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On the exactness of the ε-constraint method for
biobjective nonlinear integer programming

Marianna De Santis∗ Gabriele Eichfelder† Daniele Patria∗
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Abstract

The ε-constraint method is a well-known scalarization technique used for
multiobjective optimization. We explore how to properly define the step size
parameter of the method in order to guarantee its exactness when dealing with
problems having two nonlinear objective functions and integrality constraints
on the variables. Under specific assumptions, we prove that the number of
nonlinear integer subproblems that the method needs to address to detect
the complete Pareto front is finite. We report numerical results on portfolio
optimization instances built on real-world data and compare the ε-constraint
method with an existing criterion space algorithm for biobjective nonlinear
integer programming.

Key Words: Multiobjective Optimization, Integer Programming, ε-constraint
Algorithm, Criterion Space Algorithms.

Mathematics subject classifications (MSC 2010): 90C10, 90C29

1 Introduction

There is a growing interest in devising exact methods for multiobjective integer
programming (MOIP) as it is underlined by recent contributions in this respect (see,
e.g. [2, 5, 6, 7, 9, 18]). This is partly due to the fact that MOIPs represent a flexible
tool to model real-world applications. Such models appear in works on finance,
management, transportation, design of water distribution networks, biology [15,
20, 21, 22, 23]. MOIPs are intrinsically nonconvex, implying that the design of
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exact and efficient solution methods is particularly challenging and requires global
optimization techniques [11]. In this paper, we focus on biobjective nonlinear integer
programming problems of the following form

min (f1(x), f2(x))T

s.t. x ∈ X ∩ Zn,
(BOIP)

where X ⊆ Rn and f1, f2 : Rn → R are continuous functions. The image of the
feasible set X ∩ Zn under the vector-valued function f : Rn → R2 represents the
feasible set in the criterion space, or the image set. When dealing with problem
(BOIP), one wants to detect the so called efficient solutions x∗ ∈ X ∩ Zn. Those
are feasible points such that there exists no other feasible point x ∈ X ∩ Zn for
which fj(x) ≤ fj(x

∗), j = 1, 2 and f(x) 6= f(x∗). The images f(x) of efficient points
x ∈ X ∩ Zn are called non-dominated points. Furthermore, a point x̄ ∈ X ∩ Zn is
called a weakly efficient point of (BOIP) if there is no x ∈ X ∩Zn with f(x) < f(x̄),
where < is meant componentwise. The images f(x) of weakly efficient solutions
x ∈ X ∩ Zn are called weakly non-dominated points. We aim to solve (BOIP)
exactly in the sense that we aim to detect its complete set of non-dominated points,
also called the non-dominated set or Pareto front. In the following, we will denote
the non-dominated set by YN .

Regarding general purpose methods able to give correctness guarantees, the focus
is most of all on multiobjective linear integer problems and we refer to [16] for a
survey. A class of algorithms developed is the class of so called criterion space
search algorithms, i.e., algorithms that work in the space of the objective functions
(see, e.g. [14, 18, 19]). Such algorithms find non-dominated points by solving a
sequence of single-objective linear integer programming problems. After computing
a non-dominated point, these algorithms remove the dominated parts of the criterion
space (based on the obtained non-dominated point) and look for not-yet-found non-
dominated points in the remaining parts.

Criterion space algorithms usually rely on scalarization techniques. This means
that the multiobjective problem is replaced with a parameter-dependent single-
objective integer optimization problem. In order to find several non-dominated
solutions, a sequence of single-objective integer optimization problems has to be
handled considering different values of the parameters. A typical issue is how to
choose the parameters so that the method can guarantee the detection of the com-
plete non-dominated set. Criterion space algorithms have been extended to deal
with nonlinear problems, even if this clearly adds difficulties both from a theoretical
and a numerical point of view. In case of (BOIPs), an approach that can be followed
to deal with nonlinearities is the one proposed in [7], where the Frontier Partitioner
Algorithm (FPA), relying on the use of the weighted-sum scalarization, has been
proposed.

It is the purpose of this paper to use the ideas developed in [7] to define an exact
criterion space algorithm based on another scalarization technique, the ε-constraint
method. The ε-constraint method produces single-objective subproblems adding
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further constraints to the original feasible set. More specifically, given (BOIP),
the ε-constraint method minimizes single-objective optimization problems of the
following form:

min f2(x)
s.t. f1(x) ≤ ε

x ∈ X ∩ Zn.
(Pε)

The parameter ε varies between min{f1(x) | x ∈ X ∩ Zn} and f1(x̂) − δ with
x̂ ∈ argmin{f2(x) | x ∈ X ∩ Zn}. Thereby, δ is a positive step size which influences
the decrease of the upper bounds ε. As it will be clarified in the next section, the role
of the step size δ is crucial to detect the complete non-dominated set of a (BOIP).
The role of f1 and f2 in the definition of Problem (Pε) can be interchanged.

The paper is organized as follows. In Section 2, we recall the γ-positivity assump-
tion introduced in [7] and we establish our main result. Under specific assumptions,
we prove that the ε-constraint method is able to detect the complete Pareto front
of a (BOIP) after having addressed a finite number of single-objective problems.
In Section 3, we report our numerical experience, comparing the performance of
FPA∗ [7] with the ε-constraint method devised on portfolio optimization problems.
Section 4 concludes.

2 The γ-positivity assumption and the exactness

of the ε-constraint method

The scheme of the ε-constraint method applied to (BOIP) is reported in Algorithm
1. As already mentioned, at every iteration k of the algorithm, the following single-
objective integer subproblem needs to be addressed

min f2(x)
s.t. f1(x) ≤ εk

x ∈ X ∩ Zn,
(Pk

ε)

with εk ∈ R properly set. Recall that by [10, Proposition 4.3] any optimal solution
of (Pk

ε) is a weakly efficient solution of (BOIP). Moreover, by [10, Theorem 4.5], for
any efficient point x∗ of (BOIP) there exists an upper bound εk ∈ R such that x∗ is
an optimal solution of (Pk

ε). However, we cannot solve (Pk
ε) for an infinite number

of upper bounds εk. Thus, the question is whether and how we can find a finite
number of upper bounds to which we have to solve (Pk

ε) such that we can still find
all non-dominated points of (BOIP). In the following we discuss assumptions and
an algorithm which guarantee such a finiteness result.

As a first assumption, we ask for the availability of a solver for (Pk
ε).

Assumption 2.1. There exists an oracle that either returns an optimal solution
of (Pk

ε) or certifies its infeasibility for any choice of εk ∈ R.
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Note that there exists a number of solvers able to deal with single-objective non-
linear integer programming problems such as, e.g., BARON [17] or SCIP [12], so that
Assumption 2.1 holds for many classes of (BOIP). In our computational experience,
we will consider BOIPs having quadratic objective functions and a polyhedral set
X and we will use GUROBI [13] as a solver.

Algorithm 1: Scheme of the ε-constraint method.

Input: (BOIP), δ > 0, k = 1;
Output: the Pareto front YN of (BOIP );
Compute x∗ ∈ argminx∈X∩Zn f1(x)
Set ε0 = f1(x̂), where x̂ ∈ argminx∈X∩Zn f2(x)
Set M = {f(x̂)}
Set ε1 = f1(x̂)− δ
while εk ≥ f1(x

∗) do
Compute xk ∈ argminx∈Xk∩Zn f2(x), with
X k = X ∩ {x ∈ Rn : f1(x) ≤ εk}

Set M = {f(xk)} ∪M
Set εk+1 = f1(x

k)− δ
Set k = k + 1

end
Apply a filtering procedure to M to obtain YN

Return YN

In the definition of FPA (and FPA∗) in [7] some basic assumptions on Prob-
lem (BOIP) had to be made. Here we make the same assumptions, reported in the
following.

Assumption 2.2 (Existence of the ideal point). We assume that the ideal objective
values f id

i := minX∩Zn fi(x), i = 1, 2, and thus the ideal point f id := (f id
1 , f

id
2 ) ∈ R2,

exists.

The crucial assumption that we make in order to prove the exactness of the ε-
constraint method is the so called positive gap value assumption. We need to assume
that a positive value exists that underestimates the distance between the image of
two integer feasible points of (BOIP), componentwise.

Definition 2.3 (Positive γ-function). Let γ > 0. A function g : X → R is a
positive γ-function over X ∩ Zn if it holds |g(x) − g(z)| ≥ γ for all x, z ∈ X ∩ Zn

with g(x) 6= g(z).

Assumption 2.4. The functions fi : Rn → R, i = 1, 2 in Problem (BOIP) are
positive γ-functions as in Definition 2.3 for some γ > 0.

Assumptions 2.2 and 2.4 imply that the non-dominated set YN of (BOIP) is
finite (see Proposition 2.7 in [7]). Thus, we know that there exists a finite number
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of upper bounds εk to which we have to solve (Pk
ε) to find the complete Pareto-

front. The question is how to find this parameter set, and Algorithm 1 proposes an
answer for that. Note that there exist a number of classes of functions that easily
satisfy Assumption 2.1 and Assumption 2.4 (see Section 4.3 in [7]), such as linear or
quadratic functions defined over Qn, or polynomials with rational coefficients over
Zn as long as they have no roots in Zn. The following example shows a case where
only Assumption 2.2 holds, while Assumption 2.4 does not.

Example 2.5. Let X∩Z = {x ∈ Z | x ≥ 0}, f1(x) = arctan(x) and f2(x) = (x−1)2.
We have that f id = (0, 0), so that Assumption 2.2 is verified. However, it is not
possible to find γ > 0, γ ∈ R such that | arctan(x)−arctan(y)| ≥ γ for all x, y ∈ X∩Z
with arctan(x) 6= arctan(y). Therefore, Assumption 2.4 does not hold.

We further want to underline that it is common to assume X to be bounded so
that X ∩ Zn and f(X ∩ Zn) are finite sets. In this case, Assumption 2.4 trivially
holds.

Remark 2.6. In case function f2, which will be minimized, and the function f1,
which will be moved to the constraints, in (Pk

ε) are fixed, the assumptions can be
relaxed as follows: Assumption 2.4 can be reduced to assuming that only f1 is a
positive γ-function. In all proofs presented here we make only use of this property for
f1. Moreover, the above mentioned results that the non-dominated set is finite still
holds, as the proof in [7, Proposition 2.7] can be adapted to this reduced assumption,
as there are no two different non-dominated points with the same first component.

Let Assumption 2.4 hold for f1 and f2 with γ > 0. Let δ > 0 be the input
parameter for Algorithm 1. Two different scenarios occur:

• δ > γ: in this case the ε-constraint method could miss some points of the
Pareto front YN , as the step size δ may be wider than the distance between
two non-dominated points;

• δ ≤ γ: the ε-constraint algorithm is able to detect the complete Pareto front
YN as shown in the following.

As already mentioned, according to [10, Proposition 4.3], any optimal solution
of (Pk

ε) is a weakly efficient solution of (BOIP). For ε0 the point x̂ is an optimal
solution of (P0

ε) by construction and thus weakly efficient. Note that we cannot
prove that a solution of (Pk

ε) is efficient, as a point x̃ ∈ X k ∩Zn may exist such that
f1(x̃) < f1(x

k) and f2(x̃) = f2(x
k). Hence, before the filtering step, the set

M = {f(xk−1), f(xk−2), . . . , f(x1), f(x̂)}

may contain points which are just weakly non-dominated without being non-dominated.
We will show in the next lemmata that it holds YN ⊆ M. The filtering step ex-
cludes those points z ∈ R2 fromM for which there exists some y ∈M with yi ≤ zi,
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i = 1, 2 and y 6= z. Such a filtering procedure is cheap as the points are already
sorted w.r.t. increasing first component and as all points in M are already weakly
non-dominated. As M ⊆ f(X ∩ Zn), no point from YN is excluded by this step.
As for finite sets the domination property holds, i.e., f(X ∩ Zn) ⊆ YN + R2

+, and
by using the same argumentation as in [7, Proposition 2.7], for any weakly non-
dominated point z in M which is not also non-dominated a non-dominated point
y ∈ YN ⊆ M exists with y ≤ z, y 6= z. Thus, any point z ∈ M with z 6∈ YN is in
fact filtered out. Hence it remains to show that YN ⊆M.

First, we show that the ε-constraint method can find, at every iteration, a not-yet
detected weakly efficient solution of (BOIP) and no non-dominated point is missed
in-between, where in-between refers to the sorting w.r.t. the first component, i.e.
f1(x

k−1), f1(x
k−2), . . . , f1(x

1), f1(x̂). For the following, recall that x0 := x̂ is weakly
efficient and is the point detected at iteration k = 0.

Lemma 2.7. Let Assumption 2.4 hold with γ > 0. Assume that δ ≤ γ in Algo-
rithm 1, k ≥ 1, and that the point xk−1 is the point detected at iteration k − 1.
Then, at step k, Algorithm 1 finds a weakly non-dominated point f(xk) and no non-
dominated point y with y 6= f(xk), y 6= f(xk−1) and with f1(x

k) ≤ y1 ≤ f1(x
k−1)

exists.

Proof. Let xk ∈ argminx∈Xk∩Zn f2(x) where X k = X ∩ {x ∈ Rn : f1(x) ≤ εk} and
with εk = f1(x

k−1) − δ. By [10, Proposition 4.3] the point xk is, as well as xk−1,
a weakly efficient solution of (BOIP). Assume that there exists an efficient point
x̃ ∈ X ∩ Zn with f1(x

k) ≤ f1(x̃) ≤ f1(x
k−1). By Assumption 2.4 we have either

f1(x̃) = f1(x
k−1) or f1(x̃) ≤ f1(x

k−1)− γ.
First, let f1(x̃) = f1(x

k−1). As xk−1 was obtained by solving (Pk−1
ε ) and as x̃

is feasible for this problem we have f2(x̃) ≥ f2(x
k−1). As x̃ is efficient we derive

f(x̃) = f(xk−1). Second, let f1(x̃) ≤ f1(x
k−1) − γ. As −γ ≤ −δ it follows f1(x̃) ≤

f1(x
k−1)− δ. Then x̃ is feasible for (Pk

ε) and as a consequence f2(x
k) ≤ f2(x̃). As x̃

is efficient and we have assumed that f1(x
k) ≤ f1(x̃) we derive f(xk) = f(x̃).

As a consequence of Lemma 2.7, we have that at the end of the algorithm it
holds for any non-dominated point y ∈ YN with y1 ∈ [f1(x

k−1), f1(x̂)] that y ∈ M.
By the definition of x̂ there is no y ∈ YN with y1 > f1(x̂). Next we show that we
miss no non-dominated point y with y1 < f1(x

k−1) by stopping the while loop based
on εk = f1(x

k−1)− δ < f1(x
∗), or in case we do not start the while loop at all, based

on ε1 = f1(x̂)− δ < f1(x
∗).

Lemma 2.8. Let Assumption 2.4 hold with γ > 0. Assume that δ ≤ γ in Al-
gorithm 1 and that the algorithm stopped at some iteration k. Then, there is no
non-dominated point y with y1 < f1(x

k−1) in case k ≥ 2, and with y1 < f1(x̂) in
case k = 1.

Proof. First, we consider the case k ≥ 2. Then the algorithm stopped due to
εk = f1(x

k−1)− δ < f1(x
∗). Assume y is a non-dominated point with y1 < f1(x

k−1).
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By Assumption 2.4 we have y1 ≤ f1(x
k−1)− γ and hence y1 ≤ f1(x

k−1)− δ < f1(x
∗)

which is a contradiction to the definition of x∗. Next, let k = 1, i.e., the while
loop did not start at all due to ε1 = f1(x̂) − δ < f1(x

∗). Assume y is a non-
dominated point with y1 < f1(x̂). Then we obtain with Assumption 2.4, as before,
that y1 ≤ f1(x̂) − γ ≤ f1(x̂) − δ < f1(x

∗), which is again a contradiction to the
definition of x∗.

By Lemma 2.7 and Lemma 2.8 we have YN ⊆ M. However, there may ex-
ist weakly non-dominated points that cannot be found by our algorithm, as the
following example shows:

Example 2.9. Let X∩Z = {1, 2, 3, 4}, f1(x) = 5−x and f2(x) = 1 for all x ∈ X∩Z.
Thus we have γ = 1. All feasible points x are weakly efficient, but only x = 4 is
efficient. We apply Algorithm 1 with δ = 0.5 ≤ γ. Let x∗ = 4, x̂ = 1 and thus
ε0 = 4. For ε1 = 3.5 we may compute x1 = 4 and the algorithm would stop without
finding the remaining weakly efficient solutions.

It is important to note that the choice of δ has no impact on the number of
iterations needed by the algorithm to stop. This means that using δ1 ≤ γ or δ2 ≤ γ
with 0 < δ1 < δ2 ≤ γ leads to the same. So there is no need to find the largest
possible value for γ but any γ for which Assumption 2.4 is satisfied will be enough.
It is just important that δ is not chosen larger then any possible γ.

Lemma 2.10. Let Assumption 2.4 hold with γ > 0. Assume that 0 < δ1 < δ2 ≤ γ
and that the point xk−1 is the point obtained by solving (Pk−1

ε ). Then a point x̄ is
an optimal solution of (Pk

ε) with εk = f1(x
k−1) − δ1 if and only if x̄ is an optimal

solution of (Pk
ε) with εk = f1(x

k−1)− δ2.
Moreover, for any optimal solution x̄ of (Pk

ε) with εk = f1(x
k−1) − δ for some

δ ∈ (0, γ] it holds f1(x̄) ≤ f1(x
k−1)− γ.

Proof. First, let x̄ be an optimal solution of (Pk
ε) with εk = f1(x

k−1)− δ2. Then x̄ is
feasible for the problem with εk = f1(x

k−1)− δ1. Assume x̄ is not optimal for that
problem. Then there exists x′ feasible for the problem with εk = f1(x

k−1)− δ1 with
f2(x

′) < f2(x̄). As f1(x
′) ≤ f1(x

k−1) − δ1 we have f1(x
′) < f1(x

k−1) and we get by
Assumption 2.4 f1(x

′) ≤ f1(x
k−1)− γ. Thus f1(x

′) ≤ f1(x
k−1)− δ2 and x′ is feasible

for (Pk
ε) with εk = f1(x

k−1)− δ2 . Thus f2(x
′) ≥ f2(x̄) which is a contradiction.

Next, let x̄ be an optimal solution of (Pk
ε) with εk = f1(x

k−1) − δ1. Thus
f1(x̄) < f1(x

k−1) and we get by Assumption 2.4 f1(x̄) ≤ f1(x
k−1) − γ. Thus

f1(x̄) ≤ f1(x
k−1) − δ2 and x̄ is feasible for (Pk

ε) with εk = f1(x
k−1) − δ2 . As

the feasible set for (Pk
ε) for δ2 is a subset of the feasible set for δ1, we obtain that x̄

is also optimal for the problem with δ2. This also shows that any optimal solution
x̄ of (Pk

ε) with εk = f1(x
k−1)− δ and δ ∈ (0, γ] satisfies f1(x̄) ≤ f1(x

k−1)− γ.

Based on the previous lemmata we are able to prove the following result.
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Theorem 2.11. Let Assumptions 2.1, 2.2 and 2.4 hold. Let δ ≤ γ. Algorithm 1
finds the complete Pareto front YN of (BOIP) after having addressed a finite number
of single-objective integer programs.

Proof. By Lemma 2.7 and Lemma 2.8 we have YN ⊆M and after the filtering step,
as discussed above, we obtain exactly the set YN . Thanks to Assumption 2.4 we
have that the while loop will take at most m′ =

⌊
(f1(x̂)− f1(x∗)) /δ

⌋
iterations.

Based on Lemma 2.10 it makes no difference within the while loop how δ ∈ (0, γ]
is chosen and thus the upper bound is m =

⌊
(f1(x̂)− f1(x∗)) /γ

⌋
iterations. Then,

considering the two single-objective integer programs tackled at the beginning of
Algorithm 1 for the computation of x∗ and x̂, the total number of single objective
integer programs addressed by Algorithm 1 is m+ 2.

Note that the generated setM contains weakly non-dominated points only and in
each step of the while loop in Algorithm 1 a not-yet detected weakly non-dominated
point of (BOIP) is found. For that reason, the while loop will take at most as
many iterations as the number of weakly non-dominated points. However, we have
no guarantee that the set of weakly non-dominated points of (BOIP) is finite. But
using the same arguments as in the proof of [7, Proposition 2.7.] we have that the
number of weakly non-dominated points y with f1(x

∗) ≤ y1 ≤ f1(x̂) is finite and
that thus the number of iterations is finite. This is another possibility to prove
Theorem 2.11 above. Moreover, in case there are no weakly non-dominated points
which are not at the same time non-dominated, we need to solve exactly |YN | + 1
single-objective integer programs.

3 Numerical results

In our computational experiments, we consider bi-objective nonlinear integer in-
stances arising from portfolio selection problems. Let µ ∈ Rn be the expected
return and Q ∈ Rn×n be the covariance matrix with respect to a specific set of
assets. We consider the following model

min (−µTx, xTQx)
s.t. aTx ≤ b

x ≥ 0
x ∈ Zn,

where the elements of a ∈ Rn are the prices of the financial securities, b ∈ R is the
budget of the investor and the non-negativity constraint rules out short sales. The
decision variable xi ∈ Z, i = 1, . . . , n stands for the amount of unit of a certain asset
the investor is buying. Note that for this model Assumption 2.1 is satisfied, as the
single-objective integer subproblem built from problem (3) is an integer quadratic
problem that can be addressed by e.g. GUROBI [13].
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As benchmark data set, we used historical real-data capital market indices
from the Eurostoxx50 index that were used in [3, 4] and are publicy available
at https://host.uniroma3.it/docenti/cesarone/DataSets.htm. This data set
was used for solving a Limited Asset Markowitz (LAM) model. For each of the
48 stocks the authors obtained 264 weekly price data, adjusted for dividends, from
Eurostoxx50 for the period from March 2003 to March 2008. Stocks with more than
two consecutive missing values were disregarded. Logarithmic weekly returns, ex-
pected returns and covariance matrices were computed based on the period March
2003 to March 2007. By choosing stocks at random from the 48 available ones, we
built portfolio optimization instances of different sizes with µ ∈ Qn and Q ∈ Qn×n.
We decided to generate 60 different instances by considering n = 5, 10, 25, 30 stocks.
For every n, 15 different instances have been generated. Hence, we got the covari-
ances matrices, the expected returns and the prices for every combination by picking
the proper information from the files provided. As in [1], for every instance, we set
b = 10

∑n
i=1 ai, representing the budget of the investor. In order to run FPA∗ and

the exact version of the ε-constraint method, we need a proper value γ > 0 so that
the γ-positivity assumption is satisfied. Therefore, we had to pre-process the data,
trimming the number of decimal digits to four and multiplying the entries by 103,
ending with γ ≥ 0.1. Note that, since the entries of Q and µ are in Q, the value γ
can be defined as 1/r, where r ∈ N is the least common multiple of the denominators
of the rational coefficients (see [7, Proposition 4.14]).

Both in the implementation of FPA∗ and of the ε-constraint method, we con-
sidered the linear objective −µTx as the function defining the additional constraint
in the single-objective integer subproblems. Consequently, both FPA∗ and the ε-
constraint method have to deal with a sequence of single-objective convex quadratic
integer problems with linear constraints. In our Python implementation of the two
algorithms, we used the MIQP solver of GUROBI [13].

All experiments have been executed on an Intel Core i5-6300U CPU running at
2.40 GHz and all running times were measured in cpu seconds.

3.1 Comparison with FPA∗

In Table 1 and Table 2 we report, for each instance, the CPU time and the number
of iterations (itFPA∗ and iteps) needed by FPA∗ and the ε-constraint method to detect
the non-dominated set. Note that the total number of single-objective subproblems
solved by FPA∗ and ε-constraint method is itFPA∗ + 2 and iteps + 2, respectively.
FPA∗ and the ε-constraint method have very similar performances, as the number
of subproblem addressed by the two algorithms resulted to be very close in practice.
However, the number of subproblems solved by the ε-constraint method can be
larger than |YN |+ 2, which is the number of subproblems solved by FPA∗.

We further compare FPA∗ and the ε-constraint algorithm using performance
profiles as proposed by Dolan and Moré [8]. Given a set of solvers S and a set
of problems P , the performance of a solver s ∈ S on problem p ∈ P is compared
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Instance n = 5 n = 10
FPA∗ itFPA∗ ε-const iteps FPA∗ itFPA∗ ε-const iteps

p1 24.99 7381 24.60 7381 238.65 34890 234.75 34915
p2 6.69 1465 6.55 1467 78.24 10395 76.97 10390
p3 34.13 6103 32.89 6105 60.35 6047 60.55 6053
p4 1.89 402 1.81 402 47.17 6972 46.36 6978
p5 6.02 1208 5.86 1208 182.29 32894 180.58 32953
p6 3.09 709 3.03 709 50.24 6268 49.40 6272
p7 8.77 1676 8.56 1677 17.28 2372 17.17 2375
p8 4.61 845 4.20 846 230.24 23700 220.50 23714
p9 1.73 412 1.59 413 102.46 13544 96.96 13548

p10 2.09 428 1.95 430 93.25 8469 88.34 8471
p11 7.79 1547 7.29 1550 103.55 14987 98.22 14989
p12 4.44 837 4.13 840 69.71 7779 66.24 7784
p13 40.04 7257 37.41 7262 57.35 5057 54.45 5058
p14 5.45 1258 5.06 1259 305.46 26330 291.58 26339
p15 10.73 1869 10.00 1874 48.47 4990 46.50 4995

Table 1: Results on instances with n = 5 and n = 10 variables

Instance n = 25 n = 30
FPA∗ itFPA∗ ε-const iteps FPA∗ itFPA∗ ε-const iteps

p1 1300.58 64896 1265.80 64978 10068.92 168679 10137.36 168963
p2 3111.57 91538 3145.79 91595 3684.09 57207 3682.69 57209
p3 974.07 77143 989.09 77136 5381.17 85015 5416.53 85033
p4 543.68 35835 549.17 35850 9712.74 134844 9906.55 134681
p5 807.29 46351 821.02 46353 5226.97 87750 5311.91 87784
p6 737.88 36444 747.85 36438 7284.13 111329 7465.47 111349
p7 1723.60 126491 1733.17 126556 7036.66 131154 7121.33 131180
p8 954.39 39077 948.63 39085 6923.09 112315 6908.47 112349
p9 899.33 38413 884.50 38411 9984.14 139199 9973.19 139205
p10 631.12 28747 619.97 28755 7683.15 120145 7682.36 120152
p11 2326.07 84459 2305.43 84429 7489.53 121898 7480.73 121920
p12 1882.48 66347 1864.43 66359 4452.29 68145 4396.06 68150
p13 2234.69 105386 2201.69 105393 7281.69 128790 7164.96 128912
p14 1551.69 88263 1539.97 88210 4510.21 67305 4500.24 67342
p15 2224.76 112773 2182.22 112685 5657.23 87619 5647.94 87588

Table 2: Results on instances with n = 25 and n = 30 variables
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against the best performance obtained by any solver in S on the same problem.
The performance ratio is defined as rp,s = tp,s/min{tp,s′ | s′ ∈ S}, where tp,s is
the measure we want to compare, and we consider a cumulative distribution func-
tion ρs(τ) = |{p ∈ P | rp,s ≤ τ}|/|P|. The performance profile for s ∈ S is the plot
of the function ρs. We report in Figure 1 the performance profiles of FPA∗ and the
ε-constraint with respect to the CPU time considering all the 60 instances. Note
that the value τ needed to have both ρε-const(τ) = 1 and ρFPA∗(τ) = 1 is very small
(τ = 1.116), confirming that the two algorithm share very similar performance.
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Figure 1: Comparison between FPA∗ and the ε-constraint method on all the 60
instances.

4 Conclusions

We focus on the definition of the ε-constraint method for bi-objective nonlinear
integer programming problems as it is a well-known and widely used scalarization for
non-convex multiobjective optimization problems. We give sufficient conditions able
to guarantee that the ε-constraint method detects the full Pareto front of a (BOIP)
after having addressed a finite number of single-objective integer problems. The
method has been numerically compared with an existing criterion space algorithm
on real-world portfolio instances, showing very similar performances.
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