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A B S T R A C T

We present a fully explicit dynamic formulation for geometrically exact shear-deformable
beams. The starting point of this work is an existing isogeometric collocation (IGA-C) formu-
lation which is explicit in the strict sense of the time integration algorithm, but still requires
a system matrix inversion due to the use of a consistent mass matrix. Moreover, in that work,
the efficiency was also limited by an iterative solution scheme needed due to the presence
of a nonlinear term in the time-discretized rotational balance equation. In the present paper,
we address these limitations and propose a novel fully explicit formulation able to preserve
high-order accuracy in space. This is done by extending a predictor–multicorrector approach,
originally proposed for standard elastodynamics, to the case of the rotational dynamics
of geometrically exact beams. The procedure relies on decoupling the Neumann boundary
conditions and on a rearrangement and rescaling of the mass matrix. We demonstrate that
an additional gain in terms of computational cost is obtained by properly removing the angular
velocity-dependent nonlinear term in the rotational balance equation without any significant
loss in terms of accuracy. The high-order spatial accuracy and the improved efficiency of the
proposed formulation compared to the existing one are demonstrated through some numerical
experiments covering different combinations of boundary conditions.

1. Introduction

In elastodynamics, explicit formulations are often preferred for all those applications where very small time steps are necessary to
properly reproduce the complex and fast dynamics of mechanical systems, e.g., under impacts and shock loads [1,2]. Thanks to their
efficiency and robustness, such methods have been used for example in crash dynamics, metal forming and aerospace simulations.

Normally, high computational efficiency is pursued through techniques that allow to obtain a diagonal mass matrix at each time
step, such as the row-sum technique and the nodal quadrature method [3–7], and to increase the critical time step, e.g., via mass
scaling [6–8].

The row-sum technique consists in obtaining a diagonal mass matrix from the original one through a summation over the rows.
Used in conjunction with shape functions that form a partition-of-unity, it preserves the total mass [7]. It is easy to implement, allows
to increase the critical time step, but permits achieving only second-order accurate frequencies [9]. Moreover, row-sum technique
may fail, leading to singular or indefinite lumped mass matrices. Such a drawback depends on the spatial discretization scheme
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employed [7], and it is prevented by non-negative partition of unity methods [8]. The nodal quadrature method relies on a special
choice of quadrature nodes. As noted in [8], it may preserve high-order accuracy at the cost of deteriorating its efficiency. Lastly,
mass scaling schemes still require the matrix inversion, but they improve the efficiency of explicit methods by increasing the critical
time step [10,11]. A comparison of these approaches in the context of Spectral Element Method is presented in [12].

In isogeometric analysis (IGA) [9,13], the local support of NURBS and B-Splines [14,15] makes the consistent mass matrix banded
ith a bandwidth determined by the basis function degree. Standard lumping approaches turn out to deliver at most second-order
ccurate results [16,17]. Therefore, finding lumping procedures capable of preserving high-order spatial accuracy is fundamental
o exploit the full potentialities of IGA formulations in explicit dynamics. A basis function transformation is proposed in [17] and
dopted for IGA structural vibration analysis, proving an improved frequency accuracy. A ‘‘dual lumping’’ procedure in the context
f Petrov–Galerkin IGA methods is proposed in [16]. It is shown via numerical examples on 2D domains that the method is superior
o standard row-sum techniques and achieves a similar accuracy with respect to consistent matrix formulations. A similar approach
s adopted in [18] for the spectral analysis of beams, plates and shells retrieving the higher-order accuracy of consistent mass matrix
ormulations.

Within the IGA framework, to achieve higher efficiency levels keeping the attributes of classical IGA, the isogeometric collocation
IGA-C) method is proposed in [19,20]. IGA-C is based on the discretization of the strong form of the governing equations and
equires one evaluation (collocation) point per degree of freedom. Compared to Galerkin-based IGA and Galerkin-based FEA, IGA-C
an be orders of magnitude faster [21] to achieve a specified level of accuracy. Moreover, IGA-C naturally circumvents the known
roblem of sub-optimal quadrature rules in weak-form IGA [22–24].

IGA-C-based methods have been successfully applied to a wide range of problems, including elasticity, hyperelasticity, and
lastoplasticity [19–21,25,26]; phase-field [27–29]; contact [25,30,31]; linear beams [32–39]; nonlinear planar beams [40]; plates
nd shells [37,41–43]; electromechanics problems [44]; geometrically exact static [31,45–47] and dynamic [48–50] beams.

Due to its efficiency, IGA-C is particularly attractive for explicit dynamics. For a two-dimensional linear elastodynamic problem,
t is conveniently used in combination with a predictor–multicorrector algorithm that allows to obtain a diagonal mass matrix [20].
or the same problem, this approach is further developed in [51], where an explicit higher-order space- and time-accurate scheme
s proposed. Higher-order time accuracy is achieved through explicit Runge–Kutta methods.

Among the existing IGA-C formulations for the problem of geometrically exact beams [31,45–50,52], only in [49] an explicit
cheme is proposed. In that work, the exceptionally well-performing SO(3)-consistent explicit time integrator for rigid body

dynamics [53] is extended to the rotational dynamics of beams. However, following the distinction made in [51], the method
in [49] is considered explicit more in the applied mathematics sense. Since it employs a consistent mass matrix, the formulation
still requires the mass matrix inversion at each time step. Moreover, it needs a Newton–Raphson scheme for the solution of the
entire system of equation due to a nonlinear term appearing in the time-discretized rotational balance equation.

In the present paper, we address both these issues proposing a novel formulation able to preserve the high-order accuracy in
space without the need for any matrix inversion. We refer to this formulation as fully explicit. We extend the predictor–multicorrector
approach of [51] to geometrically exact beams demonstrating the capability to achieve an unprecedented level of efficiency
keeping al attributes in terms of accuracy in space. The proposed lumping procedure relies on two main actions: (i) decoupling
the translational and rotational equations in the Neumann boundary conditions, which are enforced without any treatment, such
as hybrid collocation-Galerkin or enhanced collocation [30]; and (ii) rearranging and rescaling of the mass matrix in a convenient
form. Moreover, an extra efficiency gain is obtained by removing the angular velocity-dependent nonlinear term appearing in the
rotational balance equation, bypassing the need for a time-consuming iterative scheme.

Robustness and efficiency of the proposed formulation are proved through demanding numerical tests, covering different
combinations of boundary conditions.

The paper is structured as follows: in Section 2, the IGA-C explicit scheme for the nonlinear dynamics of shear-deformable
beams is briefly recalled. In Section 3, we present the fully explicit IGA-C formulation, focusing on the extension of the predictor–
multicorrector approach to the dynamics of geometrically exact beams. In Section 4, we assess the performance of the proposed
formulation through some numerical experiments. Finally, the main conclusions of our work are drawn in Section 5.

2. A brief review of the IGA-C explicit scheme for beam dynamics

In this section, we briefly review the explicit scheme proposed in [49] for the dynamics of spatial shear-deformable beams
undergoing finite motions. Firstly, time and space discretizations of the governing equations and the SO(3)-consistent configuration
update are introduced. Then, some critical aspects related to the solution procedure are discussed.

2.1. Time discretized governing equations in local form

The strong form of the translational and rotational balance equations for geometrically exact shear-deformable beams [54] can
be rewritten in terms of kinematic quantities exploiting the linear elastic constitutive equations

𝒏 = 𝐑C𝑁𝜞𝑁 and 𝒎 = 𝐑C𝑀𝑲𝑀 , (1)

where 𝒏 and 𝒎 are the internal forces and moments; C𝑁 = diag(𝐺𝐴1, 𝐸𝐴,𝐺𝐴3) and C𝑀 = diag(𝐸𝐽1, 𝐺𝐽 , 𝐸𝐽3) are the elasticity
tensors. 𝜞𝑁 = 𝐑𝖳𝒄,𝑠 −𝐑0

𝖳𝐜0,𝑠 and 𝑲𝑀 = axial(�̃� − �̃�0) = 𝑲 − 𝑲0, are the material strain measures of the beam. 𝒄 and 𝒄0, both
3

2

belonging to R , denote the beam centroid in the current and initial configuration, respectively. 𝐑 and 𝐑0, both belonging to SO(3),
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are the orthogonal operators that identify the spatial (rigid) rotation of the beam cross sections. We omit that, in general, the
involved quantities (excepting the elasticity tensors) are parameterized over time 𝑡 ∈ [0, 𝑇 ] ⊂ R and space 𝑠 ∈ [0, 𝐿] ⊂ R, where 𝑇
is the length of the time domain and 𝐿 is the length of the beam centroid line in the reference configuration. �̃� and �̃�0 ∈ so(3)
are the current and initial curvature tensors in the material form. Quantities with subscript ‘‘0’’ refer to the initial configuration,
therefore they are only space-depended. With (⋅),𝑠 we express the derivative with respect to the abscissa 𝑠.

Substituting Eq. (1) into the well known local form of the governing equations, see for example [54, Eqs. 3.3a and 3.3b], and
discretizing it in time lead to

𝜇𝒂𝑛 = 𝐑𝑛�̃�
𝑛
C𝑁𝜞 𝑛

𝑁 + 𝐑𝑛C𝑁𝜞 𝑛
𝑁,𝑠 + �̄�

𝑛 , (2)

𝒋𝑛𝜶𝑛 + �̃�𝑛𝒋𝑛𝝎𝑛 = 𝐑𝑛�̃�
𝑛
C𝑀𝑲𝑛

𝑀 + 𝐑𝑛C𝑀𝑲𝑛
𝑀,𝑠 + 𝒄,

𝑛
𝑠 ×𝐑

𝑛C𝑁𝜞 𝑛
𝑁 + �̄�𝑛 , (3)

where (⋅)𝑛 denotes any quantity evaluated at time 𝑡 = 𝑡𝑛. Indicating with ̇(⋅) the derivative with respect to time, 𝒂 = �̇� and 𝒗 = �̇�
are the spatial acceleration and velocity of the beam centroid, while 𝜶 = �̇� and 𝝎 are the spatial angular acceleration and velocity
vectors of the beam cross section. 𝝎 is the axial vector1 of the skew-symmetric tensor �̃� := �̇�𝐑𝖳; 𝒋 = 𝐑𝑱𝐑𝖳; is the spatial inertia
tensor, while 𝜇 is the mass per unit length; �̄� and �̄� are the distributed external forces and moments per unit length.

The set of governing equations is completed by the boundary and initial conditions, given in the spatial form as

𝜼 = �̄�𝑐 or 𝒏 = �̄�𝑐 with 𝑠 = {0, 𝐿} , 𝑡 ∈ [0, 𝑇 ] , (4)

𝝑 = �̄�𝑐 or 𝒎 = �̄�𝑐 with 𝑠 = {0, 𝐿} , 𝑡 ∈ [0, 𝑇 ] , (5)

𝒗 = 𝒗0 with 𝑠 ∈ (0, 𝐿) and 𝑡 = 0 , (6)

𝝎 = 𝝎0 with 𝑠 ∈ (0, 𝐿) and 𝑡 = 0 . (7)

where �̄�𝑐 and �̄�𝑐 are the prescribed displacements and rotations of the beam ends, �̄�𝑐 and �̄�𝑐 are the external concentrated forces
and couples, while 𝒗0 and 𝝎0 are the initial velocities and angular velocities of the beam, respectively.

2.2. Consistent update of the right hand sides of the governing equations

The beam configuration is fully determined by the pair (𝒄,𝐑) for any 𝑡 ∈ [0, 𝑇 ] and 𝑠 ∈ [0, 𝐿]. In a time-discretized context, the
eometrically consistent update of the beam configuration [45,50], say (𝒄(𝑛−1),𝐑(𝑛−1)) → (𝒄𝑛,𝐑𝑛), is made as follows

𝒄𝑛 = 𝒄(𝑛−1) + 𝜼(𝑛−1) , (8)

𝐑𝑛 = exp(�̃�
(𝑛−1)

)𝐑(𝑛−1) , (9)

here 𝜼(𝑛−1) ∈ R3 and �̃�
(𝑛−1)

∈ so(3) denote the incremental displacement and spatial rotation at 𝑠, respectively. 𝜼(𝑛−1) acts through a
tandard translation (additive rule) of the beam centroid 𝒄(𝑛−1), whereas �̃�

(𝑛−1)
acts through the (multiplicative) group composition

rule, being exp(�̃�
(𝑛−1)

) ∈ SO(3) the incremental rotation superimposed to the current rotation 𝐑(𝑛−1). exp ∶ so(3) → SO(3) is the
xponential map of the rotation group which is known in closed form (Rodrigues formula) [55]. The above geometrically consistent
pdating formulas rely on the proper construction of the tangent space to the configuration manifold whose details can be found
n [50,56–58].

.3. IGA discretization and existing solution method

Following the IGA paradigm, the beam centroid 𝒄, along with the displacements and rotations 𝜼 and 𝝑, velocities 𝒗 and 𝝎, and
accelerations 𝒂 and 𝜶 are discretized in space as follows

𝒄(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (10)

𝝑(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (11)

𝜼(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (12)

𝝎(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (13)

1 With (̃⋅) we indicate elements of so(3), that is the set of 3 × 3 skew-symmetric matrices. In this context, they are used to represent angular accelerations,
urvature matrices, and infinitesimal incremental rotations. For any skew-symmetric matrix �̃� ∈ so(3), 𝒂 = axial(�̃�) indicates the axial vector of �̃� such that
̃ 3
3

𝒂𝒉 = 𝒂 × 𝒉, for any 𝒉 ∈ R , where × is the cross product.
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𝒗(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (14)

𝜶(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (15)

𝒂(𝑢) ≃
n
∑

𝑗=0
𝑅𝑗,𝑝(𝑢)�̌�𝑗 , (16)

where ̌(⋅)𝑗 is the 𝑗th control value of the related field and 𝑅𝑗,𝑝 is the 𝑗th NURBS basis function of degree 𝑝 depending on the
parametric abscissa 𝑢 ∈ [0, 1] [14,15].

In the present formulation, among the above control quantities, the only unknowns are �̌�𝑗 and �̌�𝑗 . The remaining control
uantities, �̌�𝑗 , �̌�𝑗 , �̌�𝑗 , and �̌�𝑗 , are computed with the following SO(3)-consistent explicit central difference scheme [53]

�̌�(𝑛−1)𝑗 = ℎ�̌�(𝑛−1)𝑗 + ℎ2

2
�̌�(𝑛−1)𝑗 , with 𝑗 = 0,… , n , (17)

�̌�(𝑛−1)𝑗 = ℎ�̌�(𝑛−1)
𝑗 + ℎ2

2
�̌�(𝑛−1)
𝑗 , with 𝑗 = 0,… , n . (18)

�̌�𝑛𝑗 = �̌�
(𝑛−1)
𝑗 + ℎ

2

(

�̌�(𝑛−1)𝑗 + �̌�𝑛𝑗
)

= �̌�(𝑛−1)𝑝𝑗 + ℎ
2
�̌�𝑛𝑗 , (19)

�̌�𝑛
𝑗 = �̌�

(𝑛−1)
𝑗 + ℎ

2

(

�̌�(𝑛−1)
𝑗 + �̌�𝑛

𝑗

)

= �̌�(𝑛−1)
𝑝𝑗 + ℎ

2
�̌�𝑛
𝑗 , (20)

where we have defined �̌�(𝑛−1)𝑝𝑗 = �̌�(𝑛−1)𝑗 + ℎ
2 �̌�

(𝑛−1)
𝑗 and �̌�(𝑛−1)

𝑝𝑗 = �̌�(𝑛−1)
𝑗 + ℎ

2 �̌�
(𝑛−1)
𝑗 . ℎ is the time step size. The above scheme allows to

express the right hand side of both Eqs. (2) and (3) in terms of quantities known from previous time steps.
The balance equations are collocated at the standard Greville abscissae 𝑢𝑐𝑖 with 𝑖 = 1,… , n [19] as follows2

𝜇𝒂𝑛𝑖 = 𝝍
𝑛
𝑖 with 𝑖 = 1,… , n − 1 , (21)

𝒋𝑛𝑖 𝜶
𝑛
𝑖 + �̃�

𝑛
𝑖 𝒋

𝑛
𝑖𝝎

𝑛
𝑖 = 𝝌

𝑛
𝑖 with 𝑖 = 1,… , n − 1 , (22)

here the collocated right-hand side terms, known form the previous time step, have been defined as follows

𝝍𝑛
𝑖 =

[

𝐑𝑛�̃�
𝑛
C𝑁𝜞 𝑛

𝑁 + 𝐑𝑛C𝑁𝜞 𝑛
𝑁,𝑠 + �̄�

𝑛
]

𝑖
, (23)

𝝌𝑛
𝑖 =

[

𝐑𝑛�̃�
𝑛
C𝑀𝑲𝑛

𝑀 + 𝐑𝑛C𝑀𝑲𝑛
𝑀,𝑠 + 𝒄,

𝑛
𝑠 ×𝐑

𝑛C𝑁𝜞 𝑛
𝑁 + �̄�𝑛

]

𝑖
. (24)

It is noted that substituting Eq. (20) into Eq. (22) leads to the following nonlinear rotational balance equation

𝒋𝑛𝑖 𝜶
𝑛
𝑖 + [𝝎(𝑛−1)

𝑝,𝑖 + ℎ
2
𝜶𝑛
𝑖 ] × 𝒋

𝑛
𝑖 [𝝎

(𝑛−1)
𝑝,𝑖 + ℎ

2
𝜶𝑛
𝑖 ] = 𝝌

𝑛
𝑖 with 𝑖 = 1,… , n − 1 . (25)

The above nonlinear term in 𝜶𝑛
𝑖 necessitates a Newton–Raphson scheme with a tangent operator given by [50,53]

𝜕𝐫𝑛𝑖 (�̂�
𝑛
𝑖 )

𝜕𝜶𝑛
𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝𝛥�̌�𝑛

𝑗 = −�̂�𝑛𝑖 with 𝑖 = 1,… , n − 1 , (26)

where

𝐫𝑛𝑖 = 𝒋𝑛𝑖 𝜶
𝑛
𝑖 + [𝝎(𝑛−1)

𝑝,𝑖 + ℎ
2
𝜶𝑛
𝑖 ] × 𝒋

𝑛
𝑖 [𝝎

(𝑛−1)
𝑝,𝑖 + ℎ

2
𝜶𝑛
𝑖 ] − 𝝌

𝑛
𝑖 with 𝑖 = 1,… , n − 1 . (27)

The boundary equations can also be expressed in terms of primary unknowns. For the Dirichlet boundary conditions, assuming
clamped end and exploiting Eqs. (19) and (20), we have

�̌�𝑛𝑗 = − 1
ℎ
�̌�(𝑛−1)𝑝𝑗 , (28)

�̌�𝑛
𝑗 = − 1

ℎ
�̌�(𝑛−1)
𝑝𝑗 . (29)

Similarly, the Neumann boundary conditions become

1𝝍𝑛
𝑖 ℎ

2
n
∑

𝑗=0
𝑅𝑗,𝑝�̌�𝑛

𝑗 +
2𝝍𝑛

𝑖 ℎ
2

n
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

𝑛
𝑗 = �̄�

𝑛
𝑖 − ℎ

(

1𝝍𝑛
𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗 + 2𝝍𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗

)

, (30)

ℎ2
(

1𝝌𝑛
𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝 + 2𝝌𝑛

𝑖

𝑛
∑

𝑗=0
𝑅′
𝑗,𝑝

)

�̌�𝑛
𝑗 = �̄�

𝑛
𝑖 − ℎ

(

1𝝌𝑛
𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝 + 2𝝌𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝

)

�̌�(𝑛−1)
𝑝𝑗 , (31)

2 To simplify the notation, collocated quantities at 𝑢 = 𝑢𝑐 are denoted by (⋅) .
4

𝑖 𝑖
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where we have set

1𝝍𝑛
𝑖 =

[

�̂�𝑛C𝑁 �̂�𝖳𝑛 ̂̃𝒄,𝑛𝑠 −
̃(

�̂�𝑛C𝑁 �̂�
𝑛
𝑁

)

]

𝑖
, (32)

2𝝍𝑛
𝑖 =

[

�̂�𝑛C𝑁 �̂�𝖳𝑛
]

𝑖
, (33)

1𝝌𝑛
𝑖 =

[

−
̃(

�̂�𝑛C𝑀 �̂�
𝑛
𝑀

)

]

𝑖
, (34)

2𝝌𝑛
𝑖 =

[

�̂�𝑛C𝑀 �̂�𝖳𝑛
]

𝑖
, (35)

�̄�𝑛
𝑖 = −

(

�̂�𝑛C𝑁 �̂�
𝑛
𝑁 − �̄�𝑛𝑐

)

𝑖
, (36)

�̄�𝑛
𝑖 = −

(

�̂�𝑛C𝑀 �̂�
𝑛
𝑀 − �̄�𝑛

𝑐

)

𝑖
, (37)

ith the collocation point that can be either 𝑖 = 0 or 𝑖 = n, depending on which end of the beam the condition holds.
As already noted above, a high efficiency of the existing explicit IGA-C solution method [49] is prevented by two main reasons:

i) the use of a consistent mass matrix; (ii) the need for a Newton–Raphson scheme for the solution of the entire system of equation,
hich is made nonlinear by the time discretized rotational balance equation.

In the following Section we address these issues proposing a fully explicit solution method.

. Fully explicit IGA-C solution method

The consistent mass matrix problem is addressed by extending the predictor–multicorrector approach proposed in [20,51] to the
onlinear rotational dynamics. To do that, first a decoupling of the Neumann boundary equations is necessary. Second, we bypass
he Newton–Raphson algorithm assuming an upfront linearized form of the rotational balance equation.

.1. The predictor–multicorrector approach for rotational dynamics

At each time step, a system in the general form 𝑴𝒙 = 𝒃, where 𝑴 is the mass matrix, 𝒙 is the vector of unknowns, and 𝒃 is
he force vector, must be solved. If 𝑴 is diagonal, the system is straightforwardly solved without any matrix inversion. If not, a
umping procedure should be adopted to promote efficiency.

In its original form [20,51], the predictor–multicorrector method allows to exploit a lumping of the mass matrix through the
ollowing iterative scheme

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝒙0 = 𝟎
for 𝑖 = 0,… , 𝑟 − 1

𝑴𝐿𝛥𝒙𝑖 = 𝒃 −𝑴𝒙𝑖

𝒙𝑖+1 = 𝒙𝑖 + 𝛥𝒙𝑖

end

(38)

here 𝑴𝐿 is the lumped mass matrix, which coincides with the identity matrix, 𝑰 , and 𝑟 denotes the number of corrector passes.
onvergence is guaranteed if 𝜌(𝑴 − 𝑰) < 1, where 𝜌(𝑴 − 𝑰) is the spectral radius of the iteration matrix.

To apply the above algorithm in a (finite) rotational beam dynamic context, we need to recast the banded mass and inertia
atrices such that the spectral radius condition is fulfilled. To do that, we first need to decouple the Neumann boundary equations

y making the assumption that ∑n
𝑗=0 𝑅𝑗,𝑝�̌�𝑛

𝑗 =
∑n

𝑗=0 𝑅𝑗,𝑝�̌�
(𝑛−1)
𝑗 . This allows to move from the left-hand side to the right-hand side

he first term in Eq. (32). Note that this term is multiplied by ℎ2, therefore, considering that in explicit dynamics the time steps are
ormally very small, we expect no significant loss of accuracy. The Neumann boundary conditions then become

2𝝍𝑛
𝑖 ℎ

2
n
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

𝑛
𝑗 = �̄�

𝑛
𝑖 − ℎ(1𝝍𝑛

𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗 + 2𝝍𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗 ) − 1𝝍𝑛

𝑖 ℎ
2

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑗 , (39)

2𝝌𝑛
𝑖 ℎ

2
𝑛
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

𝑛
𝑗 = �̄�

𝑛
𝑖 − ℎ(1𝝌𝑛

𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝 + 2𝝌𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝)�̌�

(𝑛−1)
𝑝𝑗 − 1𝝌𝑛

𝑖 ℎ
2

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑗 . (40)

After the decoupling, we perform a mass scaling for the field equations
n
∑

𝑗=0
𝑅𝑗,𝑝�̌�𝑛𝑗 =

𝝍𝑛
𝑖
𝜇

with 𝑖 = 1,… , n − 1 (41)

n
∑

𝑗=0
𝑅𝑗,𝑝𝛥�̌�𝑛

𝑗 = −
( 𝜕𝐫𝑛𝑖 (�̂�

𝑛
𝑖 )

𝜕𝜶𝑛
𝑖

)−1

�̂�𝑛𝑖 with 𝑖 = 1,… , n − 1 , (42)

nd for the Neumann boundary equations as well
n
∑

𝑅′
𝑗,𝑝�̌�

𝑛
𝑗 = (2𝝍𝑛

𝑖 )
−1 𝑭 𝑛

𝑖
2
, (43)
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𝑛
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, (44)

here we have set

𝑭 𝑛
𝑖 = �̄�

𝑛
𝑖 − ℎ(1𝝍𝑛

𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗 + 2𝝍𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝�̌�

(𝑛−1)
𝑝𝑗 ) − 1𝝍𝑛

𝑖 ℎ
2

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑗 , (45)

𝑪𝑛
𝑖 = �̄�

𝑛
𝑖 − ℎ(1𝝌𝑛

𝑖

n
∑

𝑗=0
𝑅𝑗,𝑝 + 2𝝌𝑛

𝑖

n
∑

𝑗=0
𝑅′
𝑗,𝑝)�̌�

(𝑛−1)
𝑝𝑗 − 1𝝌𝑛

𝑖 ℎ
2

n
∑

𝑗=0
𝑅𝑗,𝑝�̌�

(𝑛−1)
𝑗 . (46)

The predictor–multicorrector approach can be now employed for the dynamics of geometrically exact beams. Moreover, the
ecoupling between translational and angular accelerations allows to set up two different linear systems that can be solved
eparately. Namely, we have

[

𝑴𝑎 𝟎
𝟎 𝑴𝛼

] [

�̌�
�̌�

]

=
[

𝒃𝑎
𝒃𝛼

]

. (47)

Consider for example a case of Neumann boundary conditions at both ends of the beam, the system of the translational balance
quations, 𝑴𝑎�̌� = 𝒃𝑎, reads

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑹′(𝑢𝑐0)0,𝑝 𝑹′(𝑢𝑐0)1,𝑝 ⋯ 𝑹′(𝑢𝑐0)n,𝑝
𝑹(𝑢𝑐1)0,𝑝 𝑹(𝑢𝑐1)1,𝑝 ⋯ 𝑹(𝑢𝑐1)n,𝑝

⋮ ⋮ ⋱ ⋮

𝑹(𝑢𝑐n−1)0,𝑝 𝑹(𝑢𝑐n−1)1,𝑝 ⋯ 𝑹(𝑢𝑐n−1)n,𝑝
𝑹′(𝑢𝑐n)0,𝑝 𝑹′(𝑢𝑐n)1,𝑝 ⋯ 𝑹′(𝑢𝑐n)n,𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅
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⎢
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⎢

⎢
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(48)

here 𝑹(𝑢𝑐𝑖 )𝑗,𝑝 = 𝑅(𝑢𝑐𝑖 )𝑗,𝑝𝑰 , being 𝑰 the 3 × 3 identity matrix.
The mass 𝑴𝑎 and inertia 𝑴𝛼 matrices, apart from the type of boundary conditions (Neumann or Dirichlet), depend on the

patial discretization, in particular on the degree of NURBS/B-Splines, 𝑝, and on the number of collocation points, n. In case of
omogeneous constraints (such as clamped–clamped, hinged–hinged, or free–free beams) the two matrices are identical, reducing
he storing capacity demand.

.1.1. Sensitivity of the predictor–multicorrector method
To check the convergence of the present form of the predictor–multicorrector approach, we study the sensitivity of the spectral

adius, 𝜌𝑴𝑘
= 𝜌(𝑴𝑘 − 𝑰) with 𝑘 = 𝑎, 𝛼, to variations of 𝑝, n, and to the type of boundary conditions. We consider three possible

ombinations of boundary conditions: (𝑖) Dirichlet–Dirichlet; (𝑖𝑖) Neumann–Neumann and (𝑖𝑖𝑖) Dirichlet–Neumann. Results are
resented in Fig. 1, where 𝜌𝑴𝑘

is plotted for 𝑝 = 2, 4, 6, 8 versus the number of collocation points, n. Odd degrees are not considered
ince in collocation they normally present the same convergence rates of smaller even degrees. We observe that for all the considered
ombinations, 𝜌𝑴𝑘

< 1, meaning that convergence is guaranteed. Moreover, as already highlighted by [20,51], 𝜌𝑴𝑘
tends to increase

ith 𝑝 since the band of 𝑴𝑘 broadens as the local support of the basis functions becomes wider. On the other hand, different
oundary conditions seem to have a negligible impact on 𝜌𝑴𝑘

.

.2. Linear approximation of the rotational balance equation

As observed in [49], the Newton–Raphson algorithm normally requires only one iteration. This feature suggest that, in an
xplicit dynamics context where very small time steps are used, the nonlinearity associated with the angular acceleration term
n the rotational balance equation is rather weak. On this basis, we explore the appealing possibility to gain a significant advantage
n terms of accuracy paying a negligible cost in terms of accuracy. Namely, our assumption is to use directly a linearized form of
he rotational balance equation to completely bypass the iterative solution scheme. This is done by substituting one of the two 𝜶𝑛

𝑖
ppearing in the left hand side of Eq. (25) with 𝜶(𝑛−1)

𝑖 . Therefore, Eq. (25) becomes linear in 𝜶𝑛
𝑖 and reads as follows

[

𝒋𝑛𝑖 +
̃(

ℎ
2
𝝎(𝑛−1)
𝑝,𝑖 + ℎ2

4
𝜶(𝑛−1)
𝑖

)

𝒋𝑛𝑖

]

𝜶𝑛
𝑖 = 𝝌

𝑛
𝑖 − [𝝎(𝑛−1)

𝑝,𝑖 + ℎ
2
𝜶(𝑛−1)
𝑖 ] × (𝑗𝑛𝑖 𝝎

(𝑛−1)
𝑝,𝑖 ) , (49)

q. (49) is then discretized in space and rearranged following the same procedure presented in Section 3.1.
To recap, the proposed solution procedure is based on three modifications of the existing formulation: (i) the decoupling of the

eumann boundary conditions; (ii) the rearrangement of the system of equations to obtain a banded mass matrix, 𝑴 , containing
nly basis functions and their derivatives evaluated at the collocation points (see Eq. (49)); (iii) the use of a linearized form of the
otational balance equation to avoid the iterative scheme. We remark that, with these modifications, it is possible to subdivide the
n× 6n system of equations into two 3n× 3n subsystems, on which the predictor–multicorrector approach can be applied separately.
6
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Fig. 1. Spectral radius versus number of collocation points for different basis function degree 𝑝 and different combinations of boundary conditions. Results are
the same for both values 𝑘 can take.
7



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117283G. Ferri et al.
Fig. 2. Cantilever beam under impulsive load: geometry and applied forces.

4. Numerical results and discussion

In this section, we present the results of the proposed fully explicit IGA-C solution procedure, referred to as LU L (LUmped
Linear), and compare it with the one in [50] employing a consistent mass matrix and solving the original nonlinear system. We
refer to the latter consistent nonlinear form as CN NL. Moreover, to assess our assumption on the linear form of the rotational
equation, we provide the results of the predictor–multicorrector approach applied to the nonlinear system of equations (Eqs. (39)
and (40)). We refer to this formulation as LU NL (LUmped NonLinear). With this additional comparison, we demonstrate that LU L
does not introduce any significant loss of accuracy. Note that, as for CN NL, LU NL still requires the Newton–Raphson scheme with
the predictor–multicorrector algorithm applied at each iteration.

Four test cases are studied. Firstly, a cantilever beam under a constant tip vertical load is analyzed. Then, we study a swinging
flexible pendulum oscillating under self-weight and a three-dimensional flying beam subjected to tip forces and couples. The last
numerical test concerns a spinning beam in a gravitational field undergoing rigid-body motions. The study is completed with a
comparative analysis of the computational costs.

4.1. Cantilever beam

This problem consist of a straight, 1 m-long cantilever beam with a square cross section of side length 0.01 m [59]. The beam lies
along the 𝑥2-axis and deforms in the (𝑥2, 𝑥3) plane. It is clamped at one end and loaded at its free end with a concentrated constant
force, along 𝑥3, 𝐹3 = −100 N (see Fig. 2). The material properties are: density 𝜌 = 7800 kg/m3, Young’s modulus 𝐸 = 210 × 109 N/m2,
and Poisson’s ratio 𝜈 = 0.2. Fig. 3 shows the time history of the tip displacement. The black solid line refers to the consistent nonlinear
formulation (CN NL) [49], whereas the blue dashed line to the lumped nonlinear (LU NL) formulation, and the orange dashed line to
the lumped linear one (LU L). Overall, a very good agreement is observed. At the beginning of the simulation the three formulations
are almost identical. As time goes (see, e.g., the peak at ca 0.465 s), a slight difference is observed in the LU L.

To assess the spatial accuracy of the proposed methods, we perform a convergence study of the 𝐿2-norm of the error, 𝑒𝑟𝑟𝐿2
=

‖𝒖ℎ − 𝒖𝑟‖𝐿2
∕‖𝒖𝑟‖𝐿2

, where 𝒖ℎ and 𝒖𝑟 are the approximated and reference displacements, respectively, evaluated at 𝑡 = 0.001 s and
computed over a fixed grid of equally spaced points. For each approach, the reference solution is computed with 𝑝 = 6, n = 80 and
ℎ = 1 × 10−7 s. In order to minimize the effects of the temporal error, the time step size is reduced when n and 𝑝 are increased [50].
The convergence curves are shown in Fig. 4. The CN NL case is presented in Fig. 4a, whereas LU NL and LU L in Fig. 4b and c,
respectively. No differences are observed in the rates among the three approaches, demonstrating the capability of the proposed
fully explicit method, LU L, to keep the same IGA-C high-order space accuracy of the reference formulation CN NL. Concerning
𝑝 = 2, it shows a slower convergence as documented also in [49,50].

4.2. Swinging flexible pendulum

This test concerns a pendulum swinging under the action of its self-weight (see Fig. 5). The beam presents the same initial
geometry of the cantilever case (see Section 4.1), but it is hinged at one end and has a circular cross-section of diameter 0.01 m [60–
63]. The material properties, the same as in [50], are 𝐸 = 5 × 106 N/m2, 𝜈 = 0.5, and 𝜌 = 1100 kg/m3. The spatial discretization
relies on basis functions of degree 𝑝 = 4 and n = 30 collocation points. The simulation lasts 1 s with a time step span ℎ = 1 × 10−5 s.

Fig. 6 shows some snapshots of the swinging beam. The time history of the tip displacement is shown in Fig. 7. An excellent
agreement is observed for all cases.

To verify the high order spatial accuracy of the proposed method, convergence plots are shown in Fig. 8. The 𝐿2-norm of the
error, 𝑒𝑟𝑟𝐿2

, is computed on the displacements evaluated at 𝑡 = 0.1 s. The reference solution is obtained with 𝑝 = 6, n = 80 and
ℎ = 2.5 × 10−6 s. The rates of convergence are studied for 𝑝 = 2, 4, 6 with n = 10, 20, 40, 60 and time step sizes equal to 5 × 10−5,
2.5 × 10−5, 1.25 × 10−5 and 5 × 10−6, respectively. Compared to the reference case, CN NL, excellent rates are achieved also with LU
NL and LU L, proving again the
8
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Fig. 3. Tip displacement of a cantilever beam subjected to a tip force 𝐹3 = −100 N. 𝑝 = 4, n = 20, ℎ = 1× 10−6 s: results for the entire simulation time (left) and
close-up for 𝑡 ∈ [0.44, 0.48] s (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Cantilever beam under tip load: convergence plots for 𝑝 = 2, 4, 6 vs. number of collocation points of the three solution procedures. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Three-dimensional free flying beam

With this numerical example, we test the capabilities of our proposed fully explicit formulation to address the well-known
problem of the free flying beam undergoing very large and complex three-dimensional motions and rotations [49,50,56,64–
66]. The same material properties of [56] are used: C𝑁 = diag(10000, 10000, 10000) N, C𝑀 = diag(500, 500, 500) N m2, 𝑱 =
diag(10, 10, 10) kg m2, and 𝜇 = 1 kg/m.

Fig. 9 shows the initial shape of the beam and the load time histories applied to one of the free ends of the beam. The beam
axis is discretized with 𝑝 = 6 B-Splines and n = 60 collocation points. The total simulation time is 𝑇 = 5 s with a time step size of
ℎ = 5 × 10−6 s.

Snapshots of the deformed configurations obtained with the three different formulations, CN NL, LU NL, and LU L, are plotted
in Fig. 10. No distinguishable differences are observed among the formulations.
9
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Fig. 5. Swinging flexible pendulum subjected to a distributed vertical load.

Fig. 6. Snapshots of a swinging flexible pendulum from time 0 to 1 s with increments of 0.1 s. 𝑝 = 4, n = 30, ℎ = 1 × 10−5 s.

Fig. 7. Swinging flexible pendulum results for 𝑝 = 4, n = 30, ℎ = 1 × 10−5 s: tip vertical displacement time history (left) and close up for 𝑡 ∈ [0.5001, 0.5005] s
(right).
10
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Fig. 8. Swinging flexible pendulum: convergence plots for 𝑝 = 2, 4, 6 vs. number of collocation points of the three solution procedures. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Flying flexible beam: initial configuration and loads [50].

The spatial convergence rates of the 𝐿2-norm of the error 𝑒𝑟𝑟𝐿2
= ‖𝒄ℎ − 𝒄𝑟‖𝐿2

∕‖𝒄𝑟‖𝐿2
computed at 𝑡 = 0.5 s are shown in Fig. 11.

𝒄ℎ and 𝒄𝑟 are the approximate and reference position vectors of the beam centroid, respectively, The reference solution is obtained
with 𝑝 = 6 and n = 150, and ℎ = 5 × 6 s. The dominance of the temporal error over the spatial one is clearly noticeable as the
convergence rates do not go beyond the fourth order. However, we remark that the rates of both LU NL and LU L are identical to
the reference formulation CN NL (Fig. 11a). This clearly indicates that the sub-optimal rates for 𝑝 = 6 are not ascribable neither
to the mass lumping nor to the linearization of the rotational equations, but only to the low (second-) order accuracy of the time
integrator.
11
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Fig. 10. Flying flexible beam: snapshots of the deformed configurations obtained with 𝑝 = 6, n = 60 and ℎ = 5 × 10−6 s.

Fig. 11. Free flying beam: convergence plots for 𝑝 = 2, 4, 6 vs. number of collocation points of the three solution procedures. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Spinning beam under gravitational load.

4.4. Spinning beam in a gravitational field

In this last numerical example we consider a spinning beam in a gravitational field. This test is carried out to further test the
capabilities of the proposed method to address large and mainly rigid-body rotations, since the elastic deformations are very small.
The same beam considered in Section 4.1, but with a different square cross-section of side length 0.0175 m, is hinged at one of
its end and loaded by its self-weight, 𝑞3 (see Fig. 12). Additionally, we prescribe an initial angular velocity to each beam point,
𝝎0 = [0, 0, 𝜔0

3]
𝖳. We select three different values for 𝜔0

3: (i) 𝜔0
3 = 0.2𝜋, reproducing a very slow spinning beam dominated by the

gravitational load and leading to large three-dimensional motions; (ii) 𝜔0
3 = 2𝜋, where we have a combination of fast rotations and

out-of-plane deflections; (iii) 𝜔0
3 = 20𝜋, where the angular velocity is sufficiently high to keep the rigid-body motion almost entirely

in the plane (𝑥1, 𝑥2).
Snapshots of the beam motion and tip displacement time histories are reported in Figs. 13, 14 and 15 for 𝜔0

3 = 0.2𝜋, 2𝜋 and
20𝜋, respectively. Compared to the reference formulation CN NL, excellent results are obtained by both LU NL and LU L lumping
schemes.

4.5. Considerations on the efficiency of the formulations

In this section, we provide a comparison in terms of computational time among the three formulations: lumped linear, LU L,
lumped nonlinear, LU NL, and the reference one, i.e., consistent nonlinear CN NL.

For each of them, numerical simulations are performed for different values of 𝑝 and n, keeping the time size ℎ fixed to the
value adopted for the respective overkill solutions. The total time is set to 500 h. The efficiency is estimated calculating the average
CPU time required for a single time step, ℎCPU. Since the scope of this study is to provide quantitative comparisons, rather than to
rigorously estimate the computational performances of each formulation, results are plotted in terms of normalized CPU time steps,
ℎ𝑛CPU = ℎCPU∕ℎ𝑟CPU. For a given degree 𝑝, the reference value, ℎ𝑟CPU, is taken as the average CPU time per time step obtained with
n = 10 collocation points using the reference CN NL formulation.

Results are presented for the cantilever beam in Fig. 16, for the swinging pendulum in Fig. 17, for the flying beam in Fig. 18, and
for the fast spinning beam (𝜔0

3 = 20𝜋) in Fig. 19 (similar curves are observed for 𝜔0
3 = 0.2𝜋, 2𝜋, therefore associated plots are not

reported). Solid lines refer to the CN NL case, whereas dashed and dashed dotted lines to LU NL and LU L formulations, respectively.
The same colors adopted in the spatial convergence plots (see Figs. 4, 8, and 11) are here employed for 𝑝 = 2 (dark red lines in
Figs. 16a–18a), 𝑝 = 4 (blue lines in Figs. 16b–18b), 𝑝 = 6 (orange lines in Figs. 16c–18c) curves.

The LU L formulation exhibits always the lowest ℎ𝑛CPU. In particular, it is noted that the most significant CPU time reduction
occurs for large values of n, meaning that the proposed method has the potential to dramatically increase the efficiency in simulations
of complex beams systems with a high number of degrees of freedom, still preserving the high-order accuracy typical of IGA-C.
Moreover, except for the clamped case with 𝑝 = 4, 6 (see Fig. 16) and for the spinning beam with 𝑝 = 6 (see Fig. 19), the LU NL
formulation is faster than the CN NL one, even with a low number of collocation points. As expected, as 𝑝 increases, the efficiency
13

gain tends to reduce due to a larger spectral radius (see Fig. 1) which requires more corrector passes.
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Fig. 13. Spinning beam in a gravitational field: results with initial angular velocity, 𝜔0
3 = 0.2𝜋.

5. Conclusions

In this paper, we proposed a fully explicit dynamic IGA-C formulation for geometrically exact beams. Starting from an existing
formulation, which is explicit only in the strict sense of the time integration algorithm, we made the method fully explicit adapting an
existing predictor–multicorrector method, originally proposed for standard linear elastodynamics, to the case of the finite rotational
dynamics of geometrically exact beams.

The procedure relies on decoupling the Neumann boundary conditions and on a rearrangement and rescaling of the mass matrix.
Moreover, we pursued additional efficiency removing the angular velocity-dependent nonlinear term in the rotational balance
equation, bypassing the need for a time-consuming iterative scheme. The performance of the method is tested with three numerical
applications involving both Dirichlet-Neumann and Neumann-Neumann boundary conditions.
14
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Fig. 14. Spinning beam in a gravitational field: results with initial angular velocity 𝜔0
3 = 2𝜋.

We demonstrated that the proposed method preserves the same high-order spatial accuracy as the ‘‘exact’’ case where a consistent
mass matrix and the full nonlinear rotational balance equation are used. We also quantified the gain in terms of computational cost
and demonstrated that the proposed method significantly decreases the computational time without losing accuracy. This gain
increases with the number of collocation points, indicating that the proposed lumping scheme has the potential to manage complex
15
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Fig. 15. Spinning beam in a gravitational field: results with initial angular velocity, 𝜔0
3 = 20𝜋.

dynamic problems with many degrees of freedom which would be not affordable with methods using the consistent mass matrix. In
some cases, we found that the temporal error dominates the spatial one, regardless of the mass matrix used. Therefore, future works
will be devoted to the development of SO(3)-consistent beam dynamic formulations with higher-order accuracy for both space and
time. Given the raising interest in the dynamics of multi-body and complex-shaped systems, such as mechanical meta-materials,
future developments will also include multi-patch structures.
16
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f

Fig. 16. Normalized CPU time per time step vs. number of collocation points for the cantilever beam. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

Fig. 17. Normalized CPU time per time step vs. number of collocation points for the swinging flexible pendulum.
17
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f

Fig. 18. Normalized CPU time per time step vs. number of collocation points for the free flying beam. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

Fig. 19. Normalized CPU time per time step vs. number of collocation points for the spinning beam with 𝜔0
3 = 20𝜋.
18
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