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Abstract
Traits such as meat quality and composition are becoming valuable in modern 
pork production; however, they are difficult to include in genetic evaluations 
because of the high phenotyping costs. Combining genomic information with 
multiple-trait indirect selection with cheaper indicator traits is an alternative for 
continued cost-effective genetic improvement. Additionally, gut microbiome in-
formation is becoming more affordable to measure using targeted rRNA sequenc-
ing, and its applications in animal breeding are becoming relevant. In this paper, 
we investigated the usefulness of microbial information as a correlated trait in 
selecting meat quality in swine. This study incorporated phenotypic data encom-
passing marbling, colour, tenderness, loin muscle and backfat depth, along with 
the characterization of gut (rectal) microbiota through 16S rRNA sequencing at 
three distinct time points of the animal's growth curve. Genetic progress estima-
tion and cross-validation were employed to evaluate the utility of utilizing host 
genomic and gut microbiota information for selecting expensive-to-record traits 
in crossbred individuals. Initial steps involved variance components estimation 
using multiple-trait models on a training dataset, where the top 25 associated 
operational taxonomic units (OTU) for each meat quality trait and time point 
were included. The second step compared the predictive ability of multiple-trait 
models incorporating different numbers of OTU with single-trait models in a vali-
dation set. Results demonstrated the advantage of including genomic informa-
tion for some traits, while in some instances, gut microbial information proved 
advantageous, namely, for marbling and pH. The study suggests further investi-
gation into the shared genetic architecture between microbial features and traits, 
considering microbial data's compositional and high-dimensional nature. This 
research proposes a straightforward method to enhance swine breeding pro-
grams for improving costly-to-record traits like meat quality by incorporating gut 
microbiome information.
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1   |   INTRODUCTION

Traits valuable in modern pork production describe the 
growth and muscle deposition pattern within the first few 
months of an animal's life. These traits relate to whole-
body growth, muscle and fat deposition, saleable meat 
production and feed efficiency. In addition, traits that 
describe the composition of the carcass (e.g. higher vs. 
lower value cuts) and quality of the meat (e.g. tenderness, 
marbling) are gaining importance. However, these traits 
are difficult to include in genetic evaluations because of 
the high costs of phenotyping. Including genomic infor-
mation in the prediction models could help identify the 
genetic material that better meets the breeding needs, and 
genomic selection has been proven to dramatically in-
crease the efficiency of selection. However, the advantages 
of genomic selection cannot eliminate the need to collect 
correlated indicator traits (CIT) in constructing selection 
indexes, particularly when the aim is to achieve genetic 
progress in a breeding goal trait (BGT) that is not regu-
larly measured. Both BGT and CIT, which can be assessed 
in a significantly larger population segment, can be inte-
grated into a multiple-trait (genomic) best linear unbiased 
prediction (BLUP) model. Consequently, the prediction 
for the selection of candidates relies on information from 
CIT and previously collected data for the BGT (Calus & 
Veerkamp,  2011). Numerous instances demonstrate the 
utilization of high-throughput, cost-effective traits that 
are easier to measure on selection candidates (or the gen-
eral validation population) across diverse livestock species 
(Bonfatti et  al.,  2017; Cecchinato et  al.,  2020; Godinho 
et al., 2018; Putz et al., 2015; See & Knauer, 2019; van den 
Berg et al., 2020).

The CIT have historically been considered traits that 
can be routinely collected with little economic and logisti-
cal effort. Recently, measures of gut microbiome composi-
tion have become cheaper to collect using targeted rRNA 
sequencing. Consequently, the applications of this tech-
nology in animal breeding are becoming more appealing. 
The gut microbiome composition is easily assessed using 
a rectal swab and has been proven to be associated with 
most of the swine BGT such as growth (Bergamaschi, 
Tiezzi, et al., 2020; Ramayo-Caldas et al., 2016), feed ef-
ficiency (Camarinha-Silva et al., 2017; Quan et al., 2018) 
and meat quality (Bergamaschi, Tiezzi, et al., 2020; Fang 
et al., 2017; Khanal et al., 2019).

Simultaneously, there is substantial evidence support-
ing the partial influence of the host genotype on the gut 
microbiota, as indicated by moderate heritability estimates 
for gut microbiota composition (Bergamaschi, Maltecca, 
et al., 2020; Crespo-Piazuelo et al., 2019; Martinez Boggio 
et al., 2022; Ramayo-Caldas et al., 2020). Additionally, the 
phenotypic associations observed between BGT and ruminal 

or gut microbiome composition extend to the genetic level. 
Genetic correlations between BGT and ruminal microbi-
ome composition have been estimated in cattle (Martínez-
Álvaro et  al.,  2022; Roehe et  al.,  2016; Saborío-Montero 
et al., 2020, 2021), as well as with gut microbiome composi-
tion in swine (Aliakbari et al., 2021). The association could 
be due to shared genetic architecture but also recursive ef-
fects at the phenotypic level (Saborío-Montero et al., 2021; 
Tiezzi et al., 2021; Valente et al., 2013). In the case, the for-
mer occurs and considering the cost-effectiveness of gut 
microbiome sampling and sequencing, this compositional 
trait could function as a CIT in a selection index. Evaluating 
the gut microbiota composition, or its diversity measure, 
on selection candidates could offer timely and valuable in-
formation in the evaluation models. This new data source 
could be integrated with (host) genomic information in the 
genetic evaluation process, allowing for comparing the rel-
evance between gut microbiome CIT and host genotypes. 
The optimal allocation of resources, between host geno-
typing and gut microbiome sequencing, would depend on 
the specific trait, its genetic architecture, and the shared ge-
netic architecture with the microbiome composition. Once 
the relevance of the microbiome information is assessed, a 
potential implementation could entail the rectal sampling 
of the gut content at different stages of life of the animal, a 
rapid sequencing procedure and definition of features that 
describe the microbiome composition and the inclusion of 
the most relevant features in a multiple-trait model. In the 
case of a progeny or sib test, the selection candidates (or 
their offspring, or siblings) would not have records for the 
BGT available and would be substituted in the index by mi-
crobiota composition information. This would imply collect-
ing rectal swabs from the testing candidates or their siblings 
at one or more timepoints, having them processed rapidly 
for both the wet-lab and dry-lab parts of the process, and 
their resulting information incorporated into multiple-trait 
models. Given the burden at the operational level, a value 
proposal is needed. Questions about the number of samples 
and time of sampling would have to be addressed properly. 
A graphical representation of this potential implementation 
in the genetic evaluation model is reported in Figure 1. In 
the absence of CIT (left side panel), the information about 
the BGT flows from the families in the reference population 
(training set) to the candidates (validation set) through the 
(genomic) relationship matrix. In the presence of one or sev-
eral CIT (right side panel), the information can still follow 
that same path but will also flow through the other traits, 
such as the gut microbiome composition. Since the individ-
uals in the validation set are phenotyped for the microbiome 
composition, the model can inform the predictions of the 
breeding goal for the validation set using the microbiome 
information weighted by the variance–covariance structure 
among the traits.
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Given the association of microbiota composition at 
the phenotypic and genetic value with performance 
traits, incorporating gut microbiota composition into 
breeding models could potentially offer significant ad-
vantages in selection programs. Its use in a multiple-trait 
model would be similar in principle to other methods 
already proposed. For example, Weishaar et  al.  (2020) 
proposed a method to extract the genetic component 
of the microbial composition and its use in trait predic-
tion. While different from the modelling standpoint, this 
method is similar at the conceptual level, since the ge-
netic contribution to the microbial composition is the 
baseline. In both cases, cross-validation appears to be 
the most effective way to test the inclusion of the gut 
microbial information as CIT.

The main objective of this study was to assess the rel-
evance of gut microbial information for the selection of 
crossbred pigs for meat quality and carcass composition 
traits. This was achieved by (1) estimating the expected ge-
netic progress (using a deterministic approach) obtainable 
by selecting for the most relevant microbial features as 
opposed to direct selection and (2) assessing the accuracy 
of multiple-trait (genomic or pedigree) predictions where 
microbial features are included as correlated traits as op-
posed to single-trait models.

2   |   MATERIALS AND METHODS

2.1  |  Animals and data

Phenotypic records presented in this study came from a 
commercial farm operated by The Maschhoffs LLC (now 
Acuity Ag Solutions, Carlyle, IL, USA). All methods and 

procedures were in accordance with the Animal Care and 
Use policies of North Carolina State University and the 
National Pork Board. The experimental protocol for faecal 
sample collection received approval number 15027 from 
Institutional Animal Care and Use Committee. All pigs 
were harvested in commercial facilities under the supervi-
sion of USDA Food Safety and Inspection Service.

2.2  |  Data structure

Animals used in this study included commercial cross-
bred individuals belonging to 28 paternal half-sib families 
raised at The Maschhoffs LLC (now part of AcuFast LLC, 
Navasota, TX, USA). Crossbred pigs were from a three-
way cross involving purebred Duroc boars and crossbred 
'Yorkshire × Landrace' or 'Landrace × Yorkshire' sows. 
The trial included 6680 individuals evenly distributed 
over the paternal half-sib families. Matings that produced 
the animals involved in this study were carried out from 
November to December 2014 and data collection was from 
March to November 2015.

The pigs were born in a commercial sow facility; 
their weight was taken within 24 h from birth, then they 
were weaned at 18.64 ± 1.09 days old and were moved to 
a nursery-finishing facility. Pigs were kept in 334 single-
sire single-sex pens with 20 pigs per pen. The test period 
began the day that pigs were moved to the nursery-
finishing facility. All pigs were fed a standard pelleted 
feed based on sex and live weight during the nursery, 
growth and finishing period. Diet details and nutri-
tional values are provided in supporting information in 
Khanal et al. (2019). The pigs received a standard vacci-
nation and medication routine (supporting information 

F I G U R E  1   Schematic representation of a breeding value prediction model. The left-side panel pictures a single-trait model, where 
the information on the breeding goal trait (BGT) flows from the training to the validation set. The right-side panel shows a multiple-trait 
model where the microbial information enters as correlated indicator trait. Here, breeding goal trait is recorded on the training set while the 
microbial correlated trait(s) are recorded on both the training and validation sets. In this model, the information can flow directly from the 
training to the validation set through the pedigree-based or genomic-based relationship matrices, but also indirectly through the correlated 
traits.
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in Khanal et  al.,  2019). End of test was reached when 
the average weight of pigs in each pen reached 138 kg, 
pigs' age was 196.4 ± 7.80 days. At the end of the trial, 
three to five pigs from each pen (single-sire, single-sex 
group) were selected, as detailed by Wilson et al. (2016). 
The selected pigs per pen represented an average pig for 
body weight, along with pigs approximately 1 and 2 SD 
above and below the pen average. Out of the selected 
individuals, some showed poor quality in the microbial 
information, so only 1180 individuals showed complete 
records for genomic information, faecal microbiome 
and phenotypic measures.

2.3  |  Genomic information

Genomic information was obtained using the Porcine 
SNP60 v2 BeadChip (Illumina, Inc.). Standard quality 
control procedures were performed on the genomic data, 
removing SNPs with call rate lower than 0.90 and/or 
minor allele frequency lower than 0.05. A total of 42,529 
SNPs remained after this procedure.

2.4  |  Phenotypic information on the 
breeding goals

Meat quality, carcass composition and growth traits 
were also recorded on the selected pigs and will be used 
as breeding goal traits (BGT) in this study. Meat qual-
ity traits included intramuscular fat (IMF), Warner–
Bratzler slice shear force (SSF), Minolta L* (M.L), 
Minolta a* (M.a), Minolta b* (M.b), pH (PH), subjec-
tive colour (SCOL), subjective firmness (SFIR) and sub-
jective marbling (SMAR). Carcass composition traits 
included loin weight (LOI), belly weight (BEL), ham 
weight (HAM), loin depth (LD), backfat depth (BF) and 
carcass average daily gain (CDG). All phenotypic data 
collection details were described by Wilson et al. (2016) 
and Khanal et al. (2019). Briefly, both BF and LD were 
measured after slaughter using a Fat-O-Meater probe 
(SFK Technology A/S, Herlev, Denmark) at approxi-
mately the location of the 10th rib. The CDG was calcu-
lated by dividing the difference between the hot carcass 
weight and birth weight by the pig's age at slaughter. 
The measurement of PH, M.L (measuring luminosity), 
M.a (measuring redness) and M.b (measuring yellow-
ness) was done on the ventral side of the longissimus 
dorsi muscle. LOI, BEL and HAM were measured after 
carcass dissection. Subjective measures of pork quality, 
including SCOL (5 categories), SFIRM (1–5 scale), and 
SMAR (6 classes), together with SSF and IMF, were de-
termined on a loin muscle sample.

2.5  |  Microbiome information

Faecal samples for 16S rRNA sequencing were collected 
at three time points, as described in Khanal et al. (2021). 
While rectal swabs were collected from all the ~6000 
pigs, sequencing was performed only on 1252 individu-
als chosen to be representative of the within-pen vari-
ation (see section on data structure). Sample collection 
was conducted at three stages: weaning (S1, average 
18.64 ± 1.09 days), 15 weeks post-weaning or on-test 
(S2, average 118.2 ± 1.18 days) and off-test (S3, average 
186 ± 13.69 days). After quality control, there were 1205, 
1295 and 1273 samples at S1, S2 and S3 respectively. 
Distribution of samples across families, time points and 
sex are provided in Khanal et al. (2021).

DNA extraction, purification, Illumina library prepa-
ration and sequencing were done as described by Lu 
et  al.  (2018). Briefly, total DNA (gDNA) was extracted 
from each rectal swab by mechanical disruption in phe-
nol/chloroform. Bead-beating was performed on the 
Mini-BeadBeater-96 (MBB-96; BioSpec, OK, USA) for 
4 min at room temperature; samples were centrifuged at 
3220 × g. The DNA was then purified using a QIAquick 
96 PCR purification kit (Qiagen, MD, USA). Minor mod-
ifications were performed in the purification process as 
per the manufacturer's instruction. The modification 
included the addition of sodium acetate (3 M, pH 5.5) to 
Buffer PM to a final concentration of 185 mM, combi-
nation of crude DNA with 4 volumes of Buffer PM, and 
elution of DNA in 100 μL Buffer EB. All sequencing was 
performed at DNA Sequencing Innovation Laboratory at 
the Center of Genome Sciences and Systems Biology at 
Washington University in St. Louis. Phased, bi-directional 
amplification of the v4 region (515–806) of the 16S rRNA 
gene was employed to generate indexed libraries for 
Illumina sequencing as described in Faith et  al.  (2013). 
Sequencing was performed on an Illumina MiSeq instru-
ment (Illumina, Inc. San Diego, USA), generating 250 bp 
paired-end reads.

Sequencing of 16S rRNA gene and quality control of 
data were done as described by Lu et al. (2018). Briefly, 
the pairs of 16S rRNA gene sequences obtained from 
Illumina sequencing were combined into a single se-
quence using FLASH v1.2.11 Magoc and Salzberg (2011). 
The sequences with a mean quality score below Q35 
were filtered out using PRINSEQ v0.20.4 (Schmieder & 
Edwards,  2011). Then, the forward-oriented sequences 
were matched with primer sequences and trimmed off. 
Mismatch was allowed up to 1 base pair. Sequences 
were subsequently demultiplexed using QIIME v1.9 
(Caporaso et  al.,  2010). QIIME was used to cluster 
the nucleotide sequences into operational taxonomic 
units (OTU), as explained by Maltecca et  al.  (2021). A 
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modified version of GreenGenes (Ley et al., 2006; Schloss 
& Handelsman,  2006) was used as reference database. 
Ninety per cent of the input sequences were matched to 
the reference database. The remaining 10% that did not 
match the reference database were then clustered de novo 
with UCLUST (Schloss & Handelsman, 2006) to generate 
new reference OTU. Then, the 90% of reads that were 
matched with the reference database were again assigned 
to the new reference OTU that were derived from the de 
novo cluster. The OTU were removed if showing a total 
observation count of less than 1200 counts or appearing 
in less than 0.05% of the samples. The resulting 3001 OTU 
table was rarefied to 10,000 counts per sample, obtaining 
relative abundance measures. Furthermore, The OTU 
were considered as microbial features (MF) if showing a 
zero count in less than 80% of the samples. After editing 
and merging with the rest of the data, a total of 605, 1382 
and 1452 MF from each timepoint (S1, S2 and S3) were 
available on 1180 individuals for this study. On these, 
zero-value imputation was performed using the function 
cmultrepl from the R package “Zcompositions” (Palarea-
Albaladejo & Martín-Fernández,  2015), and centre-log 
(CLR) transformation was performed using the function 
clr from the R package “compositions” (van den Boogaart 
& Tolosana-Delgado, 2008), both implemented in the R 
software (R Core Team, 2020). For further details on the 
microbial data, see Maltecca et al. (2021).

2.6  |  Statistical model employed for the 
selection of relevant microbial features

The first statistical analysis step involved selecting the 
relevant MF that could be used as a correlated trait for 
the multiple-trait genomic prediction of BGT. The whole 
dataset was split for discovery and validation. The 28 sires 
were ordered for their date of birth, the progeny of the 21 
sires born earlier were allocated to the training set (TRN, 
N = 979), while the offspring of the seven sires born later 
were allocated to the validation set (VAL, N = 273).

The selection of the relevant MF was carried out on 
the TRN dataset. The set of MF was specific for each BGT 
and each time point of microbial sample collection. First, 
variance components and breeding values for the 15 BGT 
and the 3439 MF were obtained using single-trait models 
implemented on each of the traits individually. The model 
was defined as follows:

where y is a vector of phenotypes for the investigated trait; � 
is a vector of solutions for fixed effects, including dam line 

(two levels) and gender by contemporary group (12 levels); 
p is the vector of solutions for the random effect of the pen, 
with p~N(0, Iσ2p), where σ2p is the estimated pen variance; 
a is the vector of solutions for the random additive genetic 
effect of the animal, with a~ N(0, Gσ2a), where G is the SNP-
derived genomic relationship matrix built using VanRaden's 
method 1 (VanRaden, 2008) and σ2a is the estimated additive 
genetic variance; X is the incidence matrix of fixed effects, 
Zp, and Za are the corresponding incidence matrices for the 
random effects and e is the vector of random residuals, with 
e~N(0, Iσ2e), where σ2e is the residual variance.

This first analysis was implemented using the software 
AIREMLf90 (Misztal et al., 2002), setting the first 50 iter-
ations as expectation–maximization REML (EM-REML) 
and the maximum number of iterations to 1000. The 
model produced estimates of variance components and 
genomic breeding values (GEBV). The EBV were used in 
the following linear model to select the most relevant MF:

where Rp∣m is the estimated response to selection in the BGT 
p when selection is performed on the MF m, �mp is the cova-
riance between vector EBV for the BGT of interest p and the 
vector of EBV for the MF m, �2m is the variance of the vec-
tor of EBV for the MF m. The response to selection, defined 
as the ratio between the genetic covariance and the genetic 
variance, is taken from Schneeberger et al. (1992).

All MF were tested against all BGT using the Formula 
(2). For each BGT, the MF from each timepoint were 
ranked based on the generated response, and the 25 that 
generated the largest values were selected. In total, 75 MF 
were selected for each BGT.

2.7  |  Multiple-trait variance 
component estimation

The subsequent step involved implementing 26-trait mod-
els, including the BGT of interest and the 25 MF selected 
for each time point. Again, this step was carried out on the 
TRN dataset.

For ease of implementation, the variance component 
estimation was carried out using Gibbs sampling. The 
model specifications were as for the single-trait models, 
with the fixed effects of dam line and gender by contem-
porary group as well as a co-variance structure of the 
vector of random effects was defined as appropriate for 
a multiple-trait model. Here, a full variance–covariance 
structure was defined for the additive genetic and resid-
ual terms, estimating the 26 variances and corresponding 

(1)y = X� + Zpp + Zaa + e

(2)Rp∣m =
�mp

�2m
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covariances. Therefore, the vector of solutions for the ad-
ditive genetic effects was defined as:

where ax is the vector of solutions for the additive genetic 
effect for trait x, with x going from 1 (BGT) to 26, therefore, 
including all the chosen MF for that stage of sampling, G 
is again the SNP-derived genomic relationship matrix, σ2a.x 
is the additive genetic variance for trait x and σa.1−26 is the 
additive genetic covariance among the traits (1 and 26, in 
this case).

For the random effect of pen, all the covariance values 
were fixed to 0:

where px is the vector of solutions for the pen effect for trait 
x, I is again an identity matrix, σ2p.x is the pen variance for 
trait x. This was done to facilitate the convergence of the 
models since the low number of individuals per pen did 
not allow for estimating all the covariance parameters. The 
vectors of residuals in the multiple-trait models were then 
defined as:

where ex is the vector of residuals for trait x, I is an iden-
tity matrix, σ2e.x is the residual variance for trait x and σe.1−26 
is the residual covariance among the traits. This variance 
component estimation step was also implemented in the 
GIBBS3F90 program (v. 1.83) from the BLUPF90 family of 
programs (Misztal et  al., 2002). The multiple-trait models 
were run for 600,000 iterations, with the first 100,000 sam-
ples discarded and every 50th sample saved, leaving a total 
of 10,000 samples for subsequent inference. Convergence of 
the variance components estimates was assessed via visual 
inspection of the trace plots and Geweke's test using the R 
package ‘boa’ (Plummer et  al.,  2006). The posterior mean 
and the 95% empirical confidence intervals were used as es-
timates and their errors.

2.8  |  Relative efficiency of selection

After obtaining (co)variance components for the different 
phenotypic traits and microbial sampling time points, 

selection response calculation for each BGT p was carried 
out using SRp =

bTC12√
bTC11b

, where b is a vector of index 

weights obtained as b = C−1
11
C12v, where C11 is a m × m ge-

netic variance–covariance matrix of m traits in the selec-
tion criterion (Schneeberger et  al.,  1992); C12 is a m × n 
genetic covariance matrix of m traits in the selection crite-
rion and n traits in the breeding objective and v is a vector 
of relative emphasis for the traits in the breeding objec-
tive, which was always set to 100 for the trait studied. The 
relative efficiency of indirect selection (REIS) versus di-
rect selection for the BGT was obtained using:

where SRScenario is the indirect selection response for the 
BGT based on microbial information from a given timepoint 
(S1, S2, S3) and SRDirect represents the selection response for 
the BGT given direct selection for the trait of interest.

2.9  |  Genomic prediction of 
crossbred traits

Genomic predictions were validated on the VAL dataset 
to compare the different microbiome sampling scenarios 
to predict unobserved phenotypes of interest. The cross-
validation aimed at comparing the predictive ability of 
a single-trait model (ST), where predictions were based 
only on the measures of the breeding goal on the TRN set 
individuals, with a multiple-trait model (MT) where the 
microbiome composition was assessed on both the TRN 
and VAL sets.

Therefore, for the ST scenario, the breeding values were 
estimated using the TRN dataset, and prediction accuracy 
was calculated as the Pearson correlation between the es-
timated breeding values and the (masked) phenotypes ad-
justed for the fixed effects (see model 1, estimates obtained 
with the full dataset). Then, different sources and number 
of microbial features for the MT scenario were included. 
The top 1, 2, 5, 10 and all 25 features were subsequently 
included in five independent runs of the MT model. The 
procedure was repeated for the microbial features coming 
from the S1, S2 and S3 timepoints. The microbial informa-
tion was included for all individuals in TRN and VAL sets.

In addition, the relevance of host genomic information 
in producing predictions was assessed. Under the same 
cross-validation scheme, the genomic relationship matrix 
G was replaced with a pedigree-derived relationship ma-
trix A, built on a pedigree traced back nine generations.

Overall, the cross-validation was repeated for each 
BGT for the ST model as well as the three MT models. 

⎡
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Since one measure of predictive ability was obtained 
for each run, bootstrapping was employed to obtain 
confidence intervals. The correlation between the es-
timated breeding values and the (masked) phenotypes 
was repeated 1000 times, each time resampling from 
the validation set with replacement, in order to have 
bootstrapped sets with the same number of records but 
different representations of each record. Empirical 95% 
confidence intervals were then calculated and reported 
in the figures.

3   |   RESULTS

The descriptive statistics for the BGT over the TRN and 
VAL datasets are reported in Table 1. For all traits con-
sidered, there was no significant difference between the 
two sets.

The most relevant microbial features (as identified 
by the operational taxonomic units) for each BGT con-
sidered are reported in Tables  2–4 depending on the 
microbiome sampling stage (S1, S2 or S3 respectively). 
The genetic correlation estimates are presented in 
Table  S1, together with their significance (‘0’ value in-
cluded within the 95% empirical confidence intervals). 
The total number of genera identified for the 15 BGT 
was 33, 21, and 17 for each of the three time points. At 
timepoint S1, the MF belonged primarily to the family 
Ruminococcaceae (72 features), Lachnospiraceae (46 fea-
tures), followed by the genera Prevotellaceae (37 features), 
Lactobacillaceae (12 features), Peptostreptococcaceae (10 

features) and Porphyromonadaceae (10 features). Other 
genera showed a number of MF associated with the BGT, 
such as Staphylococcaceae (9), Streptococcaceae (7), and 
Fusobacteriaceae (8). Many MF (85) were unassigned at 
the family level.

At timepoint S2, again, the families Lachnospiraceae 
(46 features) and Ruminococcaceae (72 features), 
followed by Prevotellaceae (34 features), and then 
Lactobacillaceae (11 features), Porphyromonadaceae (10 
features) and Spirochaetaceae (9 features). Again, 121 
MF were unassigned at the family level. At timepoint 
S3, the families Lachnospiraceae and Ruminococcaceae 
showed the largest number of MF associated (82 and 
80 respectively), followed by the genera Prevotellaceae 
(13 features), Peptostreptococcaceae (9 features), 
Bacteroidaceae (9 features) and Clostridiaceae (8 fea-
tures). At the same time, 152 MF were unassigned at the 
family level.

3.1  |  Variance components and relative 
efficiency of selection

Figure  2 shows the efficiency of microbiome-enabled 
selection estimates relative to direct selection (also in 
Table S2). In this plot, a REIS of the value of 1 indicates 
that the selection performed on the MF is expected to 
yield a gain equivalent to the direct selection on the BGT 
itself (without phenotyping of the individuals in the vali-
dation set). A REIS below the value of 1 indicates that mi-
crobiome as a correlated trait does not provide relevant 

Trait Acronym

Training Validation

N Mean SD N Mean SD

Intra-Muscular fat IMF 960 2.7 0.94 264 2.7 0.88

Belly weight BEL 976 16.0 2.44 272 15.8 2.28

Ham weight HAM 979 25.2 2.36 273 25.3 2.30

Loin weight LOI 979 20.1 1.90 273 20.0 1.81

Minolta a M.a 966 3.8 1.11 272 3.8 1.05

Minolta b M.b 966 −0.2 0.88 272 −0.1 0.98

Slice shear force SSF 960 158.7 36.53 264 161.4 36.24

Subjective colour SCOL 962 2.7 0.47 272 2.7 0.47

Subjective firmness SFIR 962 3.1 0.99 272 2.9 0.98

Subjective marbling SMAR 962 3.1 0.83 272 3.0 0.83

Minolta L M.L 966 45.3 3.14 272 45.4 2.99

pH PH 911 5.6 0.19 257 5.6 0.17

Carcass daily gain CDG 970 521.5 54.31 272 522.3 50.62

Fat depth BF 972 22.6 5.13 271 21.6 4.46

Loin depth LD 972 68.8 7.43 271 67.3 7.45

T A B L E  1   Descriptive statistics for the 
training (TRN) and validation (VAL) sets.



8  |      TIEZZI et al.

T
A

B
L

E
 2

 
N

um
be

r o
f o

pe
ra

tio
na

l t
ax

on
om

ic
 u

ni
ts

, a
s o

rg
an

iz
ed

 b
y 

fa
m

ily
, u

se
d 

fo
r e

ac
h 

tr
ai

t.

Fa
m

ily
B

E
L

B
F

C
D

G
H

A
M

IM
F

LD
LO

I
M

.L
M

.a
M

.b
SC

O
L

SF
IR

SM
A

R
SS

F
pH

T
ot

al

A
ci

da
m

in
oc

oc
ca

ce
ae

1
1

A
er

oc
oc

ca
ce

ae
1

1
2

Ba
ct

er
oi

da
ce

ae
1

1
1

1
1

1
6

Bi
fid

ob
ac

te
ri

ac
ea

e
1

1
C

am
py

lo
ba

ct
er

ac
ea

e
1

1
2

1
1

6
C

lo
st

ri
di

ac
ea

e
2

1
1

1
5

C
lo

st
ri

di
al

es
 In

ce
rt

ae
 S

ed
is

 X
I

1
1

2
C

or
yn

eb
ac

te
ri

ac
ea

e
1

1
D

es
ul

fo
vi

br
io

na
ce

ae
1

1
1

1
4

En
te

ro
co

cc
ac

ea
e

1
1

1
3

Er
ys

ip
el

ot
ri

ch
ac

ea
e

1
1

1
1

1
5

Eu
ba

ct
er

ia
ce

ae
1

1
1

1
4

Fu
so

ba
ct

er
ia

ce
ae

1
1

1
1

1
1

1
1

8
H

el
ic

ob
ac

te
ra

ce
ae

1
2

1
1

1
6

La
ch

no
sp

ir
ac

ea
e

2
1

4
3

2
3

4
2

3
1

4
5

4
3

5
46

La
ct

ob
ac

ill
ac

ea
e

3
3

1
1

1
1

2
3

15
Le

uc
on

os
to

ca
ce

ae
1

1
2

M
et

ha
no

m
as

si
lii

co
cc

ac
ea

e
1

1
2

M
ic

ro
co

cc
ac

ea
e

2
1

3
M

or
ax

el
la

ce
ae

1
1

1
1

4
O

lig
os

ph
ae

ra
ce

ae
1

1
1

1
1

5
Pa

st
eu

re
lla

ce
ae

1
1

2
Pe

pt
oc

oc
ca

ce
ae

 1
1

1
1

3
Pe

pt
os

tr
ep

to
co

cc
ac

ea
e

2
1

2
2

1
1

1
10

Po
rp

hy
ro

m
on

ad
ac

ea
e

1
2

1
2

1
1

1
1

10
Pr

ev
ot

el
la

ce
ae

3
2

1
8

2
3

4
3

2
1

4
1

3
37

R
um

in
oc

oc
ca

ce
ae

4
1

4
2

1
5

3
7

4
11

7
7

5
3

8
72

Sp
ir

oc
ha

et
ac

ea
e

1
2

3
St

ap
hy

lo
co

cc
ac

ea
e

1
1

1
1

2
1

1
1

9
St

re
pt

oc
oc

ca
ce

ae
1

3
1

1
1

7
Su

tte
re

lla
ce

ae
1

1
Sy

ne
rg

is
ta

ce
ae

1
1

2
V

ei
llo

ne
lla

ce
ae

1
1

1
3

U
na

ss
ig

ne
d

7
15

6
4

4
7

6
4

7
4

5
2

4
6

4
85

N
ot

e: 
R

es
ul

ts
 re

fe
r t

o 
St

ag
e 

1 
of

 re
ct

al
 m

ic
ro

bi
om

e 
sa

m
pl

in
g.



      |  9TIEZZI et al.

T
A

B
L

E
 3

 
N

um
be

r o
f o

pe
ra

tio
na

l t
ax

on
om

ic
 u

ni
ts

, a
s o

rg
an

iz
ed

 b
y 

fa
m

ily
, u

se
d 

fo
r e

ac
h 

tr
ai

t.

B
E

L
B

F
C

D
G

H
A

M
IM

F
LD

LO
I

M
.L

M
.a

M
.b

SC
O

L
SF

IR
SM

A
R

SS
F

pH
T

ot
al

A
ci

da
m

in
oc

oc
ca

ce
ae

1
1

Ba
ct

er
oi

da
ce

ae
1

1

C
lo

st
ri

di
ac

ea
e

1
1

1
3

C
lo

st
ri

di
al

es
 In

ce
rt

ae
 S

ed
is

 X
I

1
1

C
or

io
ba

ct
er

ia
ce

ae
2

2
4

D
es

ul
fo

vi
br

io
na

ce
ae

1
1

Er
ys

ip
el

ot
ri

ch
ac

ea
e

1
1

1
3

Eu
ba

ct
er

ia
ce

ae
1

1
2

La
ch

no
sp

ir
ac

ea
e

8
8

2
9

5
6

5
5

8
11

6
6

7
3

6
95

La
ct

ob
ac

ill
ac

ea
e

1
6

2
2

11

M
et

ha
no

ba
ct

er
ia

ce
ae

1
1

2

Pe
pt

oc
oc

ca
ce

ae
 1

1
1

1
1

1
1

6

Po
rp

hy
ro

m
on

ad
ac

ea
e

2
1

1
1

3
2

10

Pr
ev

ot
el

la
ce

ae
1

4
1

5
2

3
4

4
1

3
6

34

R
um

in
oc

oc
ca

ce
ae

6
4

6
5

2
3

5
4

3
3

5
4

2
4

5
61

Sp
ir

oc
ha

et
ac

ea
e

1
1

1
2

1
1

2
9

St
re

pt
oc

oc
ca

ce
ae

1
1

Su
bd

iv
is

io
n5

_g
en

er
a_

in
ce

rt
ae

_s
ed

is
1

1

Su
cc

in
iv

ib
ri

on
ac

ea
e

1
1

1
1

4

Su
tte

re
lla

ce
ae

1
1

V
ei

llo
ne

lla
ce

ae
1

2
3

U
na

ss
ig

ne
d

6
6

11
8

11
9

9
11

3
5

8
8

4
12

10
12

1

N
ot

e: 
R

es
ul

ts
 re

fe
r t

o 
St

ag
e 

1 
of

 re
ct

al
 m

ic
ro

bi
om

e 
sa

m
pl

in
g.



10  |      TIEZZI et al.

T
A

B
L

E
 4

 
N

um
be

r o
f o

pe
ra

tio
na

l t
ax

on
om

ic
 u

ni
ts

, a
s o

rg
an

iz
ed

 b
y 

fa
m

ily
, u

se
d 

fo
r e

ac
h 

tr
ai

t.

B
E

L
B

F
C

D
G

H
A

M
IM

F
LD

LO
I

M
.L

M
.a

M
.b

SC
O

L
SF

IR
SM

A
R

SS
F

pH
T

ot
al

Ba
ct

er
oi

da
ce

ae
1

2
2

1
1

1
1

9

C
lo

st
ri

di
ac

ea
e

1
1

1
1

1
2

1
8

C
lo

st
ri

di
al

es
In

ce
rt

ae
 S

ed
is

 X
I

1
1

C
or

io
ba

ct
er

ia
ce

ae
1

1

C
or

yn
eb

ac
te

ri
ac

ea
e

1
1

D
es

ul
fo

vi
br

io
na

ce
ae

1
1

Er
ys

ip
el

ot
ri

ch
ac

ea
e

1
1

1
1

1
5

H
el

ic
ob

ac
te

ra
ce

ae
1

1

La
ch

no
sp

ir
ac

ea
e

8
4

7
7

3
6

5
4

6
8

1
8

6
3

6
82

M
et

ha
no

ba
ct

er
ia

ce
ae

1
1

Pe
pt

os
tr

ep
to

co
cc

ac
ea

e
1

1
1

1
1

1
2

1
9

Po
rp

hy
ro

m
on

ad
ac

ea
e

1
1

1
1

4

Pr
ev

ot
el

la
ce

ae
2

1
1

1
1

1
3

1
2

13

R
um

in
oc

oc
ca

ce
ae

7
5

10
6

2
3

4
6

4
5

7
5

4
4

8
80

Sp
ir

oc
ha

et
ac

ea
e

1
1

2

St
re

pt
oc

oc
ca

ce
ae

1
1

1
1

4

V
ei

llo
ne

lla
ce

ae
1

1

U
na

ss
ig

ne
d

6
10

5
12

14
10

13
10

11
8

13
8

11
12

9
15

2

N
ot

e: 
R

es
ul

ts
 re

fe
r t

o 
St

ag
e 

1 
of

 re
ct

al
 m

ic
ro

bi
om

e 
sa

m
pl

in
g.



      |  11TIEZZI et al.

additional information to the validation set. A REIS above 
the value of 1 indicates that selection for (favourable) mi-
crobiome composition could yield genetic progress larger 
than direct selection.

According to the variance components estimates, in-
direct selection for gut microbiome composition seldom 
outperformed direct selection. Indirect selection did not 
outperform direct selection for PH, LOI and M.a. Indirect 
and direct selection were equivalent for IMF, SMAR, 
SCOL and HAM only when S1 was used. In contrast, di-
rect selection showed better response when using S2 and 
S3. Indirect selection showed better response for SSF (S2 
and S3 only), SFIR (S2 only), CDG (S2 and S3 only), BF 
(S3 only) and M.b (S3 only). All other traits showed equiv-
alent direct or indirect selection.

3.2  |  Multiple-trait genomic prediction

Results from the cross-validation are reported in 
Figures 3 and 4. Prediction accuracy is reported on the 
y-axis (with error bars obtained by bootstrapping), while 
the different scenarios are reported on the x-axis. The 
plots compare ABLUP and GBLUP for the single-trait 

model ST and the multiple-trait models that include the 
MF. The latter are split for including the MF over S1, 
S2 and S3, and for the number of MF from each stage 
included (1, 2, 5, 10 or 25).

The different BGT showed variable accuracy even for 
the ST model. For some traits, no difference was found 
between ABLUP and GBLUP. These were LD (0.10), 
HAM (0.10), SSF (0.10), SFIR (0 vs. 0.06), SCOL (0.11 vs. 
0.18), M.L (0.09 vs. 0.19), M.a (0.05 vs. 0.20), M.b (0 vs. 
0.10). Traits that showed a difference between ABLUP 
and GBLUP were CDG (0.02 vs. 0.19), BF (−0.04 vs. 
0.28), BEL (0.05 vs. 0.20), LOI (0 vs. 0.12), IMF (−0.08 
vs. 0.28), PH (−0.08 vs. 0.06), SMAR (−0.03 vs. 0.24). 
In general, GBLUP performance was equal to or better 
than ABLUP.

The variability in prediction accuracy among the traits 
was even larger with the MF-enabled models. Considering 
an average between the ABLUP and GBLUP models, 
some traits showed a strong increase in prediction accu-
racy with the MF-enabled models. These were IMF and 
SMAR, mostly when including up to 5 MF from S1 or S3; 
BEL and PH when including MF from S1 and S2; HAM 
when including few MF from S1 and S2; BF and CDG in 
almost any case of using microbial features. Prediction 

F I G U R E  2   Expected genetic progress achieved using indirect selection based on microbial information relative to direct selection. BEL, 
Belly weight; BF, Backfat depth; CDG, Carcass average daily gain; HAM, Ham weight; IMF, Intramuscular fat; LD, Loin depth; LOI, Loin 
weight; M.a, Minolta a*; M.b, Minolta b*; M.L, Minolta L*; PH, PH; S1, Microbiome measured at weaning; S2, Microbiome measured at mid-
test; S3, Microbiome measured at off-test; SCOL, Subjective colour; SFIR, Subjective firmness; SMAR, Subjective marbling; SSF, Warner–
Bratzler slice shear force.
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accuracy for MF-enabled models was lower than ST for 
several traits when referring to the performance of the 
same relationship matrix used (from pedigree or genomic 
markers). These were SSF, SCOL, M.L, M.a and M.b.

Among the traits that showed an increase in prediction 
accuracy using the MF-enabled models, some showed this 
increase to be large enough that the MF-enabled ABLUP 
models would outperform the ST GBLUP models (when this 
one showed better performance than the ST GBLUP model). 
This was the case for IMF, SMAR, pH, BF, LOI and BEL.

4   |   DISCUSSION

4.1  |  Selection of relevant gut 
microbiome features

In this study, we used the MF as correlated traits in a 
multiple-trait model to improve genetic progress and 
model's predictive ability. This study did not aim to esti-
mate the shared microbial architecture among traits since 
this was already reported in a previous study based on the 

F I G U R E  3   Prediction accuracy (with confidence intervals of bootstrapped values) for nine of the studied traits. Black dots and lines: 
Pedigree-based BLUP; Blue dots and lines: Genomic-based BLUP; ST: Single-trait model; S1.1-2-5-10-25: Multiple-trait models incorporating 
the top 1-2-5-10-25 microbial features obtained at stage 1 (S1, weaning); S2.1-2-5-10-25: Multiple-trait models incorporating the top 1-2-5-
10-25 microbial features obtained at stage 2 (S2, on-test); S3.1-2-5-10-25: Multiple-trait models incorporating the top 1-2-5-10-25 microbial 
features obtained at stage 3 (S3, off-test).

F I G U R E  4   Prediction accuracy (with confidence intervals of bootstrapped values) for six of the studied traits. Black dots and lines: 
Pedigree-based BLUP; Blue dots and lines: Genomic-based BLUP; ST: Single-trait model; S1.1-2-5-10-25: Multiple-trait models incorporating 
the top 1-2-5-10-25 microbial features obtained at stage 1 (S1, weaning); S2.1-2-5-10-25: Multiple-trait models incorporating the top 1-2-5-
10-25 microbial features obtained at stage 2 (S2, on-test); S3.1-2-5-10-25: Multiple-trait models incorporating the top 1-2-5-10-25 microbial 
features obtained at stage 3 (S3, off-test).
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same data (Khanal et al., 2019). The MF that were selected 
to be included for each trait might not totally reflect the 
complexity of the association among the traits condition-
ally on the gut microbial composition. The overlapping of 
MF across the traits was moderate, and less than 50% of 
the total MF used were included for more than one trait, 
while Khanal et al. (2019) showed some degree of shared 
microbial architecture.

The selection of the 25 most relevant features for all 
traits considered gave results that are similar to another 
former study on the same population where the rela-
tionship at the phenotypic level was estimated (Maltecca 
et al., 2021). Results show the same genera being the most 
relevant for their association at the phenotypic and ge-
netic levels. However, the number of MF that underlie 
this association seems to be different. In addition, the re-
sults from this study appear to be consistent with another 
study that aimed to estimate genetic correlations between 
MF and different traits in swine in an unrelated popula-
tion (Aliakbari et al., 2021).

The genera Prevotella, belonging to the family 
Prevotellaceae, and Blautia, belonging to the family 
Lachnospiraceae, were the most frequent and consis-
tent in having MF selected in the present study. Few MF 
were found to be significantly associated in Maltecca 
et al. (2021), although Aliakbari et al. (2021) estimated a 
strong genetic correlation between these genera and back-
fat depth.

Genera Lactobacillus (Lactobacillaceae) and 
Streptococcus (Streptococcaceae) had a strong and con-
sistent relevance in the present study (although di-
minishing as age increased for the former), which was 
also found at the genetic level by Aliakbari et al. (2021) 
and at the phenotypic level by Maltecca et  al.  (2021). 
The genera Coprococcus (Lachnospiraceae) and 
Faecalibacterium (Ruminococcaceae) had a small but 
consistent relevance over time in the present study, 
with the same contribution at the phenotypic level in 
Maltecca et al.  (2021) and a moderately strong genetic 
correlation with backfat depth in Aliakbari et al. (2021). 
The genus Dorea (Lachnospiraceae) showed a moder-
ate relevance mostly at S1 and S2 was not found to be 
associated at the phenotypic level but showed a strong 
genetic correlation with backfat dept in Aliakbari 
et al. (2021). The genus Oscillibacter (Ruminococcaceae) 
showed relevance in this study at S1 and S2, but only a 
small association at the phenotypic level. Ruminococcus 
(Ruminococcaceae) had a relevance that, in this study, 
increased as the age of the animal progressed, which 
was also previously found at the phenotypic level but 
not confirmed by other studies at the genetic level. 
Similarly, Roseburia (Lachnospiraceae) had strong rele-
vance at S2 in the present study, previously showing a 

strong association at the phenotypic level at S3. In the 
present study, Campylobacter (Campylobacteraceae) and 
Staphylococcus (Staphylococcaceae) were relevant at S1, 
but no association was found in the other studies.

It should also be considered that the selection of the MF 
was performed in a way that could be suboptimal. Given 
the complexity of the microbiota and its compositional 
nature (Gloor et al., 2017), selecting the features on a one-
by-one basis for their association at the genetic level with 
the traits of interest might neglect the dependency among 
the features themselves. While this issue was partially ad-
dressed by estimating the variance components with the 
26-trait model, other methods could probably handle the 
high-dimensionality of the microbial features more effi-
ciently (Lopez-Cruz et al., 2020; Runcie et al., 2021).

4.2  |  Relevance of gut microbiota 
information

The microbiota information could serve as a correlated in-
dicator trait in a selection index.

While the expected genetic progress, based on vari-
ance components estimation, showed little advantage in 
selecting for the MF rather than the trait itself, the cross-
validation suggested otherwise. Some traits showed in-
creased prediction accuracy with the MF-enabled models 
regardless of the use of host genomic information. MF-
based selection showed improvements over direct selec-
tion for traits such as IMF and SMAR, with MF from S1 
being the most informative. Similarly, CDG, BF and LOI 
showed a less relevant increase, but S1 remained the most 
informative microbial information source. Most of these 
traits showed diminishing returns in including a larger 
number of MF, suggesting that few MF are truly related to 
the trait of interest on the genetic level.

All the traits mentioned (except for CDG) are expen-
sive to measure, require carcass dissection and, in some 
cases, require expensive wet-lab analyses. Sampling with 
a rectal swab and performing 16S rRNA sequencing could 
be a cost-effective solution to cut the selection cost for 
these traits. Using microbial composition in the selection 
index would not replace the need to keep and update a ref-
erence population with all the relevant phenotypes avail-
able. Still, it could improve the efficiency of the breeding 
scheme (Martínez-Álvaro et al., 2022).

Likely, the shared genetic architecture between the MF 
and the other traits is to be studied more in depth to gain 
the most out of this strategy. Nonetheless, we must remark 
that the method proposed here is too simplistic and does 
not fully account for the dimensionality and complexity of 
the microbial composition. While this is the first attempt 
to carry out such a study, further research on this topic is 



14  |      TIEZZI et al.

warranted. Also, changes in the bio-informatic part of the 
pipeline could lead to changes in the results. Rarefaction 
could be avoided and better strategies for normalization 
could be adopted. This will have to be addressed in further 
studies.

To the best of our knowledge, no other study has used 
MF with the same methodology proposed here. The par-
tial consistency of the present estimates with those re-
ported by Aliakbari et al. (2021) suggests that the shared 
genetic architecture that is emerging here is validated in 
unrelated populations. If that were the case, this could 
support the use of MF in selection indices, both in swine 
and other livestock species (Haas et  al.,  2022; Martinez 
Boggio et al., 2022; Martínez-Álvaro et al., 2022; Saborío-
Montero et al., 2020, 2021).

4.3  |  Gut microbiota sequencing versus 
host genotyping

In the present study, we also aimed to compare the value 
of generating data for gut microbial composition versus 
obtaining host (pig) genomic information using an SNP 
chip. Since we ran this study on 15 different traits with 
different genetic and microbial architecture, this study 
could serve as a ground for comparing the two sources of 
information.

This comparison was only carried out using cross-
validation since the change due to phenotyping would 
have only been through an increase/decrease in (G)EBV 
prediction accuracy, which we considered not fully repre-
sentative of the shared genetic architecture between the 
MF and the other traits.

In the cross-validation, the performance of GBLUP 
was generally better than the performance of ABLUP. 
However, the performance of ST-GBLUP should be 
compared to the performance of the top-performing 
MF-enabled ABLUP model. This comparison would 
allow to compare the values of each technology directly. 
For some traits, in this sense, some of the MF-enabled 
ABLUP models seemed to have better prediction (i.e. 
IMF, SMAR, PH, BF, BEL) than the ST-GBLUP. Results 
suggest that there could be some value in adding micro-
bial information rather than host genomic information 
to the model, although this seems limited to some traits 
and circumstances (e.g. time of microbial characteriza-
tion). In fact, the use of correlated indicator traits in se-
lection is known to be valuable when the magnitude of 
the genetic correlations reaches a given value (e.g. 0.5; 
see Calus & Veerkamp,  2011). Other sources of infor-
mation have been used in multiple-trait genomic pre-
diction models. These include infrared spectroscopy in 
dairy cattle, where both Cecchinato et  al.  (2020) and 

van den Berg et al. (2020) concluded that the advantage 
of including the correlated trait depends on the shared 
genetic architecture between the breeding goal and its 
predictor.

5   |   CONCLUSION

The present study shows a simple method to account for 
gut microbial information in breeding value prediction 
models. We focused on several expensive-to-measure 
traits that are economically important to the swine breed-
ing industry, encompassing growth, tissue deposition, car-
cass composition and meat quality.

This study revealed the relevance of the microbial 
information compared to the host genomic. Since we 
studied 15 different traits, some of them highlighted the 
relevance of one source of information rather than the 
other. In some cases, gut microbial information improved 
the model's predictive ability more than host genomic in-
formation did. In others, host genomic information was a 
more valuable source of information. The latter seemed to 
be the most frequent case.

Further research should focus on accounting for the 
compositional and high-dimensional nature of the mi-
crobiota data. Results from the present study could have 
penalized the contribution of this kind of data due to its 
limited use in the models. Methods to account for higher 
dimensionality of the phenotype(s) are available and will 
be the subject of the upcoming research.
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