31)

where λ is the wavelength of the electromagnetic field, d the distance between neigh-
bouring lattice planes, θ the incidence angle of the radiation with respect to the nor-
mal of the lattice planes and n the diffraction order. In the ideal case of a three-
dimensional, infinite, perfect lattice if the condition 2.31 is fulfilled for a certain
diffraction order n, all the radiation incident on the crystal is redirected in that par-
ticular order of diffraction. An ideal diffraction process can therefore produce only
one order of diffraction n, identified by the incidence angle of the wave-front with
respect to the normal of the lattice planes.

In our case the role between matter and light is exchanged since the diffraction
phenomenon is stimulated on an atomic wave-function with the use of an optical
lattice. The interaction time is not dependent on the spatial extension of the lattice
any more, but on the duration of the light pulses. Moreover, the condition on the
incidence angle in relation 2.31 translates in a condition on the frequency difference
for the two laser beams forming the lattice, i.e. on the velocity of the wave pattern.

For an atomic system, a Bragg diffraction process of order n can be interpreted
as a 2n-photon transition which couples two defined, different momentum states,
leaving the internal state untouched. If the stationary wave pattern is produced by
two counter-propagating laser beams with slightly different frequencies the process
consists in the absorption of n photons from one of the beams and in the succes-
sive stimulated emission of n photons in the counter-propagating beam. If k is the
wave-number associated to the wave pattern, the process is then able to determine
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FIGURE 2.4: Energy level diagram for a Bragg diffraction process of nth order.
The transition connects the state |a, 0〉 to |a, nprec〉, with prec = 2h̄k. |a〉 and
|b〉 are two internal atomic states, ω1 and ω2 indicate the frequencies of the
two laser beams used to generate the diffracting one-dimensional wave pat-
tern. The parabolic frequency arrangement of the different vibrational levels,
following the trend ∼ n2ωr, is indicated in light blue.

a total momentum transfer of keff = 2nh̄k, while the internal atomic state remains
unchanged.

Fig. 2.4 shows the transition diagram for a Bragg process of order n, connecting
the two states |a, 2nI h̄k〉 → |a, 2nF h̄k〉, where in this specific case nI = 0 and nF = 3.
The excited diffraction order is therefore n = nF − nI = 3 and the laser fields have a
relative detuning of 2δ. The atom, after the diffraction, remains in the same internal
state |a〉, but acquires a kinetic energy of 4h̄ωr(n2

F − n2
I ) (with ωr = h̄k2/(2m) the

recoil frequency and m the atomic mass). The kinetic energy acquired has to balance
the energy lost by the laser field, i.e. 2h̄(nF − nI)δ. From these two relations we
can derive the resonance condition for a general Bragg transition connecting the
momentum states |2nI h̄k〉 and |2nF h̄k〉 as

δ = 2ωr(nF + nI). (2.32)

In our case the level |a〉 corresponds to the 87Rb hyperfine state |F = 1, mF = 0〉
of the ground level, while |b〉 is the superposition of all the hyperfine levels of the
excited state 52P3/2.

In Sec. 2.1.1 we already considered the interaction of an atomic two-level system
with a mono-chromatic electromagnetic field of frequency ωl and wave-vector kl .
Labelling the two atomic energy levels as |a〉 and |b〉 (for the fundamental and ex-
cited level respectively) and the transition frequency ω0 = ωb − ωa, we recall here
that the Hamiltonian in the rotating wave approximation can be written as [41]

H =
p2

2m
+ h̄ω0|b〉〈b| −

(
h̄Ω
2

ei(kz−ωl t)|b〉〈a|+ h.c.
)

, (2.33)
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where the Rabi frequency is now defined as Ω = d · E0/h̄. This result can be mod-
ified for a superposition of plane waves. Indeed considering a generalized electric
field

E = ∑
j

Ej cos(k jz− (ωl − δj)t), (2.34)

the Hamiltonian can be written as

H =
p2

2m
+ h̄(ω0 −ωl)|b〉〈b| − h̄

(
∑

j

Ωj

2
ei(k jz+δjt)|b〉〈a|+ h.c.

)
, (2.35)

The Hamiltonian above describes the interaction of any atomic two-level system
with an arbitrary electric field. When considering the special case of Bragg diffrac-
tion the atoms are scattered by a one dimensional optical lattice derived from two
counter-propagating light beams; we thus have

E =
E0

2
u(z, t) =

E0

2

[
e−i(kz−δt) + ei(kz−δt)

]
, (2.36)

where 2δ is the detuning between the counter-propagating laser beams. The Hamil-
tonian becomes (∆ = ω0 −ωl))

H =
p2

2m
− h̄∆|b〉〈b| −

(
Ωu(z, t)

2
|b〉〈a|+ h.c.

)
. (2.37)

For the atomic wave-function we consider the superposition

|ψ〉 = a(z, t)|a〉+ b(z, t)|b〉, (2.38)

and use it in the Schrödinger equation relative to the Hamiltonian 2.37. The result is
the system of coupled differential equations

ih̄ȧ(z, t) =
p2

2m
a(z, t)− h̄Ω∗

2
u∗b(z, t),

ih̄ḃ(z, t) =
p2

2m
b(z, t)− h̄∆b(z, t)− h̄Ω

2
ua(z, t).

The excited state dynamics can be adiabatically eliminated by setting ḃ(z, t) = 0
since the laser detuning ∆� Ω. Then

iȧ(z, t) = − h̄
2m

∂2

∂z2 a(z, t) +
|Ω|2
4∆

uu∗a(z, t). (2.39)

We note that due to the electric field periodicity we can apply Bloch’s theorem and
express a(z, t) as a superposition of plane waves2

a(z, t) =
∞

∑
n=−∞

an(t)ei2nkze−i(2n)2ωrt.

2In the expression for a(z, t) we include also a kinetic energy phase factor. This contribution, even
if not strictly needed is included to reduce the complexity of the final solution.
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Substituting the above plane-wave decomposition into Eq. 2.39 and defining the
two-photon Rabi frequency Ω′ = |Ω|2/(2∆) we obtain

∞

∑
n=−∞

iȧnei2nkze−i4n2ωrt = Ω′
∞

∑
n=−∞

anei2nkze−i4n2ωrt+

Ω′

2

[ ∞

∑
n=−∞

anei2(n−1)kzei2δte−i4n2ωrt +
∞

∑
n=−∞

anei2(n+1)kze−i2δte−i4n2ωrt
]

.
(2.40)

The equation above can be simplified by going into the frame rotating at the fre-
quency Ω′, i.e. with the substitution an → ane−iΩ′t. We also introduce the substitu-
tions (n− 1)→ n and (n + 1)→ n in the left and right summations respectively. We
thus obtain

∞

∑
n=−∞

iȧnei2nkze−i4n2ωrt =
Ω′

2

[ ∞

∑
n=−∞

an+1ei2nkzei2δte−i4(n+1)2ωrt +
∞

∑
n=−∞

an−1ei2nkze−i2δte−i4(n−1)2ωrt
]

.

We note that in the equation above each term is multiplied by ei2nkz, but since the
solution an has to be valid for all z, each term of order ei2nkz has to be equal individ-
ually, i.e.

iȧn =
Ω′

2

[
an+1ei2δte−i4(2n+1)ωrt + an−1e−i2δtei4(2n−1)ωrt

]
. (2.41)

We thus obtain an infinite set of coupled differential equations indexed by the integer
n which describe the population dynamics in the different momentum states cou-
pled by the laser field. In general the two-photon Rabi frequency is a function of the
time t. We note that Eq. 2.41 produces a coupling between the different plane-wave
momentum states of the atom only by integer multiples of the photon wave-number
k.

The system 2.41 cannot be treated analytically; however we can consider simpli-
fying assumptions and some special cases in which simple solutions can be found
analytically. For example when the interaction time t→ 0 Eq. 2.41 simplifies to

iȧn =
Ω′

2
[
an+1 + an−1

]
, (2.42)

and we are in the so called Raman-Nath regime. Solutions of the equation above can
be expressed in terms of Bessel functions Jn as

an = (−i)nJn(4Ω′t).

Bragg diffraction processes in the Raman-Nath regime can be used in atom inter-
ferometry to realize beam-splitters [50]; however the atomic population tends to be
diffracted in many momentum states and not just the two of interest. This problem
severely limits the applicability of Raman-Nath beam-splitters.

An efficient beam-splitter, coupling only two momentum states can be obtained
when the interaction time is long (τ � 1/ωr), i.e. in the so called Bragg regime.
In the particular case in which δ = 0 energy conservation favors the transitions
a−n → an and all the intermediate states am (m 6= ±n) can be adiabatically eliminated
from the population dynamics. The evolution of the remaining two-level system is
governed by the effective Rabi frequency [40]

Ωeff =
(Ω′)n

(8ωr)(n−1)

1
[(n− 1)!]2

. (2.43)
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The adiabatic elimination of the intermediate states can be performed as long as the
condition 4(n− 1)ωr � Ω′ is satisfied. The same condition can be expressed as

Ωeff �
8(n− 1)n

2n[(n− 1)!]2
ωr. (2.44)

For n ≤ 5 the second term of the expression above is ∼ ωr (i.e. the Bragg condition
is satisfied for interaction times Ω−1

eff � ω−1
r ), but it drops rapidly with increasing

n. The general Bragg resonance condition to transfer atoms between the momentum
states nI and nF reads δ = 2ωr(nF + nI).

We point out that in our set-up the conditions for the Bragg regime are not met.
The transitions are stimulated with Gaussian pulses with σ = 12 µs (FWHM' 28 µs
), i.e. with a duration comparable with the inverse of the 87Rb recoil frequency
ω−1

r ' 42 µs. However a quasi-Bragg solution of the system 2.41, which can de-
scribe typical experimental conditions, can be derived numerically. If we consider
the resonant coupling of the momentum states anI and anF, i.e. if we consider a
detuning δ = 2(nF + nI)ωr, we can introduce an upper and a lower index cutoff,
respectively n1 > max(nI , nF) and −n2 < min(nI , nF), which permits the reduction
of the infinite system 2.41 to a finite system of differential equations

iȧn1+1 = 0,

iȧn1 =
Ω′

2

[
an1−1e−i2δtei4(2n1−1)ωrt

]
,

iȧn1−1 =
Ω′

2

[
an1 ei2δte−i4(2n1−1)ωrt + an1−2e−i2δtei4(2n1−3)ωrt

]
,

...

iȧn =
Ω′

2

[
an+1ei2δte−i4(2n+1)ωrt + an−1e−i2δtei4(2n−1)ωrt

]
,

...

iȧ−n2+1 =
Ω′

2

[
a−n2+2ei2δte−i4(−2n2+3)ωrt + a−n2 e−i2δtei4(−2n2+1)ωrt

]
,

iȧ−n2 =
Ω′

2

[
a−n2+1ei2δte−i4(−2n2+1)ωrt

]
,

iȧ−n2−1 = 0.

(2.45)

This system of differential equations can be solved numerically with standard com-
puting software. In the following we present some numerical results derived from
the equations above.

Let us now consider again the Bragg diffraction process reported in Fig. 2.4. We
note that in order to reach the desired final momentum state the atom has to go
through several processes of photon absorption and stimulated emission which al-
low it to ascend the momentum states ladder. For an efficient Bragg diffraction
process, all the intermediate momentum states encountered before the target state
must remain unpopulated. This requirement is highly important especially in atom
interferometry since the parasitic phase imparted on the atoms by the Bragg beam-
splitters is proportional to the amount of losses in the intermediate momentum states
[40]. As we already mentioned when describing the Bragg regime, one way to sat-
isfy this requirement is to use long Bragg pulses. However the pulse length needed
is outside of our experimental possibilities. Fortunately it is possible to reduce the
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FIGURE 2.5: Population transfer due to a fifth order Bragg diffraction process
(δ = 10ωr) versus the Rabi frequency. The atomic population oscillates be-
tween the initial nI = 0 state (red trace) and the nF = 5 state (green trace),
with some residual atomic loss in unwanted momentum states (dashed lines).
Bragg diffraction is excited with a Gaussian pulse with σ = 0.292ω−1

r .

presence of atoms in undesired momentum states by using shorter pulses with par-
ticular time profiles which provide a quasi-adiabatic population transfer through
the undesired momentum states with high efficiency. The amount of atom losses
in unwanted momentum states can be optimized acting on the parameters of these
pulses.

Typical high transfer efficiency Raman beam-splitters are obtained with square
pulses. This simple kind of envelope cannot be used also for Bragg beam-splitters
with a high efficiency. When using Bragg beam-splitters it is more appropriate to
use envelopes derived from continuous and slowly varying functions; in our set-up
we use truncated Gaussian pulses which have been studied extensively in [40], [41],
[51], [52]3

Ω′(t) =

{
Ωe−t2/(2σ2) if− τ ≤ t ≤ τ

0 otherwise

In our experimental set-up the typical value for the width σ of the pulses is 12 µs.
With such an envelope we can numerically solve the system 2.45. In our analysis
we consider a fifth order Bragg diffraction process which resonantly couples the
momentum states with nI = 0 and nF = 5, i.e. δ = 10ωr. In the following we always
assume a pulse width of σ = 0.292ω−1

r = 12 µs and τ = 5σ. We start our analysis
deriving the atomic population dependence on the Rabi frequency. The results are
reported in Fig. 2.5. The continuous lines represent the atomic population in the two
momentum states of interest with nI = 0 (red line) and nF = 5 (green line). We note
that the atomic population starts from nI and is coupled to nF and also to the four
intermediate states with 1 ≤ n ≤ 4 which are represented with the dashed lines.
The presence of the unwanted momentum states makes impossible to transfer the
initial atomic population completely to the state nF = 5, however from this analysis
we can derive the optimal intensities for an efficient π and π/2 pulse. We use the

3Other used pulse shapes are the Blackman window function or similar. These pulses have the de-
sirable property of being zero at the edges ±τ unlike the Gaussian pulses which need to be artificially
truncated.
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FIGURE 2.6: (Left) Atomic population versus time for a fifth order Bragg π
pulse. The numerical evaluation is done with the optimal Rabi frequency de-
rived from the analysis of Fig. 2.5, i.e. Ωπ ' 38ωr. (Right) Atomic popu-
lation versus time for a fifth order π/2 Bragg pulse. In this case we used
Ωπ/2 ' 29ωr. From both the pulses we can see how the atomic population
traverses all the intermediate momentum states (represented with the dashed
lines) before arriving at the final output state.

derived intensities to reproduce the effect of optimal π and π/2 pulses on the atomic
population. In Fig. 2.6 we report the atomic population dependence on the pulse
time during the interaction with a π and a π/2 pulse. We note the quasi-adiabatic
population dynamic during the pulse; indeed the atomic population traverses all
the intermediate momentum states, from the lower till the higher until it reaches the
target output state (with some residual losses in unwanted momentum states).

It is also interesting to consider the effect of a non perfectly resonant pulse.
Fig. 2.7 shows the atomic population for a π/2 pulse versus the detuning δ. Vary-
ing the detuning with respect to the resonance condition for the fifth order Bragg
transition δ = 10ωr, changes significantly the efficiency of the pulse. Furthermore
when the detuning is lowered we note that a larger fraction of atomic population is
accumulated in the lower momentum states since they become closer to resonance,
in particular the nF = 4 state (dashed dark yellow trace).

2.2 Interferometric phase shifts calculation

2.2.1 Atom interferometry

As already mentioned an AI experiment can usually be divided in three stages. Ini-
tially we have the preparation of the atomic sample; then two or more laser pulses
are applied on the atomic sample to realize the chosen interferometric sequence; fi-
nally the atomic population at the output of the interferometer is detected. We over-
look for the moment the preparation and detection stages, which will be described
in detail later, and we concentrate now on the interferometric sequence.

During the interferometric sequence a series of electromagnetic pulses interact
with the prepared atomic sample. In analogy to optical interferometers, each pulse
can be thought of as a beam-splitter or a mirror for the matter-wave (see Sec. 2.1.1);
each pulse is then able to change the internal atomic state and transfer momentum
kicks to the atom. The pulse sequence initially splits the phase-space trajectories of
the atomic wave-function in different interferometric paths and finally recombines
them at the moment of the last pulse. The observable of interest in an AI experiment
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FIGURE 2.7: Dependence of the atomic population after a fifth order Bragg
π/2 pulse on the detuning from the resonant condition δ = 10ωr.

is the matter-wave phase shift φ which accumulates between the different paths; this
phase shift can be measured by detecting the output atomic population P in one of
the exit ports of the AI. Indeed the output population is a function of φ and can
be written as P(φ) = 1

2 (1− cos(φ)); it thus exhibits a sinusoidal fringe pattern as
a direct manifestation of the interference mechanism occurring at the output of the
interferometer when the different paths are recombined.

There exist several ways to calculate the mathematical form of the interferome-
ter phase shift φ. In principle the whole process could be analyzed completely by
solving the time-dependent Schrödinger equation [53], [54]. However, due to the
differences of the atomic evolution during the atom-light interaction periods and
during the free-propagation periods several difficulties are encountered while fol-
lowing this approach. Indeed usually the two periods are treated separately and the
individual results are then finally combined.

Since between the interferometric pulses the wave-functions propagate while be-
ing subjected to spatially varying forces a natural approach for analyzing the AI
seems to be the path integral description of quantum mechanics [42], [55]. This anal-
ysis method is presented in Sec. 2.2.2.

Another method which has proven particularly useful for the calculation of the
AI phase shift and in particular for analyzing the interferometer sensitivity to ac-
celerations and to various sources of noise relies on the definition of the sensitivity
function [56] and will be introduced in Sec. 2.2.3.

AIs as gravimeters and gradiometers

Before introducing the theoretical formalisms it is important to understand in gen-
eral terms the experimental configuration of our apparatus. In the following theoret-
ical analysis we will always consider a vertical AI, operated with Raman transitions
in a Mach-Zehnder geometry. This is indeed the original configuration of the MA-
GIA apparatus and of several other AIs used to detect gravitational phenomena and
inertial accelerations.
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These particular experimental apparatuses are typically realized using the atomic
fountain configuration in which atoms are launched or dropped in vacuum and in-
terrogated with the laser pulses during their ballistic trajectory. The two interfero-
metric lasers4 travel vertically along the length of the experimental set-up and are
finally retro-reflected with a mirror. As we will see, the interferometer phase is sen-
sitive to the acceleration experienced by the atoms along the direction of the lasers
and in general can be written as φ = keff · aT2. Indeed any external force which in-
duces an acceleration on the atomic motion and consequently a displacement of the
atom relative to the laser wave-fronts produces a phase shift between the interfer-
ometric arms. Since φ contains the information about the gravitational acceleration
an instrument of this kind can be used as a gravimeter.

The MAGIA-Adv apparatus can realize simultaneous AIs with a relative vertical
displacement between them. Typically we launch two samples separated by 30 cm
and on each sample we implement an AI probing the local free fall acceleration of
the atoms. Considering the difference in the signals from these two AIs Φ = φu − φl
(with φ(u,l) the AI phase of the upper and lower interferometer) we can thus ob-
tain a measure of the differential acceleration of the ensembles due to their vertical
separation. In this configuration the experimental apparatus is sensitive to the gra-
dient of the gravitational acceleration averaged over the AIs separation and can be
considered as a gradiometer.

2.2.2 Feynman path integral approach

Let us consider the atom interferometer sequence shown in Fig. 2.8 composed of
π/2−π−π/2 Raman pulses separated by a time T. The total interferometric phase
can be decomposed as the sum of three distinct contributions

φtot = φevol + φint + φsep. (2.46)

φevol accounts for the free evolution of the atomic wave-function between the pulses;
φint is due to the atom-light interaction; φsep derives from a non perfect overlap of
the interferometric arms at the moment of the last π/2 pulse.

The phase contribution due to the atomic free evolution φevol can be expressed
starting from the definition of the phase βg of a matter-wave ψ ≡ exp(−iβg) given
by Luis de Broglie [57] as

βg =
mc2

h̄
τ, (2.47)

where m is the rest mass of the particle, c the speed of light and τ the particle proper
time. It is interesting to note that in the non-relativistic limit, i.e. for weak gravi-
tational fields and velocities small compared to c the proper time can be expressed
as

dτ ' dt− 1
mc2Lgdt, (2.48)

where Lg = 1
2 mv2 − mΦg is the non-relativistic Lagrangian which accounts for the

kinetic energy of the particle with velocity v � c and for the weak gravitational
potential Φg. The matter-wave then can be written as

ψ = e−iβg ' exp
[
− i

h̄
mc2t

]
exp

[
i
h̄

∫
dt Lg

]
. (2.49)

4In our set-up the interferometric pulses are realized with Raman or Bragg transitions which need
a couple of laser beams to be excited.
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FIGURE 2.8: Space-time trajectories for an atom in a vertical Mach-Zehnder
atom interferometer implemented with Raman pulses. The straight lines rep-
resent the trajectories without gravitational acceleration, while the parabolic
lines take into account the effect of gravity. The interferometric pulses are
shown with the green lines. g represents the gravitational acceleration.

We note that the first term in the equations above takes into account the atomic rest
mass. In a standard Mach-Zehnder interferometer with two paths of identical coor-
dinate time t this term does not produce any contribution to the total interferometric
phase φtot. We thus obtain φevol =

1
h̄

∫
dtLg. The phase due to the free evolution is

thus the action calculated along the classical trajectory of the particle divided by h̄.
φint can be derived using the results reported in Tab. 2.1 and for a MZ interfer-

ometer is

φint = φeff(zA, 0)− φeff(zD, T)− φeff(zC, T) + φeff(zB, 2T) + θ0
0 − θ0

2T, (2.50)

with φeff(z, t) = keffz(t) + φ0; we used the atomic coordinates as defined in Fig. 2.8,
keff represents the momentum imparted on the atoms during the interferometric
transitions, φ0 is the phase difference between the interferometric lasers and the ad-
ditional phase terms θ0

(0,2T) take into account the differential light shift contribution
due to the π/2 pulses.

φsep arises when the atoms are subjected to non-uniform force fields which de-
termine a non perfect overlap of the atomic wave-function at the output of the inter-
ferometer. In this case, even with a non perfect overlap, interference can still occur
because of the spatial extension of the atomic wave-packet. However we have to
consider an additional phase term

φsep =
p · (zB

I − zB
II)

2h̄
, (2.51)

with zB
I and zB

II the end points of the two different interferometric arms. This contri-
bution arises in presence of a gravity gradient for example.

We will now present some of the major AI phase shift contributions.
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TABLE 2.2: Characteristic quantities for the classical trajectories in the MZ
atom interferometer for atoms subjected to a constant gravitational potential.

0 < t < T T < t < 2T

Velocity on upper path, vu v(t) + h̄keff
m v(t)

Velocity on lower path, vl v(t) v(t) + h̄keff
m

Upper path zu z(t) + h̄keff
m t z(t) + h̄keff

m T

Lower path zl z(t) z(t) + h̄keff
m (t− T)

Phase shift in a gravity field

Let us consider an AI interrogating an atom in free fall in a gravity field g. The
complete Lagrangian Lg can be written as

Lg =
1
2

mv2 −Vg(z), (2.52)

and involves the kinetic energy with the velocity v = ż and the linear gravitational
potential Vg(z) = mgz. The classical trajectory z(t) followed by the atoms in the MZ
interferometer can be calculated from the Euler-Lagrange equations for Lg consid-
ering also the momentum transfer on the atoms due to the interaction with the laser
light at the times of the interferometric pulses

z(t) = z(0) + v(0)t− 1
2

gt2 +
2

∑
j=0

∫ t

−∞
dt′Θ(t′ − jT)

pj

m
, (2.53)

where z(0) and v(0) are the atomic height and velocity just before the first laser
pulse, Θ is the Heaviside step function and

pj =


+h̄keff for |a〉 → |b〉,
−h̄keff for |b〉 → |a〉,

0 no interaction.

In Tab. 2.2 we summarize the characteristics of the atomic classical dynamics in the
MZ interferometer.

We can now calculate the phase shift contribution due to the free evolution φevol
as

φevol =
1
h̄

∮
dtLg =

1
h̄

∮
dt

1
2

mv2 − 1
h̄

∮
dtVg. (2.54)

Using the results in Tab. 2.2 we now calculate the two individual phase terms in the
equation above, starting with the one associated to the kinetic energy

φkin =
1
h̄

∫ 2T

0
dt

1
2

m(v2
u − v2

l ) =keff

∫ T

0
dt
(

vg +
h̄keff

2m

)
− keff

∫ 2T

T
dt
(

vg(t) +
h̄keff

2m

)
=

− keff[zg(2T)− 2zg(T) + zg(0)] = −keffz̈g(0)T2.
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We then obtain
φkin = keffgT2. (2.55)

We now evaluate the contribution due to the gravitational potential energy

φg =
1
h̄

∫ 2T

0
dt mg(zu − zl) = keffg

∫ T

0
dt t + keffg

∫ 2T

T
dt (2T − t) = keffgT2.

Which results in
φevol = φkin − φg = 0. (2.56)

Also φsep = 0 since in a constant gravitational field the atomic trajectories overlap
perfectly at the time of the final beam-splitter.

The last contribution to φtot derives from the atom-light interaction. We note that
since the atomic vertical velocity changes linearly with time during the free-fall, the
Raman lasers frequency difference has to be swept linearly in order to compensate
for the changing Doppler effect and maintain the resonance during all the interfero-
metric sequence. From Eq. 2.50 considering z(0) = 0 and v(0) = v0 we obtain

φeff(zA, 0) = φ0(0) + θ0
0 ,

φeff(zD, T) = keff

[
−1

2
gT2 + v0T

]
+ φ0(T),

φeff(zC, T) = keff

[
−1

2
gT2 +

(
v0 +

h̄keff

m

)
T

]
+ φ0(T),

φeff(zB, 2T) = keff

[
−2gT2 + 2v0T +

h̄keff

m
T

]
+ φ0(2T) + θ0

2T.

(2.57)

We finally get
φtot = φint = −keffgT2 + δφ0 + θ0

0 − θ0
2T, (2.58)

with δφ0 = φ0(0)− 2φ0(T) + φ0(2T) the difference between the phases of the laser
pulses. We note that δφ0 is the discrete version of the second time derivative of the
phase difference φ0 between the two Raman lasers.

The result in Eq. 2.58 was derived considering the phase shifts induced by the
Raman lasers reported in Tab. 2.1. We note that the total light shift ΩAC does not
contribute to the final interferometric phase. This is because we are considering an
ideal case in which the laser beams pass through optics which do not produce an
intensity modulation of the light over the separation between the interferometric
arms. However, since the optics are not ideal, the final AI phase will also have a
contribution from the total light shift; this term arises during the π pulse, when the
separation between the interferometric arms is maximum. The effect of the differen-
tial light shift δAC is considered in Eq. 2.58 through the terms θ0 which arise from the
π/2 pulses. It is possible to eliminate this phase contribution with an appropriate
choice of the Raman beams intensity ratio which makes ΩAC

1 = ΩAC
2 .

We note that since the MZ phase shift depends linearly on the momentum im-
parted to the atom keff a possible strategy to increase the sensitivity of the interfer-
ometer is to increment this momentum. This is the reason why the development of
Large Momentum Transfer interferometers is a strongly active field of research in
atomic physics today. Another way to increase the interferometer sensitivity is of
course to increment the interrogation time T. This can be done using taller appara-
tuses or set-ups in micro-gravity environments.
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Eq. 2.58 can be refined taking into account the wave-packet evolution during the
interferometric pulse finite time length τ. The complete analysis can be found in [58]
and the phase shift becomes

φtot = −keffg
(

T +
4τ

π

)
(T + 2τ) + δφ0, (2.59)

where in this case we neglected the contribution from the light shift.

Phase shift in presence of a gravity gradient

We now consider the effect of a gravity acceleration gradient on the AI phase shift. In
this case for a symmetric MZ interferometer the atomic trajectories will not perfectly
overlap at the moment of the closing π/2 pulse and φsep 6= 0.

In presence of a constant gravity gradient γ the gravitational acceleration can be
expressed considering a reference value −g at height z = 0 so that the equation of
motion of a free body can be written as z̈(t) = −g + γz(t). During a MZ interferom-
eter the separation between the interferometric arms is maximum at the time of the
central π pulse and corresponds to δz = 2vrT, where vr ' 6 mm/s is the 87Rb recoil
velocity. Considering standard operating conditions for our MZ interferometer we
obtain for an interrogation time of T = 100 ms a maximum separation δz = 1.2 mm.
With such a separation between the interferometric arms the action of a constant
gravity gradient like the one of the Earth, γ ∼ 3× 10−6 s−2, produces a detectable
effect on the interferometric phase.

The interferometric phase shift can be evaluated using again the path integral
formalism already introduced. This time considering a Lagrangian with a uniform
gravity field term and a perturbation term which accounts for the gravity gradient,
∆L = 1

2 mγz2. The perturbation term introduces an additional phase shift [59] which
adds up with the one produced by the uniform gravity Lagrangian

φgrad = keffγT2
(
− 7

12
gT2 + v0T + z0

)
. (2.60)

We note that the phase contributions depending on the initial cloud velocity v0 and
initial cloud position z0 derive from the separation of the atomic trajectories at the
end of the interferometer. These terms are particularly problematic for high sen-
sitivity measurements since they produce a systematic effect which is difficult to
characterize with the required accuracy. However a mitigation strategy is proposed
in [36] and will be the subject of experimental investigation in Sec. 5.4.

Multi pulses interferometric schemes can be implemented for a direct measure-
ment of the gravity gradient [17]; however the most efficient strategy to measure
γ is to use two vertically separated atomic samples which act as simultaneous AIs.
By considering the differential phase shift Φ between the two AIs the huge phase
shift due to the gravity acceleration is cancelled together with all the common mode
sources of phase noise, i.e. all the sources which affect in the same way both the AIs.
The obtained signal can then be written as

Φ = φup − φdw = −keff(gup − gdw)T2 = −keffγdT2, (2.61)

with d the relative spatial separation between the two AIs and gup and gdw the grav-
ity acceleration values at the height of the atomic samples. In our experimental ap-
paratus we adopt this configuration and we usually work with d = 30 cm which
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determines a differential acceleration of ∼ 10−7 g between the simultaneous inter-
ferometers.

Phase shift in presence of small rotations

We can follow the same procedure adopted in the previous example to consider the
effect on an atom interferometer of small rotations. In this case, if Ω is the vectorial
angular velocity, the perturbation term for the Lagrangian is ∆L = mΩ · (x× v) and
the corresponding additional phase shift is

φrot = −2Ω · (v× keff)T2. (2.62)

In an atomic fountain apparatus the atoms are launched along the vertical di-
rection, however due to the finite temperature of the samples a horizontal velocity
spread is always present. Launch errors can also provide a small v component per-
pendicular to keff which we assume to be perfectly oriented along the vertical direc-
tion. If the interferometric measurement is performed at a latitude θl the rotation of
the Earth produces a contribution to the phase shift of

φrot = −2ΩvEWkeffT2 cos θl , (2.63)

with vEW the atomic horizontal velocity along the East-West direction.
Considering again an experimental set-up in which two simultaneous interfer-

ometers are performed at different heights, if the atomic samples are launched along
two slightly different trajectories with a small tilt angle from the vertical direction,
their horizontal velocities will be different at the moment of the interrogation. For
this reason a Coriolis phase shift term will be present in the differential signal from
the two simultaneous AIs

Φrot = φrot, up − φrot, dw = −2Ω∆vEWkeffT2 cos θl . (2.64)

The MAGIA-Adv apparatus is located at a latitude of θl = 43◦ 50′ 07′′N. Since a
complete 2π Earth rotation takes 23 h 54 min 4 s (86, 044 s) we have that Ω = 7.3×
10−5 rad/s. If we consider an interrogation time of T = 100 ms and keff = 1.6× 107

m−1 we obtain a differential phase shift of 16 mrad for each mm/s of East-West
velocity difference.

To reduce the influence of the Coriolis acceleration on the AI one of the most
common strategies is the use of a tip-tilt mirror for the two counter-propagating
Raman beams [60], [61].

Phase shift from magnetic fields

The interaction between an atom with a magnetic dipole moment µ and a magnetic
field B can be expressed as−µ ·B. If the atomic quantization axis is chosen along the
z direction applying a bias magnetic field, the atom is subjected to an acceleration

a =
1
m
∇(µ · B) = 1

m
mFµBgF

dBz

dz
z
|z| , (2.65)

with µB the Bohr magneton, gF the Landè factor and m the atomic mass. From
the previous equation we can see that in order to produce an acceleration, what
is needed is a spatial gradient of the magnetic field along the quantization axis and
that the acceleration depends on the mF quantum number.
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In order to suppress the effect of magnetically induced accelerations only 87Rb
atoms in the mF = 0 state are used during the interferometric sequence. In this way
the first order Zeeman effect is cancelled; however the second order Zeeman effect
still has to be considered even for mF = 0 atoms. The energy shift is described by
the Breit-Rabi formula

Um(z) = −
µ2

B(gJ − gI)
2

2h∆h f
B(z)2, (2.66)

with gJ and gI the fine structure and nuclear Landè factors, h the Planck’s constant
and ∆h f the hyperfine splitting frequency. The acceleration is then

am =
1
m
∇
(

µ2
B(gJ − gI)

2

2h∆h f
B2
)

ẑ =
2h
m

αB
dB
dz

ẑ, (2.67)

where α = 575 Hz/Gauss2 for the D2 transition.
We now consider two simultaneous AIs vertically displaced by d and immersed

in a magnetic field with a constant gradient B′. The resulting differential phase shift
will be

Φm = keff(am, up − am, dw)T2 = keff
2h
m

α(Bup − Bdw)B′T2 = keff
2h
m

αdB′2T2. (2.68)

With T = 100 ms, B′ = 0.1 Gauss/m and d = 30 cm the correction to the differential
phase shift is of the order of ' 3 mrad, which corresponds to a few percent of the
Earth gravity gradient signal.

There is also an additional correction to be considered. Indeed in addition to
the mechanical effects the magnetic field produces also a phase term ∆φM connected
to the transition frequency change produced by the potential 2.66. To evaluate this
phase shift we introduce this potential in the system Lagrangian and use the path
integral treatment

φM =
1
h̄

∮
dt Um(z(t)) = 2πα

∮
dt B(z(t))2. (2.69)

Performing the integration along the trajectory calculated neglecting the action of
the magnetic field produces a result with a good approximation.

2.2.3 Sensitivity function approach

We now introduce a second formalism to obtain the total AI phase. This formal-
ism was initially developed for calculating the influence of local oscillator noise on
atomic clocks [56], but has proven very useful also for deriving the AI sensitivity to
the various sources of phase shifts.

As in the previous case we will consider a vertical MZ interferometer operated
with Raman transitions. In Sec. 2.1.2 we derived the equations for the population
dynamics after the application of a Raman pulse. The result presented in Eq. 2.29
can be restated in matrix form as(

a1(t0 + τ)
a2(t0 + τ)

)
=M(t0, φeff, Ωeff, τ)

(
a1(t0)
a2(t0)

)
,

whereM(t0, φeff, Ωeff, τ) is the transfer matrix for a single Raman pulse. If we con-
sider the ideal condition in which the total and differential light shifts produce no
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phase contribution and in which the resonance condition is verified the transfer ma-
trix is

M(t0, φeff, Ωeff, τ) =

 cos
(
|Ωeff|τ

2

)
−ieφ0

sin
(
|Ωeff|τ

2

)
−ie−φ0

sin
(
|Ωeff|τ

2

)
cos
(
|Ωeff|τ

2

)
 , (2.70)

while the transfer matrix describing the wave-packet evolution during the free-fall
is obtained setting Ωeff = 0

M(T) =
(

1 0
0 1

)
.

In this formalism the complete MZ interferometer is modelled as the matrix product

Mint =M(T+ τ, φ
(3)
eff , Ωeff, τ)M(T)M(−τ, φ

(2)
eff , Ωeff, 2τ)M(T)M(−T− 2τ, φ

(1)
eff , Ωeff, τ),

where we set the time origin at the middle of the π pulse.
The transition probability, considering an initial state in which all atoms are in

state |1〉 is

P2 = |a2(T + 2τ)|2 =
1− cos(φ(1)

eff − 2φ
(2)
eff + φ

(3)
eff )

2
, (2.71)

from which we can conclude again (see Eq. 2.50) that the phase difference between
the two interferometric arms is φ = φ

(1)
eff − 2φ

(2)
eff + φ

(3)
eff . The interferometer is there-

fore sensitive to phase noise over the three Raman pulses and to all the effects that
modify the transition frequency during the interferometric sequence.

We now want to explicitly calculate the influence of the mentioned effects on
the interferometer phase using a mathematical formalism based on the sensitivity
function.

We start considering the effect of a phase jump δφeff of the phase difference be-
tween the Raman lasers. The phase jump will affect the measured transition prob-
ability at the output of the interferometer with a variation δP. At this point we can
define the sensitivity function as

gs(t) = 2 lim
δφeff→0

δP(δφeff, t)
δφeff

. (2.72)

Since the transition probability is directly linked to the interferometric phase φ the
relation above can be rewritten as

gs(t) = lim
δφeff→0

δφ(δφeff, t)
δφeff

. (2.73)

If the phase jump happens during the free evolution phase of the AI sequence the
sensitivity function can be straightforwardly calculated expanding Eq. 2.71. In the
case of a phase jump between the second and third interferometric pulse the phase
values will be5 φ

(1)
eff = ϕ + π/2, φ

(2)
eff = ϕ and φ

(3)
eff = ϕ + δφeff and the sensitivity

function becomes gs = +1. When the phase jump occurs between the first and sec-
ond interferometric pulses the sensitivity function is gs = −1. If the phase jump

5We suppose to operate the interferometer at mid-fringe where the sensitivity is maximum (see
Eq. 2.72).
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FIGURE 2.9: Behaviour of the MZ sensitivity function as reported in Eq.5.35.

happens during one of the three interferometric pulses we can evaluate gs by split-
ting the single pulse transfer matrixM(t0, φeff, Ωeff, τ) (see Eq. 2.70) in two parts. If
the jump happens at the time t during the first pulse (−2τ − T < t < −τ − T) we
can then write

M(−T− 2τ, φeff, Ωeff, τ) =M(t, φeff + δφeff, Ωeff,−T− τ− t)M(−T− 2τ, φeff, Ωeff, t+T+ 2τ).

Finally if the phase jump happens outside of the interferometric sequence the
sensitivity function is null, i.e. gs = 0.

We can now write the complete expression for the sensitivity function of the MZ
interferometer; setting |Ω′eff|τ = π/2 we obtain (see Fig.2.9)

gs(t) =



0 for t < −T − 2τ,
sin(Ω′eff(t + T)) for − T − 2τ < t < −T − τ,
−1 for − T − τ < t < −τ,
sin(Ω′efft) for − τ < t < τ,
+1 for τ < t < τ + T,
sin(Ω′eff(t− T)) for T + τ < t < T + 2τ,
0 for T + 2τ < t.

(2.74)

We can now use the sensitivity function gs(t) to calculate the interferometric
phase φ for any variation of the Raman phase φeff(t). From Eq. 2.73 we obtain

φ =
∫ +∞

−∞
gs(t)dφeff(t) =

∫ +∞

−∞
gs(t)

dφeff(t)
dt

dt. (2.75)

We now consider the case of a vertical AI realized in presence of a uniform grav-
ity field g. If the atoms have an initial velocity v0, the Raman phase shift that they
experience due to their free fall motion can be written as

φeff(t) = keffz(t) + φ0(t) =
keffgt2

2
+ keffv0t + φ0(t). (2.76)
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We note that since the sensitivity function is odd, the contribution of v0 to the phase
shift cancels; furthermore since in our apparatus we can control the Raman phase
difference φ0(t), we will not introduce it in the final phase shift calculation. The
complete phase shift is

φ =
∫ +∞

−∞
gs(t)keffgtdt = keffg(T + 2τ)(T + 4τ/π), (2.77)

which is the same result already presented in Eq. 2.59. This calculation was per-
formed assuming that the resonance condition of the Raman pulses is always veri-
fied for all the three MZ pulses. However due to the Doppler effect this assumption
does not hold for the typical interrogation times T considered in AIs and in a real
experiment the resonance condition has to be maintained by changing the relative
frequency difference between the Raman lasers linearly in time. This is possible
adding a linear frequency ramp α on the frequency of one of the two Raman lasers.
Considering also this effect the phase shift becomes

φ = (keffg− α)(T + 2τ)(T + 4τ/π). (2.78)

From the equation above we note that once keff is known, the value of g can be
measured by determining the frequency ramp α0 for which φ = 0, i.e. the frequency
ramp which exactly compensates the Doppler effect of the freely falling atoms.

Transfer function formalism

The formalism of the sensitivity function is particularly useful for calculating the
effects of phase noise sources on the atom interferometer signal. Since in this case we
do not know the temporal evolution of the phase (unlike in the previous calculation,
see Eq. 2.76) we will consider its noise spectrum in Fourier space. Let us start by
considering a sinusoidal phase noise of the form φeff(t) = A0 cos(ω0t + ψ). From
Eq. 2.75 we obtain

φ =
∫ +∞

−∞
−gs(t)A0ω0 sin(ω0t + ψ)dt. (2.79)

If in the equation above we perform the substitution sin(ω0t+ψ) = sin(ω0t) cos(ψ)+
cos(ω0t) sin(ψ), since the sensitivity function is odd the integral of the term with
cos(ω0t) is null and we obtain

φ = A0ω0

∫ +∞

−∞
−gs(t) sin(ω0t) cos(ψ)dt. (2.80)

In the previous equation we note the presence of the Fourier transform of the sensi-
tivity function G(ω) =

∫ +∞
−∞ e−iωtgs(t)dt; indeed G(ω) can be simplified by writing

e−iωt = cos(ωt) − i sin(ωt) and by considering again that since gs(t) is odd, the
integral of the cosine part is null. We thus obtain

G(ω) =
∫ +∞

−∞
−i sin(ωt)gs(t)dt. (2.81)

Eq. 2.80 then becomes

φ = −iA0ω0G(ω0) cos(ψ) = A0ω0|G(ω0)| cos(ψ). (2.82)
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FIGURE 2.10: In blue the square root of the MZ transfer function. For frequen-
cies above 100 Hz the function is replaced with its mean value. With the black
dashed line we represent the scaling obtained for ω � Ω′eff. The parameters
used are Ω′eff = 2π50 kHz, T = 100 ms and τ = 24 µs.

Considering a randomly distributed phase ψ the standard deviation of the interfer-
ometer phase fluctuations is σφ = A0ω0|G(ω0)|/

√
2. The variance of the interfer-

ometer phase fluctuations can be calculated from the phase noise spectral density Sφ

as
σ2

φ =
∫ ∞

0
|ωG(ω0)|2Sφ(ω)

dω

2π
. (2.83)

If we now consider the MZ sensitivity function defined in Eq. 5.35, its Fourier
transform is

G(ω) =
4iΩ′eff

ω2 −Ω′2eff
sin
(

ω(T + 2τ)

2

)[
cos
(

ω(T + 2τ)

2

)
+

Ω′eff
ω

sin
(

ωT
2

)]
. (2.84)

With the equation above we can then define the MZ transfer function H(ω) =
|ωG(ω)|

H(ω) =
4ωΩ′eff

ω2 −Ω′2eff
sin
(

ω(T + 2τ)

2

)[
cos
(

ω(T + 2τ)

2

)
+

Ω′eff
ω

sin
(

ωT
2

)]
. (2.85)

In Fig. 2.10 we report the square root of the transfer function calculated above. Due
to the multiplying sine term the square root of H(ω) vanishes periodically for mul-
tiples of ω = 2π/(T + 2τ). In the graph, for frequencies above 100 Hz, we have
replaced H2(ω) with its average

H̄2(ω) =
4Ω′4eff

(Ω′2eff −ω2)2

(
3
2
+

3ω2

4Ω′2eff
−
(

sin
(

πω

2Ω′eff

)
+

ω

2Ω′eff

)2)
. (2.86)
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Due to the 4ωΩ′eff/(ω
2 −Ω′2eff) term in H(ω), when the frequency of the phase fluc-

tuations is large compared to the Rabi frequency (Ω′eff = 2π50 kHz) we can average
the fluctuations over the pulse duration. The transfer function then acts as a low pass
filter with cut-off frequency Ω′eff/π and which scales as

√
2Ω′eff/ω for ω � Ω′eff (see

dashed line of Fig. 2.10).

Sensitivity to phase noise

In order to determine the sensitivity achievable with a MZ gravimeter in presence
of a given phase noise spectral density it is not appropriate to use the variance on
a single phase measurement as defined in Eq. 2.83. We rather introduce the Allan
variance of the interferometer phase fluctuations [62] as

σ2
φ(τm) =

1
2

lim
n→∞

[
1
n

n

∑
k=1

(φ̄k+1 − φ̄k)
2
]

, (2.87)

where τm is the total integration time and φ̄k is the average of the measured phase
shifts in the interval (tk, tk+1). Introducing the repetition time Tc as the time needed
for a single measurement the total integration time becomes τm = mTc and the pre-
vious time interval can be rewritten as (tk, tk+1) = (−Tc/2 + kmTc,−Tc/2 + (k +
1)mTc). The mean value φ̄k can be calculated using the sensitivity function as

φ̄k =
1
m

m

∑
i=1

∫ tk+iTc

tk+(i−1)Tc

gs(t− tk − (i− 1)Tc − Tc/2)
dφeff

dt
dt

=
1
m

∫ tk+1

tk

gk(t)
dφeff

dt
dt,

(2.88)

where gk(t) = ∑m
t=1 gs(t − kmTc − (i − 1)Tc) is the sensitivity function for m mea-

surements cycles. With this definition the difference in Eq. 2.87 can be written as

φ̄k+1 − φ̄k =
1
m

∫ +∞

−∞
(gk+1(t)− gk(t))

dφeff

dt
dt. (2.89)

We label the Fourier transform of gk+1(t)− gk(t) as Gm(ω). Considering Eq. 2.83
we calculate |Gm(ω)|2 as

|Gm(ω)|2 = 4
sin4(ωmTc/2)
sin2(ωTc/2)

|G(ω)|2. (2.90)

The equation above can be re-written as a comb of Dirac delta functions when the
integration time increases

lim
τm→∞

|Gm(ω)|2 =
2m
Tc

+∞

∑
j→−∞

δ(ω− j2π fc)|G(ω)|2, (2.91)

where fc = 1/Tc is the cycle frequency.
Considering the definitions above and a phase φeff(t) characterized by a phase

noise spectral density Sφeff(ω) the Allan variance can be expressed as

σ2
φ(τm) =

1
2m2

∫ +∞

0
|ωGm(ω)|2Sφeff(ω)

dω

2π
. (2.92)
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FIGURE 2.11: Square root of the acceleration transfer function Ha(ω). The
function behaves as a low-pass filter with a cut off frequency fc = 1/(2T). The
black dashed line represents the scaling as 16/(2π f T)4 obtained for frequen-
cies above fc. For the calculation we considered T = 100 ms, Ω′eff = 2π50 kHz
and τ = 24 µs.

Using the result in Eq. 2.91 the equations above becomes

σ2
φ(τm) =

1
τm

∞

∑
n=1
|H(2πn fc)|2Sφeff(2πn fc). (2.93)

From this result we note that the phase noise at frequencies multiples of fc is con-
verted to low frequency noise from an aliasing effect which limits the interferometer
sensitivity. When the phase noise is white, i.e. Sφeff(ω) = S0

φeff
the Allan variance

becomes

σ2
φ(τm) =

(
π

2

)2 Tc

τ

S0
φeff

τm
, (2.94)

which shows that the phase noise depends also on the pulse duration τ and that
it decreases when τ is increased. With τ = 24 µs, the white phase noise level re-
quired to obtain a maximum phase fluctuation of 1 mrad per experimental shot has
to be less than or equal to -110 dB rad2/Hz. In the gradiometer configuration two
simultaneous AIs are realized with the same Raman pulses and we are interested
in the phase difference between these two interferometers. Due to the differential
measurement scheme most of the phase noise contributions are therefore rejected.

Acceleration and vibration sensitivity

Let us now consider the interferometer sensitivity to vibration noise. Since the two
lasers are delivered to the atoms after being superposed on the same optical fibre any
shift of an optical component before the retro-reflection mirror cannot induce (to first
order) a differential phase shift between the Raman lasers. The vibration sensitivity
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therefore derives only from the retro-reflection mirror which is used to produce the
counter-propagating Raman beams used during the interferometric sequence. If this
mirror moves of a quantity δz the phase of the retro-reflected beam is changed by
δϕ = 2kiδz ' keffδz. We can then define an acceleration sensitivity function ga(t)
which accounts for an infinitesimal acceleration change δa as

ga(t) = 2 lim
δa→0

δPa(δa, t)
δa

. (2.95)

The acceleration sensitivity function and its respective transfer function Ha(ω) can
be written in terms of the phase sensitivity function and the phase transfer function
as

gs(t) =
1

keff

d2ga(t)
dt2 ,

|Ha(ω)|2 =
k2

eff
ω4 |H(ω)|2.

(2.96)

With the two definitions above and the result in Eq. 2.93 the Allan variance in pres-
ence of an acceleration noise with a spectral density Sa(ω) is

σ2
φ(τm) =

k2
eff

τm

∞

∑
n=1

|H(2πn fc)|2
(2πn fc)4 Sa(2πn fc). (2.97)

Fig. 2.11 shows the square of the above defined acceleration transfer function. It acts
as a low-pass filter with a cut-off frequency of fc = 1/(2T). In our experimental
apparatus the usual interrogation times are of the order of T = 100 ms; we thus
obtain a cut-off frequency of f0 = 5 Hz which makes the system insensitive to high
frequency vibration noise.

When the phase noise is white, Sa(ω) = S0
a the interferometer sensitivity be-

comes

σ2
φ(τm) =

k2
effT

4

2

(
2Tc

3T
− 1
)

S0
a

τm
. (2.98)

To have a maximum phase fluctuation of 1 mrad per measurement the required ac-
celeration white noise has to be less than ∼ 10−8 m/s2/Hz1/2. However the ground
vibration noise typically is 2× 10−7 m/s2/Hz1/2 at 1 Hz and increases to 5× 10−5

m/s2/Hz1/2 for frequencies up to 10 Hz. For this reason a vertical atom interferome-
ter needs a seismical isolation on the retro-reflection mirror or a vibration correction
method when high sensitivities are required. This is not the case in the gradiomet-
ric configuration since, as for the case of the Raman phase noise, also most of the
acceleration noise is rejected in the differential measurement.
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Chapter 3

Experimental apparatus

In this chapter we provide an extensive description of the MAGIA-Adv experimen-
tal apparatus (other descriptions of the same set-up can be found in [38], [63]–[65]).
The complete experimental set-up is a vertical atomic fountain atom interferometer
which can be operated as a gravimeter or as a gradiometer. We will start with a brief
description of the vacuum system, the source masses and the experimental control
system; then we will present the laser systems which produce the optical frequencies
needed for the 87Rb manipulation.

Particular attention will be devoted to the Raman and the Bragg laser systems.
These two sources are crucial in our experiment since they provide the light which
probes the atoms during the interferometer. Furthermore the Bragg set-up is one of
the last additions to the complete laser system and was developed during this PhD
work.

3.1 Vacuum system and source masses

Manipulation of atomic 87Rb with laser light needs to be realized in an UHV (Ultra
High Vacuum) environment (∼ 10−9 − 10−10 Torr) in order to minimize possible in-
teractions of the 87Rb atoms with thermal background gases. The main vacuum sys-
tem of the MAGIA-Adv apparatus has a vertically elongated structure; it is reported
in Fig. 3.1 together with the two holders for the sets of cylindrical source masses used
to modulate the gravity field in the interferometric region. From bottom to top we
can distinguish three main parts of the vacuum system: a trap chamber were atoms
are collected and cooled in a three dimensional Magneto-Optical Trap (3D-MOT); a
detection chamber where the atomic population can be measured via fluorescence
detection; the interferometric tube where the interrogation of the atoms takes place
during their free fall motion.

3.1.1 Trap and Detection chambers

The trap chamber is the region of the apparatus where 87Rb atoms are collected and
cooled in a 3D-MOT. The chamber is derived from a light titanium alloy (TiAl6V4,
4430 kg/m3) which is hard and non magnetic. This alloy also has the advantage of
presenting a very high resistivity (168 µΩ cm). This characteristic permits to quickly
damp undesired Eddy currents induced by varying electromagnetic fields. Another
useful property derives from the thermal expansion coefficient of the alloy, which is
very close to the one of the BK7 glass used for the optical windows.

The chamber was obtained from a 15 cm cube by cutting all the edges orthogo-
nally to the diagonals. With this procedure the final chamber has 8 triangular faces
and 6 square faces. A circular window with a diameter of 35 mm was drilled in any
triangular face, while each square face has a circular window with a diameter of 50
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FIGURE 3.1: Main vacuum system of the experiment and source masses. The
vacuum system is divided in three main parts; from bottom to top we have
the trap chamber, the detection chamber and finally the interferometric tube.
Around the interferometric tube, cylindrical source masses are organized in
two sets and arranged in two holder plates which can translate vertically along
all the tube length.

mm. The trapping and cooling laser beams of the 3D-MOT enter the chamber from
the windows in the square faces and are arranged in the usual 1-1-1 configuration.

The MOT chamber is connected with the above detection chamber with a flexible
bellow. The detection chamber is made of non-magnetic stainless steel 316LN and
has the shape of a prism with octagonal base; it is derived from a hollow cylinder
with a 170 mm internal diameter and 80 mm height. In each one of the 8 vertical faces
it presents a circular optical window with a diameter of 60 mm. Of the 8 windows, 4
are used for the atomic detection system and 2 are employed to connect the vacuum
apparatus with the pumping system. The remaining 2 free windows can be used as
additional optical accesses whenever needed.

3.1.2 Interferometric tube

The interferometric tube defines the spatial region where the atom interferometer
actually takes place. Since the 87Rb interferometer is sensitive to magnetic fields the
tube is realized with the same non magnetic, high resistivity titanium alloy of the
trap chamber. The tube is 1 m long and has a circular section with an internal diam-
eter of 35 mm and an external diameter of 40 mm which allows close positioning of
the cylindrical source masses.

A coil is wrapped on the entire tube length, around a plastic cylinder placed
outside the tube. It is used to generate a vertical magnetic field which defines the
magnetic quantization axis for the 87Rb atoms. Localized magnetic fields can be
produced with 10 shorter coils wrapped one above the other and around the long
one. We report the relevant coils parameters in Tab. 3.1.
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TABLE 3.1: Relevant coils parameters.

Coil Wire ∅ [mm] Radius [mm] Length [mm] N R [Ω] B(i) [G/A]

Long 0.80(7) 32 926 1065 7.4 14.5
Short 0.80(7) 33 87 100 0.7 11.53

FIGURE 3.2: Top view of the 2D-MOT set-up used in the MAGIA-Adv appa-
ratus. Figure adapted from [63].

Finally a double layer µ-metal shield is placed around the tube and the coils,
to suppress external magnetic fields. The shields are two cylinders with length of
1028 mm and thickness of 0.76 mm; they are placed one inside the other and have
diameters of 74 and 95 mm. With these two isolation layers, in the central region of
the interferometric tube the axial fields are attenuated by 69 dB while the radial ones
by 76 dB [63].

3.1.3 2D-MOT and atomic source

In order to both obtain high 3D-MOT loading rates and low background gas pressure
in the vacuum system the 3D-MOT loading is aided with the use of a high flux
atomic source based on a 2D-MOT [66], [67]. A complete description of the 2D-MOT
set-up and its characterization can be found in [65], here we just mention its main
characteristics.

In Fig. 3.2 we report a scheme of the implemented 2D-MOT. The vacuum system
is derived from a parallelepiped made of titanium; the four lateral sides are closed
with rectangular windows; one backside presents a circular window while the op-
posite backside has a hole which connects the chamber to the rest of the vacuum
system and which permits the emission of a slow atom flux from the chamber. From
the circular window passes a light beam which pushes the atoms towards the es-
cape hole on the opposite side of the chamber. The trapping light is injected into
the chamber from the four rectangular windows and travels perpendicularly with
respect of the pushing beam.

The rubidium atoms are released as a vapour in the 2D-MOT chamber from a
reservoir connected to the back of the trap; a valve allows to isolate the source of
atoms if necessary. Vacuum is maintained with an ion pump with a 2 l/s pumping
speed.
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The magnetic field necessary for the transversal atom trapping is provided by
two pairs of coils with rectangular shape and 100 windings, arranged in front of the
four lateral windows. The coils, when connected in series, create a magnetic field
gradient of 20 G/cm at the center of the 2D-MOT chamber.

3.1.4 Main pumping system

The required vacuum level in the apparatus is maintained with the use of a 75 l/s ion
pump (Varian VacIon 75 Plus Star Cell, driver MidiVac) and a titanium sublimation
pump (Thermionics SB-1020, driver Varian 9290023). The ion pump is connected to
the detection chamber with large CF100 tubes. It is placed as far as possible from the
experiment (55 cm) to allow the decay of the produced magnetic fields below 0.5 G.
The titanium sublimation pump is used for pumping gases like H2 or N2.

3.1.5 Source masses and supports

One of the distinguishing features of the MAGIA-Adv apparatus is the presence
of two sets of source masses arranged symmetrically on two holders around the
interferometric tube. The source masses are used to modulate the gravitational field
probed with the atoms and they played a crucial role in the determination of the
Newtonian gravitational constant G [21].

The sensitivity and accuracy achievable in the G measurement depends on the
knowledge of the source mass distribution. For this reason particular care was de-
voted in the choice of the source masses material and a thorough characterization
of the position, geometrical shape and density distribution was performed; lots of
details about these characterizations can be found in [38], [63]–[65], here we just
present their main properties.

The source masses are 24 tungsten cylinders with base diameter of 100 mm and
height of 150 mm. They are divided in two identical sets and are disposed symmetri-
cally around the interferometric tube on two holders (see Fig. 3.1). The mass holders
and elevator are designed to be strong enough to hold the cylinders without observ-
able bending or deformations and with independent positioning control for the two
sets of source masses; they can move vertically along the interferometric tube with
high accuracy. The holders are two disk-shaped platforms with a hole in the center
large enough to fit the interferometric tube. The movement of the platforms is re-
alized with two pairs of 480 mm long precision screws with a diameter of 15 mm
and a pitch of 10 mm. The rotation of each screw is controlled by a step motor able
to reach a 1.7 µm resolution in the vertical displacement of the source masses. The
vertical position of the platforms is monitored with an optical ruler with an accuracy
and reproducibility of 1 µm.

3.2 Control system

The timing of the experimental sequence poses stringent requirements on the exper-
iment control system in terms of temporal precision. For most experimental actions
a precision of 100 µs is required, but a much higher resolution is needed for the
interferometric pulse sequence (100 ns).

We implement a software control system in which the particular experimental
sequence to run can be directly programmed. Due to the stringent requirements on
timing, the control system is based on Real Time Application Interface LINUX [68].
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The communication between the control computer and the instrumentation is
realized with the use of three boards:

• 2 general purpose Input/Output boards Measurement Computing PCI-DAS
1002 with 24 digital I/O channels, 2 DAC channels and 8 ADC channels used
for data acquisition.

• one IEEE-488 control board.

The interferometer pulse sequence is programmed via GPIB on an arbitrary wave-
form generator (AWG) which is then triggered via a digital channel. With this con-
figuration the actual timing of the interferometric pulses is managed by the AWG
and the needed time resolution is reached. The time base of this AWG is phase
locked to a common 10 MHz reference which is used also for the phase locking of
the Raman lasers (see the next section).

3.3 Laser system

During the experimental sequence 87Rb atoms are manipulated both on the external
and internal degrees of freedom by exploiting the interaction of the atoms with laser
light. The manipulation processes are controlled by tuning the emission frequency
and intensity of the various lasers described in this section.

In our set-up the most used transition for the 87Rb manipulation is the D2 line
(|52S1/2, F〉 → |52P3/2, F′〉) which frequency from now on we label as νF→F′ . The
wavelength required to excite this transition is '780 nm which is easily produced
using standard semiconductor laser diodes (LDs). For this reason the majority of the
laser sources of the MAGIA-Adv apparatus are derived from this kind of technology.
The remaining light sources are obtained from fibre lasers with an emission centred
at 1560 nm; the light from these sources is then doubled in frequency to obtain the
required wavelength for the 87Rb manipulation.

Standard LD sources are cheap and easy to use but present the drawback of hav-
ing a spectral emission width ∼ 40 MHz, i.e. larger than the natural width of the D2
atomic transition (Γ ' 6 MHz). However it is possible to increase the spectral purity
of the laser emission mounting the LD in an external cavity configuration (ECDL
configuration)

External cavity diode lasers

A standard LD can be mounted in the external cavity configuration with the addi-
tion of two optical elements: an external resonant cavity which produces an optical
feedback on the LD and a wavelength selector element (e.g. a diffraction grating or
an interference filter) which allows the fine frequency tuning of the light emission.
Due to the optical feedback, the external cavity reduces the threshold current for
laser action of the diode, narrows the laser linewidth and provides broad tunability
of the laser emission.

When mounted on an ECDL configuration the source linewidth can be expressed
as [69]

∆νECDL =

(
nl
L

)2

∆νd, (3.1)

with n the diode refractive index, l the diode internal cavity length, L the external
cavity length and ∆νd the LD original linewidth. Using typical values (n = 2, l = 1
mm, L = 10 cm) the linewidth reduction can be more than a factor 100.
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FIGURE 3.3: Schematic representation of the ECDL configuration used for the
LDs of the MAGIA-Adv apparatus. The wavelength selection is guaranteed
by the interference filter, while the optical feedback on the LD is provided by
the semi-reflecting mirror. The semi-reflecting mirror is mounted on a piezo-
electric actuator which allows to change the cavity length. The transmitted
portion of the beam from the semi-reflecting mirror is finally collimated and
constitutes the output of the ECDL.

The mode of emission in an ECDL depends on the LD gain profile, the internal
cavity modes and the external cavity modes. Since the gain profile of LDs is broad,
several modes might experience similar gain and multi-mode emission might occur.
The introduction of a frequency selective optical element can avoid this problem by
giving different weight to adjacent internal cavity modes. Furthermore, the exter-
nal cavity allows accurate frequency control by adjusting the cavity length with a
piezoelectric crystal (PZT).

One of the most common ECDL set-up is the Littrow configuration [70]. In this
scheme the LD output beam is collimated and sent on a diffraction grating; the first
diffracted order is then used as optical feedback while the zero order constitutes
the output beam from the ECDL system. The selected wavelength λ = 2d sin(α)
depends on the grating line spacing d and on the incident angle α which equals the
angle of first order diffraction.

We note that in the Littrow configuration the diffraction grating carries out the
double task of providing the optical feedback on the LD and managing the frequency
selection of the light emission. This aspect does not works favourably in terms
of long term frequency stability1. For this reason in the MAGIA-Adv experiment,
where is necessary to achieve long integration times without frequent unlocks of the
lasers, a different and more stable ECDL configuration is currently employed. In the
adopted ECDL a partially reflecting mirror is used to produce the optical feedback
on the LD, while an interference filter provides the wavelength selection [72]. Fig. 3.3
shows a schematic view of the optical elements involved in this configuration which
is referred to as Filter External Cavity Laser (FECL).

The FECL scheme has several advantages: it preserves the LD injection even in
presence of cavity misalignments, the movement of the semi-reflecting mirror does
not change the direction of emission and finally, since the used interference filters
have a maximum transmission acceptance angle of ±1◦, the selected frequency will
be less sensitive to mechanical misalignments of the wavelength selecting element
if compared to the sensitivity obtained with Littrow schemes. Indeed in the Littrow
configuration we achieve a sensitivity to mechanical misalignments of the diffraction
grating of (dλ/dθ) ∼ 1.4 nm/mrad, while with an interference filter we obtain a
sensitivity of (dλ/dθ) ∼ 23 pm/mrad [73].

1Another disadvantage of the standard Littrow configuration is the change in emission directional-
ity when the frequency is tuned by changing the incidence angle on the grating. However this problem
can be solved with a more complex Littrow mounting [71]
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FIGURE 3.4: Scheme of the MTS technique. We show in red the laser optical
path, while in black the electronic links. A first polarizing beam-splitter (PBS)
divides the laser beam in two parts: the Pump beam and the Probe beam. The
Pump beam is modulated with an Electro-Optic modulator (EOM) and inter-
sects the Probe beam inside a rubidium spectroscopy cell. The modulation
is transferred to the probe beam which is then detected with a photodiode;
the signal is then demodulated with a mixer. The output of the mixer is pro-
cessed in a Proportional-Integral-Derivative (PID) controller which generates
the feedback signal for the laser source.

To stay in resonance with a 87Rb D2 transition a laser cannot drift in frequency
more that the natural linewidth Γ ' 6 MHz. Since the emission of a free-running
ECDL will drift or jump by up to a few GHz per day it is necessary to stabilize (lock)
the laser frequency to an atomic resonance or to some other laser already locked2.

In order to lock the frequency of a laser to that of a reference oscillator it is nec-
essary to measure the frequency difference between the two and to convert this dif-
ference into a voltage with zero-crossing at the desired locking point. This voltage
signal can therefore be used to produce a feedback on the laser.

In the MAGIA-Adv apparatus one laser is directly locked to the 87Rb D2 tran-
sition ν2→3 through the technique of Modulation Transfer Spectroscopy (MTS) [75],
[76]. All the other light sources are stabilized with respect to this reference oscillator.

Modulation Transfer spectroscopy

The Modulation Transfer technique is a particular kind of frequency modulation
spectroscopy which is based on the modulation of the spectroscopy laser with a
frequency ωm and the subsequent demodulation of the spectroscopy signal with the
same frequency ωm.

The MTS technique is particularly suited for the frequency lock of lasers on
atomic transitions, because it is able to generate signals with dispersive trends as
a function of the laser frequency without any residual background. For this rea-
son, the zero crossing of the dispersive electrical signal precisely corresponds to the
atomic transition which generated it.

The conceptual scheme of this technique is reported in Fig. 3.4. The light beam
from the spectroscopy laser is split with a polarizing beam-splitter (PBS) cube in

2Lots of techniques to control the frequency and the phase of a laser oscillator can be found in [74]
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order to obtain the classical Probe/Pump geometry of sub-Doppler saturation spec-
troscopy. The Pump beam is then frequency modulated with the use of an Electro-
Optic modulator (EOM), which receives an external RF signal at frequency ωm pro-
duced by a stable electronic oscillator.

The electric field of the Pump beam after the modulation can be written as a term
at the carrier frequency ωc plus side bands separated by the modulation frequency
ωm

E = E0

[
∞

∑
n=0

Jn(δ) sin(ωc + nωm)t +
∞

∑
n=1

(−1)n Jn(δ) sin(ωc − nωm)t

]
, (3.2)

with δ the modulation index and Jn(δ) the Bessel function of order n. Assuming
δ < 1, the spectral composition of the beam is given by a strong carrier component,
with frequency ωc plus two other weaker components with frequency ωc ±ωm (we
can therefore neglect all the components with n > 1 in the above equation).

At the output of the modulator, the Pump is sent through a heated and mag-
netically shielded rubidium vapour cell for optically pumping the atoms. In its path
inside the cell, the Pump beam intersects the counter-propagating Probe beam which
has no frequency modulation. At this point, due to the nonlinear behaviour of the
absorber, the modulation of the Pump beam is transferred also to the Probe beam
[75], [77]. One of the major advantages of the process is that this modulation trans-
fer happens only when the sub-Doppler resonance condition is exactly verified. For
this reason, any thermal background of the produced dispersive signal is zero.

After traversing the rubidium cell, the Probe beam is detected with a fast pho-
todiode which reveals a beat note signal between the side bands produced in the
vapour and the carrier frequency of the Probe beam. The output of the photo-
detector is a signal at the modulation frequency ωm [78]

S(ωm) =
C√

Γ2 + ω2
m

J0(δ)J1(δ)×

×
[(

L−1 − L−1/2 + L1/2 − L1
)

cos(ωmt + φ)+

+
(

D1 − D1/2 − D−1/2 + D−1
)

sin(ωmt + φ)
]
,

(3.3)

where

Ln =
Γ2

Γ2 + (∆− nωm)2 , Dn =
Γ(∆− nωn)

Γ2 + (∆− nωm)2 ,

with Γ the natural width of the atomic transition, ∆ the laser frequency detuning
from the atomic transition and φ an additional phase with respect to the modula-
tion signal applied by the external oscillator. Finally the C constant represents the
properties of the medium and the Probe beam which do not depend on the already
expressed parameters.

The sine term, i.e. the quadrature component of the signal is a consequence of
the absorption part of the sub-Doppler signal, while the cosine term, i.e. the in-phase
component represents the dispersive part of the sub-Doppler signal. With a mixer
it is possible to recover the quadrature or in phase components of S(ωm), acting on
the phase of the external oscillator signal. However, both of them have a dispersive
trend (see Fig. 3.5) and the zero crossing corresponds to the resonance frequency of
the atomic transition. This characteristic makes them particularly suited to be used
as locking signals for the stabilization of lasers on atomic transitions. The dispersive
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FIGURE 3.5: Theoretical calculation of the in-phase components of the photo-
diode signal, versus the laser detuning ∆ with respect to the atomic transition.
The signals are calculated for different values of the modulation frequency
ωm/Γ.

signal is then processed with a Proportional-Integral-Derivative (PID) controlled to
produce the feedback signal on the laser source.

Phase stabilization

In Sec. 2.1.2 we presented the formalism for Raman transitions and saw that to con-
nect the two hyperfine levels of 87Rb (F=1→F=2) the frequency difference between
the two exciting lasers must be the one of the hyperfine transition, i.e. 6.834 GHz.
For an atom interferometer the relative phase between the Raman lasers is also a
crucial parameter to control (see Sec.2.2.2), since it affects directly the interferometer
phase. For this reason a phase lock between the two Raman lasers is necessary for
the interferometer operation.

Like in the case of frequency locking, also for phase locking two oscillators is
necessary to measure the phase difference between the two and to translate this
difference into a voltage signal with zero crossing at the locking point which can be
used to produce a feedback.

Fig. 3.6 reports the general scheme of a Phase-Locked-Loop (PPL). With such a
scheme the phase of a noisy RF source can be stabilized with respect to a clean Local
Oscillator (LO) signal. Let us consider a LO with frequency ωLO = 2π fLO and phase
φLO(t) = 2π fLOt + φ0

LO and a RF signal with

ωRF = 2π fLO + 2π fN(t), φRF(t) = 2π fLOt + 2π
∫ t

0
fN(t′)dt′ + φ0

RF,

with fN(t) the frequency noise. The PLL is realized with a phase detector which
converts the phase difference (φLO(t)− φRF(t)) into a voltage with a gain kPD. The
signal at the output of the phase detector is the error signal

e(t) = kPD(φLO(t)− φRF(t)),
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FIGURE 3.6: Conceptual scheme of a Phase-Locked-Loop (PLL). The Phase De-
tector (PD) converts the phase difference between the local oscillator and a RF
signal (φLO − φRF) into an error signal with a gain kPD. The signal r(t) repre-
sents the noise added by the loop, while e′(t) is the correction signal which is
converted to a frequency with gain kl .

to which we add a noise r(t) due to the loop itself

e′(t) = e(t) + r(t).

The above error signal is used as feedback on the RF signal. For the stabilization
of a laser oscillator the error signal is directed to the laser driver which in a time τ
converts it to a frequency change with a gain kl

δ f (t) =
kl

2π
e′(t). (3.4)

When the correction is active the RF phase becomes

φRF(t + τ) = 2π fLO(t + τ) + kl

∫ t+τ

t
e′(t)dt + φRF, 0. (3.5)

We note that since the feedback is on the laser frequency the loop includes an inte-
grator. After a time τ the signal e′(t) will change by

e′(τ)− e′(0) = (e(τ) + r(τ))− (e(0) + r(0))
= kPD(φLO(τ)− φRF(τ))− kPD(φLO(0)− φRF(0)) + r(τ)− r(0)

= −kPDkl

∫ τ

0
e′(t)dt + r(τ)− r(0).

Switching to frequency space with the Laplace transform of the above signal we
obtain for f 6= fLO

E′( f ) =
R( f )

1 + kPDkl/(i f )
, (3.6)

where the capital letters indicate the transforms. The frequency response of the loop
is like a first order low pass filter and the unity gain frequency of the loop is f1 =
kPDkl .

The central part of the PLL is the phase detector which can be analog or dig-
ital. An analog phase detector is a mixer which multiplies the RF signal sRF =
ARF cos(φRFt) and the LO signal sLO = ALO sin(φLOt) with a gain km. Setting φLO, 0 =
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0 and φRF, 0 = π/2 the output signal from the mixer is

m(t) = km ARFALO sin(φLO(t)) cos(φRF(t))

=
1
2

km ARFALO

(
sin(φLO(t)− φRF(t)) + sin(φLO(t) + φRF(t))

)
=

1
2

km ARFALO

(
sin(φN(t)) + sin(2ωLO + φN(t))

)
.

The second term can be filtered out with a low pass filter and the remaining term
depends only on the phase difference between the two oscillators. For small phase
differences the sine can be linearised and the error signal is proportional to the phase
difference

e(t) = m(t) = kPD(φLO(t)− φRF(t)), (3.7)

with kPD = km ARF ALO
2 .

When in presence of big phase differences (> π) the error signal changes sign
(due to the sine term). The feedback increases the phase difference between the
oscillators and relocks at 2π; the locking range is then limited to ±π. An analog
phase detector has the advantages of a fast response and low noise.

The locking bandwidth fBW of a phase lock is limited by the delay τ which the
signal acquires in one loop of correction ( fBW < 1/(2τ)). Furthermore, the lock-
ing bandwidth defines the capture range of our PLL, i.e. the maximum frequency
difference between the two oscillators which can be corrected. Indeed if two lasers
have a frequency difference ∆ f they will acquire a phase difference of 2π in a time
T = 1/∆ f . During this time the analog phase detector will produce a null error sig-
nal since the sine averages to 0. This means that in order to capture the correct lock
the loop has to correct the frequency difference in order to stop the phase deviation
before it arrives at 2π.

For the PLL of the Raman lasers we use a digital Phase and Frequency Detector
(PFD). The PFD compares the digitalized RF and LO signals and generates an output
signal in its two output channels when the phase or frequency of both signals differ.
If the phase of the LO signal leads with respect to the RF signal the pulse difference
between the signals is sent to the PFD output channel UP. If the opposite happens the
difference signal is sent to channel DOWN. With this discrimination the difference
between the signal is either positive or negative (the output signal is zero if there is
no phase difference). If the phase difference between the two signals is < 2π the
error signal is proportional to the phase difference

e(t) = kPD(φLO(t)− φRF(t)). (3.8)

Differences in frequency are treated in a similar way; depending on which fre-
quency is higher the UP or DOWN channel is used as output channel. The ability to
correct also for frequency changes ensure a big capture range.

Let us now start to describe all the main laser light sources used in the MAGIA-
Adv experiment.

3.3.1 Reference laser system

In order to have well defined light frequencies a first LD, the Reference laser (ADL-
78901TX, Roithner Lasertechnik), is frequency stabilized to a 87Rb sub-Doppler tran-
sition and constitutes the frequency reference for all the remaining lasers.



52 Chapter 3. Experimental apparatus

The LD is mounted in the FECL configuration and provides∼ 100 mW of output
power at 780 nm. The laser emission has its frequency increased of +184.2 MHz
with a double pass through an Acousto-Optic Modulator (AOM) and then performs
a Modulation-Transfer Spectroscopy (MTS) on a rubidium sample. For this laser
the modulation frequency sent on the EOM (Nova Phase) is ωm =5 MHz and the
rubidium vapour cell is held at a temperature of about 35◦C.

We use a double loop-control to lock the laser frequency on the desired atomic
resonance. A low frequency loop (bandwidth up to 1 kHz) is realized with a feed-
back on the piezoelectric of the semi-reflecting mirror which controls the cavity
length in the FECL laser system. A second fast frequency loop (bandwidth up to
120 kHz) is realized acting on the laser driving current.

The Reference laser is locked on the sub-Doppler resonance corresponding to the
transition ν2→3, but due to the double pass in the AOM the actual emission frequency
is νref = ν2→3 − 184.2MHz.

Part of the light of the Reference laser is picked-up with a beam-splitter before
the double pass through the AOM for frequency locking all the other laser sources.

3.3.2 Cooling and Re-pumping laser systems

For trapping and cooling 87Rb atoms we need light of two different frequencies [79]
which are provided by two independent laser systems. These two sources are both
necessary to realize an optimized cooling and trapping process in the 3D-MOT. We
use a first light source, the Cooling laser, with an emission red detuned from the
atomic transition ν2→3 of about 3Γ = 3 · 6.065 MHz (Γ is the natural transition width
of the 87Rb D2 line) together with a second source, the Re-pumper laser which pre-
vents the accumulation of atoms in dark states for the cooling light, i.e. in states
which do not interact with the Cooling laser. This accumulation happens because
when an atom of 87Rb interacts with the cooling radiation, instead of being excited
in the level |5P3/2, F′ = 3〉 can end up in |5P3/2, F′ = 2〉. From this level the atom can
decay in the fundamental state |5S1/2, F = 1〉. When this happens the atoms cannot
interact with the cooling light any more and tend to accumulate in this state, i.e. the
level |5S1/2, F = 1〉 is a dark state for the cooling radiation. Furthermore, since the
absorption and spontaneous emission processes happen with a rate Γ, all the atoms
would rapidly end up in this state with no possibility of participating again in the
cooling process. This problem is solved with the addition of the Re-pumping light;
its frequency is slightly detuned from the ν1→2 transition and can transfer the atoms
from the dark state |5S1/2, F = 1〉 to the state |5P3/2, F′ = 2〉, draining the dark state.

The Cooling laser is also used for the vertical launch of the atomic samples. This
requires a differential control of the frequencies of the upwards and downwards
propagating beams of the 3D-MOT.

The cooling laser system consists of a FECL laser diode (L785P090, Thorlabs)
which injects a 1 W tapered amplifier (EYP-TPA-0780, Eagleyard Photonics Gmbh).
The amplifier emission is split in two beams which propagate in two independent
optical paths. Each beam first passes through a double pass AOM (AOMO 3080-122,
Crystal Technology, Inc) for independent frequency control and then is injected in an
optical fibre which delivers the light to a three-way splitter for the production of the
three upward/downward 3D-MOT beams. The output from the three-way splitter
is then coupled to the trap chamber. During the trapping phase of the experimental
sequence the two AOMs are driven with the same radio-frequency signal of +83.4
MHz, but for the launch steps the two driving RF signals have a frequency difference
proportional to the desired launch velocity.
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The Cooling laser frequency is stabilized against the Reference laser. Indeed a
minor portion of the Cooling laser emission is picked-up before the tapered am-
plifier injection, superposed with light from the Reference laser and sent on a fast
photodiode (Hamamatsu G 4176-03) to produce a beat note signal. The beat note is
compared with a RF signal at 194 MHz in a PFD that provides the PLL error signal.
The loop is finally closed acting both on the diode current and on the FECL cavity
PZT voltage.

The Re-pumping laser system is composed of two diode lasers arranged in a
Master/Slave configuration. The Master Re-pumper laser is a FECL diode (L785P090,
Thorlabs) and his frequency is stabilised on the ν1→2 transition. Part of its emission
is superposed with light from the Reference laser on a beam-splitter and their beat
note is then recorded with a fast photodiode. The beat note is then down-converted
in a mixer with the third harmonic of a 2216.6 MHz RF signal produced with a pro-
grammable synthesizer (ADF4360-1 stabilized VCO). The signal is finally compared
with a 40 MHz reference oscillator in a PFD to obtain the error signal for frequency
locking the laser. Also in this case we have a low frequency servo loop acting on the
cavity PZT voltage and a high frequency correction loop acting on the laser driving
current. The frequency of the Master Re-pumper is (ν1→2 − 62.4 MHz). A portion
of its light is used to inject the Slave Re-pumper while the rest injects a 1 W tapered
amplifier (EYP-TPA-0780, Eagleyard Photonics Gmbh).

The amplifier emission is sent through a double pass AOM and shifted of -172.2
MHz in order to reach a frequency (ν1→0− 5.5 MHz). This light is used to blow away
unwanted freely falling atoms in the F = 1 state just after the launch and during the
vertical velocity selection.

The Slave Re-pumper (Sharp GH0781JA2C) is injected using the side port of an
optical isolator. The output beam is sent to an AOM driven with a +68.0 MHz RF
signal. The resulting light frequency is (ν1→2 + 5.6 MHz) and it is used as re-pumper
during atom trapping and during the detection procedure.

3.3.3 2D-MOT laser system

The 2D-MOT laser system is composed of two laser sources. The first one provides
the cooling and pushing light for the 2D-MOT and it is based on a 1 W tapered
amplifier (EYP-TPA-0780, Eagleyard Photonics Gmbh) injected with the beam from
a FECL diode laser (L785P090, Thorlabs). The amplifier output is split and used
for the cooling beams of the 2D-MOT trap and for the pushing beam. The laser is
locked in frequency with respect to the Reference laser with a double control loop
on the FECL cavity PZT voltage and on the laser driving current.

The second source is a re-pumper laser obtained injecting a LD with a portion of
the light from the Slave Re-pumper. The injection is performed using the side port
of an optical isolator.

3.3.4 Detection laser system

We produce the detection light with a laser diode (Sharp GH0781JA2C) directly in-
jected with the Reference laser light. For the injection we use the side port of the
Detection laser optical isolator. The output beam from the Detection laser is sent
through a double pass AOM and shifted of +183.6 MHz resulting in a frequency
νdet = ν2→3− 800 kHz. The light is finally injected in two different optical fibres; one
for the atomic state detection after the interferometric sequence which is delivered
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FIGURE 3.7: Conceptual scheme of the Raman laser system. Two FECL lasers
are arranged in a master-slave configuration and inject two independent 1 W
tapered amplifiers. The Master Raman emission frequency is stabilised with
respect to the Reference laser frequency with a detuning of∼2 GHz. The Slave
Raman emission frequency and phase are stabilized with respect to the Master
Raman. The frequency difference between the two lasers is the hyperfine fre-
quency splitting of the 87Rb fundamental state (6.834 GHz). The AOM is used
for shaping the pulses before the delivery on the atoms. Before the fibre injec-
tion the Raman beam polarization is filtered with a polarizing beam-splitter.
The optical fibre which delivers the light to the atoms is polarization maintain-
ing.

to the detection chamber and the other for vertically blowing away unwanted atoms
in the F = 2 state during the vertical velocity selection procedure.

3.3.5 Raman laser system

The Raman laser system provides the light necessary to stimulate Raman transitions
during the velocity selection procedure and during the interferometric sequence. It
is composed of two phase-locked FECL diodes (L785P090, Thorlabs) organized in a
Master/Slave configuration and two independent 1 W tapered amplifiers (EYP-TPA-
0780, Eagleyard Photonics Gmbh). In Fig. 3.7 we report the schematic representation
of this laser system.

Master Raman frequency lock

The frequency lock of the Master Raman laser is realized by superposing its light
with the one of the Reference laser and by collecting the beat note signal on a fast
photodiode (G4176-03, Hamamatsu). The beat note is down-converted using a mixer
with the RF signal from a synthesizer (ADF4350, Analog Devices) centred at 2.0
GHz. The mixer output is then compared in a PFD with a stable 10 MHz signal. For
this laser the lock acts only on the cavity PZT voltage (bandwidth of few kHz). The
Master Raman frequency is therefore ν2→3 − 2.184 GHz.
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Slave Raman phase lock

For the phase locking of the Slave Raman laser a portion of its light is superposed
with light from the Master Raman and the beat note is recorded with a fast photodi-
ode (G4176-03, Hamamatsu). After an amplification stage the beat note at 6.834 GHz
is down-converted by mixing it with the signal from a low phase noise microwave
synthesizer (Anritsu MG3692A). The mixer output is again amplified and sent to
a directional coupler (not shown in Fig. 3.7). The 10% output channel is used for
signal monitoring, while the 90% channel is sent to a combined digital/analog PFD
[80] together with a RF signal from an arbitrary waveform generator (AWG, Agilent
33600A Series) in sweep mode; the AWG is phase locked to the same 10 MHz time
base used for the Master Raman locking. The AWG sweep is performed during the
experimental sequence in order to compensate for the changing Doppler effect expe-
rienced by the freely falling atoms. The resulting error signal from the PFD is filtered
and used to control the voltage applied on the cavity PZT of the FECL and the LD
current.

The Raman lasers emission is amplified with two independent 1 W tapered am-
plifiers3. The two light beams are superposed on a polarizing beam-spitter and pass
through an AOM (AOMO 3080-122, Crystal Technology, Inc) used for pulse tim-
ing control. This AOM basically works as a fast shutter which allows us to obtain
short (∼ 10 µs) light pulses with arbitrary time envelopes4. After the shaping AOM
a PBS aligns the two beams polarizations. Finally the two beams are injected in
a common polarization maintaining optical fibre; the fibre output passes through
a Glan-Taylor polariser for additional polarization cleaning and is then collimated
with a lens to a waist of ∼15 mm before entering the vacuum system from the bot-
tom. The two Raman beams have the same linear polarization and propagate ver-
tically. After traversing all the vertical length of the vacuum system the beams exit
from the top, pass through a λ/4 wave-plate and are retro-reflected by a mirror thus
obtaining a lin⊥lin polarization configuration in the interferometer region for the
counter-propagating Raman couple.

The retro-reflection mirror is not seismically isolated but its alignment is con-
trolled with a tilt-meter.

3.3.6 Bragg laser system

The Bragg laser system is responsible for producing the laser light required for the
excitation of Bragg transitions during the interferometric sequence. Since the effec-
tive Rabi frequency for this kind of multi-photon processes has a strong dependence
on laser intensity (see Eq. 2.43), in order to efficiently drive high-order Bragg tran-
sitions high power laser sources are mandatory. Fig. 3.8 shows a schematic view of
the optical set-up for the Bragg laser system. We use a seed laser source (NP Pho-
tonics, RockTM source) to inject a high-power Erbium doped fibre amplifier (EDFA)
(Keopsys, CEFA-C-BO-HP). The seed laser has an emission centred around 1560 nm
and can be tuned either with a piezo control or with temperature. The light from
this source injects an EDFA with a peak emission power of 15 W. The amplified
light is then frequency doubled using two periodically-poled lithium niobate crys-
tals (PPLN) and stabilized in frequency with a feedback loop on the piezo actuator

3Recently we added the possibility of controlling the output intensity of the amplifiers with a digital
servo loop acting on the amplifiers driving current (bandwidth 3 Hz).

4When implementing Raman transitions we will always use square pulses. However for Bragg
transitions the pulse timing control is critical for a high transfer efficiency.
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FIGURE 3.8: Schematic representation of the optical set-up for the production
of the Bragg beams. The light is derived from an IR seed laser amplified and
then frequency doubled with two PPLN crystals. The seed laser emission fre-
quency is stabilised with respect to the Master Raman emission with a servo
loop acting on the PZT of the seed laser cavity. AOM 1 is used to stabilize the
emission power, AOM 2 controls the temporal profile of the interferometric
pulses, AOM 3 generates the two Bragg beams while AOM 4 steers the fre-
quency difference to account for the change in the Doppler effect during the
atomic free fall. The two interferometric beams are superimposed on the last
beam splitter and injected in a polarization maintaining optical fibre which de-
livers the light to the experiment. AOM 5 allows us to select wether to switch
on the Bragg beams or the Raman beams during the experimental sequence.

of the seed laser. The seed frequency is locked with respect to the Master Raman
laser frequency by detecting the beat note signal between the two sources with a
fast photodiode. The beat note is then compared with a 68 MHz RF signal in a PFD
which produces the error signal.

The amplifier output power is monitored right after AOM1 where a little portion
of light is picked-up and sent on a photodiode. The signal from this photodiode is
then used to stabilize the power output with a servo loop acting on the amplitude
of the RF signal which drives AOM1. AOM2 (AOMO 3080-122, Crystal Technology,
Inc) is used as a fast shutter for the Bragg light and to shape the temporal profile of
the interferometric pulses. AOM3 basically works as a beam-splitter and defines the
two laser beams needed for the Bragg transitions. One of these beams is steered in
frequency with a double pass in AOM4 which is driven by a linear frequency sweep
from an AWG (Agilent 33600A Series) to account for the changing Doppler effect
of the freely falling atoms. Finally AOM5 is used as a selective shutter; when the
driving RF signal is on, the Bragg beams are diffracted away from the optical fibre
which delivers the light to the vacuum system and the Raman beams can reach the
atoms (this happens during the velocity selection part of the experimental sequence);
the opposite happens when the driving RF signal is off (this is the case during the
interferometric interrogation part of the experimental sequence).
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FIGURE 3.9: (Left) Calibration curve obtained sectioning the measured trans-
fer function in 100 points and averaging in each interval. When applied to the
desired waveform each point of the curve is linearly interpolated. (Right) Nor-
malized light signal measured with a photodiode after the calibrated AOM. In
black we report the measured data points, while in red a gaussian fit of the
data. The AOM was driven with a Gaussian signal with σ = 12 µs while from
the fit we derive a σ = 11.98 µs for the measured output.

Light is delivered to the atoms with a polarization maintaining optical fibre. The
output of this fibre is filtered with a Glan-Taylor polariser and collimated to a beam
waist of about 20 mm; each Bragg beam can reach a maximum power of about 500
mW when delivered on the atoms. Before entering the apparatus from the bottom
the Bragg beams traverse a λ/4 wave-plate. They are finally retro-reflected from the
top mirror after traversing an additional λ/4 wave-plate in order to have a σ+ − σ−

polarization configuration in the interferometer region for the counter-propagating
Bragg beams.

With this set-up we were able to efficiently excite up to 3rd order Bragg transi-
tions. The main limitations in achieving a higher diffraction order are found in the
transversal temperature of the atomic cloud and in its transversal dimensions which
forced us to use large, i.e. low intensity laser beams.

Calibration of the shaping AOM

Since for Bragg diffraction the temporal pulse shape is decisive for an efficient tran-
sition process, particular care was devoted to the realization of the optimal pulse
shape. For this reason we developed a new calibration procedure for the shaping
AOM (AOM2 in Fig. 3.8) which allowed us to have very accurate Gaussian pulses.

The old calibration procedure for the shaping AOM was realized with a polyno-
mial fit of the AOM transfer function. The transfer function is obtained plotting the
driving signal from the AWG, versus the signal from a photodiode which detects the
light diffracted by the AOM.

The new calibration procedure does not rely on a polynomial fit any more to re-
produce the transfer function. This time the measured transfer function is sectioned
in 100 intervals; for each interval we calculate the average value of the mathemat-
ical signal and the experimental data and realize a calibration curve of 100 points
which reproduce the original complete AOM transfer function (see Fig. 3.9 (left)).
This calibration curve is then applied to the original mathematical signal to obtain
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the desired output from the AOM5.
Fig. 3.9 shows an example of a transfer function and of a Gaussian pulse with

a time width of σ = 12 µs obtained with the new calibration procedure. We note
that with this new calibration procedure the pulse shape can accurately reproduce a
Gaussian envelope even on the tails of the pulse where the old calibration procedure
failed.

5When producing the waveform that drives the AOM each point of the calibration curve is linearly
interpolated
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FIGURE 3.10: Summary of the main laser system. The 2D-MOT laser system is
not shown. All the frequencies are measured in MHz.
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Chapter 4

Main experimental sequence

In this chapter we describe the main experimental sequence, present some examples
of the typical signals and introduce the data analysis procedure.

We will start with the atom trapping and cooling in the 3D-MOT providing also
a conceptual description of the MOT underlying mechanisms. We will then present
the launch technique used to obtain freely falling atomic samples inside the inter-
ferometric tube and the velocity and state selection procedure realized before the
interferometric pulse sequence. We will continue introducing the interferometric
sequence and the detection procedure realized at the end of the experimental cycle.
Finally we present typical signals for both the Raman and the Bragg atom gradiome-
ter together with the data analysis procedure.

4.1 Atomic trapping and cooling

The MAGIA-Adv apparatus is an AI realized with an atomic fountain of cold atoms
[81]. The first step of the experimental sequence is therefore dedicated to the col-
lection and cooling of the atomic 87Rb sample inside a 3D-MOT [82]; the collected
sample is then launched vertically with a moving optical molasses [83].

The underlying principle of the MOT is best described starting from a one-dimensional
example [79] (see Fig. 4.1). We consider the interaction of two counter-propagating
laser beams with a simple two-level atomic system with F = 0 and F′ = 1. How-
ever, the principle discussed is applicable to any two-level system of the kind F,
F′ = F + 1. The confining potential is realized from the interplay between the ef-
fect of laser interaction and the effect of a magnetic gradient on the atoms. The two
counter-propagating laser beams have the same frequency ωL, red detuned from
the resonant atomic transition F = 0 → F′ = 1 and opposite circular polarizations
σ+, σ−. The magnetic field gradient is generated with two anti-Helmholtz coils; the
coils generate a quadrupole magnetic field with a zero crossing exactly in the mid-
dle of the axis connecting the two coil centres, which we consider as the origin of
the reference system (z = 0). Moving along the z axis the modulus of the magnetic
field increases linearly with the distance from the origin, while the direction of the
field inverts when the origin is crossed. In this configuration we have a linear mag-
netic field gradient capable of removing the degeneracy of the Zeeman magnetic
sub-levels of the atomic state F′ = 1.

Let us consider an atom in the fundamental state, which is on the right of the z
axis origin (z > 0) and which moves away from the origin. The magnetic sub-level
with mF = −1 is lowered in energy due to the Zeeman shift caused by the external
magnetic field and is brought closer to resonance with the laser beam of polarization
σ−, which propagates towards the origin. The atoms to the right of the origin will
thus absorb more photons from the counter-propagating beam with σ− polarization
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Magnetic field

Energy

FIGURE 4.1: Scheme of the working principle of a one-dimensional MOT. In
blue we indicate the energy levels of a two level atomic system with F = 0 and
F′ = 1. The counter propagating, circularly polarized laser beams are drawn in
red. The frequency of the lasers is ωL and it is red detuned with respect to the
atomic resonance condition (in the absence of an external magnetic field). The
black arrows at the bottom show the behaviour of the magnetic field generated
by a pair of anti-Helmholtz coils.

rather than from the co-propagating beam with polarization σ+. After an absorption
process, the atom de-excite through spontaneous emission towards the fundamental
level F = 0. Since the spontaneous emission is isotropic the final result of the process
is that the atoms to the right of the origin feel a net force which pushes them towards
z = 0 and vice-versa for the atoms to the left of the origin.

We note that in this configuration the result of the sole laser interaction is the
production of a viscous damping force for the moving atoms (i.e. a force with mod-
ulus proportional to the atomic velocity) typical of optical molasses and capable of
slowing down the atoms. Indeed due to the Doppler effect and the red detuning
of the laser beams an atom has a higher probability of absorbing photons from the
counter-propagating laser beam. This produces a net force opposite to the atom
velocity. However only in presence of the magnetic field gradient there is also a con-
fining potential, i.e. a force which depends on the atomic position and which always
points towards the trap center. This is due to the spatially varying Zeeman effect
which in turn produces a spatially varying excitation probability for the moving
atoms (see Fig. 4.1). The total force exerted on the atoms can therefore be expressed
as a term proportional to the atomic velocity, which constitutes the dissipative term
responsible of the cooling, plus a term proportional to the distance from trap center
which determines the trapping of the atoms.

In three dimensions the working principle is analogous, but instead of a single
pair of counter-propagating laser beams there are three orthogonal pairs.

In our set-up, the loading rate of the 3D-MOT is enhanced with the use of a
2D-MOT. The trapping beams for our 3D-MOT are arranged in the usual 1− 1− 1
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configuration. Indeed our trap is composed of three orthogonal pairs of counter-
propagating σ+/σ− polarized laser beams, tilted from the vertical direction (the ver-
tical direction has to remain free for the injection of the interferometric beams). As
already mentioned, the optical frequency of the three upper beams and of the three
lower beams can be independently controlled; the detuning of the beams during
trapping is −3Γ from ν2→3. The beams are collimated ans have a waist of 11 mm.
The maximum single beam intensity is 25 mW/cm2 (∼ 15 IS).

The quadrupole magnetic field is produced with a pair of coaxial coils in anti-
Helmholtz configuration arranged in order to obtain the zero field point at the center
of the laser beams crossing region. The coils have a circular shape with a radius of 7
cm; they have 50 windings and are separated by 16 cm. When operated with a 25 A
current they produce an axial magnetic field gradient of 8.3 G/cm at the center (on
the radial plane the gradient is half the axial one). The maximum capture velocity
for our 3D-MOT is 22 m/s.

4.1.1 Sub-Doppler cooling and launch

After the 3D-MOT loading the next step in the experimental sequence consists in
the further cooling of the atomic ensemble and in its vertical launch with a moving
optical molasses [83].

During the loading the 3D-MOT beams have the same frequency. This produces
an optical molasses which slows atoms down to a zero mean velocity in the labora-
tory reference frame. However if there is a relative frequency detuning between the
three upwards and the three downwards propagating beams, the atoms will acquire
a certain mean velocity vz due to the Doppler effect and still be cooled. Basically
the action of the detuning is to create a static optical molasses in the reference frame
moving at velocity vz with respect to the laboratory reference frame. In our set-up
we apply a frequency detuning of +δ for the upwards propagating beams and a
frequency detuning of −δ for the downwards propagating beams. Considering that
the wave-vector of the 3D-MOT beams is tilted by an angle α (cos α = 1/

√
3) the

launch velocity vz is

vz =
λδ

cos α
, (4.1)

which corresponds to 1.35 m/(s MHz). In our usual experimental conditions the
launch velocity is vz ' 4 m/s.

At the start of the launch sequence the magnetic field of the 3D-MOT is turned off
in ∼200 µs while the beams detuning is increased from ∆ = −3Γ to ∆ = −3.8Γ; the
relative detuning δ is also added and the optical molasses starts to move vertically.
At this point a polarization gradient cooling stage is applied in order to reach lower
temperatures than what is possible in a standard optical molasses, i.e. lower than the
Doppler temperature TD = h̄Γ/(2kB) (∼ 140 µK for the 87Rb D2 transition)1. With
the polarization gradient cooling mechanism the final temperature scales as I/∆,
with I the cooling beams intensity and ∆ their detuning from the cooling optical
transition. In our set-up after 2.5 ms from the launch start (i.e. from the introduction
of δ) we again change the detuning ∆ = −3.8Γ → −8Γ and decrease the beam
intensity to I = 15IS → 6.6IS for 1.8 ms and then to I = 6.6IS → 2IS. An RC filter
(with τ = 500 µs) is used to make the intensity changes not too much abrupt in
order for the atoms to follow them adiabatically. At the end of the cooling cycle the

1The Doppler temperature limit is due to the random nature of the spontaneous emission which
constitutes the dissipation mechanism in an optical molasses. TD is calculated by considering the com-
petition between the laser cooling and the diffusion heating introduced with the spontaneous emission.
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FIGURE 4.2: Trend of the 3D-MOT beams intensity and detuning during the
launch sequence. The time axis is not to scale. Figure adapted from [38].

Cooling laser light is completely turned off and only the re-pumping light remains
for 3 ms more. With this procedure the atoms are pumped in the F = 2 fundamental
state with a 99.9 % efficiency and reach a final temperature of∼ 4 µK. Fig. 4.2 reports
the described launch sequence.

The launched sample can be partially recaptured when it falls back in the trap-
ping chamber by turning on the 3D-MOT again. Indeed, when the sample falls back
in the trapping region its velocity is obviously the same as the initial launch veloc-
ity (same modulus, opposite direction) which is smaller than the maximum capture
velocity of our 3D-MOT (|vz| = 4 m/s < vc = 22 m/s). The main losses for the
recapture efficiency are due to the expansion of the cloud during the free fall. With
a temperature of 3 µK the thermal velocity is ∼ 30 mm/s; this velocity determines
an increase of the cloud radius of ∼25 mm after a free fall time of 0.8 s (considering
a launch velocity of 4 m/s). This radius is larger than the 3D-MOT capture range
which is determined by the laser beams dimensions and by the magnetic field gra-
dient.

Launch of multiple samples

The MAGIA-Adv apparatus can be operated as a gradiometer, i.e. an instrument
capable of measuring the gradient of the gravitational acceleration. The gradiomet-
ric information can be obtained by comparing the signal from two simultaneous
gravimeters realized at different known heights. It is therefore necessary to perform
two simultaneous interferometers vertically separated by a known distance; this in
turn requires to have two atomic samples simultaneously in free fall inside the in-
terferometric tube with the same falling speed (both have to be in resonance with
the same interferometric pulses) and with a certain relative distance, which in our
set-up is typically ∼ 30 cm.

To obtain such a vertical separation the second cloud should be launched from
the 3D-MOT within ∼ 80 ms after the first one; however this time separation is not
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enough to achieve a satisfactory atom number in the second sample. In order to
have a good atom number in both the clouds we adopt a different launch strategy
called juggling technique [84], [85]:

• A first atom cloud (cloud0) of ∼ 109 atoms is loaded in the 3D-MOT in ∼500
ms.

• Cloud0 is launched to a height of ∼31 cm for a total flight time of ∼500 ms.

• After about 350 ms a second cloud (cloud1) is loaded in the 3D-MOT while
cloud0 is still in free flight.

• When cloud0 is nearing the trapping region cloud1 is launched to a height of
∼ 91 cm.

• When cloud0 reaches the trapping chamber the 3D-MOT is turned on and the
sample is recaptured.

• After ∼50 ms cloud0 is launched again to a height of ∼ 60 cm.

With this launch sequence2 we obtain two samples simultaneously in free fall with
87Rb atoms in the ground state with F = 2. The next step of the experimental se-
quence is the state preparation and vertical velocity selection of the samples.

4.2 State preparation and Raman velocity selection

The interferometric interrogation is a single atom process, i.e. any atom in the
ensemble will provide an independent interferometric signal; for this reason one
would like to have all the atoms in the ensemble contributing with the same phase
that adds constructively without any contrast loss. However we note that after the
launch:

• Not all the atoms are in the fundamental F = 2 state since a residual 0.1 % is in
the fundamental F = 1 level.

• The atoms populate all the magnetic sub-levels.

• The velocity distribution has a HWHM of about 30 mm/s along each direction.

These characteristics influence the phase contribution of each atom participating in
the interferometer and cause loss of contrast. Indeed atoms in different magnetic
sub-levels interact differently with the surrounding magnetic fields and atoms with
different velocities will experience various Doppler effects and gravitational interac-
tions with the surrounding masses.

Before the interferometer pulse sequence it is therefore necessary to accumulate
all the atoms in a preferred internal state and to choose a narrow vertical velocity
class. We perform this selection with a series of vertical Raman pulses intertwined
with resonant blow-away pulses which remove the unselected atoms. Fig. 4.3 shows
the schematic representation of the applied selection procedure.

Before the selection procedure we shine a 10 ms light pulse resonant with the
ν1→0 transition. The light beam is divergent and slightly tilted from the vertical

2The numerical values reported here for the juggling sequence are just an example of a possible
implementation. The launch sequence will change sensibly from experiment to experiment as we will
see in Ch. 5



66 Chapter 4. Main experimental sequence

Transfer Transfer Transfer

FIGURE 4.3: Triple velocity selection procedure. We show the two hyperfine
levels of the fundamental 87Rb state specifying the different magnetic sub-
levels with the black dots. The atomic population is represented with the red
shading. Initially the atoms are uniformly distributed on all the magnetic sub-
levels of the F = 2 fundamental state; at the end of the procedure the atoms
are accumulated on the |F = 1, mF = 0〉 state. The blue arrows indicate the
Raman pulses which transfer the atomic population from |F = 2, mF = 0〉 to
|F = 1, mF = 0〉 and vice versa; the yellow arrows represent pulses of light res-
onant with the transitions ν2→3 or ν1→0 used to remove the unselected atoms
in F = 2, 1.

direction so that it does not get retro-reflected from the mirror on the top of the
interferometric tube. This pulse is a first blow-away used to reduce the number of
atoms remaining in the F = 1 state after the launch by forcing them away.

We then apply a first velocity selective, vertical, Raman π pulse [12] shining on
the atoms two counter-propagating Raman beams resonant with the |F = 2, mF =
0〉 → |F = 1, mF = 0〉 transition. The selected velocity class is determined by the
Doppler shift of the transition frequency, δD = p · kL/m = v · kL, while the velocity
spread (i.e. the selectivity of the transition) is related to the frequency width of the
Raman transition ∆δD by the relation

∆vz =
∆δD

keff
. (4.2)

In our case the Raman transition involves two long lived states and ωeff (ωeff is the
frequency difference between the Raman lasers) is accurately stabilized. For these
reasons the limiting factor for the linewidth comes from the finite interaction time
between atoms and Raman light. For example a Raman pulse of duration 200 µs has
a Fourier transform with FWHM of 5 kHz, which results in a ∆vz ' 2 mm/s. Con-
sidering that the 87Rb recoil velocity is vr = 5.9 mm/s, the atoms after the velocity
selection have a velocity distribution with HWHM of vr/6 which corresponds to a
temperature Tr/36 = 10 nK along the vertical direction. In the transversal directions
the velocity distribution maintains a HWHM of about 5vr.

After the Raman pulse the unselected atoms which remain in the F = 2 state
are blown away with a pulse of resonant light with frequency ν2→3. The pulse is
applied with a divergent vertical beam slightly tilted from the vertical axis to avoid
the retro-reflection.

After the F = 2 blow away pulse a second Raman π pulse, identical to the first
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one, is applied. This time the pulse transfers the atoms back to the |F = 2, mF = 0〉
state. The thermal background of unselected atoms in F = 1 is removed with the
application of a blow-away pulse acting on the ν1→0 transition (the same as the one
already used before the start of the velocity selection procedure). The sequence is
concluded with another Raman π pulse which brings the atoms in the |F = 1, mF =
0〉 state and a final F = 2 blow-away pulse.

The typical time separation between the Raman pulses is 18 ms and the duration
of the blow away pulses is about 5-10 ms.

With this procedure any thermal background on the fluorescence atomic clouds
signal is efficiently removed. All the Raman pulses have a square time envelope with
equal duration; the frequency difference between the Raman lasers is steered linearly
in time to account for the changing Doppler effect of the freely falling atoms (the
slope of the linear frequency ramp is ∼ 25 MHz/s). The entire procedure usually
lasts about 40 ms.

The velocity selection procedure can of course be simplified by reducing the
number of applied Raman pulses. However the use of three pulses ensure a com-
plete elimination of the thermal background in the detected atomic signal. The
drawback of this procedure lies in the reduced number of atoms participating in
the interferometer; however, the obtained larger contrast of the interference fringes
compensates the loss of atoms [65].

4.3 Atom interferometer

At the end of the state and velocity selection procedure the atomic sample is finally
ready for the interferometric interrogation. The interferometer sequence is com-
posed of three subsequent Raman or Bragg pulses spaced by a time T3; the three
pulses are arranged in the π/2− π − π/2 Mach-Zehnder configuration. The two
interferometric beams enter from the bottom of the vacuum system and traverse all
the apparatus until they are retro-reflected at the top of the interferometric tube. To
compensate the changing Doppler effect of the freely falling atoms the frequency
difference between the beams is linearly swept in time with a phase-continuous fre-
quency ramp from an arbitrary waveform generator. Due to the retro-reflecting mir-
ror, there are two pairs of counter-propagating interferometric beams. However de-
pending on the sign of the applied frequency ramp only one pair is resonant with the
atomic frequency in its reference frame. Changing the sign of the ramp thus changes
also the direction of the imparted momentum to the atoms h̄keff. If an interferometric
pulse is applied when the atoms are at rest, i.e. at the apogee of the ballistic trajectory,
both beam pairs will satisfy the resonance condition; in this case half of the atoms
would exchange the wrong momentum (opposite direction from the one exchanged
with the other pulses) and not contribute any more to the interferometer. However
if the central π pulse is sent exactly at the apogee the complete MZ interferometer
will be spatially symmetric (the two π/2 pulses will interrogate the atoms in the
same vertical position) and systematic effects due to spatially varying fields would
be completely compensated. A compromise between these two conditions can be
found experimentally by sending the central π pulse when the atoms are close to
the apogee, but also far enough so that they have a vertical velocity component suf-
ficient to be in resonance only with one couple of interferometric beams. As we will

3This is true for the symmetric MZ interferometer that we usually implement; however in Sec. 5.3
we will use a different interferometric geometry based only on two π/2 pulses.
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see in Ch. 5 we will not always respect this condition and perform complete AIs dur-
ing the ascent of the atomic clouds or during their descent. In particular, when using
Bragg diffraction, the interferometer will be performed entirely during the ascent of
the atomic sample. This is necessary in order to spatially resolve the two interfero-
metric outputs at the moment of detection. Indeed, since the Bragg diffraction only
changes the atomic momentum state, a state selective detection is not possible and
the two output ports of the interferometer need free fall time to spatially separate
one from the other.

Considering that inside the interferometric tube a bias magnetic field defines the
atomic magnetic quantization axis and the Raman beams polarization (lin⊥lin), only
Raman transitions with ∆mF = 0 can be excited.

During the interferometric sequence the moving standing wave formed with the
interferometric beams is aligned vertically, parallel to the direction of gravity. How-
ever, the Earth rotation during the atomic free fall produces a rotation of the inter-
ferometric beam axis with respect to the original direction. Since the atom free-fall
trajectory and the interferometric beam axis do not coincide throughout all the in-
terferometer sequence a systematic offset in the phase measurement is present; ad-
ditionally, the atomic wave packets do not overlap perfectly at the end of the inter-
ferometer with a consequent loss of contrast. In our set-up we counteract the effects
of Earth’s rotation with the use of a tip-tilt mirror [60], [61] as the retro-reflection
mirror of the interferometric beams. Applying the proper continuous rotation to the
retro-reflection mirror, the momentum transferred to the atoms during the interfer-
ometric π and π/2 pulses, as seen from the atom’s inertial reference frame has now
a constant direction despite of the Earth’s rotation.

Single AI signal

In Sec. 2.2 we derived the phase term induced by the gravitational acceleration g in
a MZ interferometer as φ = −keffgT2 + δφ0. If the measurement is repeated sev-
eral times with the same experimental conditions the output signal does not change
and the interferometric fringe cannot be reconstructed. However we can add a con-
trolled varying phase shift between the Raman lasers φext in order to scan a complete
interferometric fringe (see Fig. 4.4).

In our experimental apparatus the retro-reflecting mirror is not seismically iso-
lated and the interferometric fringes are quickly (i.e. for low T) washed out due to
the random phase term introduced by the seismic noise. However this problem can
be solved in the gradiometric configuration, i.e. by using two simultaneous interfer-
ometers.

Simultaneous AIs signal

For the gradiometer we realize two simultaneous atom interferometers which share
the same Raman/Bragg pulses and are vertically separated. The seismic noise is
therefore common between the two AIs and can be efficiently suppressed by consid-
ering the differential signal.

In this case the two AI output fringes can be written as{
x = A sin(φ) + x0,
y = C sin(φ + Φ) + y0,

(4.3)
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FIGURE 4.4: Normalized interferometric fringe for a Raman interferometer
with T = 1 ms. The phase is scanned adding a controlled relative phase to
the Raman lasers between the π and π/2 pulse. Each experimental point cor-
responds to a 2◦ phase change.
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FIGURE 4.5: Gradiometric ellipse for T = 160 ms obtained plotting the signal
from the upper AI versus the signal of the lower AI. The phase is scanned by
the seismic noise on the retro-reflecting mirror.
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FIGURE 4.6: Side view of the detection chamber with the laser beams used for
the fluorescence detection of the atomic samples. The laser beams propagate
perpendicularly to the page and create three sheets of light which are traversed
by the falling atoms. The fluorescence light is measured with two photodiodes
which provide independent channels for the detection of atoms in the funda-
mental state with F = 1 and F = 2. The bottom halves of the first and last light
sheets are not retroreflected in order to create a blow away for the atoms which
interacted with the upper part of the beam.

where the term of interest here is the relative phase shift Φ which is due to the verti-
cal separation between the AIs and contains the information about the gravity gra-
dient. Φ can be retrieved fitting the Lissajous figure obtained by plotting the signal
from the upper interferometer versus the signal from the lower interferometer (or
vice versa) with an ellipse (see Fig. 4.5).

We note that in order to scan the interferometric fringes (and in turn scan the
gradiometric ellipse) we do not need to add an external artificial phase like in the
single AI case. Indeed for large T the seismic noise will provide a random phase
contribution > 2π which is able to scan complete fringes.

4.4 Detection procedure

At the end of the interferometric sequence the interferometer phase φ can be re-
trieved measuring the relative atomic population of the two states involved in the
interferometer. For this purpose our system provides a state selective detection
scheme, i.e. two independent measurement channels for the atomic population in
states F = 1 or F = 2.

Fig. 4.6 shows a side view of the detection chamber with the basic optical ele-
ments needed for the state selective detection. A first, rectangular shaped (4 mm
× 15 mm with 3.3 IS intensity), horizontal light beam with frequency ν2→3, is used
to detect the atoms in F = 2. The upper part of the beam is retro-reflected after
traversing all the length of the detection chamber while the lower portion is not
retro-reflected in order to blow-away the detected atoms in F = 2. The fluorescence
light is directed on a photodiode with a f = 50 mm lens placed at a distance of 130
mm from the center image.

The atoms in F = 1 continue to fall towards the next light sheet (1 mm × 15, 200
µW/cm2) with a frequency of ν1→2. This beam pumps the atoms from |F = 1〉 to
|F = 2〉.

Finally the atoms traverse a last light sheet identical to the first one and the flu-
orescence light is collected with an optical system identical to the one already de-
scribed.
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FIGURE 4.7: (Left) Fuorescence signal for a Raman gradiometer. The two inter-
ferometer output channels differ both in momentum and internal state. (Right)
Fluorescence signal for a Bragg gradiometer. The two peaks are the different
momentum states coupled with the Bragg transition which does not change
the internal atomic state.

In the detection chamber external coils provide a horizontal magnetic field along
the detection beams to define the quantization axis. The magnetic field changes from
vertical, inside the interferometric tube, to horizontal in the detection region in a way
so that atoms can follow the change adiabatically. The detectors are two Hamamatsu
S7510 large area photodiodes (11×6 of active area); the background light is filtered
with a 780 nm interference filter. The photodiode signal is derived from a 1 GΩ tran-
simpedance amplifier realized with an OPA627. The obtained bandwidth is ∼kHz
and the noise level was optimized following the scheme described in [86].

Fig. 4.7 shows two examples of the atomic fluorescence signal obtained with the
Raman (left) or the Bragg (right) gradiometer. From the area (A) of the peak we can
extract the atom number (N) in the corresponding state through the relation

A = N
Ω
4π

Rscτηtothν2→3, (4.4)

where hν2→3 is the photon energy, τ is the atom crossing time through the detection
beam, ηtot is the photodiode responsivity, Ω the collecting solid angle and Rsc the
photon scattering rate. In our experimental conditions the fluorescence spectra show
an atom number of ∼ 105 which translates in a quantum projection noise of δNq =√

105 ' 300. Considering that the rms noise from the photodiode corresponds to
δNph ∼ 140 < δNq, we do not expect to be limited by detection technical noise.

After the detection procedure the sequence is completed and the system ready to
perform another measurement. Each cycle takes about 1.8 s to complete.

In Fig. 4.8 we report a summary of the entire experimental sequence in the case
of the atom gradiometer. With the juggling technique we launch two cold samples
of ∼ 5× 108 atoms with a relative vertical displacement of ∼30 cm and same free
fall velocity. After the launch, three Raman pulses prepare both the ensembles in
a narrow longitudinal velocity class and in the |F = 1, mF = 0〉 state. The three
interferometric pulses are then applied; they interact in the same way with both the
clouds simultaneously (no shadowing effect can be observed due to the low density
of the samples). The fluorescence from the atomic population is finally detected
when the samples fall through the detection chamber; first the lower cloud and then
the upper one.
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FIGURE 4.8: Scheme of the experimental sequence for the gradiometer. The red
lines represent the vertical position of the atomic clouds. The three velocity
selection and interferometric pulses are represented with the vertical yellow
lines while the detection beams are represented with the horizontal lines. Both
the axes are not to scale.

4.5 Signal analysis

From Fig. 4.7 we see that in the case of the gradiometer the measured signal consists
of two pairs of peaks (one pair for each launched sample) from which we can recon-
struct the relative atomic population in the two states involved in the interferometer.
To retrieve the amplitude of the peaks we fit the signal with Gaussian functions and
a background linear slope. From the fit we obtain the area of each peak Az

F which is
a measure of the number of atoms in the corresponding state. Since the total atom
number fluctuates from one experimental shot to next we are interested in the rela-
tive atomic number in each state which for a Raman interferometer can be written
as

nup
1 =

Sup
1

Sup
1 + Sup

2
nup

2 =
Sup

2

Sup
1 + Sup

2
,

ndw
1 =

Sdw
1

Sdw
1 + Sdw

2
ndw

2 =
Sdw

2

Sdw
1 + Sdw

2
.

(4.5)

A gradiometric ellipse can therefore be obtained plotting the normalized atom num-
ber from the upper cloud signal versus the one from the lower cloud, e.g. nup

1 VS
ndw

1 .
As already mentioned (see Eq. 4.3) in a gradiometer the signal of interest is the

relative de-phasing Φ accumulated between the two simultaneous AIs. If the phase
noise is low and the single interferometer fringes maintain a high visibility the rel-
ative phase shift could be extracted directly from a sinusoidal fit of the single inter-
ferometer signals. In this case the fringes need to be artificially scanned by varying
the relative phase between the interferometric lasers.
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For the typical interrogation times T employed this approach cannot be applied
without any seismical isolation of the retro-reflecting mirror or some post-correction
process of the interferometer signal. Indeed, since any mechanical vibration of the
retro-reflecting mirror is converted to phase noise, the fringes will be rapidly dete-
riorated for increasing interrogation times T (the MZ interferometer sensitivity to
accelerations scales quadratically with T).

This effect is rejected adopting a differential measurement configuration. With
this strategy any common mode noise, affecting both the simultaneous interferom-
eters in the same way (e.g. the seismical noise) is efficiently rejected. With a differ-
ential measurement what is detected is basically the acceleration of a sample with
respect to the other one and the samples are vibration free due to their free fall in
vacuum.

We already mentioned that from the Lissajous figure obtained plotting the sig-
nal of the upper cloud versus the one of the lower cloud, we can extract the relative
phase Φ with an elliptical fit [87]. We now rewrite the expression for the two inter-
ferometric fringes in a gradiometer{

x = A sin(φ) + x0,
y = C sin(φ + Φ) + y0.

(4.6)

The fringes can be described with two independent amplitudes (A and B) and two
independent vertical offsets (x0 and y0) and a the relative phase shift Φ which is the
quantity of interest that we want to determine. The offsets can be removed with a
translation {

x′ = A sin(φ),
y′ = C sin(φ + Φ),

and the above equations can be reorganized to obtain the equation of an ellipse

x′2

A2 +
y′2

C2 − x′y′
(

2 cos Φ
AC

)
− sin2 Φ = 0. (4.7)

We rotate the reference system by the angle α → tan α = 2AC cos Φ/(C2 − A2), in
order to eliminate the term in x′y′. The new coordinates will be{

x′′ = x′ cos α + y′ sin α

y′′ = −x′ sin α + y′ cos α,

and the ellipse equation becomes the canonical expression

x′′2

a2 +
y′′2

b2 − 1 = 0, (4.8)

where {
a2 = 2A2C2 sin2 Φ

A2+C2+
√

A4+C4+2A2C2 cos 2Φ

b2 = 2A2C2 sin2 Φ
A2+C2−

√
A4+C4+2A2C2 cos 2Φ

.

If we consider a set of n experimental points (xi, yi) with experimental errors
(σxi, σyi) the best fitting curve can be found by calculating the n mathematical points
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(x̄i, ȳi) which minimize the χ2

χ2 =
n

∑
i=1

(xi − x̄i)
2

σ2
xi

+
(yi − ȳi)

2

σ2
yi

, (4.9)

with the condition that they belong to a curve f (x, y) = 0 with p parameters to be
determined. With the method of the Lagrange multipliers we thus obtain a system of
3n + p variables, n from x̄i, ȳi and the Lagrange multipliers λi and p from the curve
parameters αp which are the parameters of interest to be determined. Assuming
σxi = σyi the problem can be simplified from a least χ2 method to a least squares
method which is solved minimizing

S =
n

∑
i=1

(xi − x̄i)
2 + (yi − ȳi)

2 − λi f (x̄i, ȳi). (4.10)

The differential equation system to be solved is then

∂S
∂x̄i

= −2(xi − x̄i)− λi
∂ f
∂x̄i

= 0

∂S
∂ȳi

= −2(yi − ȳi)− λi
∂ f
∂ȳi

= 0

∂S
∂λi

= f (x̄i, ȳi) = 0

∂S
∂αp

= ∑n
i=1

∂ f (x̄i ,ȳi)
∂αp

= 0.

This system can be treated numerically. We adopt the following algorithm:

• A numerical minimization software (our fitting software uses MINUIT libraries
[88]) works on the parameters A, x0, C, y0 and Φ.

• The minimizer receives initial values for the five parameters. Since our experi-
mental points are usually uniformly distributed along the entire ellipse we can
average over the phase angle φ

1
n ∑n

i=1 xi ' 1
2π

∫ 2π
0 x(θ)dθ = x0

1
n ∑n

i=1 x2
i '

A2

2

1
n ∑n

i=1 yi ' y0

1
n ∑n

i=1 y2
i '

C2

2

1
n ∑n

i=1 xiyi ' AC cos Φ
2

The minimizer is therefore initialized with the set of parameters [A, x0, C, y0, Φ]j.

• The experimental points (xi, yi) are translated and rotated in order to trans-
form the initial ellipse to the canonical form (see Eq.4.8). The parameters a and
b are calculated and Sj is determined. The calculation of S is reduced to n sys-
tems of 3 equations with 3 variables which basically consists in calculating the
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FIGURE 4.9: Simulations of gradiometric ellipses affected by different noise
levels on the phase angle Φ (top set of ellipses), the amplitude (middle set of
ellipses) and on the offsets (bottom set of ellipses). For the simulation we set
A = B = 0.5, x0 = y0 = 0.5 and Φ = 1 rad. The noise is Gaussian with σφ = 0.1
rad (left), 0.2 rad (middle) and 0.3 rad (right) for the phase and σa = σφ = 0.01
(left), 0.02 (middle) and 0.03 (right) for the amplitude and offset.

geometric distance of the experimental point from the mathematical model

(xi − x̄i) =
λi x̄i
a2

(yi − ȳi) =
λi ȳi
b2

x̄2
1

a2 +
ȳ2

1
b2 − 1 = 0

The sum of the squares of the distances for all the experimental points (xi, yi)
is Sj.

• The minimizer is used to derive the minimum value of the multi-parameter
function Sj. A new set of parameters is produced [A, x0, C, y0, Φ]j+1 and the
procedure is repeated until S is minimized.

• The parameter Φ is then determined.

Noise sensitivity

The gradiometric ellipse signal can be affected by three kinds of noise

Phase noise

{
x = A sin(φ),
y = C sin(φ + Φ + σΦ) + y0.
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Amplitude noise

{
x = (A + σa) sin(φ) + x0,
y = (C + σa) sin(φ + Φ) + y0.

Offset noise

{
x = A sin(φ) + x0 + σ0,
y = C sin(φ + Φ) + y0 + σ0.

In order to understand the effect of these different noise contributions on the gra-
diometric ellipse signal we simulated the experimental data for three values of the
phase noise σφ, the amplitude noise σa and the offset noise σ0. We report the result
of these simulations in Fig. 4.9. We note that the different kinds of noise produce
ellipses with different characteristics. The phase noise for example can derive from
fluctuations in spurious electromagnetic fields and it is amplified between the min-
ima and maxima of the single interferometer fringe signal. On the contrary, the am-
plitude noise, which can derive from variations of the two-photon Rabi frequency is
amplified at the maxima and minima of the fringe signals. The offset noise moves
the ellipse around the x-y plane and can be caused by instabilities in the frequency
of the re-pumper light.

A more thorough analysis of the noise contributions can be found in [38], [65],
together with comparisons between simulated and real experimental data points.
The results of the analysis show that the dominant noise is the amplitude noise.
Furthermore the bias in the measured value of Φ due to the noise is minimum when
Φ ' π/2. Whenever possible it is thus convenient to add a controlled relative phase
shift which brings the differential phase Φ close to π/2 (more informations on this
in [38], [65]).
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Chapter 5

Experimental results

In this chapter we present the measurements performed in the last three years with
the MAGIA-Adv apparatus. The chapter is divided in four sections.

The first one is dedicated to the characterization measurements realized with the
Bragg atom gradiometer. These measurements are important since Bragg transitions
were never being implemented in the MAGIA-Adv apparatus before and allowed
us to set the best experimental conditions for the successive measurements with the
Bragg interferometer.

In the second section we present the results obtained for a test of the Weak Equiv-
alence Principle in the classical and quantum regime. For these measurements we
used the previously characterized Bragg gradiometer.

In the third section we demonstrate a new experimental method to perform a
gravimetric measurement through matter-wave velocimetry. These measurements
were realized with the Raman interferometer and with a different interferometric
geometry than the usual MZ configuration; we used two subsequent Ramsey in-
terferometers to measure the velocity variation of freely falling cold atom samples,
thus determining the experienced gravitational acceleration. We also compare the
obtained sensitivity with the one of a standard MZ interferometer and the one of a
Ramsey-Bordé interferometer.

Finally, in the fourth section we report the experimental demonstration of a novel
method to compensate the effects introduced by gravity gradients in a MZ atom
interferometer. Using the Raman interferometer we apply this technique to provide
a measurement of the local gravity gradient and the gravity field curvature.

Since the main experimental apparatus and experimental procedure have al-
ready been described in the previous chapters, here we will only describe the changes
that we needed to introduce for each of the presented measurements without going
into all the details of the apparatus and sequence.

5.1 Characterization of the Bragg gradiometer

In this first section we report the characterization measurements realized with the
Bragg interferometer [89]. These measurements are focused on finding the most
convenient experimental conditions for the Bragg gradiometer. In the following we
will always consider 3rd order Bragg transitions.

The laser system dedicated to the production of the Bragg pulses has been de-
scribed in Sec. 3.3.6. We note that in order to have the right beam polarizations for
the Bragg diffraction we added a λ/4 wave-plate at the bottom of the vacuum sys-
tem. The polarization of the Bragg beams is therefore modified into circular σ+− σ−.
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5.1.1 Optimization of gradiometric contrast

Using the Bragg gradiometer, with two atomic samples vertically separated by 30
cm, we analysed the dependence of the contrast for the upper and lower interfer-
ometer versus different experimental parameters. The contrast for the upper and
lower interferometer can be derived from the normalized atomic population interval
explored by the gradiometric ellipse along the vertical and horizontal axes respec-
tively.

For the excitation of the Bragg transitions we initially use Gaussian pulses with
σ = 24 µs. We launch two atomic samples with the juggling procedure and select
a narrow vertical velocity class in the |F = 1, mF = 0〉 state with the three velocity
selection pulses. We then apply three subsequent 3rd order Bragg pulses and obtain
two simultaneous MZ interferometers vertically displaced of about 30 cm.

In the first characterization we varied the free evolution time T between the suc-
cessive MZ interferometric pulses. The results are reported in Fig. 5.1 (top). We note
that the upper cloud interferometer tends to lose contrast faster than the lower one.
This behaviour is due to the 80 ms longer expansion time that the upper atomic sam-
ple has to experience before the interferometric interrogation. Furthermore, due to
the juggling launch procedure the upper sample is usually hotter (in terms of the
transversal temperature) than the lower one. This is due to the heating induced by
the light scattered from the lower atomic cloud when it is loaded in the 3D-MOT.

As mentioned in Sec. 4.3, the Bragg interferometer needs to be realized com-
pletely during the ascent of the atomic clouds for the two interferometric output
ports to be spatially resolved at the moment of detection. This requirement ulti-
mately limits the achievable interrogation time T.

We then set the free evolution time to T = 40 ms and analysed the behaviour of
the interferometric contrast for different velocity selection pulse lengths. The lon-
gitudinal velocity selection is described in detail in Sec. 4.2, we recall here that it is
realized before the interferometer with three square Raman pulses of duration Tsel.
The results for this characterization are reported in Fig. 5.1 (middle). We note a slight
increase in contrast when the velocity selection pulses become longer. We attribute
this improvement to the narrower vertical velocity distribution obtained with longer
selection pulses. Despite the contrast increase in the next measurements we chose
to work with selection pulses of Tsel = 192 µs. Increasing further Tsel would indeed
produce just a slight increase in the contrast at the expense of major losses in terms
of detected atoms without any improvement at the signal to noise ratio.

For the last contrast characterization we varied the interferometric pulse width
σ. Each time σ is changed the pulse peak power as to be adjusted accordingly in
order to maintain efficient π and π/2 pulses. The contrast behaviours obtained with
these measurements are reported in Fig 5.1 (bottom). We note a pronounced contrast
increase for shorter Bragg pulses which convinced us to use Gaussian pulses with
σ = 12 µs for the successive measurements. Furthermore, our present laser system
cannot deliver enough optical power for shorter pulses.

The contrast improvement obtained with the shorter Bragg pulses was enough
to allow us to increase the interrogation time from 40 ms to 80 ms thus increasing
the overall instrument sensitivity to inertial effects of a factor 4.

Fig. 5.2 (left) reports an example of the gradiometric ellipses acquired in these
experimental conditions.
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FIGURE 5.1: (Top)Contrast of the lower and upper interferometer versus the
free evolution time between the Bragg diffraction pulses of the MZ interfer-
ometer. (Middle) Contrast of the lower and upper interferometer in function
of the velocity selection pulse length Tsel. (Bottom) Contrast of the lower and
upper interferometers versus the interferometric pulse width.
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FIGURE 5.2: Stability analysis of the Bragg gradiometer. (Left)Gradiometric
ellipse acquired with an interrogation time T = 80 ms and an interferometric
pulse width of σ = 12 µs. An elliptical least squares fit of the data is shown
with the red line. (Right) Allan deviation of the gradiometric phase angle. The
blue line is a fit of the experimental data with the function σΦ = a/

√
t, with t

the integration time.

5.1.2 Allan deviation of phase angle

To evaluate the phase stability and the sensitivity of our set-up we extracted the Al-
lan deviation of the gradiometric phase angle using the data points shown in Fig. 5.2
(left) which are obtained in a measurement run of about 8 h.

The corresponding Allan deviation, reported in the right panel of Fig.5.2, shows
the characteristic dependence as 1/

√
t (with t the integration time). We can conclude

that the gradiometer is mainly affected by white phase noise. We exclude the pres-
ence of a flicker floor only up to 1000 s of integration time due to the large error bars
at long times t. From a fit (blue line in the figure) of the experimental Allan deviation
we can derive the short and long term sensitivity of the gradiometer. Considering
that the interferometer vertical separation is of 30 cm, at 1 s of integration time the
sensitivity to gravity gradients is 1.2×10−6 s−2 which translates to a sensitivity for
differential accelerations of 3.6×10−8g. After 2000 s of integration time the sensitiv-
ity to gravity gradients reduces to 2.6×10−8 s−2 which corresponds to 8.0×10−10g
of differential acceleration sensitivity.

5.1.3 Phase angle dependence on magnetic quantization field

We now analyse the dependence of the gradiometric phase angle from the magnetic
quantization field produced inside the interferometric tube.

For the next measurements we apply the k-reversal procedure [90]. This tech-
nique permits to reject all the systematic effects that depend on even powers of keff.
Indeed the gradiometric signal can be decomposed in two contributions: a part that
depends on odd powers of keff which we call Φodd (e.g. the signal from the gravity
gradient itself and the signal from residual Coriolis acceleration) and a part which
depends on even keff powers which we label as Φeven (e.g. the one due to single
photon light shifts); the total gradiometric phase angle will result from the sum of
these two contributions Φ = Φodd + Φeven. The k-reversal procedure consists in re-
versing the direction of the imparted momentum keff for each experimental cycle;
we thus obtain two different gradiometric phase angles Φdir = Φodd + Φeven and
Φrev = −Φodd + Φeven which differ for the sign of the phase term which depends on
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odd powers of keff; therefore the combination

Φodd =
Φdir −Φrev

2
, (5.1)

permits to reject all the systematics effects which depend on even powers of keff.
Let us now consider the effect of magnetic fields on the gradiometric signal. In-

side the interferometric tube we can model the magnetic field as the sum of a bias
term B0 and a magnetic field gradient term B′, i.e.

B(x) = B0 + B′(x), (5.2)

The two contributions take into account the effect of the solenoid wrapped around
the tube, which we can control by changing the current flowing in the coil and any
other spurious source which is not completely rejected by the magnetic shielding.
We can therefore decompose them as the sum B0 = Bsol + Bres and B′ = B′sol + B′res,
where we have distinguished the contribution of the solenoid from the contribution
of the residual fields.

The effect of a magnetic field on the interferometer signal can be calculated con-
sidering the Lagrangian for the second order Zeeman effect

L(x, ẋ) = 2πh̄βB2(x), (5.3)

where β = 28.8 GHz/T2. Substituting the expression for the magnetic field in Eq. 5.2
we obtain

L(x, ẋ) = 2πh̄β(B2
0 + 2B0B′x + B′2x2) = K + maBx + m

γB

2
x2, (5.4)

with m the 87Rb mass, aB = 4πh̄βB0B′/m and γB = 4πh̄βB′2/m.
The above Lagrangian is equivalent to that produced in presence of a uniform

gravitational acceleration aB plus a linear gravity gradient γB. The corresponding
single interferometer phase shift can then be written as [15], [59]

φB = keff

[
aBT2 + γBT2

(
− 7

12
aBT2 + v0T + z0

)
+ O(γ2

B)
]
, (5.5)

and it will not be rejected with the k-reversal procedure. If we now consider the
gradiometric configuration and label with u and l the magnetic bias field and mag-
netic field gradient experienced by the upper and lower atom interferometers we
can write their effect on the gradiometric phase angle as

ΦB = α[Bu
0 B′u − Bl

0B′l ], (5.6)

with α = 4πh̄keffβT2/m ' 82× 106 rad m/T2.
The effect of the magnetic field will appear in the term Φodd of the total gradio-

metric phase angle and since ΦB takes into account both the field generated by the
solenoid and any residual magnetic field we can expect a quadratic dependence of
Φodd on the solenoid current, i.e. Φodd = ΦI2 +ΦI + A. The I2 term derives from the
product of Bsol and B′sol, the I term contains the mixed products BsolB′res and BresB′sol,
while the last term takes into account the contributions of Bres and B′res.

We acquired gradiometric phase angles for different values of the current injected
in the solenoid, I. The corresponding results are reported in Fig. 5.3 together with a
second order polynomial fit of the experimental data Φodd = aI2 + bI + A.
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FIGURE 5.3: Gradiometric phase angle dependence on the current injected in
the bias solenoid wrapped around the interferometric region. The blue line is
a second order polynomial fit of the data.

Since in our apparatus Bsol = 1.1 µT/mA, from the fit results we can estimate
B′sol = |a|/(αBsol) = 0.1 µT/(m mA). At this point we can derive an upper limit for
the residual magnetic gradient and the residual magnetic field as

B′res <
b

αBsol
= 0.88 µT/m,

Bres <
b

αB′sol
= 7.9 µT.

(5.7)

From these two results we can establish an upper limit for the systematic shift intro-
duced by the residual magnetic fields as

ΦB
res < αBresB′res ' (0.6± 0.4)mrad. (5.8)

We expect that the major fraction of this systematic shift comes from the lower
atomic sample of the gradiometer; this is because the lower sample is the one nearer
the interferometric tube entrance, i.e. where the magnetic shielding is less effective.

5.1.4 Phase angle dependence on Bragg beams detuning

The standard working condition for our Bragg lasers is with a blue detuning of 3.269
GHz from the Reference laser. We acquired gradiometric ellipses varying this de-
tuning in steps of 50 MHz around its nominal value. A variation in the detuning
can affect the amount of atom losses via spontaneous emission, however since this
mechanism affects both the simultaneous interferometers in the same way we expect
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FIGURE 5.4: Dependence of the gradiometric phase angle as a function of the
detuning of the Bragg beams.

a strong rejection of any related systematic shift. We report the experimental gradio-
metric phase angles in Fig. 5.4; the results are all compatible within our experimental
errors; we therefore cannot detect any effect of the detuning at this level.
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5.2 Test of the Weak Equivalence Principle in classical and
quantum regimes

The characterization measurements presented in the previous section allowed us to
set the experimental conditions used in our Bragg gradiometer for the realization of
a test of the Weak Equivalence Principle (WEP).

Since a Bragg transition does not change the internal atomic state, but only acts
on the momentum degrees of freedom of the atoms, the Bragg gradiometer could be
used to perform a test of the WEP between 87Rb atoms in different internal states;
in particular the test involved 87Rb atoms with a defined spin orientation and in a
superposition state of two orthogonal spins. This last configuration allowed us to
test genuinely quantum features of the WEP, remained so far unexplored [25].

5.2.1 Theoretical overview

There have been lots of theoretical and experimental efforts in the attempt to detect
WEP violations. Usually in these experiments the free fall accelerations of different
test bodies A and B are compared. A measure of the WEP violation is then pro-
vided by the so called Eötvös ratio ηA-B which is defined starting from the measured
differential acceleration as

ηA-B = 2
|aA − aB|
|aA + aB|

= 2
|(mi/mg)A − (mi/mg)B|
|(mi/mg)A + (mi/mg)B|

. (5.9)

with mi and mg the inertial and gravitational mass respectively.
Today the most stringent bounds on the Eötvös ratio are provided by macro-

scopic experiments; in particular torsion balance [91] or Lunar Laser Ranging tests
[92] which reach accuracy levels of 10−13. Experiments with atom interferometers
are flourishing even though they are still limited to accuracies in the 10−7 − 10−8

range, but are expected to improve their sensitivity by several orders of magnitude
in the near future.

The Einstein Equivalence Principle (EEP) states the equivalence between three
different mass-energies of a body: the rest mass-energy, the inertial mass-energy and
the mass-energy that constitutes the weight of the body. Testing the EEP in classical
physics requires to compare the values of these three mass-energies treating them
as classical variables. In quantum mechanics this is not enough any more. Indeed,
in this case, the internal energy is given by a Hamiltonian operator which takes into
account the dynamics of internal degrees of freedom which finally contribute to the
total mass-energy. Furthermore a general state of the internal energy can involve
superposition of states with different eigenvalues of the internal energy. A quantum
formulation of the EEP that states the equivalence between the rest, inertial and
gravitational mass-energy quantum operators is therefore necessary. In particular
the WEP requires the equivalence of only the inertial and gravitational mass-energy
operators.

We note that the so far realized experimental tests of the WEP (including the tests
with AIs) can all be considered as classical tests, i.e. experiments sensitive only to the
diagonal elements of the mass-energy inertial and gravitational operators. The va-
lidity of the EEP in the quantum regime can be probed only with experiments which
can access the off-diagonal elements of the mass-energy quantum operators. This
characteristic necessarily requires the use of superposition states. In our experiment
we therefore compare the free fall acceleration of 87Rb atoms when they are prepared
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in the two ground hyperfine energy levels |1〉=|F = 1, m f = 0〉, |2〉=|F = 2, m f = 0〉
or in their coherent superposition |s〉=(|1〉+ eiγ|2〉)/

√
2. The phase γ is a random

phase with standard deviation � 2π which cannot be controlled from one experi-
mental cycle to the next and derives from the preparation process of the superposi-
tion state with a microwave pulse.

The mass-energy operators can be defined starting from the mass-energy equiv-
alence as

M̂α = mα Î +
Ĥα

c2 , (5.10)

where α = i, g. The operators Ĥi and Ĥg are the contributions of the internal energy
to the inertial and gravitational mass respectively. With this definition, the WEP
principle requires M̂i = M̂g.

If we consider a test theory which allows violations of the quantum WEP then
M̂i 6= M̂g and the free fall acceleration of the centre-of-motion can be written as
â = M̂g M̂−1

i g, with g the local gravitational field. We note that the quantum formu-
lation of the WEP in general requires [M̂g, M̂i] 6= 0, while the case [M̂g, M̂i] = 0 is
equivalent to the classical WEP formulation. This means that the operator M̂g M̂−1

i
is not Hermitian; however, to lowest order in 1/c2 it can be approximated as a Her-
mitian operator which matrix form in the basis spanned by |1〉 and |2〉 is

M̂g M̂−1
i '

(
r1 r
r∗ r2

)
, (5.11)

where r = |r|eiϕr . From this definition it is clear that a classical test of the WEP
only accesses the parameters r1 and r2 and tests for deviations from r1 = r2 = 1.
A search for quantum WEP violations instead has to access the parameter r using
superposition states and tests for deviations from r = 0.

With this formalism, whenever r 6= 0 the two states |1〉 and |2〉 are not eigen-
states of the acceleration operator and there is a coupling between them induced
by the complex parameter r. In principle it should be possible to detect this cou-
pling by measuring the relative atomic populations before and after a free fall exper-
iment. However since the probability for such transitions will be at least of order r2

the achievable accuracy with this measurement approach would not be appropriate,
considering also that the typical stability of relative atom number measurements is
∼ 10−3. A much more stringent bound on the parameter r can be accessed by inter-
fering atoms in a coherent superposition of the two energy eigenstates.

Phase shift in the AI

In the experiment, the atomic ensemble at the input of the interferometer can be pre-
pared in three different internal states, i.e. the two energy eigenstates |1〉 and |2〉
and in their coherent superposition |s〉. During the interferometer the evolution of
the initial state is governed by a unitary operator ÛMZ which accounts for the inter-
action with the Bragg lasers and for the free evolution between the interferometric
pulses, i.e. for the effect of the gravitational field, including WEP violating terms.
Since we are employing Bragg pulses, the interaction with the laser can change only
the momentum state without affecting the internal energy level. The coupling be-
tween different internal states is therefore only due to the WEP violating term of the
Hamiltonian, which contains the operator M̂g M̂−1

i .
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Indeed the test Hamiltonian for a particle in a gravitational field, including the
quantum formulation of the WEP can be written as

Ĥ = M̂ic2 + M̂−1
i

p̂2

2
+ g(M̂g M̂−1

i )M̂i ẑ, (5.12)

with p̂ and ẑ the atomic momentum and position operators respectively; in the fol-
lowing we assume that the internal states |1〉 and |2〉 are eigenstates of the inertial
mass-energy operator M̂i.

In order to calculate the complete phase shift acquired by the atomic wave-
functions in the interferometer when the evolution is governed by the Hamilto-
nian in Eq. 5.12 one in general needs to solve the full dynamics. Yet this problem
is quite complicated due to the couplings between non-commuting internal mass-
energies and position and momentum operators. However in the limit of homoge-
neous gravity the entire gravitational potential can be treated as a perturbation of
the free evolution Hamiltonian [42] when evaluating transition amplitudes in the
atom interferometer. The same approach can be used also in our case since the pa-
rameter |r| cannot be arbitrarily large if the spectrum of M̂i and M̂g has to remain
positive when violations are present. The total Hamiltonian can therefore be written
as Ĥ = Ĥ0 + εV̂ where the unperturbed part is Ĥ0 = M̂ic2 + p2/(2M̂i) while the
perturbation part which contains the WEP violating term is εV̂ = (M̂g M̂−1

i )M̂igẑ.
The unitary operator which describes the evolution under the action of Ĥ is

Û(t) = e−
i
h̄ Ĥ0(t−t0) − iε

h̄

∫ t

t0

dt′e−
i
h̄ Ĥ0(t−t′)V̂(t′)e−

i
h̄ Ĥ0(t′−t), (5.13)

to lowest order in ε.
The atoms propagate in the two different interferometric arms which are sepa-

rated only on the momentum degrees of freedom. The time evolution operator in
the upper arm is

Ûu = e−
i
h̄

∫
u dtĤ0 − i(M̂g M̂−1

i )
3
2

keffgT2, (5.14)

where the second term derives from the integral in Eq. 5.13 which in the above equa-
tion corresponds to integrating the atomic trajectory along the upper arm. On the
lower arm we analogously have

Ûd = e−
i
h̄

∫
d dtĤ0 − i(M̂g M̂−1

i )
1
2

keffgT2. (5.15)

Here keff = 6k is the effective wave-number for a 3rd order Bragg diffraction process.
The dynamics of the atomic wave-function in the interferometer is finally described
by the evolution operator Û = 1

2 (Û
u − Ûd).

At the output of the interferometer we measure the relative atomic populations
in the momentum state n = 0 (i.e. the non deflected momentum state). We can
choose to count the atoms in |1〉 and |2〉 with the same detection channel or to selec-
tively probe them in two state selective detection channels. Depending on the initial
atomic state at the input of the interferometer we measure the following transition
probabilities:

• Initial state |1〉
|〈1|U|1〉|2 =

1
2
[1− cos(keffgT2r1)]. (5.16)
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• Initial state |2〉
|〈2|U|2〉|2 =

1
2
[1− cos(keffgT2r2)]. (5.17)

• Initial state |s〉

|〈1|U|s〉|2 =
1
2
|〈1|U|1〉+ eiγ〈1|U|2〉|2

=
1
2
[|〈1|U|1〉|2 + |〈1|U|2〉|2 + 2Re(〈1|U|1〉e−iγ〈1|U|2〉∗)]

(5.18)

or

|〈2|U|s〉|2 =
1
2
|〈2|U|1〉+ eiγ〈2|U|2〉|2

=
1
2
[|〈2|U|2〉|2 + |〈2|U|1〉|2 + 2Re(〈2|U|2〉∗e−iγ〈2|U|1〉)]

(5.19)

From Eqs. 5.16, 5.17 we obtain the expected interference fringes of the atomic pop-
ulation, oscillating with a phase proportional to a1 = gr1 and a2 = gr2. A mea-
surement of the differential free fall acceleration experienced by atoms in |1〉 and |2〉
provides a classical WEP test which can access only the parameters r1 and r2.

Let us now consider Eqs. 5.18, 5.19. In both of them the first term is the leading
one since it depends on the acceleration a1 or a2. The second term accounts for the
transitions between |1〉 and |2〉 stimulated by the WEP-violating terms in U. This
term is expected to be very small since it is of order r2; the last term is of order r
instead. We note also that 〈1|U|2〉 = 〈2|U|1〉∗.

To lowest order in |r|, r1 and r2 we obtain

|〈1|U|s〉|2 ' 1
4
[1− cos(keffgT2(r1 + |r| cos(γϕr)))],

|〈2|U|s〉|2 ' 1
4
[1− cos(keffgT2(r2 + |r| cos(γϕr)))].

(5.20)

Furthermore, when working with the superposition state the detection can be simul-
taneous in both the |1〉 and |2〉 states (only one detection channel for both states). In
this case we measure

|〈1|U|s〉|2 + |〈2|U|s〉|2 ' 1
2

[
1− cos

(
keffgT2

(
r1 + r2

2
+ |r| cos(γ + ϕr)

))]
. (5.21)

Our experiment is thus sensitive to the following accelerations

a1 = g〈1|M̂g M̂−1
i |1〉 = gr1,

a2 = g〈1|M̂g M̂−1
i |1〉 = gr1,

as = g〈s|M̂g M̂−1
i |s〉 = g

[
r1 + r2

2
+ |r| cos(ϕr + γ)

]
.

(5.22)

When using the superposition state the phase shift accumulated by the atoms
shows a term proportional to |r|. We remark that in the experiment we do not have
control over the phase term γ which stems both from the preparation of the atomic
sample at the input of the interferometer and the free evolution. This random phase
term varies from one measurement to the other and introduces excess phase noise
in the data. From this result we obtain that a measurement of the mean value of the
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FIGURE 5.5: Schematic view of the experiment. Two cold clouds of 87Rb atoms
are launched vertically and prepared in the |1〉 state with three velocity selec-
tive Raman pulses. Before the interferometric sequence, we can apply a mi-
crowave pulse on the lower sample to prepare it in the state |2〉 or |s〉, while
the upper sample is always in state |1〉. The acceleration of the lower sample
is then measured with respect to the upper sample which is used as a common
reference. The position of the source masses was chosen in order to maximize
the gravity gradient between the two samples. Figure taken from [25].

interferometric phase can provide a classical WEP test, but a measurement of the
phase noise affecting the data set yields an upper limit for the parameter |r| thus
testing the quantum formulation of the WEP.

5.2.2 Experimental realization and data analysis

The measurements are performed with the gradiometer based on third order Bragg
diffraction processes for the atom-optical elements. We use the juggling technique,
already introduced in Sec. 4.1.1 to produce the two freely falling samples with a ver-
tical separation of 30 cm which are then simultaneously probed in the gradiometer.
After the launch the velocity selection is obtained with three Raman square pulses,
each of them with a duration of 192 µs. After this procedure the atomic samples are
composed of ∼ 105 atoms in the |F = 1, mF = 0〉 state with a transversal tempera-
ture of ∼ 4 µK and a vertical velocity distribution of ∼ 0.16vr at full-width at half
maximum (vr = 5.8 mm/s).

For this experiment, we added the possibility of applying a microwave pulse on
the lower sample before the interferometer sequence; the pulse is applied with a
patch antenna when the atoms traverse the detection chamber during their ascent;
it is resonant with the 87Rb ground state hyperfine transition |F = 1, m f = 0〉→|F =
2, m f = 0〉 and can be used to prepare the lower cloud in each of the three states |1〉,
|2〉 or |s〉.

The interferometer takes place when the two atomic samples are well inside the
magnetically shielded region of the interferometric tube. The position of the source
masses is set in order to maximize the gravity gradient experienced by the samples,
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FIGURE 5.6: Gradiometric ellipses for the three different configurations of
the Bragg gradiometer and respective best fitting ellipses (in blue). (Left) El-
lipses for the 1-1 configuration (blue crosses) and for the 1-2 configuration (red
crosses) from which we derive a classical WEP test. (Right) Ellipses for the
1-1 configuration (blue crosses) and 1-s configuration (red crosses) from which
we derive the quantum WEP test. For the interferometer on the |2〉 state we
always observe a loss of contrast which we attribute to the defocusing effect
experienced by the atoms and due to the blue detuning of the Bragg lasers.

thus maximising also the gradiometric signal. The Bragg interferometric pulses re-
alize a symmetric MZ geometry (π/2− π − π/2 pulses) and have a Gaussian time
envelope with a width σ = 12 µs (∼ 28 µs FWHM). The experimental apparatus for
this measurement is reported in Fig. 5.5.

Since the upper atomic cloud is always in the |1〉 state, while the lower one can be
manipulated with the micro-wave pulse, our gradiometer can be operated in three
different configurations: with both samples in state |1〉 (1-1 configuration), with the
upper sample in state |1〉 and the lower in state |2〉 (1-2 configuration), with the up-
per sample in state |1〉 and the lower in the superposition state |s〉 (1-s configuration).
Given that the gradiometric signal reflects the difference in acceleration between the
two simultaneous interferometers, in our experiment the acceleration of the lower
cloud, in each different internal state, is measured using the upper cloud as a com-
mon reference.

We note that the two atomic samples of the gradiometer are interrogated dur-
ing the interferometer with the same Bragg lasers irrespective of the atomic internal
state; i.e. the same Bragg lasers are used to realize two atom interferometers acting
on the two orthogonal internal states |1〉 and |2〉. For the first interferometer the
Bragg transitions are red detuned, while for the second interferometer they are blue
detuned. However the detuning of the Bragg lasers with respect to the transition
52S1/2|F = 2〉 → 52P3/2|F′ = 3〉 satisfies the condition

ΩF=1
eff = ΩF=2

eff , (5.23)

with ΩF=1,2
eff the effective Rabi frequency for Bragg transitions starting from the hy-

perfine ground state with F = 1, 2. This detuning is 3.1816 GHz and can be calcu-
lated considering that we use two counter-propagating Bragg lasers of equal inten-
sity with σ+ − σ− polarizations.

From the three gravity gradiometer configurations we can derive three different
phase angles Φ1−1, Φ1−2, Φ1−s. Indeed for each configuration we obtain a Lissajous
figure by plotting the normalized population of the upper interferometer as a func-
tion of the normalized population measured at the lower interferometer. The phase
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TABLE 5.1: Measurement systematics

Effect Uncertainty on δg/g(×10−9)

AC Stark shift 2.6
Second order Zeeman shift 0.6

Ellipse fitting 0.3
Other effects <0.1

angle is then derived from the eccentricity and rotation angle of the best fitting el-
lipse [93]. Combining these three results we obtain the differential acceleration ex-
perienced by the lower sample when prepared in the |2〉 or |s〉 states with respect to
the |1〉 state: δg1−2 ∝ Φ1−1 −Φ1−2 and δg1−s ∝ Φ1−1 −Φ1−s.

We stress again that the final detection can be realized by counting the atoms in
|1〉 and |2〉 with the same detection channel1 (combined detection) or by indepen-
dently addressing them in two distinct detection channels (state selective detection).
We realize two experiments using both the detection techniques.

In a first measurement we use the combined detection, avoiding in this way any
systematic shift coming from asymmetries in the distinct detection channels. During
the data acquisition we apply the k-reversal protocol by periodically reversing the
sign of the atomic imparted momentum and we alternate the different gradiometric
configurations: 1-1 and 1-2 for the classical WEP test; 1-1 and 1-s for the quantum
WEP test. With this procedure we acquired the two data sets reported in Fig. 5.6.

The systematic error budget for this measurement is reported in Tab. 5.1. We note
that a strong point of our experiment is its robustness against the typical systematics
that affect WEP tests with AIs. The use of microwave photons for the preparation
of the lower sample ensures that the atomic motion is basically not perturbed and
the atoms in F = 1 and F = 2 does not separate spatially. Therefore any phase shift
introduced by the Coriolis acceleration and by local gravity gradients is negligible.
The use of the detuning for which ΩF=1

eff = ΩF=2
eff guarantees equal losses for the

Bragg interferometers on the F = 1 and F = 2 states and the implementation of the
k-reversal protocol rejects the effects which do not depend on the direction of the
Bragg lasers wave-vector.

The major source of systematic error arises from AC Stark shifts due to intensity
variations of the Bragg lasers wave-front along the propagation direction. The inten-
sity variations are mainly due to diffraction from the limited apertures of the optics
needed to deliver the Bragg beams on the atoms. The phase shift is introduced at the
moment of the π pulse, when the spatial splitting between the interferometric arms
is maximum. The sign of the systematic shift depends on the detuning of the Bragg
lasers while its amplitude is proportional to their spatial intensity gradient. We pro-
vide an upper limit for the corresponding phase shift by calculating the intensity
profile of the Bragg beams along the propagation direction [94]; we then average it
over the atomic sample dimensions and finally evaluate the phase shift where the
intensity gradient is maximum. The calculation was validated by comparing the
phase angle measured with the gradiometer in the 1-1 configuration operated with
red or blue detuned Bragg lasers.

1Considering the scheme of our detection chamber in Fig. 4.6 this is possible by blocking the first
layer of resonant light and by using the channel usually dedicated to the detection of atoms in F = 1
to measure also atoms originally in F = 2.
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FIGURE 5.7: The parameter rsim of our model for the phase noise as a function
of the RMS noise level derived on the simulated ellipses with respect to the
best fitting ellipse. The experimental 1-s ellipse shows a RMS noise of 0.0032
which corresponds to a bound of 5×10−8 on |r|. The error bars are calculated
as σRMS = RMS/

√
N with N the number of data points in the ellipse.

The systematic contribution from the ellipse fitting procedure derives from the
Bayesian analysis of the experimental data that we use to extract the gradiometric
phase angle from the elliptical signals. The systematic contribution introduced by
this method depends on the knowledge of the noise power spectral density affecting
the data [93]. We can evaluate its contribution by simulating gradiometric data sets
affected by Gaussian differential phase noise with RMS similar to the one present in
our experimental data.

Taking into account these contributions we derive the following Eötvös ratios

η1−2 = (1.4± 2.8)× 10−9,

η1−s = (3.3± 2.9)× 10−9.
(5.24)

These two values test the classical WEP since they both provide a direct measure-
ment of r1 − r2 (see Eq. 5.22).

The parameter |r| can be accessed considering the phase noise observed on the
ellipse for the 1-s configuration (see Fig. 5.6 (Right)). An upper bound on |r| can be
established by attributing all the observed phase noise to a quantum WEP violation.
The upper limit is derived simulating ellipses after the introduction of non-common
phase noise between the two simultaneous interferometers. The model for the phase
noise is keffgT2rsim cos(θ) = 6kgT2rsim cos(θ) (see Eq. 5.21) with θ randomly varied
between 0 and 2π. We then measure the root mean square (RMS) noise level on the
simulated data points for different values of the parameter rsim (see Fig. 5.7) and
confront it with the one measured on the experimental data points for the 1-s ellipse.
By attributing all the noise observed on this ellipse to a quantum WEP violation we
can provide the upper limit for |r| as the amplitude rsim which provides the same
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FIGURE 5.8: Three-dimensional Lissajous figure obtained plotting the data
from the Bragg gradiometer in the 1-s configuration when the detection is re-
alized with the state selective procedure. We also show the orthogonal projec-
tions of the ellipse on the Cartesian axes.

observed RMS noise (see blue line in Fig. 5.7). We estimate an upper limit of

|r| < 5× 10−8. (5.25)

We then perform a second measurement, this time operating the gradiometer
only in the 1-s configuration and using the state selective detection procedure. We
acquired a total of 4320 points applying the k-reversal procedure; Fig. 5.8 shows the
three-dimensional ellipse obtained from the three conjugated gradiometers. Since
the 87Rb atoms in F = 1 and F = 2 are detected with two independent channels,
we have to consider the systematic effect introduced by any asymmetry between
the two channels. This systematic can be evaluated by operating the gradiometer
in the 1-2 configuration and by comparing the phase angles Φ1−2 measured when
counting F = 2 atoms via the first or the second detection channel. We found a
discrepancy between the two detection channels which amounts to (38±3) mrad.
After considering this effect we obtained an Eötvös ratio of

η1−2 = (1.0± 1.4)× 10−9 (5.26)

for the classical WEP test and an upper limit on the |r| parameter again of

|r| < 5× 10−8 (5.27)

In summary, we provided a test of the Weak Equivalence Principle both in the
classical and quantum regimes. To our knowledge this was the first time that such
a quantum test was performed experimentally and we detected no violation at the
level of a few parts in 10−8. Furthermore we improved by almost two orders of mag-
nitude the result on the Eötvös parameter for classical WEP tests performed with AIs
on atoms in different energy eigenstates. The measurement is presently limited by
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the AC Stark shift due to the intensity gradients of the interferometric beams. Im-
provements to the achievable sensitivity could be obtained employing higher power
laser beams together with light shift compensation schemes [95]. Using states with
an energy difference larger than the one of the 87Rb ground state hyperfine splitting
could be advantageous assuming that WEP violations increase with the considered
energy difference [96].
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5.3 Measurement of the gravitational acceleration through matter-
wave velocimetry

We already stated that the state of the art for the precision measurement of inertial
forces and accelerations, in particular the gravitational acceleration, is represented
by cold atom interferometry. However, especially in the case of transportable ap-
paratuses, the seismic noise along the measurement axis often poses limits on the
achievable sensitivity. There are two possible mitigation strategies for this problem.

The more direct approach relies on the use of seismic isolation systems installed
directly on the measurement platform to reduce the acceleration noise; in this case a
possible drawback derives from the bulky structure of the typical seismic isolation
systems. This can constitute a major obstacle in the development of transportable
and sturdy set-ups devised to work in severe environmental conditions and in pres-
ence of high vibration noise.

The second approach uses an additional mechanical accelerometer to perform
two simultaneous acceleration measurements; the data from the mechanical accelerom-
eter is then used to calculate the correction to be applied to the transition probabil-
ities of the AI [97], [98]. Regarding this second approach we have to consider that
the mechanical accelerometer can introduce errors depending on its response func-
tion; furthermore, below a few tens of Hz the rejection ratio of typical mechanical
accelerometers reduces drastically because of their typical low-pass filter behaviour.

We also note that a conceptually similar post correction technique was applied
in [99] where the mechanical accelerometer was replaced by a second AI. The two
atomic clouds were interrogated in a gradiometer configuration and the signal of
one AI was used to reconstruct the interferometric fringes of the other. In this way,
when the phase noise due to mechanical vibrations is comparable with the 2π phase
folding interval, it is possible to extract the gravitational acceleration.

We now present a gravimetric scheme which could be particularly useful in pres-
ence of high vibration noise. The method relies on high-sensitivity velocimetry mea-
surements done with a Ramsey type AI [100]. We also present a comparison between
the sensitivities achievable with our velocimetry measurement scheme and with a
Ramsey-Bordé interferometer.

5.3.1 Theoretical overview

In Sec. 2.2 we saw that the phase shift φ of a vertical MZ interferometer, in pres-
ence of a uniform gravity field, is proportional to the gravitational acceleration g
(see Eq. 2.58). This phase shift can therefore be used to realize a measurement of
the gravity acceleration. The new gravimetric scheme that we introduce is instead
based on a simpler Ramsey interferometric geometry which uses only two Raman
π/2 pulses in rapid sequence. Indeed, in our set-up the typical free evolution time
between the two interferometric pulses is limited to T=200 µs, i.e. three orders of
magnitude shorter than our usual free evolution time for the MZ interferometer (e.g.
see Fig. 5.20). This is due to the absence of the central π mirror pulse used to redirect
the atomic trajectories towards each other before the last π/2 pulse which closes the
interferometer. In the Ramsey scheme the two interferometric arms do not overlap
perfectly at the moment of the last pulse; however, due to the short free evolution
time T employed, we still maintain a sufficient wave-packet superposition at the
moment of the closing π/2 pulse to observe interference. In Fig. 5.9 we report the
conceptual scheme of the employed Ramsey geometry.
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FIGURE 5.9: Conceptual scheme of the Ramsey interferometer. The geome-
try is composed of only two π/2 pulses realized with counter-propagating
Raman transitions. The free evolution time T between the two pulses has to
be short enough to ensure a considerable spatial superposition of the atomic
wave-functions at the moment of the last π/2 pulse in order to maintain the
interferometer contrast. The chosen T is therefore the result of a trade-off be-
tween interferometer sensitivity and contrast.

In the Ramsey scheme the interferometric phase can be written as

φ =
[
keff(v + vrec/2)−ωD

]
T, (5.28)

with v the atomic velocity and vrec the recoil velocity; the frequency ωD = ωeff −
ωHFS takes into account the changing Doppler effect due to the atomic free fall and
it is derived from the effective Raman frequency ωeff and the resonance frequency of
the hyperfine doublet of the 87Rb ground state ωHFS = 6.835 GHz. From the above
equation we note that the interferometer sensitivity to atomic velocities increases
linearly with the free evolution time T; for this reason the chosen T = 200 µs is the
result of the trade-off between interferometric sensitivity and contrast. In Fig. 5.10
we compare the interferometric fringes for three different interrogation times T. The
fringes are scanned adding a detuning to the Doppler compensation frequency ωD
in steps of 100 Hz. We note that as expected from Eq. 5.28 the periodicity of the
interferometric fringes depends on the chosen T and for T = 200 µs (blue signal) we
obtain a complete 2π phase scan when the detuning is varied in the interval [0 - 5]
kHz.

In Fig. 5.11 we compare the sensitivities to acceleration noise of the Ramsey in-
terferometer and of the Mach-Zehnder interferometer using their transfer functions
H(ω) already defined in Sec. 2.2.3. Indeed we know that in presence of a noise
power spectral density S(ω) of the Raman phase, the variance of the interferometer
phase can be written as (see Eq. 2.83)

σ2
φ =

∫ ∞

0
|H(ω)|2Sφ(ω)

dω

2π
. (5.29)
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FIGURE 5.10: Interferometric fringes obtained in the Ramsey configuration for
three different interrogation times T. The contrast decrease for higher T forced
us to use pulses of T = 200 µs. The fringes are scanned adding a frequency
detuning to the Doppler compensation frequency ωD (each experimental point
corresponds to a 100 Hz change).

Considering frequencies ω � Ωeff (with Ωeff the effective Rabi frequency of the
Raman pulses), the acceleration transfer function for a standard MZ interferometer
is proportional to [43]

|Ha(ω)| = 4 sin2
(

ωT
2

)
, (5.30)

while in the case of the Ramsey interferometer, in which the phase is proportional to
the atomic velocity, we obtain

|Hv(ω)| = 2 sin
(

ωT
2

)
. (5.31)

The MZ transfer function reported in Fig. 5.11 (black trace) was calculated consider-
ing a MZ free evolution time of T = 10 ms which corresponds to the optimal value
that we could obtain in the vibration noise conditions of our laboratory (without any
seismic isolation or post correction). The Ramsey transfer function (green trace) is in-
stead calculated for the optimal condition of T = 200 µs. In the frequency range from
0.5 Hz to 500 Hz we note that due to the dependence of the Ramsey interferometric
phase on the atomic velocity (rather than the atomic acceleration as in the standard
MZ case) and due to the short free evolution time T, the Ramsey interferometer is
more robust against vibrational noise than the MZ interferometer. In the considered
range of frequencies the seismic and acoustic noise is particularly problematic for
AIs; however, the Ramsey scheme with its particular transfer function, can provide
attenuation factors to the power noise spectral density which go up to two orders of
magnitude with respect to the levels achieved with a MZ interferometer.
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FIGURE 5.11: Absolute value of the transfer functions for a standard MZ inter-
ferometer in black and a Ramsey interferometer in green. The functions were
calculated for a MZ free evolution time T = 10 ms and a Ramsey free evolution
time T = 200 µs.

5.3.2 Experimental realization

In our set-up we exploit the velocity dependence of the Ramsey interferometer phase
to realize a gravimetric measurement. To extract the gravity acceleration we perform
two velocimetry measurements separated by a known time Tc; the measurements
are realized on two different atomic samples in free fall inside the interferometric
tube. The differential phase ∆φ between the two Ramsey interferometers provides a
measure of the velocity variation over the separation time Tc, i.e.

∆φ = [keff(v2 − v1)− (ωD,2 −ωD,1)]T = (keffg− α)TTc, (5.32)

where α = (ωD,2 − ωD,1)/Tc represents the slope of the linear frequency ramp ap-
plied to the Raman lasers to compensate for the changing Doppler effect due to the
atomic free fall. From the measurement of the velocity variation we then recover the
value of the gravitational acceleration which produced it.

The experimental set-up is the usual 87Rb fountain. We collect ∼ 109 atoms in
the 3D-MOT and launch them vertically with the moving molasses. During the
launch the temperature of the sample is further reduced with a sub-Doppler cool-
ing stage down to ∼ 4 µK. Before entering the tube, the sample is prepared in the
|F = 1, mF = 0〉 state and selected in a narrow vertical velocity class with our triple
velocity selection procedure. For the velocity selection we use square Raman pulses
with a duration of 192 µs which select a vertical velocity class corresponding to a
temperature of Tz ' 1 nK.

The same launch and preparation procedure is repeated after 484 ms while the
first launched sample is still in free fall inside the interferometric tube. We thus ob-
tain two freely falling samples which are then probed in two independent Ramsey
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FIGURE 5.12: Parabolic trajectories of the two launched atomic clouds (in or-
ange and purple). The time sequence of the Raman pulses is shown with the
vertical red lines both for the velocity selection and the interferometric inter-
rogation stages. The two atom interferometers are labelled as AI1 and AI2 and
take place at time t1 and t2 respectively. The upward and downward moving
samples can be interrogated independently thanks to the different Doppler
effect that they experience. The effective separation between the two interfer-
ometric interrogations is Tc = 504 ms.

interferometers when they are moving with the same velocity in modulus, but op-
posite in sign. Fig. 5.12 reports the described procedure; the atomic sample launched
last is interrogated at time t1 while it is moving upward with velocity v; the second
interferometer is realized at time t2 and interrogates the atomic sample launched
first while it is moving downward with a velocity −v. The actual time separation
between the two successive interferometers is t2 − t1 = 20 ms, however considering
that the trajectories followed by the two clouds are the same but with a time delay
of 484 ms, probing the two clouds at t1 and t2 is thus equivalent to probing a sin-
gle cloud twice at t′1 = t2 − 20 ms − 484 ms and t2; the free fall time is therefore
Tc = t2 − t′1 = 504 ms.

The interferometer pulses are realized with two Raman lasers resonant with the
6.8 GHz transition between the two hyperfine levels of the 87Rb ground state. They
have an effective wave-vector of keff = 1.6 × 107 m−1; the Master Raman laser
has a detuning of 2.2542 GHz on the red with respect to the D2 52S1/2|F = 2〉 →
52P3/2|F′ = 3〉 line. As usual the two counter-propagating Raman lasers are aligned
vertically and retro-reflected by the top mirror of our apparatus. We stress out again
that this mirror is not seismically isolated in our set-up and is the source of the vibra-
tion noise affecting our measurements. As described in Sec. 3.3.5 our Raman laser
system is composed of two 1 W tapered amplifiers; for this measurement we added
the possibility of stabilizing the amplifier emission power with a servo control on
the tapered amplifiers current. The power stabilization loop is realized with a dig-
ital proportional-integral controller which acts independently on the two tapered
amplifiers with a 3 Hz bandwidth.

In Fig. 5.13 we report the Allan deviation of the error signal of the closed power
stabilization loop. The time constant of our correction loop is ∼ 1 s. After 1 s we
observe the characteristic white noise trend as 1/

√
t (with t the integration time)

indicating that our correction loop is working properly.
When the power control is active we can then set and stabilize the correct power
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FIGURE 5.13: Allan deviation of the error signal measured with the closed
Raman power stabilization loop.

ratio between the Master and the Slave Raman lasers in order to cancel the systemat-
ics arising from the differential light shift [15]; in our apparatus we set Is/Im = 0.47.
The interferometric pulses have a square envelope with a duration of τ = 12 µs.

Due to the different Doppler effect experienced by the two freely falling samples,
the two subsequent Ramsey interferometers interrogate only one atomic sample. In-
deed different frequency detunings need to be applied to the Raman lasers during
the interferometers AI1 and AI2. With the right detuning AI1 only acts on the as-
cending cloud (i.e. on the sample launched last), while AI2 acts on the descending
one (i.e. on the sample launched first).

The optimal detuning for the two interferometers was chosen performing a large
scan of the Doppler compensation frequency; the chosen ωD is the one which maxi-
mizes the interferometer contrast as shown in Fig. 5.14 for the case of the descending
cloud interferometer AI2.

After the two successive interferometers the atomic population is detected with
our state selective detection procedure. For each presented measurement we apply
the already introduced k-reversal protocol; we thus reject any systematics which
does not depend on the direction of the imparted atomic momentum keff. An entire
experimental cycle lasts about 1.9 s.

In Fig. 5.15 we report the typical collected signals from the interferometers AI1
(red squares) and AI2 (blue squares). With the purple squares we also show the
Lissajous figure obtained plotting the signal from AI2 versus the signal from AI1.
The fringes are scanned adding a common varying frequency offset δ to the Doppler
compensation frequency used during AI1 (ωD,1) or AI2 (ωD,2). At each experimental
cycle δ is chosen randomly from a uniform frequency distribution which spans from
0 to 5 kHz and corresponds to a 2π phase shift for a Ramsey interferometer with
T = 200 µs (see Fig. 5.10). Since the frequency offset δ is the same for both the inter-
ferometers, the frequency slope α = (ωD,2 − ωD,1)/Tc (see Eq. 5.32) is not modified
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FIGURE 5.14: Interferometric fringe scanned varying the Doppler compensa-
tion frequency in steps of 250 Hz in a [0-175] kHz range. The signal is obtained
from the descending interferometer AI2. The fringe periodicity is 5 kHz since
T = 200 µs. The working condition for the Doppler compensation frequency is
set as the one which maximizes the fringe contrast.
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FIGURE 5.15: Interferometric fringe from AI1 (signal from the ascending cloud
with the red circles) and from AI2 (signal of the descending cloud with blue cir-
cles) and corresponding Lissajous figure (purple squares). The relative phase
difference ∆φ between the fringes is a measure of the velocity difference be-
tween the two atomic samples interrogated by AI1 and AI2 and can be re-
trieved with an elliptical fit of the Lissajous figure.
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FIGURE 5.16: Allan deviation of the acceleration measurements from an 8-
hours measurement run. At 1 s of integration time we measure a fractional
acceleration stability of 9× 10−6 which drops down to 1× 10−7 after an inte-
gration of 6000 s. From this result we can register a performance one order of
magnitude better than a standard MZ interferometer without seismic isolation
or post correction.

from one experimental cycle to the next. We point out that the relative phase differ-
ence between the two interferometers AI1 and AI2 ∆φ can be set varying the slope
α; usually we work in the condition ∆φ ∼ π/2 which optimizes the performance of
our least squares elliptical fitting procedure.

∆φ contains the information about the velocity difference between the two atomic
samples interrogated during the interferometric sequences. As in the case of a gra-
diometer, this phase angle can be retrieved with an elliptical fit of the Lissajous curve
shown in the central panel of Fig. 5.15.

We note that the signal of the descending interferometer shows a lower contrast
with respect to the ascending one. This behaviour is due to the 504 ms longer ex-
pansion time which the atomic cloud of AI2 experiences before the interferometric
interrogation. The cloud suffers from a stronger heating and thus experiences also
larger inhomogeneities in the Raman wave-fronts along its transversal dimensions.

Considering that the differential phase ∆φ depends linearly from the slope α
(see Eq. 5.32), the gravitational acceleration g can be extracted by performing two
measurements of ∆φ for two different values of α; with a linear interpolation we then
determine the slope α0 = keffg for which ∆φ(α0) = 0 and extract the gravitational
acceleration as g = α0/keff. We finally note that due to the finite time duration τ of
the interferometric pulses the phase shift in Eq. 5.28 is multiplied by an overall scale
factor A(Ωeff) which depends on the effective Rabi frequency2. However since in

2We calculated the scale factor using the sensitivity function approach as A(Ωeff) =
1

Ωeff
[sin3(Ωeffτ(2− 2 cos(Ωeffτ) + ΩeffT sin(Ωeffτ))]
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FIGURE 5.17: In the three left panels we plot the interference fringes measured
with a standard MZ interferometer. We use three different interrogation times
T and no seismic isolation or post correction; from top to bottom T = 5, 10, 20
ms. Each data set corresponds to an integration time of 90 min. The red lines
are sinusoidal fits of the green experimental data. Due to the seismic noise, for
T = 20 ms the fit fails to converge. In the right panels we show the histograms
of the relative atomic populations together with the corresponding fits [98].
The best measurement conditions are achieved for T = 10 ms; in this case we
obtain a fractional acceleration stability of 9× 10−5 at 1 s of integration time.

our set-up we have τ = 12 µs and T = 200 µs we do not consider this factor which
is negligible in the limit τ � T.

With the described technique we measured the gravitational acceleration in our
laboratory and compared the result with a previous g determination realized with a
mechanical FG5 gravimeter [101]. With a two hours measurement run we obtained
the result

g = 9.8049234(21) ms−2, (5.33)

consistent within 2σ with the FG5 measurement gFG5 = 9.80492048(3) ms−2.

5.3.3 Sensitivity analysis

We then performed an eight hours measurement run in order to evaluate the sen-
sitivity achievable with our technique. For this measurement we still apply the k-
reversal protocol, but we use only one Doppler compensation slope α. In Fig. 5.16
we report the Allan deviation computed for this measurement run. The data show
the characteristic 1/

√
t slope (where t is the integration time) typical of white ac-

celeration noise. The fractional acceleration stability at 1 s is 9× 10−6 and averages
down to 1× 10−7 for an integration of 6000 s. We note than any velocity variation
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FIGURE 5.18: Transfer functions calculated for a MZ (TMZ=10 ms), a RB
(TRB=200 µs, T’ = 500 ms) and a Ramsey interferometer (T=200 µs). In the
low frequency range the slope of the RB transfer function is the same as the
one of the MZ interferometer (∝ 1/ω2), however in the range from 0.5 Hz to
1.5 kHz the slope changes to the one of the Ramsey interferometer (∝ 1/ω)
determining a better rejection of seismic noise than in the MZ case.

introduced during the velocity selection phase by residual light shift effects, limits
the long term stability and accuracy of the measurement. In this regard, the power
stabilization of our Raman lasers is of crucial importance to control this systematics.

We finally compared the stability results of our novel measurement method with
the results obtained in the standard MZ configuration. Using the same experimen-
tal apparatus we implemented a MZ interferometer interrogating the atoms with a
π/2− π − π/2 Raman pulse sequence and we measured the gravitational acceler-
ation with data acquisitions of 90 min. For these measurements the interferomet-
ric fringes are scanned acting on the relative phase between the Raman lasers. In
Fig. 5.17 we report the results for three different interrogation times T = 5, 10 and 20
ms. We point out that since these measurements are performed with the same exper-
imental apparatus as before they are affected by the same amount of vibration noise.
Indeed the interferometric fringes are quickly (i.e. for low T) washed-out by seismic
noise and the sinusoidal fit already fails to converge for T = 20 ms. We found the
best measurement conditions for T = 10 ms; in this case we measure a fractional
acceleration stability of 9 × 10−5 at 1 s of integration time, which is one order of
magnitude lower than the result obtained with our novel measurement technique
based on the Ramsey interferometric scheme and atom velocimetry.

We point out that another interesting comparison can be made between the ex-
perimental method proposed here and the Ramsey-Bordé (RB) interferometric scheme.
The RB configuration is realized with four π/2 pulses in a TRB-T’-TRB temporal se-
quence, where T’ can be made large compared to TRB. In the RB configuration the
part of the phase shift dependent on the gravitational acceleration can be written as
[102]

φRB = keffg(TRB + T′)TRB. (5.34)

Therefore, with TRB = 200 µs and T’ = 500 ms the sensitivity to inertial forces is the
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same as the one of a MZ interferometer with TMZ = 10 ms while the rejection of
seismic noise is comparable to the one obtained with our proposed measurement
method based on Ramsey velocimetry.

This last aspect can be understood considering the sensitivity function of the
Ramsey-Bordé interferometer which in the limit of ω � Ωeff can be written as (the
time origin is set in the middle between the two pairs of π/2 pulses)

gRB
s (t) =



0 for t < −T′/2− TRB,
−1 for − T′/2− TRB < t < −T′/2,
0 for − T′/2 < t < T′/2,
+1 for T′/2 < t < T′/2 + TRB,
0 for T′/2 + TRB < t.

(5.35)

From the above equation we note that during the time between the interferometric
pulse pairs (of length T′) the sensitivity function is null; the Ramsey-Bordé interfer-
ometer signal is therefore insensitive to any noise contribution during this period.
From the sensitivity function we can derive the corresponding transfer function and
compare it with the ones already calculated for the MZ and the Ramsey interfer-
ometers. In Fig. 5.18 we show such a comparison between the transfer functions of
a MZ (TMZ = 10 ms), a RB (TRB = 200 µs, T’ = 500 ms) and a Ramsey (T = 200 µs)
interferometer.

A strong advantage of the RB scheme, with respect to the velocimetry scheme,
relies on the fact that the interrogation time TRB can be made larger than the 200 µs
used in the Ramsey interferometer. This is due to the fact that in a RB interferometer
the atomic trajectories do overlap at the moment of the final beam splitter pulse.
Since the interferometer geometry closes at the end of the RB pulse sequence, the
contrast does not change with the interrogation time TRB as was the case for the
Ramsey geometry (see Fig. 5.10). This allows us to increase the interrogation time in
order to reach higher sensitivities. For example, with TRB = 5 ms and T′ = 500 ms
the RB sensitivity to inertial effects is a factor of 25 better than the one of a MZ with
TMZ = 10 ms.

In order to test the sensitivity of the RB scheme we implemented this geometry in
our experimental apparatus. The set-up is the same used for the already presented
velocimetry measurements. As usual we load, cool and vertically launch a cold 87Rb
sample. After the triple velocity selection and during the ascent of the atomic cloud
we apply the first pair of Raman π/2 pulses separated by a time TRB. After these
two pulses we shine a vertical resonant pulse to blow-away all the atoms in F = 2.
The second Raman π/2 pulse pair is applied during the descent of the atomic cloud
after T′ = 504 ms. As was the case for the velocimetry measurements with this
configuration the velocity of the cloud during the first π/2 pulse pair is the same
in modulus as the one during the last π/2 pulse pair but the sign is opposite. We
maintain the resonance of the Raman lasers during all the experimental sequence
applying a linear frequency ramp which compensates the changing Doppler effect
due to the atomic free-fall motion. The interferometric signal then becomes

φRB = (keffg− α)(TRB + T′)TRB, (5.36)

with α the Doppler compensation ramp. We can then scan the interferometric fringes
varying the value of α. In principle the value of the frequency ramp α0 = keffg which
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FIGURE 5.19: Interferometric fringes obtained with the RB interferometer for
different interrogation times TRB. The fringes are scanned varying the Doppler
compensation ramp α. The value α0 = keffg which exactly compensates the
action of the gravitational acceleration can be identified as the one for which
φRB = 0 irrespective of the interrogation time (black dashed line). We note that
since the RB interferometer closes at the end of the pulse sequence there is no
contrast change associated to varying TRB.

exactly compensates the change in Doppler effect permits to measure the gravita-
tional acceleration as g = α0/keff. In particular, when α0 is applied the interferomet-
ric signal is φRB = 0 for every value of the interrogation time TRB. In Fig. 5.19 we
exploited this result to find the central interferometric fringe. The black dashed line
in Fig. 5.19 indicates the value α0. All the successive measurements were realized
scanning the Doppler ramp α around the value α0 in a range which provided a 2π
phase span; this range of course depends on the chosen TRB.

To evaluate the measurement sensitivity and stability of the RB interferometer
we then performed an 8 h long measurement run; for this measurement we apply
the k-reversal protocol already discussed. We use TRB = 5 ms and T′ = 504 ms.

In summary we tested a new gravimetric scheme based on two short Ramsey in-
terferometers. The acceleration of the atomic samples is derived through two matter-
wave velocimetry measurements separated by a known time Tc. The presented tech-
nique can offer superior performances, in terms of acceleration noise rejection, than
a standard MZ gravimeter and can be particularly useful for acceleration measure-
ments in presence of strong vibration noise.
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5.4 Gravity gradient phase shift compensation in Atom In-
terferometers

In this section we report the experimental demonstration of a novel method to com-
pensate the effects of gravity gradients in a MZ interferometer [103]. Taking advan-
tage of the fact that in our apparatus more than one atomic sample can be inter-
rogated simultaneously, we also use the proposed method to measure the gravity
gradient and the gravity field curvature.

5.4.1 Theoretical overview

In Sec. 2.2.2 we introduced the phase shift obtained for a vertical atom interfer-
ometer in the MZ configuration in presence of a uniform gravity acceleration and
gravity gradient γ (see Eq. 2.60). In this conditions we saw that the interferometric
phase φ depends on the initial position z0 and velocity vz0 of the atoms and that the
interferometric trajectories do not close perfectly at the moment of the last beam-
splitter pulse. We report here the interferometer phase shift φ considering that for
the present discussion it is sufficient to focus on the dependence on the initial atomic
position and velocity (the term proportional to −7/12gT2 disappears in the gra-
diometer phase angle)

φ = −keffgT2 + keffγzz(z0 + vz0T)T2, (5.37)

where γzz is the gravity gradient tensor component along the z axis, h̄keff is the mo-
mentum imparted to the atoms during the interferometric transitions and T the free
evolution time between the interferometric pulses.

The loss of contrast due to the non perfect closing of the interferometer and the
dependence of the phase shift on z0 and vz0 have raised some concerns on the pro-
posed use of AIs for high sensitivity applications [104], e.g. for future tests of the
WEP at the 10−15 level in the Eötvös ratio [105], [106] or for gravitational wave de-
tection. Usually the WEP tests compare the accelerations measured with two simul-
taneous interferometers acting on two different atomic species [31]–[34], or on atoms
in different internal energy eigenstates [24], [25] and in order to reach accuracies at
the 10−15 level they would need a control on the relative position and velocity of the
atomic samples to better than 1 nm and 0.3 nm/s respectively which are quite chal-
lenging requirements. We note that also for the atom interferometry measurement
of the Newtonian gravitational constant G [21] the major source of systematic error
is due to the limited control on the position and velocity of the atomic ensemble [30].
Also for measurements in geodesy, Earth observation and applied physics which re-
quire a precise knowledge of the Earth gravity gradient there are similar problems
[107].

A possible solution to these issues was theoretically proposed in [36]; the pro-
posed solution allows to remove the dependence on the initial conditions from the
MZ interferometric phase. We have experimentally demonstrated this technique
and used it to measure the gravity gradient and gravity field curvature.

The method consists in changing the momentum transferred to the atoms during
the central π pulse of the MZ atom interferometer of a quantity ∆keff; by appropri-
ately tuning ∆keff it is then possible to compensate the effects of the ambient gravity
gradient. In particular with the variation ∆keff the atom interferometer phase is mod-
ified by a term 2∆keff(z0 + vz0T); this extra accumulated phase shift compensates
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FIGURE 5.20: Space-time trajectories for the atoms in a freely falling MZ inter-
ferometer operated with Raman transitions. The thin straight lines represent
the case in the absence of a gravity gradient; in this case a symmetric MZ in-
terferometer closes perfectly at the moment of the last π/2 pulse. The curved
dashed lines show the trajectories in presence of a gravity gradient without
the compensation scheme active; in this case the perfect wave-packet super-
position at the end of the interferometer is lost. The curved thick lines rep-
resent the case in which the momentum imparted to the atoms is changed of
∆keff = −γT2keff/2 and the gravity gradient is exactly compensated. In this
last case we note that the atomic trajectories overlap again perfectly at the mo-
ment of the last π/2 pulse. Figure adapted from [103].

exactly the term due to the ambient gravity gradient when

∆keff = −
γT2

2
keff, (5.38)

and the dependence on the initial position and velocity of the atomic ensemble is
cancelled from the MZ phase shift φ.

In Fig. 5.20 we report the principle of operation of the proposed method for a
Raman MZ interferometer. The atomic trajectories in presence of a gravity gradient
do not overlap perfectly at the end of the interferometer (dashed lines in Fig. 5.20),
however the change ∆keff, introduced during the π pulse can reverse the atomic
trajectories symmetrically (thick, curved lines) and compensate for the momentum
change due to the tidal forces from the gravity gradient. When the compensation is
active the atomic trajectories do overlap at the end of the interferometer preventing
any loss of contrast from a non perfect wave-packet superposition.

5.4.2 Experimental realization

The measurements are performed with the atom interferometer based on Raman
transitions as atom-optical elements. We vertically launch three cold clouds (4 µK)
of 87Rb atoms after trapping and cooling them in the 3D-MOT. For this launch we do
not use the juggling technique; we perform instead a sequential cloud launch. When
the three samples are in the interferometric region they have a fixed relative verti-
cal separation of 31 cm. The ensembles are prepared in the |F = 1, mF = 0〉 state
and selected in a longitudinal velocity class corresponding to ∼ 80 nK along the
vertical direction with three counter-propagating, square Raman pulses with a du-
ration of 24 µs. The three atomic samples are then simultaneously interrogated in a
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FIGURE 5.21: Scheme of the experimental apparatus. We sequentially launch
three atomic samples separated by a fixed vertical distance of 31 cm. The Ra-
man beams are used for the velocity and state selection and for the interfero-
metric interrogation. The three ensembles realize three simultaneous AIs; the
AIs signals can be combined to obtain three simultaneous gradiometer signals
over three different baselines. The measurements are realized with two dif-
ferent geometrical arrangements of the source masses, i.e. the far and close
configurations. In the side panels we show the two different acceleration pro-
files generated in the interferometric tube; we mark in red the regions in which
the interferometers take place. Figure adapted from [103].

MZ interferometer realized with a π/2− π− π/2 sequence of counter-propagating
square Raman pulses. The π pulse has a duration of 24 µs, the free evolution time
between the interferometric pulses is T = 160 ms and an entire experimental cycle
takes about 2 s to complete.

The Master Raman laser has a red detuning of 2 GHz from the 52S1/2|F = 2〉 →
52P3/2|F′ = 3〉 transition. During the interferometric sequence, at the moment of the
π pulse, this detuning is varied by ∆ν = c∆keff/4π in order to introduce the change
∆keff in the transferred momentum required to compensate the gravity gradient.

At the end of the interferometric sequence we use the state selective detection
procedure already introduced (see Sec. 4.4) to observe the interference fringes from
the three simultaneous interferometers. To reject any systematic effect which does
not depend on the direction of the Raman wave-vector keff (in particular the effect of
inhomogeneous magnetic fields) we always apply the k-reversal protocol.

In Fig. 5.21 we report the scheme of the used experimental apparatus together
with the acceleration profiles that we can generate with the movable source masses.
Since we realize three simultaneous AIs we can obtain three different gradiometric
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FIGURE 5.22: On each of the three orthogonal axes we plot the signal measured
from one of the three simultaneous interferometers (see Fig. 5.21); with the
different colors we indicate three different values of the detuning ∆ν (steps of
10 MHz) applied during the central π pulse as required by the implemented
compensation scheme. The signals from the single AIs can be combined in
order to obtain three gradiometric ellipses over three different baselines; these
three ellipses constitute the projections of the three-dimensional ellipse. When
the gravity gradient is exactly compensated the ellipse degenerates to a line.

signals which measure the gravity gradient over the three different baselines consid-
ered: gradiometer 1-2, gradiometer 2-3 and gradiometer 1-3. In Fig. 5.22 we show an
example of the typical experimental data that we collect in this configuration. The
three-dimensional ellipse is obtained from the signal of the three simultaneous inter-
ferometers; its projections on the orthogonal planes constitute the signal of the three
cited gradiometers. With the different colors we distinguish the signal for three dif-
ferent detuning ∆ν applied during the central π pulse as required from the gravity
gradient compensation technique already introduced. We note that when the grav-
ity gradient between two samples is exactly compensated the gradiometric phase
angle is zero and the ellipse degenerates to a line (see blue signal in Fig. 5.22).

By moving the sets of source masses along the interferometric tube we can gen-
erate the two acceleration profiles shown in the side panels of Fig. 5.21; the vertical
region where the interferometers take place is also highlighted in red. In the far
configuration the atoms experience a homogeneous gravity gradient over the 1-3
baseline while in the close configuration they experience a strong vertical variation
of the gravity gradient.

In the experiment we measure the dependence of the phase angle Φ of the three
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FIGURE 5.23: Phase angle of the three simultaneous gradiometers as a function
of the applied detuning ∆ν and respective linear fits. The source masses are in
the far configuration. As expected the gradiometer with double baseline (1-3
configuration) shows a double slope in the linear behaviour of the phase angle
with respect to the other two gradiometric configurations.

simultaneous gradiometers on the introduced frequency detuning ∆ν which we ex-
pect to be

Φ(∆ν) =

(
keffγT2 +

8π

c
∆ν

)
(d + ∆vz0T), (5.39)

with ∆vz0 the initial differential velocity between the two atomic samples in the gra-
diometer and d their vertical separation. When Φ(∆ν0) = 0 the two interferometers
of the gradiometer show the same phase irrespective of their vertical position. With
a linear fit of the experimental data it is therefore possible to retrieve the frequency
detuning ∆ν0 and derive the average gravity gradient over the measurement base-
line.

In a first series of measurements we use the far configuration of source masses
in order to produce an acceleration profile with a constant gradient in the interfer-
ometric region. We report the measured gradiometric phase angles for 12 different
detuning ∆ν in Fig. 5.23; each point in Fig. 5.23 is derived from a least-squares el-
liptical fit of a set of 360 data points. From the linear fits we extrapolate three zero
crossing frequencies from which we can derive three average gravity gradient values

γ12 = (−3.48± 0.01)× 10−6 s−2,

γ23 = (−3.32± 0.01)× 10−6 s−2,

γ13 = (−3.40± 0.01)× 10−6 s−2.

The homogeneity of the gravity gradient is within 2%-3% over the 60 cm baseline
of the three gradiometers. We note that measuring the gravity gradient with this
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FIGURE 5.24: Phase angle of the three simultaneous gradiometers as a function
of the applied detuning ∆ν and respective linear fits. The source masses are
in the close configuration. As expected, the zero-crossing frequency for the
gradiometer with the double baseline (i.e. gradiometer 1-3) falls in the middle
between the zero-crossing frequencies of the gradiometers 1-2 and 2-3.

method does not require a precise knowledge of the distance d between the grav-
ity sensors; indeed the error on the gravity gradient measure does not change even
when the baseline of the measurement is doubled. This could be particularly ad-
vantageous for gravity gradient surveys with field apparatuses, for which a precise
knowledge of the employed distance d could be not easy to obtain.

We repeated the same measurements with the source masses in the close config-
uration. In this case we obtain a strong vertical modulation of the gravity gradient
(see right panel in Fig. 5.21) thus maximizing the curvature term of the gravity ac-
celeration profile. In Fig. 5.24 we report the experimental data and the linear fits for
the three simultaneous gradiometers. In this configuration we obtain

γ12 = (−4.87± 0.01)× 10−6 s−2,

γ23 = (0.497± 0.006)× 10−6 s−2,

γ13 = (−2.193± 0.006)× 10−6 s−2.

Also in this case we obtain γ13 = (γ12 + γ23)/2 as expected.
From the last result for γ23 it is evident that the measurement method is able to

provide also the sign of the gravity gradient without the need for applying external
magnetic fields or performing additional gravity measurements.

This procedure can also be used to obtain a measurement of the distance d be-
tween the gravity sensors of the gradiometers. Indeed the angular coefficient of
the fitting line for the gradiometric phase angle data provides a measurement of d,
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FIGURE 5.25: Gravity gradient measurements obtained from data taken over
five successive days. The gravity gradient is derived both with the standard
ellipse fitting method and with the new procedure which relies on the zero-
crossing frequency. The residual instabilities in the measured gravity gradient
values are due to our measurement systematics.

which in our case results to be

d12 = (30.86± 0.04) cm,
d23 = (30.72± 0.03) cm,

in agreement with the values measured from the standard time-of-flight technique.
We point out that the velocity difference ∆vz0 between the two ensembles is set by
the velocity selection pulses and brings a negligible contribution to the measurement
of the distance d. Indeed we can estimate a value of ∆vz0 ≤ 40 µm/s with a mea-
surement of the gradiometer phase angle as a function of a small time asymmetry
dT in the time interval between the central π pulse and the last π/2 pulse.

Using the results on the gravity gradients it is also possible to estimate the aver-
age gravity curvature over the measurement baseline

ζ = (γ23 − γ12)/d = (1.743± 0.004)× 10−5 m−1s−2. (5.40)

In a third experiment we positioned the source masses in the far configuration
and performed long duration gravity gradient measurements using only two atomic
clouds at a distance d of about 33 cm. The atom interferometers are realized in the
spatial region where the vertical acceleration profile has a uniform gradient. We
measure the gravity gradient both with the standard method of ellipse fitting and
with the new technique; this time we use only two values for the detuning ∆ν. We
point out that although the new method still relies on ellipse fitting to obtain the
gradiometric phase angles at different ∆ν, the gravity gradient is derived from the
measurement of the zero crossing frequency, i.e. from a linear fit of the phase angles.
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FIGURE 5.26: Distance between the two atomic samples in the gradiometer
measured from the slope of the linear fits on the gradiometric phase angle for
different detunings ∆ν.

We realize five different measurement runs over five successive days; the results
are reported in Fig. 5.25. The measurement systematics introduce instabilities at the
level of 10 mrad; we recall that our major source of instability is represented by the
AC Stark shift due to the Raman beams intensity inhomogeneities along the vertical
direction. The Coriolis phase shift is compensated with the use of our tip-tilt mirror,
however we can still observe systematic shifts at the level of about 4 mrad for a
variation of the transverse velocity of 0.1 mm/s.

We also measured the distance between the two atomic samples over the five
successive days, from the slope of the linear fit of the phase angle data at different
∆ν; we found that this distance proves to be very stable at the level of 300 µm and
reproducible from day to day (see Fig 5.26). We can then conclude that the measure-
ment systematics has no contribution from a drift or a jitter in the relative position
between the two atomic clouds.

We finally tested the influence of the variation in position of the atomic clouds on
the measurement of the gravity gradient. Using the far configuration for the source
masses and again two atomic samples with a relative vertical distance of about 33
cm, we alternate two measurement cycles in which the position of the upper atomic
sample is changed by±1 cm. In Fig. 5.27 we report the results of the gravity gradient
measurement with both the ellipse fitting method and the zero-crossing frequency
method. With the source masses in the far configuration the expected variation of
the average gravity gradient should be at the level of 0.04%/cm at the position of the
upper sample. This produces a negligible effect over a distance of 2 cm. For this rea-
son irrespective of the upper cloud position modulation the gravity gradient values
measured with the zero crossing technique remain stable, with relative variations at
the level of a few percent and consistent with the typical variations of the systemat-
ics due to the AC Stark shift. The gravity gradient values obtained with the ellipse
fitting show higher relative variations, compatible with the ones of the measurement
baseline ∆d/d due to the modulation of the upper sample initial position.
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FIGURE 5.27: In blue the gravity gradient measured with the ellipse fitting
method, while in red the gravity gradient derived with the zero-crossing fre-
quency technique. For these measurements we modulated the position of the
upper sample by ±1 cm (circle and square data).

In summary we experimentally demonstrated a technique to cancel the depen-
dence of the interferometric phase shift from the initial atomic cloud position and
velocity; this dependence arises in presence of gravity gradients and it is particu-
larly problematic for high sensitivity applications of AIs. The proposed technique
allows us to reproduce the effects of a fictitious gravity gradient. When the synthetic
gravity gradient is exactly opposite to the ambient one, the phase shift of the AI
does not depend any more on the initial cloud position and velocity. We applied this
technique on simultaneous interferometers with a vertical separation and measured
the value of the gravity gradient and the gravity field curvature. In particular, our
measurements do not need a precise knowledge of the baseline between the simul-
taneous interferometers.
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Conclusions

The strong development of AIs brought these apparatuses to performance levels
comparable and in some cases even superior than those reached with standard mea-
surement set-ups. This is the case in particular for the measurement of inertial forces
and gravitational phenomena which constitutes the main topic of this PhD work.
However, despite all the technical enhancements the sensitivity of AIs has not yet
reached its ultimate limit. Indeed, since the AIs sensitivity to inertial effects increases
with the momentum imparted on the atoms many experimental efforts are devoted
to the development of large momentum transfer techniques.

Also in the MAGIA-Adv apparatus we recently added the possibility of stimu-
lating multi-photon Bragg transitions; the first experimental results that we reported
are dedicated to the description and characterization of a Bragg gradiometer realized
with 3rd order processes. The characterization measurements study the interferomet-
ric contrast dependence versus several experimental parameters and were necessary
to set the best experimental conditions for the successive measurements with the
Bragg interferometer. We also measured the sensitivity of the instrument and found
a sensitivity to gravity gradients of 1.2×10−6 s−2 after 1 s and of 2.6×10−8 s−2 after
an integration of 2000 s. We also analysed the systematic influence on the gradio-
metric signal of residual magnetic fields and detuning of the Bragg laser beams.

After these characterization measurements we presented a test of the WEP made
with 87Rb atoms in different internal states. For this measurements we used the
Bragg gradiometer and exploited the particular nature of Bragg transitions which
do not change the internal atomic state, but only connect different atomic momen-
tum states. We stress out that lots of experimental tests of the WEP are realized with
AIs; they basically measure the difference in acceleration experienced by different
atomic species or by the same atoms, but in different internal states. However, the
novelty of our test resides in the use of a purely quantum mechanical internal state
of the atom. Indeed using 87Rb atoms we compare their free fall acceleration when
they are in a definite spin state or in a superposition of two orthogonal spin states.
Our experimental procedure can therefore access the quantum aspects of the WEP
remained so far unexplored. With our experiment we detected no violation at the
level of 5−8. We also improved the results on classical WEP tests with different in-
ternal states by one order of magnitude by measuring the Eötvös parameter with a
resolution of 10−9. The major limitation in our measurements stems from the AC
Stark effect due to the intensity gradients of the Bragg beams. This effect could be
mitigated with suitably shaped laser beams and with a light shift compensations
scheme [95]. Implementing colder atom sources can reduce the transverse momen-
tum spread of the samples and help in reducing this systematic shift.

In the third set of measurements we demonstrated a gravimetric method par-
ticularly suited in conditions of high vibration noise. The method is based on two
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Ramsey interferometers which provide two atomic velocimetry measurements sep-
arated by a known time Tc. From the measurement of the velocity variation of the
atomic clouds over the time Tc we can then derive the value of the gravitational
acceleration. The Ramsey interrogation time T has to be short enough in order to
guarantee a sufficient wave-packet superposition at the end of the interferometer
and maintain the fringe contrast. However the short-term stability of the instrument
is limited by T and the interrogation time Tc. With the present experimental appa-
ratus we use T = 200 µs and Tc = 504 ms. The long-term stability is instead limited
by velocity variations during the preparation phase which can be introduced by the
light shift. For these measurement scheme a colder atomic source could be highly
beneficial; indeed high atom numbers could still be obtained even for strict longi-
tudinal velocity selections of the atomic samples; furthermore longer interrogation
times T could be used with limited loss of contrast due to the increased atomic co-
herence length. Also in this case a compensation of the light shift can increase the
measurement stability and accuracy.

The final experimental results are dedicated to the demonstration of a method to
cancel the effects of gravity gradients from the phase shift of a vertical MZ AI. We
mentioned that the effect of a gravity gradient can be particularly problematic for
demanding applications of AIs. In particular for proposed tests of the WEP at the
10−15 level or for other metrological applications. In this regard we also stressed that
the major source of systematic error in the determination of the Newtonian gravita-
tional constant G performed with an AI derives from the systematics introduced by
gravity gradients. We demonstrated experimentally the method and used it to mea-
sure the gravity gradient and the gravity field curvature. Our measurements show
that even in presence of non uniform forces an AI can be operated to high accuracy
and sensitivity. This technique could be used to perform a new improved G deter-
mination with atom interferometry in which it is possible to control the systematics
arising from the uncertainty in the initial atomic position and size to an unprece-
dented level. The details of the new G determination can be found in [108]. With the
proposed method the systematic error in the G measurement from the uncertainty in
the atomic cloud size and from its positioning along the symmetry axis of the source
masses is reduced from 72 to 20 ppm in the present experimental apparatus. With an
improved source mass distribution and an increased sensitivity of the gradiometer
it is possible to measure G at the 10 ppm level.
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