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ZERO-CONVERGENT SOLUTIONS FOR EQUATIONS WITH

GENERALIZED RELATIVISTIC OPERATOR: A FIXED POINT

APPROACH

ZUZANA DOŠLÁ, MAURO MARINI, AND SERENA MATUCCI

Abstract. A new abstract fixed point theorem is presented and applied to the
solvability of a boundary value problem on the half-line for a differential equa-
tion with the generalized relativistic operator. The method does not require the
explicit form of the fixed point map and can be applied also for solving boundary
value problems associated to equations with various types of non-homogeneous
operators. The concept of principal solutions for half-linear equations is also used
for finding suitable a-priori bounds for solutions.

Cordially dedicated to Ravi P. Agarwal

1. Introduction

In this paper we study the existence of zero-convergent solutions for the second
order equation

(1.1) (a(t)ΦR(x′))′ + b(t)F (x) = 0, t ∈ I = [t0,∞),

satisfying the boundary conditions

(1.2) x(t0) = c > 0, x(t) > 0 and x′(t) < 0 on I, lim
t→∞

x(t) = 0,

where ΦR : (−1, 1)→ R is the homeomorphismus

ΦR(u) =
(
1− |u|1+α

)−α/(1+α) |u|α sgn u, α > 0.

Throughout the paper we assume that the functions a, b are continuous and positive
on [t0,∞), t0 ≥ 0, and the function F is a continuous function on R such that
uF (u) > 0 for u 6= 0.

The operator ΦR is the so-called generalized relativistic operator and occurs in
studying some nonlinear elasticity problems, see [20, 25, 26]. It originates from the
Minkowski mean curvature operator ΦM : (−1, 1)→ R

ΦM (u) =
u√

1− u2
,

which corresponds to ΦR when α = 1. In this case, equation (1.1) reads as

(1.3) (a(t)ΦM (x′))′ + b(t)F (x) = 0,

and arises in studying certain extrinsic properties of the mean curvature of hy-
persurfaces in the relativity theory. For this reason ΦM is called also the relativity
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2 Z. DOŠLÁ, M. MARINI, AND S. MATUCCI

operator. Moreover, ΦM can be found also in the theory of electromagnetism, where
it is referred to as Born–Infeld operator, see [5, 21].

Boundary value problems [BVPs] associated to (1.1) have been investigated by
many authors. We refer to [25, 26] for (1.1) and to [5, 6, 19, 23] for its special case
(1.3), and references therein.

As usual, a solution x of (1.1), is said to be nonoscillatory if it is defined in
a neighborhood of infinity and x(t) 6= 0 for large t. Moreover, eventually positive
decreasing solutions x of (1.1) are called Kneser solutions and a Kneser solution x is
said to be a global Kneser solution, if it is defined on the whole interval I = [t0,∞)
and x(t)x′(t) < 0 for t ∈ I, see, e.g., [24, Sections 13.1, 13.2, 16.1] and references
therein.

Under the condition

(1.4)

∫ ∞
1

1

a(t)
dt <∞,

the existence of global Kneser solutions to (1.3) has been discussed by the authors
in [14]. In particular, in [14] an asymptotic proximity between Kneser solutions of
(1.3) and the corresponding ones of the linear equation

(1.5) (a(t)y′)′ + b(t)y = 0

has been investigated. This qualitative similarity between (1.3) and (1.5) continues
to hold also in other different contexts, say, for instance, in the search of periodic
solutions [6] or when (1.5) is oscillatory [10, Theorem 2.1].

Here, we study the existence of Kneser solutions of (1.1) and their convergence
to zero, by extending and generalizing results in [14]. Our results illustrate also an
asymptotic similarity concerning nonoscillatory solutions of (1.1) and those of the
corresponding half-linear equation(

a(t)Φα(x′)
)′

+ b(t)Φα(x) = 0,

where Φα : R→ R is the α-Laplacian operator

(1.6) Φα(u) = |u|α sgnu, α > 0.

Roughly speaking, as already noticed in [6], as the classical acceleration operator
is an approximation of the operator ΦM for small values of |u|, the α−Laplacian
operator Φα can be viewed as an approximation of the operator ΦR for small values
of |u|.

Our main tool is based on a fixed point result for an operator defined in a Fréchet
space by a Schauder’s half-linearization device. This approach is presented in Sec-
tion 2. It does not require the explicit form of the fixed point operator and can
be applied for solving BVP associated to equations with non-homogeneous oper-
ator. Some known properties of principal solutions in the half-linear case, which
are needed in the sequel, are recalled in Section 3. In Section 4 the existence of
Kneser solutions to (1.1) is studied. Finally, some comments, suggestions and open
problems are in Section 5.
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2. An abstract fixed point result

An approach for solving a BVP on the half-line I = [t0,∞) is to reduce it to an
abstract fixed point equation of the type

(2.1) x = T (x),

where T is a possible nonlinear operator defined in a subset of a suitable Banach or
Fréchet space X, see, e.g., [4, 13] and references therein. However, the solvability
of (2.1) requires an appropriate analysis, since one needs a suitable topology which
makes T a continuous map with some additional properties, such as, for instance,
the compactness. On the other hand, these properties are strongly related to the
topological structure of X. Since I is a noncompact interval, the choice as X of the
Frechét space C(I,Rn) of the continuous vectors defined on I, endowed with the
topology of uniform convergence on compact subsets of I appears to be the most
suitable for verifying the compactness of T . However, in this case the operator
T can be discontinuous, if it is considered in its whole domain and not merely in
an appropriate bounded set, see, e.g., [12, Theorem 3.1]. On the other hand, by
choosing a suitable Banach space as the space X, problems concerning the charac-
terization of compact subsets may arise. This is due to the fact that each space has
his own and not always easy to handle. For more details on this topic we refer to
the monographs [1, 2, 3] and the paper [11].

Here, we present a fixed point result for an operator T , which is defined by
a Schauder’s type half-linearization device. Roughly speaking this result reduces
the solvability of the considered BVP to the solvability of a BVP for a suitable
associated half-linear equation.

As claimed, let C(I,R2) be the Frechét space of the continuous vector functions
u = (u1, u2) defined on I, endowed with the topology of uniform convergence on
compact subsets of I. We recall that a subset Ω of C(I,R2) is bounded if and only if
there exists a positive continuous function ϕ from I into R such that |u(t)| ≤ ϕ(t)
for all t ∈ I and u ∈ Ω. Observe that the boundedness of ϕ on the whole interval I
is not required. Further, a set Ω is relatively compact in C(I,R2) if and only if it is
bounded and the functions of Ω are equicontinuous on each compact subset of I.

Set Iρ = (−ρ, ρ), Iσ = (−σ, σ), 0 < ρ ≤ ∞, 0 < σ ≤ ∞ and let Φ : Iρ → Iσ be an
increasing odd homeomorphismus. Since Φ is invertible, denote by Φ∗ its inverse,
that is Φ∗ : Iσ → Iρ and Φ(Φ∗(u)) = u for any u ∈ Iσ. Thus, we have uΦ∗(u) > 0
for all u ∈ Iρ, u 6= 0. Assume the following.

(i0) There exists a continuous positive function Ψ, defined on Iσ, such that for
any z ∈ Iσ
(2.2) Φ∗(z) = Ψ(z)Φ1/β(z)

where β is a positive real number and Φ1/β(z) = |z|1/β sgn z.

A prototype of Φ is the α-Laplacian operator Φα given by (1.6), where β =
α, which corresponds to case Ψ(z) ≡ 1 in (2.2). Indeed, the inverse of Φα is

Φ1/α(z) = |z|1/α sgn z. Observe that Φα is a homogeneous operator. On the other
hand, in the applications arise also some important operators satisfying (2.2) for
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which the homogeneity property fails. Some examples are given by the quoted
operators ΦM ,ΦR. Indeed, a standard calculation shows that the inverse of ΦM is
the operator ΦE : R→ (−1, 1) given by

ΦE(z) =
z√

1 + z2
.

The operator ΦE is called the Euclidean mean curvature operator and arises in
the search for radial solutions to partial differential equations which model fluid
mechanics problems, in particular capillarity-type phenomena for compressible and
incompressible fluids, see, e.g., [6, 8].

Concerning the inverse operator Φ∗R of ΦR, from z = ΦR(u) we obtain

1− |u|α+1 =
(

1 + |z|(α+1)/α
)−1

.

Thus, we get

|u|α+1 = 1−
(

1 + |z|(α+1)/α
)−1

=
(

1 + |z|(α+1)/α
)−1

|z|(α+1)/α,

which yields

(2.3) u = Φ∗R(z) =
(

1 + |z|(α+1)/α
)−1/(α+1)

Φ1/α(z).

Thus, (2.2) is verified for ΦR with β = α and

(2.4) Ψ(z) =
(

1 + |z|(α+1)/α
)−1/(α+1)

.

Other examples can be found in [7, page 3], where the plastic deformation of certain
materials subject at high temperature is studied.

Now consider the differential equation

(2.5) (a(t)Φ(x′))′ + F1(t, x) = 0, t ∈ I = [t0,∞),

where the function F1 : I×R→ R is continuous and Φ satisfies (i0). Set G : I×R→
R the continuous function

(2.6) G(t, u)Φβ(u) = F1(t, u).

The following fixed point result holds.

Theorem 2.1. Assume (i0) and let S0 be a subset of C(I,R2). Suppose that there
exists a nonempty closed bounded convex subset Ω ⊂ C(I,R2) such that

|v(t)| < σ a(t) for all (u, v) ∈ Ω and t ∈ I,
and a nonempty closed subset S1 of S0 ∩ Ω such that for each (u, v) ∈ Ω the half-
linear equation

(2.7)
d

dt

(
H(t, v(t)) Φβ(y′)

)
+G(t, u(t)) Φβ(y) = 0,

has a unique solution yuv with (yuv, y
[1]
uv) ∈ S1, where Φβ(z) = |z|β sgn z, H is the

function

(2.8) H(t, v(t)) = a(t) Ψ−β
(
v(t)

a(t)

)
,
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G is given in (2.6) and y
[1]
uv is the quasiderivative of yuv, that is

y[1]
uv = H(t, v(t)) Φβ(y′uv).

For each (u, v) denote by T : Ω→ C(I,R2), the operator given by

(2.9) T (u, v) = (yuv, y
[1]
uv).

Then T has a fixed point (x̂, ŷ) ∈ S1 ⊂ S0 with ŷ(t) = a(t)Φ(x̂′(t)) and x̂ is a
solution of (2.5).

Proof. Consider the operator T given by (2.9). First, let us prove that T (Ω) is

relatively compact in C(I,R2). For any (u, v) ∈ Ω, the couple (yuv, y
[1]
uv) belongs to

S1 ⊂ Ω, and so the equiboundedness of (yuv, y
[1]
uv) follows. Since

(2.10) |y′uv(t)| =
|y[1]
uv(t)|1/β

(H(t, v(t))1/β
,

the functions y′uv are equibounded on each compact set K ⊂ I, which yields the
equicontinuity of yuv. Further, since (2.7) can be written as

(y[1]
uv(t))

′ = −G(t, u(t)) Φβ(yuv(t)) ,

the equiboundedness of (y
[1]
uv)′ follows. Then functions y

[1]
uv are equicontinuous on

each compact set K ⊂ I and T (Ω) is relatively compact in C(I,R2).
Now, let us prove that T is continuous in Ω, that is, if {(un, vn)} is a sequence

which converges to (u, v) ∈ Ω, then {T (un, vn)} converges to T (u, v). Since T (Ω)
is relatively compact, the sequence

{
T (un, vn)

}
has a converging subsequence. For

sake of simplicity, denote this subsequence by {(yn, y[1]
n )}. Put

(2.11) lim
n
yn = ỹ, lim

n
y[1]
n = z̃.

The sequence {y[1]
n } is compact, thus it uniformly converges on K. Thus, in view of

(2.10), also {y′n} uniformly converges on K. Hence, from (2.11)

lim
n
y′n(t) =

d

dt
lim
n
yn(t) =

d

dt
ỹ(t) = ỹ′(t)

and the continuity of H, we get

(2.12) z̃(t) = lim
n
y[1]
n (t) = H(t, v(t)) Φβ(ỹ′(t)) = ỹ [1](t) .

We have

lim
n
G(t, un(t)) Φβ(yn) = G(t, u(t)) Φβ(ỹ)

uniformly on K. From this, (2.7) and (2.12), we obtain for t ∈ K

−G(t, u(t)) Φβ(ỹ) = lim
n

d

dt

(
y[1]
n (t)

)
=

d

dt
lim
n
y[1]
n (t) =

d

dt
ỹ [1](t) .

Hence, ỹ is a solution of (2.7), which corresponds to (u, v) ∈ Ω. Moreover, ỹ is the

only possible cluster point of the compact sequence {yn} and the couple (ỹ, ỹ[1])
belongs to S1, because S1 is closed. Then

(ỹ , ỹ [1]) = T (u, v)
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and T is continuous in Ω. Since S1 ⊂ Ω we have T (Ω) ⊂ Ω and so from the
Tychonov fixed point theorem there exists (x̂, ŷ) ∈ Ω such that (x̂, ŷ) = T (x̂, ŷ).

Since S1 ⊂ S0, we also obtain (x̂, ŷ) ∈ S0. Now, for completing the proof let us
show that x̂ is a solution of (2.5) and ŷ(t) = a(t)Φ(x̂′(t)). Since x̂ is a solution of
(2.7) with u = x̂ and v = ŷ, we have

d

dt

(
H(t, ŷ(t))Φβ(x̂ ′(t))

)
+ F1(t, x̂(t)) = 0,

and

(2.13) ŷ(t) = H(t, ŷ(t)) Φβ(x̂ ′(t)),

i.e.

(2.14)
d

dt
ŷ(t) + F1(t, x̂(t)) = 0.

In view of (2.2) and (2.8) we have for |ξ| < σ

(2.15) Φ∗
(
|ξ|
a(t)

)
=

(
|ξ|
a(t)

)1/β

Ψ

(
|ξ|
a(t)

)
=

|ξ|1/β

H1/β(t, ξ)
.

From (2.13) we obtain

x̂′(t) =
|ŷ(t)|1/β sgn ŷ(t)

H1/β(t, ŷ(t))
,

and, using (2.15) with ξ = ŷ(t), we have

x̂′(t) = Φ∗
(
|ŷ(t)|
a(t)

)
sgn ŷ(t)

or

ŷ(t) = a(t)Φ(x̂′(t)) .

Then, the assertion follows from (2.14). �

3. Preliminaries on the half-linear equation

Consider the half-linear equation

(3.1)
(
a(t) Φα(x′)

)′
+ b(t)Φα(x) = 0.

Equation (3.1) is called half-linear because the homogeneity property continues to
hold for (3.1), while the additive property clearly not. It is known that (3.1) presents
a striking similarity with the corresponding linear equation (1.5), especially as it
concerns the Sturmian theory and oscillation or nonoscillation criteria, see, e.g., [17]
for more details. In particular, the notion of the principal solution, introduced for
(1.5) by W. Leighton and M. Morse, see, e.g., [22, Chapter 11, Theorem 6.4], has
been extended in [18, 27] to the half-linear equation. It reads as follows. If (3.1)
is nonoscillatory, then a nontrivial solution x0 of (3.1) is said to be the principal
solution of (3.1) if for every nontrivial solution x of (3.1) such that x 6= µx0, µ ∈ R,
the inequality

x′0(t)

x0(t)
<
x′(t)

x(t)
for large t.

holds.
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The set of principal solutions of (3.1) is nonempty and principal solutions are
determined up to a constant factor. We refer to [17, Chapter 4.2] for more details
on this topic.

Clearly, the principal solution does not have zeros in a neighborhood of infinity.
The positiveness of the principal solution on an a-priori closed fixed unbounded
interval [T,∞), T ≥ 1, is a more subtle question. A sufficient condition for having
this property can be obtained by means of a comparison result between two different
half-linear equations.

If x is a solution of (3.1), we denote its quasi-derivative x[1] by

x[1](t) = a(t) Φα(x′(t)).

Consider the half-linear equations

(3.2)
(
a1(t) Φα(z′)

)′
+ b1(t) Φα(z) = 0,

and

(3.3)
(
a2(t) Φα(w′)

)′
+ b2(t) Φα(w) = 0,

where ai, bi, i = 1, 2, are positive continuous functions for t ≥ t0 such that

(3.4) a2(t) ≤ a1(t) , b2(t) ≥ b1(t).

Equation (3.3) is called a majorant of (3.2) and, analogously, (3.2) is called a mi-
norant of (3.3). If (3.3) is nonoscillatory, then (3.2) is nonoscillatory too. Similarly,
if (3.2) is oscillatory, then (3.3) is oscillatory too.

The following comparison result for principal solutions of (3.2) and (3.3) is an
important tool in our later consideration.

Proposition 3.1. Assume that (3.3) is nonoscillatory and (3.4) is valid. Denote
by z0 and w0 the principal solutions of (3.2) and (3.3), respectively. If w0 does not
have zeros on [T,∞), then the following holds.

(j1) The principal solution z0 does not have zeros on [T,∞).
(j2) We have for t ≥ T

z
[1]
0 (t)

Φα(z0(t))
≤ w

[1]
0 (t)

Φα(w0(t))
,

where z
[1]
0 is the quasi-derivative of z0 and w

[1]
0 is the one of w0.

Proof. First, let us observe that, in the limit case

a2(t) = a1(t), b2(t) = b1(t) on [1,∞)

the assertion is trivially true. Now, suppose that at least one of the inequality
(3.4) is strict on a subinterval of [T,∞) of positive measure. Applying [17, Theorem
4.2.3] with minor changes, we obtain claim (j1). Claim (j2) follows by using a similar
argument and applying [17, Theorem 4.2.2], with minor changes. �

Some properties of the principal solution of (3.1) when

(3.5)

∫ ∞
t0

a−1/α(t) dt <∞,
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are given by the following.

Proposition 3.2. Assume (3.5) and

(3.6) Y1 =

∫ ∞
t0

b(t)

(∫ ∞
t

a−1/α(s) ds

)α
dt <∞.

Then the following holds.
(j1) Equation (3.1) is nonoscillatory and the principal solution u of (3.1), u(t) >

0 for large t, satisfies

(3.7) lim
t→∞

u(t) = 0, lim
t→∞

a(t)Φα(u(t)) = `u, −∞ < `u < 0,

and

(3.8) u(t) = O

(∫ ∞
t

a−1/α(s) ds

)
as t→∞.

where the symbol O(f) = g as t→∞ means that the limit limt→∞ f(t)/g(t) is finite
and different from zero.

(j2) Any solution x of (3.1) satisfying

lim
t→∞

x(t) = 0, lim
t→∞

a(t)Φα(x(t)) = `x, for some `x ∈ R\ {0} ,

is the principal solution.
(j3) In addition, if

(3.9) J1 =

∫ ∞
t0

a−1/α(t)

(∫ t

t0

b(s) ds

)1/α

dt <∞ ,

then any nonprincipal solution x of (3.1) does not tend to zero as t→∞.

Proof. Claim (j1). From [9, Theorem 2-(i2)], we get (3.7). Moreover, since limt→∞ a(t)Φα(u(t)) =
`u, using the l’Hopital rule, the limit

lim
t→∞

u(t)∫∞
t a−1/α(s) ds

is finite and different from zero, i.e. (3.8) is valid.
Claim (j2) follows again from [9, Theorem 2-(i2)].
Claim (j3). By Claims (j1) and (j2), the set of eventually positive principal so-

lutions coincides with the set of solutions satisfying (3.7). From here and using [9,
Theorem 4 and Theorem 7], the assertion follows. �

We close this section by considering the so-called reciprocal equation to (3.1),
that is the equation

(3.10)

(
1

bσ(t)
Φσ(y′)

)′
+

1

aσ(t)
Φσ(y) = 0, t ≥ t0,

where σ = α−1 , see, e.g., [17, Section 1.2.8]. It is easy to verify that the quasi-

derivative y = x[1] of any solution x of (3.1) is a solution of (3.10) and, conversely,

the quasi-derivative y[1](t) = b−σ(t)Φσ(y′) of any solution y of (3.10) is a solution of
(3.1). The principal solution of (3.1) and (3.10) are related, as the following result
shows.
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Proposition 3.3. [17, Theorem 4.2.4] Let (3.1) be nonoscillatory and∫ ∞
t0

(a−1/α(t) + b(t)) dt =∞.

Then a solution u of (3.1) is the principal solution if and only if v = u[1] is the
principal solution of (3.10).

4. Global Kneser solutions

In this section we study the existence of Kneser solutions x of (1.1) satisfying
(1.2). The following conditions are assumed.

(i1) We have

(4.1) inf
t≥t0

a1/α(t)

∫ ∞
t

a−1/α(s)ds = λ > 0.

(i2) The function F satisfies

lim
u→0+

F (u)

uα
= F0, 0 ≤ F0 <∞.

The following holds.

Theorem 4.1. Let (i1) and (i2) be satisfied and assume Y1 < ∞, J1 < ∞, where
Y1 and J1 are defined by (3.6) and (3.9), respectively. Define

(4.2) M = sup
u∈(0,λ]

F (u)

uα
.

If the half-linear equation

(4.3)
(
a(t)Φα(z′)

)′
+M b(t) Φα(z) = 0, t ≥ t0,

is nonoscillatory and its principal solution z0 is positive decreasing on I = [t0,∞),
then for any constant c such that

(4.4) 0 < c < λ

equation (1.1) has a solution x satisfying the boundary conditions (1.2).

Proof. For proving the solvability of the BVP (1.1)-(1.2), we will use Theorem 2.1.
Fixed c satisfying (4.4), set

(4.5) Λ =
λ

(λα+1 − cα+1 )1/(α+1)
.

Without loss of generality, suppose

z0(t0) = cΛ.

By Proposition 3.2, the principal solution z0 of (4.3) satisfies

(4.6) z0(t) ≤ cΛ, z′0(t) < 0 on I and lim
t→∞

z0(t) = 0.

Let Ω be the set

Ω =

{
(u, v) ∈ C(I,R2) : 0 ≤ u(t) ≤ (z0(t))1/Λ, −

(
cΛ

λ

)α
a(t) ≤ v(t) ≤ 0

}
.
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For any (u, v) ∈ Ω, in view of (4.6), we have z
1/Λ
0 (t) ≤ c and so 0 ≤ u(t) ≤ c. Denote

by S0 the set

S0 =
{

(u, v) ∈ C(I,R2) : u(t0) = c, u(t) ≥ 0, v(t) ≤ 0, lim
t→∞

u(t) = 0
}
.

and put
S1 = Ω ∩ S0.

Using (4.6), we obtain

S1 = {(u, v) ∈ Ω : u(t0) = c} .
Fixed (u, v) ∈ Ω, consider the half-linear equation

(4.7)
(
hv(t) Φα(y′)

)′
+ b(t)F̃u(t) Φα(y) = 0 ,

where

F̃u(t) =

 u−α(t)F (u(t)) if u(t) > 0,

F0 if u(t) = 0,

and

(4.8) hv(t) = a(t)

(
1 +

(
|v(t)|
a(t)

)(α+1)/α
)α/(α+1)

.

Equation (4.7) will play the role of (2.7) in Theorem 2.1, with β = α. Indeed, for
the function Ψ given by (2.4), using (4.8) we have

a(t)Ψ−α
(
|v(t)|
a(t)

)
= hv(t).

Since hv(t) ≥ a(t), from (4.2) equation (4.7) is a minorant of (4.3). Thus, (4.7)
is nonoscillatory. Let ηuv be the principal solution of (4.7) such that ηuv(t0) = c.
We want to show that

(ηuv, η
[1]
uv) ∈ S1,

where η
[1]
uv is the quasiderivative of ηuv, that is η

[1]
uv(t) = hv(t) Φα(η′uv(t)). We have

for t ∈ I

(4.9) a(t) ≤ hv(t) ≤ a(t)

(
1 +

(
cΛ

λ

)α+1
)α/(α+1)

.

From (4.5), a standard calculation gives

1 +

(
cΛ

λ

)α+1

= 1 +
cα+1

λα+1 − cα+1
=

λα+1

λα+1 − cα+1
= Λα+1

or (
1 +

(
cΛ

λ

)α+1
)α/(α+1)

= Λα.

Thus, from (4.9) we get

(4.10)
1

Λ
≤
(
a(t)

hv(t)

)1/α

≤ 1.
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Applying Proposition 3.1 to (4.3) and its minorant (4.7), we have that ηuv is positive
decreasing on I and

(4.11) (hv(t))
1/α η

′
uv(t)

ηuv(t)
≤ a1/α(t)

z′0(t)

z0(t)
.

Using (4.10) and taking into account that η′uv and z′0 are negative on I, from (4.11)
we obtain

η′uv(t)

ηuv(t)
≤ Λ−1 z

′
0(t)

z0(t)
.

Integrating this inequality on [t0, t) we get

0 < ηuv(t) ≤ (z0(t))1/Λ.

Let ϕ be the principal solution of(
Λα a(t)Φα(x′

)
)′ = 0

such that ϕ(t0) = c, i.e.

ϕ(t) = c

(∫ ∞
t0

a−1/α(s) ds

)−1 ∫ ∞
t

a−1/α(s) ds.

Applying again Proposition 3.1 we have for t ∈ I

(4.12)
ϕ[1](t)

ϕα(t)
≤ η

[1]
uv(t)

ηαuv(t)
,

where ϕ[1] is quasiderivative of ϕ, that is ϕ[1](t) = Λα a(t)Φα(ϕ′(t)). From (4.1) we
have

λα ≤ a(t)

(∫ ∞
t

a−1/α(s) ds

)α
.

Using this inequality and

(4.13)
ϕ[1](t)

ϕα(t)
= −Λα

(∫ ∞
t

a−1/α(s) ds

)−α
,

since ηuv is decreasing, from (4.12) we obtain

η[1]
uv(t) ≥ −cα

Λα a(t)

a(t)
(∫∞
t a−1/α(s) ds

)α ≥ −(cΛλ
)α

a(t).

Hence, the couple (ηuv, η
[1]
uv) belongs to S1.

It is easy to prove that for any (u, v) ∈ Ω, the solution ηuv is the unique solution

of (4.7) such that (ηuv, η
[1]
uv) ∈ S1. By contradiction , let η̂ be another solution of

(4.7), (η̂, η̂[1]) ∈ S1 and η̂ 6= ηuv. For the sake of simplicity, the dependence of η̂ on
the variable (u, v) is omitted. Clearly, η̂ is a nonprincipal solution of (4.7). Since

(η̂, η̂[1]) ∈ S1, we have 0 ≤ η̂(t) ≤ (z0(t))1/Λ. Hence

lim
t→∞

η̂(t) = 0.
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Since Y1 <∞, J1 <∞, from (4.2) and (4.9) we have∫ ∞
t0

b(t)F̃u(t)

(∫ ∞
t

h−1/α
v (s) ds

)α
dt <∞,∫ ∞

t0

h−1/α
v (t)

(∫ t

t0

b(s)F̃u(s) ds

)1/α

dt <∞.

Thus, applying Proposition 3.2-(j3), the solution η̂ does not tend to zero as t→∞,
which is a contradiction. Then the solution ηuv is the unique solution of (4.7) such

that (ηuv, η
[1]
uv) ∈ S1.

Applying Theorem 2.1, equation (1.1) has a solution x̂ such that (x̂, x̂[1]) ∈ S1,

where x̂[1](t) = a(t)ΦR(x̂′(t)). Moreover, x̂ satisfies the boundary conditions (1.2),
as it is easy to verify. �

A closer examination of the proof of Theorem 4.1 yields also lower and upper
bounds for the solution x̂ of the BVP (1.1)-(1.2). Indeed, from Proposition 3.2 any

eventually positive principal solution of (4.3) satisfies (3.8). Since (x̂, x̂[1]) ∈ S1 we
get

(x̂(t))Λ ≤ O
(∫ ∞

t
a−1/α(s) ds

)
as t→∞.

Concerning the lower bound, from (4.12) and (4.13) we obtain

(4.14)
η

[1]
uv(t)

ηαuv(t)
≥ −Λα

(∫ ∞
t

a−1/α(s) ds

)−α
,

where ηuv is the principal solution of (4.7) such that ηuv(t0) = c and η
[1]
uv(t) = hv(t)

Φα(η′uv(t)). Since η
[1]
uv is negative and hv(t) ≥ a(t), from (4.14) we get

Φα

(
η′uv(t)

ηuv(t)

)
≥ − Λα

a(t)

(∫ ∞
t

a−1/α(s) ds

)−α
or

η′uv(t)

ηuv(t)
≥ −Λa−1/α(t)

(∫ ∞
t

a−1/α(s) ds

)−1

.

Integrating this inequality on [t0, t] we have

(4.15) ηuv(t) ≥ c
(∫ ∞

t0

a−1/α(s) ds

)−Λ(∫ ∞
t

a−1/α(s) ds

)Λ

.

Since the solution x̂ of the BVP (1.1)-(1.2) coincides with ηuv for some (u, v) ∈ Ω,
the lower bound (4.15) is valid also for x̂. Hence the following holds.

Corollary 4.2. Under the assumptions of Theorem 4.1, equation (1.1) has a solu-
tion x̂ satisfying (1.2) and

(x̂(t))Λ ≤ O
(∫ ∞

t
a−1/α(s) ds

)
as t→∞,

(x̂(t))1/Λ ≥ c1/Λ

(∫ ∞
t0

a−1/α(s) ds

)−1 ∫ ∞
t

a−1/α(s) ds for t ≥ t0.
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Theorem 4.1 requires that there exists a suitable half-linear equation which is
nonoscillatory and its principal solution is positive decreasing on the whole interval
I = [t0,∞). This assumption may be verified by using Proposition 3.1 and a half-
linear equation whose principal solution is known and has the desired properties.
An example in this direction can be obtained using the half-linear Euler differential
equation

(4.16)
(
Φβ(x′)

)′
+

(
β

β + 1

)β+1

t−β−1Φβ(x) = 0, t ≥ t0 > 0.

It is known that (4.16) is nonoscillatory. Moreover, the function

x0(t) = tβ/(β+1)

is the principal solution of (4.16), see [17, Section 1.4.2.]. The change of variable

y = Φβ(x′)

transforms (4.16) into the equation

(4.17)
(
t(β+1)/βΦ1/β(y′)

)′
+

(
β

β + 1

)(β+1)/β

Φ1/β(y) = 0, t ≥ t0 > 0,

which, as claimed, is the reciprocal equation to (4.16). Setting α = β−1, equation
(4.17) becomes

(4.18)
(
t1+αΦα(y′)

)′
+

(
1

1 + α

)1+α

Φα(y) = 0, t ≥ t0 > 0.

Let v0 be the function

v0(t) = Φβ(x′0(t)) =

(
1

1 + α

)1/α(1

t

)1/(1+α)

.

Hence, from Proposition 3.3 the function v0 is the principal solution of (4.18).
Now, if the functions a, b satisfy for t ≥ t0 > 0

(4.19) a(t) ≥ t1+α and M b(t) ≤
(

1

1 + α

)1+α

,

where M is given by (4.2), equation (4.18) is a majorant of (4.3). Moreover, (4.18)
is nonoscillatory and its principal solution is positive decreasing for t ≥ t0. Hence,
from Proposition 3.1, the principal solution of (4.3) is positive decreasing on [t0,∞).
Thus, from Theorem 4.1 we get the following.

Corollary 4.3. Let (i1) and (i2) be satisfied and assume Y1 <∞, J1 <∞. If (4.19)
is satisfied for t ≥ t0 > 0, where M given by (4.2), then for any constant c, such
that 0 < c < λ, equation (1.1) has a solution x satisfying the boundary conditions
(1.2).

Clearly, other criteria can be obtained by using as majorant of (4.3) any half-
linear equation whose principal solution is positive decreasing on I.
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5. Concluding Remarks

(1) The following results illustrate some properties of the nonoscillatory solutions
of (1.1). They show other similarities between the generalized relativistic operator
ΦR and the α-Laplacian operator Φα.

Proposition 5.1. For any solution x of (1.1) such that x(t) 6= 0 on (t1, t2),
t0 ≤ t1 < t2, the derivative x′ has at most one zero on (t1, t2). Consequently,
any nonoscillatory solution x of (1.1) satisfies either x(t)x′(t) > 0 or x(t)x′(t) < 0
for large t.

Proof. Set G(t) = a(t)x(t)ΦR(x′(t)). Then

G′(t) = −b(t)F (x(t))x(t) + a(t)x′(t)ΦR(x′(t)).

Clearly, the solution x is not constant on (t1, t2). Suppose that there exist two
consecutive zeros of x′ on (t1, t2), say s1, s2, with t1 < s1 < s2 < t2. Then
G′(s1) < 0, G′(s2) < 0 and x(t) 6= 0, x′(t) 6= 0 on (t1, t2). Since G(s1) = G(s2) = 0
, we get G(t) 6= 0 for t ∈ (t1, t2), which is a contradiction. Hence, the derivative
x′ has at most one zero on (t1, t2). Consequently, if x(t) 6= 0 for large t, then there
exists tx ≥ t0 such that x(t)x′(t) 6= 0 for t ∈ [tx,∞). �

It is easy to obtain a necessary condition for the existence of solutions x to (1.1)
satisfying

(5.1) x(t)x′(t) < 0 for large t.

The following holds.

Proposition 5.2. If

(5.2)

∫ ∞
t0

Φ∗R

(
k

a(s)

)
ds =∞ for any positive constant k,

then (1.1) does not have solutions x satisfying (5.1).

Proof. By contradiction, let x be a solution of (1.1) satisfying (5.1) and, without
loss of generality, suppose x(t) > 0, x′(t) < 0 on [T,∞), T ≥ t0. Thus, a(t)ΦR(x′(t))
is nonincreasing on [T,∞), that is we have for t ≥ T
(5.3) a(t)ΦR(x′(t)) ≤ a(T )ΦR(x′(T )) < 0.

From this, we get

(5.4) x′(t) ≤ Φ∗R

(
a(T )ΦR(x′(T ))

a(t)

)
,

where Φ∗R is the inverse of ΦR, see (2.3). Integrating (5.4) on (T, t) we obtain

x(t) ≤ x(T ) +

∫ t

T
Φ∗R

(
a(T )ΦR(x′(T ))

a(s)

)
ds.

From this, in virtue of (5.3), we get a contradiction with the positiveness of x as t
tends to infinity. �

(2) When (5.2) holds, another interesting problem concerns the existence of un-
bounded solutions of (1.1), which are positive on the whole interval I.
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A partial answer to this problem has been given in [15] for equation (1.3) and
the equation with the Euclidean mean curvature operator ΦE

(5.5) (a(t)ΦE(x′))′ + b(t)F (x) = 0.

More precisely, in [15] an asymptotic proximity between the unbounded solutions
of (1.3) [(5.5)] and the ones of the linear equation (1.5) has been investigated using
the fact that the set of solutions of (1.5) is a two-dimensional space.

It should be interesting to extend these results to equation (1.1) for obtaining a
qualitative similarity between (1.1) and the half-linear equation (3.1). Clearly, this
problem requires a different approach than the one in [15], because the additive
property does not holds for solutions of (3.1) when α 6= 1.

(3) In the linear case, that is when α = 1, the integrals Y1 and J1 coincide. Thus,
from Proposition 3.2 we can state that if (1.4) is valid and∫ ∞

t0

a−1(t)

∫ t

t0

b(s) ds dt <∞,

then nonprincipal solutions of (1.5) have a non-zero limit at infinity. This property
has been used in [14], in which the asymptotic behavior of global Kneser solutions
for (1.3) is studied. On the other hand, when α 6= 1, the integrals∫ t

t0

b(r)

(∫ t

r
a−1/α(s) ds

)α
dr and

∫ t

t0

a−1/α(r)

(∫ r

t0

b(s) ds

)1/α

dr

can have a different asymptotic behavior, that is there are examples in which Y1 <
∞, J1 =∞ or Y1 =∞, J1 <∞, see [16]. For this fact, in Theorem 4.1 it is assumed
that both integrals Y1 and J1 are convergent.

It is an open problem if (1.1)-(1.2) is solvable also in the cases in which

(5.6) Y1 =∞, J1 <∞

or

(5.7) Y1 <∞, J1 =∞

are valid. Observe that (5.6) and (5.7) are the most interesting cases for the half-
linear equation (3.1), because they do not have correspondence in the linear case.
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[10] M. Cecchi, Z. Došlá and M. Marini, Oscillation of a class of differential equations with gener-
alized phi-Laplacian, Proc. Royal Soc. Edinburgh 143A (2013), 493-506.

[11] M. Cecchi, M. Furi and M. Marini, On continuity and compactness of some nonlinear operators
associated with differential equations in noncompact intervals, Nonlinear Anal. T.M.A 9 (1985),
171-180.

[12] M. Cecchi, M. Furi and M. Marini, About asymptotic problems for ordinary differential equa-
tions, Boll. Unione Mat. Ital. 2(2) (1988), 333-343.

[13] R. Conti, Recent trends in the theory of boundary value problems for ordinary differential
equations, Boll. Un. Mat. Ital. 22 (1967), 135-178.
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[26] P. Jebelean, J. Mawhin and C. Şerban, A vector p-Laplacian type approach to multiple periodic
solutions for the p-relativistic operator, Commun. Contemp. Math. 19 (2017), 1-16.

[27] J.D. Mirzov, Principal and nonprincipal solutions of a nonoscillatory system, Tbilisi Inst.
Prikl. Mat. Trudy 31 (1988), 100–117.



EQUATIONS WITH GENERALIZED RELATIVISTIC OPERATOR 17
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