UNIVERSITA
DEGLI STUDI

FIRENZE

FLORE
Repository istituzionale dell'Universita degli Studi
di Firenze

On the exactness of the e-constraint method for biobjective nonlinear
integer programming

Questa € la versione Preprint (Submitted version) della seguente pubblicazione:

Original Citation:

On the exactness of the e-constraint method for biobjective nonlinear integer programming / Marianna de
Santis; Gabriele Eichfelder; Daniele Patria. - In: OPERATIONS RESEARCH LETTERS. - ISSN 0167-6377. -
50:(2022), pp. 356-361. [10.1016/j.0rl.2022.04.007]

Availability:
This version is available at: 2158/1350092 since:

Published version:
DOIl: 10.1016/j.0rl.2022.04.007

Terms of use:
Open Access

La pubblicazione & resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per I'accesso aperto dell'Universita degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-0a-2016-1.pdf)

Publisher copyright claim: _ . _ o
Conformita alle politiche dell'editore / Compliance to publisher's policies

Questa versione della pubblicazione & conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

11 May 2024

On the exactness of the e-constraint method for
biobjective nonlinear integer programming

Marianna De Santis* Gabriele Eichfelder! Daniele Patria*

October 12, 2021

Abstract

The e-constraint method is a well-known scalarization technique used for
multiobjective optimization. We explore how to properly define the step size
parameter of the method in order to guarantee its exactness when dealing with
problems having two nonlinear objective functions and integrality constraints
on the variables. Under specific assumptions, we prove that the number of
nonlinear integer subproblems that the method needs to address to detect
the complete Pareto front is finite. We report numerical results on portfolio
optimization instances built on real-world data and compare the e-constraint
method with an existing criterion space algorithm for biobjective nonlinear
integer programming.

Key Words: Multiobjective Optimization, Integer Programming, e-constraint
Algorithm, Criterion Space Algorithms.

Mathematics subject classifications (MSC 2010): 90C10, 90C29

1 Introduction

There is a growing interest in devising exact methods for multiobjective integer
programming (MOIP) as it is underlined by recent contributions in this respect (see,
e.g. [2,5,6,7,9,18]). This is partly due to the fact that MOIPs represent a flexible
tool to model real-world applications. Such models appear in works on finance,
management, transportation, design of water distribution networks, biology [15,
20, 21, 22, 23]. MOIPs are intrinsically nonconvex, implying that the design of

*Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Univer-
sita di Roma, Via Ariosto, 25, 00185 Roma, Italy, (marianna.desantis@uniromal.it,
patria.1743074@studenti.uniromal.it)

tInstitute of Mathematics, Teschnische Universitét Ilmenau, Po 10 05 65, 98684 Ilmenau, Ger-
many (gabriele.eichfelder@tu-ilmenau.de)

exact and efficient solution methods is particularly challenging and requires global
optimization techniques [11]. In this paper, we focus on biobjective nonlinear integer
programming problems of the following form

min (fi(z), f2(2))"
st. zeXNnzZ, (BOIP)

where X C R” and fi, fo : R — R are continuous functions. The image of the
feasible set X N Z™ under the vector-valued function f : R"® — R? represents the
feasible set in the criterion space, or the image set. When dealing with problem
(BOIP), one wants to detect the so called efficient solutions x* € X NZ". Those
are feasible points such that there exists no other feasible point z € X N Z" for
which f;(z) < f;(2*), j = 1,2 and f(z) # f(2*). The images f(z) of efficient points
r € X NZ" are called non-dominated points. Furthermore, a point € X NZ" is
called a weakly efficient point of (BOIP) if there is no x € X NZ" with f(z) < f(Z),
where < is meant componentwise. The images f(z) of weakly efficient solutions
r € X NZ" are called weakly non-dominated points. We aim to solve (BOIP)
exactly in the sense that we aim to detect its complete set of non-dominated points,
also called the non-dominated set or Pareto front. In the following, we will denote
the non-dominated set by Vy.

Regarding general purpose methods able to give correctness guarantees, the focus
is most of all on multiobjective linear integer problems and we refer to [16] for a
survey. A class of algorithms developed is the class of so called criterion space
search algorithms, i.e., algorithms that work in the space of the objective functions
(see, e.g. [14, 18, 19]). Such algorithms find non-dominated points by solving a
sequence of single-objective linear integer programming problems. After computing
a non-dominated point, these algorithms remove the dominated parts of the criterion
space (based on the obtained non-dominated point) and look for not-yet-found non-
dominated points in the remaining parts.

Criterion space algorithms usually rely on scalarization techniques. This means
that the multiobjective problem is replaced with a parameter-dependent single-
objective integer optimization problem. In order to find several non-dominated
solutions, a sequence of single-objective integer optimization problems has to be
handled considering different values of the parameters. A typical issue is how to
choose the parameters so that the method can guarantee the detection of the com-
plete non-dominated set. Criterion space algorithms have been extended to deal
with nonlinear problems, even if this clearly adds difficulties both from a theoretical
and a numerical point of view. In case of (BOIPs), an approach that can be followed
to deal with nonlinearities is the one proposed in [7], where the Frontier Partitioner
Algorithm (FPA), relying on the use of the weighted-sum scalarization, has been
proposed.

It is the purpose of this paper to use the ideas developed in [7] to define an exact
criterion space algorithm based on another scalarization technique, the e-constraint
method. The e-constraint method produces single-objective subproblems adding

further constraints to the original feasible set. More specifically, given (BOIP),
the e-constraint method minimizes single-objective optimization problems of the
following form:
min f>(z)
st fi(z) <e (Pe)
reXNZ".

The parameter ¢ varies between min{fi(xz) | z € X NZ"} and fi(z) — 0 with
z € argmin{ fo(x) | z € X NZ"}. Thereby, ¢ is a positive step size which influences
the decrease of the upper bounds e. As it will be clarified in the next section, the role
of the step size J is crucial to detect the complete non-dominated set of a (BOIP).
The role of f; and f; in the definition of Problem (P.) can be interchanged.

The paper is organized as follows. In Section 2, we recall the y-positivity assump-
tion introduced in [7] and we establish our main result. Under specific assumptions,
we prove that the e-constraint method is able to detect the complete Pareto front
of a (BOIP) after having addressed a finite number of single-objective problems.
In Section 3, we report our numerical experience, comparing the performance of
FPA* [7] with the e-constraint method devised on portfolio optimization problems.
Section 4 concludes.

2 The ~v-positivity assumption and the exactness
of the s-constraint method

The scheme of the e-constraint method applied to (BOIP) is reported in Algorithm
1. As already mentioned, at every iteration k of the algorithm, the following single-
objective integer subproblem needs to be addressed

min f2(z)
st fi(z) <€t (PY)
re XNa-,

with e¥ € R properly set. Recall that by [10, Proposition 4.3] any optimal solution
of (P¥) is a weakly efficient solution of (BOIP). Moreover, by [10, Theorem 4.5], for
any efficient point z* of (BOIP) there exists an upper bound &* € R such that x* is
an optimal solution of (P*). However, we cannot solve (P¥) for an infinite number
of upper bounds ¢*. Thus, the question is whether and how we can find a finite
number of upper bounds to which we have to solve (P¥) such that we can still find
all non-dominated points of (BOIP). In the following we discuss assumptions and
an algorithm which guarantee such a finiteness result.
As a first assumption, we ask for the availability of a solver for (P¥).

Assumption 2.1. There exists an oracle that either returns an optimal solution
of (P¥) or certifies its infeasibility for any choice of e* € R.

Note that there exists a number of solvers able to deal with single-objective non-
linear integer programming problems such as, e.g., BARON [17] or SCIP [12], so that
Assumption 2.1 holds for many classes of (BOIP). In our computational experience,
we will consider BOIPs having quadratic objective functions and a polyhedral set
X and we will use GUROBI [13] as a solver.

Algorithm 1: Scheme of the e-constraint method.

Input: (BOIP), 6 >0,k =1;
Output: the Pareto front Yy of (BOIP);
Compute z* € argmin, . yqzn f1(2)
Set ¥ = f,(Z), where Z € argmin,c vz f2(2)
Set M = {f(2)
Set ' = f1(%) — o
while % > f,(2*) do

Compute z" € argmin, yiqzn fo(7), with

Xr=Xn{reR": fi(r) <}

Set M = {f(zF)} UM

Set ! = fi(z%) — 6

Set k=k+1
end
Apply a filtering procedure to M to obtain Yy
Return Vy

In the definition of FPA (and FPA*) in [7] some basic assumptions on Prob-
lem (BOIP) had to be made. Here we make the same assumptions, reported in the
following.

Assumption 2.2 (Existence of the ideal point). We assume that the ideal objective
values fi4 = minynze fi(x), i = 1,2, and thus the ideal point fi9 := (fi4, fid) € R?,
exists.

The crucial assumption that we make in order to prove the exactness of the e-
constraint method is the so called positive gap value assumption. We need to assume
that a positive value exists that underestimates the distance between the image of
two integer feasible points of (BOIP), componentwise.

Definition 2.3 (Positive y-function). Let v > 0. A function g : X — R is a
positive y-function over X NZ™ if it holds |g(x) — g(z)| > v for all z,z € X N Z"

with g(x) # 9(2).

Assumption 2.4. The functions f; : R® — R, ¢ = 1,2 in Problem (BOIP) are
positive y-functions as in Definition 2.3 for some v > 0.

Assumptions 2.2 and 2.4 imply that the non-dominated set Yy of (BOIP) is
finite (see Proposition 2.7 in [7]). Thus, we know that there exists a finite number

4

of upper bounds " to which we have to solve (Pf) to find the complete Pareto-
front. The question is how to find this parameter set, and Algorithm 1 proposes an
answer for that. Note that there exist a number of classes of functions that easily
satisfy Assumption 2.1 and Assumption 2.4 (see Section 4.3 in [7]), such as linear or
quadratic functions defined over Q", or polynomials with rational coefficients over
Z™ as long as they have no roots in Z™. The following example shows a case where
only Assumption 2.2 holds, while Assumption 2.4 does not.

Example 2.5. Let XNZ = {z € Z | x > 0}, f1(z) = arctan(z) and fo(z) = (z—1)%
We have that fi¢ = (0,0), so that Assumption 2.2 is verified. However, it is not
possible to findy > 0,7 € R such that | arctan(x)—arctan(y)| > v for allz,y € XNZ
with arctan(x) # arctan(y). Therefore, Assumption 2.4 does not hold.

We further want to underline that it is common to assume X to be bounded so
that X N Z™ and f(X NZ") are finite sets. In this case, Assumption 2.4 trivially
holds.

Remark 2.6. In case function fs, which will be minimized, and the function f,
which will be moved to the constraints, in (PIE€) are fized, the assumptions can be
relaxed as follows: Assumption 2.4 can be reduced to assuming that only fi is a
positive y-function. In all proofs presented here we make only use of this property for
fi. Moreover, the above mentioned results that the non-dominated set is finite still
holds, as the proof in [7, Proposition 2.7] can be adapted to this reduced assumption,
as there are no two different non-dominated points with the same first component.

Let Assumption 2.4 hold for f; and f; with v > 0. Let 6 > 0 be the input
parameter for Algorithm 1. Two different scenarios occur:

e § > v in this case the e-constraint method could miss some points of the
Pareto front Yy, as the step size § may be wider than the distance between
two non-dominated points;

e § < v: the e-constraint algorithm is able to detect the complete Pareto front
Yn as shown in the following.

As already mentioned, according to [10, Proposition 4.3|, any optimal solution
of (P¥) is a weakly efficient solution of (BOIP). For €° the point & is an optimal
solution of (P?) by construction and thus weakly efficient. Note that we cannot
prove that a solution of (P*) is efficient, as a point & € X* NZ" may exist such that
f1(@) < fi(z%) and fo(Z) = fo(2"). Hence, before the filtering step, the set

M= {f(@h), f(@*72), . f(2h), f(2)}

may contain points which are just weakly non-dominated without being non-dominated.
We will show in the next lemmata that it holds Yy C M. The filtering step ex-
cludes those points z € R? from M for which there exists some y € M with y; < 2,

i = 1,2 and y # z. Such a filtering procedure is cheap as the points are already
sorted w.r.t. increasing first component and as all points in M are already weakly
non-dominated. As M C f(X NZ"), no point from Yy is excluded by this step.
As for finite sets the domination property holds, i.e., f(X NZ") C Yy + R, and
by using the same argumentation as in [7, Proposition 2.7], for any weakly non-
dominated point z in M which is not also non-dominated a non-dominated point
y € Yy € M exists with y < 2z, y # z. Thus, any point z € M with z & Yy is in
fact filtered out. Hence it remains to show that Yy C M.

First, we show that the e-constraint method can find, at every iteration, a not-yet
detected weakly efficient solution of (BOIP) and no non-dominated point is missed
in-between, where in-between refers to the sorting w.r.t. the first component, i.e.
fr(@®Y), fi(2%2), ..., fi(2h), fi(2). For the following, recall that 2° := & is weakly

efficient and is the point detected at iteration k = 0.

Lemma 2.7. Let Assumption 2.4 hold with v > 0. Assume that 0 < ~ in Algo-
rithm 1, k > 1, and that the point x*~1 is the point detected at iteration k — 1.
Then, at step k, Algorithm 1 finds a weakly non-dominated point f(z*) and no non-
dominated point y with y # f(a), y # f(2*1) and with fi(2*) < yy < fi(z*h)
ex1sts.

Proof. Let 2% € argmin, g yiqgn fo(z) where X* = X N {zx € R" : fi(z) < *} and
with e* = f1(2F71) — 6. By [10, Proposition 4.3] the point z* is, as well as x*~!,
a weakly efficient solution of (BOIP). Assume that there exists an efficient point
T e XNZ with fi(z%) < f1(2) < fi(z*1). By Assumption 2.4 we have either
H(@) = fi(a®1) or fu(7) < fila™) — 7.

First, let fi1(Z) = fi(z*'). As 2F~! was obtained by solving (P*™') and as #
is feasible for this problem we have fo(Z) > fo(z*7!). As 7 is efficient we derive
f(@) = f(x*1). Second, let fi(7) < fi(z*1) — 7. As —y < —§ it follows f1(%) <
fi(xF~1) —§. Then 7 is feasible for (P¥) and as a consequence fo(2¥) < fo(Z). As &
is efficient and we have assumed that fi(z*) < f1(Z) we derive f(z*) = f(2). O

As a consequence of Lemma 2.7, we have that at the end of the algorithm it
holds for any non-dominated point y € Yy with y; € [fi(2*71), f1(#)] that y € M.
By the definition of & there is no y € Yy with y; > f1(Z). Next we show that we
miss no non-dominated point y with y; < fi(2*~1) by stopping the while loop based
on ef = fi(2F71) —§ < fi(z*), or in case we do not start the while loop at all, based
onet = fi(%) — 6 < fi(z").

Lemma 2.8. Let Assumption 2.4 hold with v > 0. Assume that 6 < v in Al-
gorithm 1 and that the algorithm stopped at some iteration k. Then, there is no
non-dominated point y with v, < fi(x*71) in case k > 2, and with y; < fi(Z) in
case k= 1.

Proof. First, we consider the case £ > 2. Then the algorithm stopped due to
ek = fi(x* 1) —§ < fi(z*). Assume y is a non-dominated point with y; < fi(z*~1).

6

By Assumption 2.4 we have y; < fi(2*~1) —~ and hence y; < fi(2* 1) -6 < fi(x*)
which is a contradiction to the definition of x*. Next, let £ = 1, i.e., the while
loop did not start at all due to ! = f(2) — & < fi(z*). Assume y is a non-
dominated point with y; < fi(2). Then we obtain with Assumption 2.4, as before,
that y1 < fi(2) —v < fi(@) — 6 < fi(«*), which is again a contradiction to the
definition of z*. O

By Lemma 2.7 and Lemma 2.8 we have Vy C M. However, there may ex-
ist weakly non-dominated points that cannot be found by our algorithm, as the
following example shows:

Example 2.9. Let YN7Z = {1,2,3,4}, fi(z) = 5—x and fo(x) =1 for allz € XNZ.
Thus we have v = 1. All feasible points x are weakly efficient, but only x = 4 is
efficient. We apply Algorithm 1 with § = 0.5 < . Let 2* = 4, £ = 1 and thus
e¥ = 4. For et = 3.5 we may compute ' = 4 and the algorithm would stop without
finding the remaining weakly efficient solutions.

It is important to note that the choice of § has no impact on the number of
iterations needed by the algorithm to stop. This means that using 6* < v or 62 < v
with 0 < 6! < §? < « leads to the same. So there is no need to find the largest
possible value for v but any ~ for which Assumption 2.4 is satisfied will be enough.
It is just important that 0 is not chosen larger then any possible ~.

Lemma 2.10. Let Assumption 2.4 hold with v > 0. Assume that 0 < §' < §? < v
and that the point 21 is the point obtained by solving (P’;—l). Then a point T s
an optimal solution of (P¥) with e = fi(z*=') — 6, if and only if T is an optimal
solution of (P¥) with e* = fi(x*~1) — §,.

Moreover, for any optimal solution T of (P¥) with ¢ = fi(a*~') — & for some
6 € (0,7] it holds f1(Z) < fr(x*1) — .

Proof. First, let Z be an optimal solution of (P*) with e¥ = f,(2"~') — d,. Then Z is
feasible for the problem with ¥ = f;(z*71) — §,. Assume 7 is not optimal for that
problem. Then there exists 2’ feasible for the problem with e¥ = f;(z*~!) — 6; with
fa(a") < fo(Z). As fi(2') < fi(z*1) — 6, we have fi(2') < fi(zF71) and we get by
Assumption 2.4 fi(2') < fi(x*=1) —~. Thus fi(z') < fi(z*1) — 6, and 2’ is feasible
for (P¥) with eF = fy(2*=1) — §, . Thus fo(2') > fo(#) which is a contradiction.
Next, let Z be an optimal solution of (P*) with ¥ = fi(2*') — 6,. Thus
f(@) < fi(z* 1) and we get by Assumption 2.4 f1(z) < fi(z*') —~. Thus
filz) < fi(zF1) — 6, and T is feasible for (P*) with ¥ = fi(aF"1) — &, . As
the feasible set for (P¥) for &, is a subset of the feasible set for d;, we obtain that z
is also optimal for the problem with d5. This also shows that any optimal solution

z of (P¥) with e¥ = f1(2*') — ¢ and 6 € (0, 7] satisfies f1(z) < fi(zF1) —v. O

Based on the previous lemmata we are able to prove the following result.

Theorem 2.11. Let Assumptions 2.1, 2.2 and 2.4 hold. Let 6 < ~y. Algorithm 1
finds the complete Pareto front Yy of (BOIP) after having addressed a finite number
of single-objective integer programs.

Proof. By Lemma 2.7 and Lemma 2.8 we have Yy C M and after the filtering step,
as discussed above, we obtain exactly the set). Thanks to Assumption 2.4 we
have that the while loop will take at most m' = | (f1(&) — fi(z*)) /é] iterations.
Based on Lemma 2.10 it makes no difference within the while loop how § € (0,~]
is chosen and thus the upper bound is m = | (fi(Z) — fi(z*)) /] iterations. Then,
considering the two single-objective integer programs tackled at the beginning of
Algorithm 1 for the computation of z* and Z, the total number of single objective
integer programs addressed by Algorithm 1 is m + 2. O

Note that the generated set M contains weakly non-dominated points only and in
each step of the while loop in Algorithm 1 a not-yet detected weakly non-dominated
point of (BOIP) is found. For that reason, the while loop will take at most as
many iterations as the number of weakly non-dominated points. However, we have
no guarantee that the set of weakly non-dominated points of (BOIP) is finite. But
using the same arguments as in the proof of [7, Proposition 2.7.] we have that the
number of weakly non-dominated points y with fi(z*) < y; < f1(Z) is finite and
that thus the number of iterations is finite. This is another possibility to prove
Theorem 2.11 above. Moreover, in case there are no weakly non-dominated points
which are not at the same time non-dominated, we need to solve exactly |Vy| + 1
single-objective integer programs.

3 Numerical results

In our computational experiments, we consider bi-objective nonlinear integer in-
stances arising from portfolio selection problems. Let p € R™ be the expected
return and Q € R™"™ be the covariance matrix with respect to a specific set of
assets. We consider the following model

min (—plz, 27Qx)
st. afz <b

x>0

x €L,

where the elements of a € R™ are the prices of the financial securities, b € R is the
budget of the investor and the non-negativity constraint rules out short sales. The
decision variable x; € Z, i = 1, ..., n stands for the amount of unit of a certain asset
the investor is buying. Note that for this model Assumption 2.1 is satisfied, as the
single-objective integer subproblem built from problem (3) is an integer quadratic
problem that can be addressed by e.g. GUROBI [13].

As benchmark data set, we used historical real-data capital market indices
from the Eurostoxxb0 index that were used in [3, 4] and are publicy available
at https://host.uniroma3.it/docenti/cesarone/DataSets.htm. This data set
was used for solving a Limited Asset Markowitz (LAM) model. For each of the
48 stocks the authors obtained 264 weekly price data, adjusted for dividends, from
Eurostoxx50 for the period from March 2003 to March 2008. Stocks with more than
two consecutive missing values were disregarded. Logarithmic weekly returns, ex-
pected returns and covariance matrices were computed based on the period March
2003 to March 2007. By choosing stocks at random from the 48 available ones, we
built portfolio optimization instances of different sizes with u € Q™ and Q € Q™ ™.
We decided to generate 60 different instances by considering n = 5, 10, 25, 30 stocks.
For every n, 15 different instances have been generated. Hence, we got the covari-
ances matrices, the expected returns and the prices for every combination by picking
the proper information from the files provided. As in [1], for every instance, we set
b=10 >, a;, representing the budget of the investor. In order to run FPA* and
the exact version of the e-constraint method, we need a proper value v > 0 so that
the y-positivity assumption is satisfied. Therefore, we had to pre-process the data,
trimming the number of decimal digits to four and multiplying the entries by 103,
ending with v > 0.1. Note that, since the entries of () and p are in @, the value
can be defined as 1/r, where r € N is the least common multiple of the denominators
of the rational coefficients (see [7, Proposition 4.14]).

Both in the implementation of FPA* and of the e-constraint method, we con-
sidered the linear objective —u?x as the function defining the additional constraint
in the single-objective integer subproblems. Consequently, both FPA* and the e-
constraint method have to deal with a sequence of single-objective convex quadratic
integer problems with linear constraints. In our Python implementation of the two
algorithms, we used the MIQP solver of GUROBI [13].

All experiments have been executed on an Intel Core 15-6300U CPU running at
2.40 GHz and all running times were measured in cpu seconds.

3.1 Comparison with FPA*

In Table 1 and Table 2 we report, for each instance, the CPU time and the number
of iterations (itppa* and iteps) needed by FPA* and the e-constraint method to detect
the non-dominated set. Note that the total number of single-objective subproblems
solved by FPA* and e-constraint method is itppa+ + 2 and iteps + 2, respectively.
FPA* and the e-constraint method have very similar performances, as the number
of subproblem addressed by the two algorithms resulted to be very close in practice.
However, the number of subproblems solved by the e-constraint method can be
larger than |Yy| + 2, which is the number of subproblems solved by FPA*.

We further compare FPA* and the e-constraint algorithm using performance
profiles as proposed by Dolan and Moré [8]. Given a set of solvers S and a set
of problems P, the performance of a solver s € & on problem p € P is compared

Instance n=>5 n =10

FPA* | itppar | £-const | iteps FPA* | itppa- | e-comst | iteps
pl | 24.99 7381 24.60 | 7381 238.65 | 34890 234.75 | 34915
p2 6.69 1465 6.55 | 1467 78.24 | 10395 76.97 | 10390
p3 | 34.13 6103 32.89 | 6105 60.35 6047 60.55 6053
p4 1.89 402 1.81 402 47.17 6972 46.36 6978
p5 6.02 1208 5.86 | 1208 182.29 | 32894 180.58 | 32953
p6 3.09 709 3.03 709 50.24 6268 49.40 6272
p7 8.77 1676 8.56 | 1677 17.28 2372 17.17 2375
pS | 4.61 845 4.20 | 846 [230.24 | 23700 220.50 | 23714
p9d | 1.73 412 1.59 | 413 | 102.46 | 13544 96.96 | 13548
pl0 2.09 428 1.95 430 93.25 8469 88.34 8471
pll | 7.79 | 1547 7.29 | 1550 | 103.55 | 14987 98.22 | 14989
pl2 4.44 837 4.13 840 69.71 7779 66.24 7784
pl3 | 40.04 7257 37.41 | 7262 57.35 5057 54.45 5058
pl4d 5.45 1258 5.06 | 1259 || 305.46 | 26330 291.58 | 26339
pls | 10.73 1869 10.00 | 1874 48.47 4990 46.50 4995

Table 1: Results

on instances with n = 5 and n = 10 variables

Instance n =25 n =30

FPA* | itppa- | e-comst | iteps | FPA* | itppa+ | c-const iteps
pl 1300.58 64896 1265.80 64978 | 10068.92 | 168679 | 10137.36 | 168963
p2 3111.57 | 91538 | 3145.79 | 91595 || 3684.09 | 57207 | 3682.69 | 57209
p3 974.07 77143 989.09 77136 5381.17 85015 5416.53 85033
p4 543.68 35835 049.17 35850 9712.74 | 134844 9906.55 | 134681
p5 807.29 | 46351 821.02 | 46353 || 5226.97 | 87750 | 5311.91 | 87784
p6 737.88 36444 747.85 36438 7284.13 | 111329 7465.47 | 111349
p7 1723.60 | 126491 1733.17 | 126556 7036.66 | 131154 7121.33 | 131180
ps 954.39 | 39077 948.63 | 39085 || 6923.09 | 112315 | 6908.47 | 112349
P9 899.33 38413 884.50 38411 9984.14 | 139199 9973.19 | 139205
pl0 631.12 28747 619.97 28755 7683.15 | 120145 7682.36 | 120152
pll 2326.07 | 84459 | 2305.43 | 84429 || 7489.53 | 121898 | 7480.73 | 121920
pl2 1882.48 66347 1864.43 66359 4452.29 68145 4396.06 68150
pl3 2234.69 | 105386 2201.69 | 105393 7281.69 | 128790 7164.96 | 128912
pl4 1551.69 | 88263 | 1539.97 | 88210 | 4510.21 | 67305 | 4500.24 | 67342
pl5 2224.76 | 112773 2182.22 | 112685 5657.23 87619 5647.94 87588

Table 2: Results on instances with n = 25 and n = 30 variables

10

against the best performance obtained by any solver in § on the same problem.
The performance ratio is defined as r,s = ¢,/ min{t, s | s € S}, where ¢, is
the measure we want to compare, and we consider a cumulative distribution func-
tion ps(7) = {p € P | rps < 7}|/|P]. The performance profile for s € S is the plot
of the function ps. We report in Figure 1 the performance profiles of FPA* and the
e-constraint with respect to the CPU time considering all the 60 instances. Note
that the value 7 needed to have both p__.qonst (7) = 1 and pppa-(7) = 1 is very small
(1 = 1.116), confirming that the two algorithm share very similar performance.

0.9 £ .
0.8 £ ra .
0.7 F e == .
0.6 o 4
0.5 } 4
0.4
03 1 .
0.2

041 ——eps-const 8

0 | | | | |
1 1.02 1.04 1.06 1.08 1.1 1.12

Figure 1: Comparison between FPA* and the e-constraint method on all the 60
instances.

4 Conclusions

We focus on the definition of the e-constraint method for bi-objective nonlinear
integer programming problems as it is a well-known and widely used scalarization for
non-convex multiobjective optimization problems. We give sufficient conditions able
to guarantee that the e-constraint method detects the full Pareto front of a (BOIP)
after having addressed a finite number of single-objective integer problems. The
method has been numerically compared with an existing criterion space algorithm
on real-world portfolio instances, showing very similar performances.

11

References

1]

[10]

[11]

[12]

Christoph Buchheim, Marianna De Santis, Francesco Rinaldi, and Long Trieu.
A frank—wolfe based branch-and-bound algorithm for mean-risk optimization.
Journal of Global Optimization, 70(3):625-644, 2018.

Guillermo Cabrera-Guerrero, Matthias Ehrgott, Andrew J Mason, and Andrea
Raith. Bi-objective optimisation over a set of convex sub-problems. Annals of
Operations Research, pages 1-26, 2021.

Francesco Cesarone, Andrea Scozzari, and Fabio Tardella. A new method for
mean-variance portfolio optimization with cardinality constraints. Annals of
Operations Research, 205(1):213-234, 2013.

Francesco Cesarone and Fabio Tardella. Equal risk bounding is better than risk
parity for portfolio selection. Journal of Global Optimization, 68(2):439-461,
2017.

Marianna De Santis and Gabriele Eichfelder. A decision space algorithm for
multiobjective convex quadratic integer optimization. Computers & Operations
Research, page 105396, 2021.

Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan
Rocktéaschel. Solving multiobjective mixed integer convex optimization prob-
lems. SIAM Journal on Optimization, 30(4):3122-3145, 2020.

Marianna De Santis, Giorgio Grani, and Laura Palagi. Branching with hyper-
planes in the criterion space: The frontier partitioner algorithm for biobjective
integer programming. Furopean Journal of Operational Research, 283(1):57-69,
2020.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software
with performance profiles. Mathematical programming, 91(2):201-213, 2002.

Saliha Ferda Dogan, Ozlem Karsu, and Firdevs Ulus. An exact algorithm for

biobjective integer programming problems. Computers & Operations Research,
132:105298, 2021.

Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag Berlin Heidel-
berg, 2005.

Gabriele Eichfelder. Twenty years of continuous multiobjective optimization in
the twenty-first century. Optimzation Online, 2021.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon
Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald,
Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre

12

[13]
[14]

Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik
Miihmer, Benjamin Miiller, Marc E. Pfetsch, Franziska Schlosser, Felipe Ser-
rano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider,
Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Tech-
nical report, Optimization Online, 2020.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

Tim Holzmann and J Cole Smith. Solving discrete multi-objective optimiza-
tion problems using modified augmented weighted tchebychev scalarizations.
European Journal of Operational Research, 271(2):436-449, 2018.

A Legendre, E. Angel, and F. Tahi. Bi-objective integer programming for rna
secondary structure prediction with pseudoknots. BMC' Bioinformatics, 19 (13),
2018.

Anthony Przybylski and Xavier Gandibleux. Multi-objective branch and bound.
European Journal of Operational Research, 260(3):856-872, 2017.

Nikolaos V Sahinidis. Baron: A general purpose global optimization software
package. Journal of global optimization, 8(2):201-205, 1996.

Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated
set of multiobjective discrete optimization problems. INFORMS Journal on
Computing, 33(1):72-85, 2021.

Ozgu Turgut, Evrim Dalkiran, and Alper E Murat. An exact parallel objective
space decomposition algorithm for solving multi-objective integer programming
problems. Journal of Global Optimization, 75(1):35-62, 2019.

Aly-Joy Ulusoy, Filippo Pecci, and Ivan Stoianov. Bi-objective design-for-
control of water distribution networks with global bounds. Optimization and
Engineering, pages 1-51, 2021.

Panagiotis Xidonas, George Mavrotas, and John Psarras. Equity portfolio con-
struction and selection using multiobjective mathematical programming. Jour-
nal of Global Optimization, 47(2):185-209, 2010.

Mehmet Mutlu Yenisey and Betul Yagmahan. Multi-objective permutation flow
shop scheduling problem: Literature review, classification and current trends.
Omega, 45:119-135, 2014.

Han Zhong, Wei Guan, Wenyi Zhang, Shixiong Jiang, and Lingling Fan. A
bi-objective integer programming model for partly-restricted flight departure
scheduling. Plos one, 13(5):e0196146, 2018.

13

