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ABSTRACT
A b-class carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Monogenean platyhelminth
Gyrodactylus salaris, a fish parasite, GsaCAb, has been investigated for its inhibitory effects with a panel of
sulphonamides and sulfamates, some of which in clinical use. Several effective GsaCAb inhibitors were
identified, belonging to simple heterocyclic sulphonamides, the deacetylated precursors of acetazolamide
and methazolamide (KIsof 81.9–139.7 nM). Many other simple benezene sulphonamides and clinically used
agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and
hydrochlorothiazide showed inhibition constants <1mM. The least effective GsaCAb inhibitors were 4,6-
disubstituted-1,3-benzene disulfonamides, with KIs in the range of 16.9–24.8mM. Although no potent
GsaCAb-selective inhibitors were detected so far, this preliminary investigation may be helpful for better
understanding the inhibition profile of this parasite enzyme and for the potential development of more
effective and eventually parasite-selective inhibitors.
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Introduction

We have recently reported the cloning and characterisation of a
b-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the gen-
ome of Gyrodactylus salaris, GsaCAb1, a platyhelminth (flatworm)
parasite attacking various fish species2,3. The Atlantic salmon
(Salmo salar) is particularly sensitive to this parasite, which pro-
duced catastrophic losses in fish farms in Scandinavian countries
and elsewhere, starting with the 1970s3–5. By releasing proteolytic
enzymes, the parasite attaches on the fish gills, fins or skin induc-
ing the formation of wounds, which favour the emergence of
infections, with debilitation and eventual death of the infected
animals5,6. There are no effective drugs for the treatment of this
parasitic disease, although a variety of inorganic salts, synthetic
compounds/drugs (e.g., praziquantel, levamisole, mebendazole
and toltrazuril) and other approaches (manual removal of the
worms) have been investigated, with rather unsuccessful results7.
Furthermore, many of these compounds/drugs induce serious
host toxicity, raising thus significant human health concerns if
such fish is to be consumed7. Thus, as for other platyhelminth par-
asites producing infection in vertebrates including humans, such
as Schistosoma haematobium8 or Schistosoma mansoni9–11 there is
a stringent need of alternative drug targets and efficient com-
pounds to treat these infections.

CAs are well known drug targets for the management of
human diseases12–15, with their inhibitors acting as diuretics16,

antiepileptics17, antiglaucoma18, antiobesity19 and antitumor
agents20. In the last decade, CAs from pathogens started to be con-
sidered as possible targets for the development of antiinfectives,
for the management of diseases provoked by bacteria21, fungi22,
protozoa23 and worms10,11,24. In the previous work1 we have shown
that GsaCAb has a significant catalytic activity for the physiologic,
CO2 hydration reaction, with a kcat of 1.1� 105 s�1 and a kcat/Km of
7.58� 106 M�1 � s�1. Furthermore, inorganic anions, a well-known
class of CA inhibitors (CAIs)14,15 inhibit the enzyme in the millimolar
range, as for other a- and b-CAs investigated for their interaction
with such modulators of activity14. Among the investigated such
inhibitors, sulfamide (KI of 81mM) and sulphamic acid (KI of 6.2mM)
showed the most efficient inhibitory action1. Both of them incorp-
orate the SO2NH2 moiety found in the most investigated class of
CAIs, the aromatic/heterocyclic sulphonamides and their isosteres
(sulfamates, sulfamides)14,15. Thus in this work we report GsaCAb
inhibition studies with a panel of such compounds, many of which
are clinically used drugs (Figure 1).

Materials and methods

Chemistry

Compounds 1–24 and AAZ-HCT were commercially available,
highest purity reagents from Sigma-Aldrich (Milan, Italy) or were
synthesised as previously reported25.
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Production of b-CA recombinant protein

Protein production was carried out according to the previously
reported protocol1.

Ca activity and inhibition measurements

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity26. Phenol red
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Figure 1. Sulphonamides/sulfamates 1–24 and AAZ-HCT investigated as inhibitors in the present study.
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at a concentration of 0.2mM was used as pH indicator, working at
the absorbance maximum of 557 nm, with 10mM TRIS (pH 8.3) as
buffer, and in the presence of 10mM NaClO4 for maintaining con-
stant the ionic strength, following the initial rates of the CA-cata-
lysed CO2 hydration reaction for a period of 10–100 s. The CO2

concentrations ranged from 1.7 to 17mM for the determination of
the kinetic parameters and inhibition constants. For each inhibitor,
at least six traces of the initial 5–10% of the reaction have been
used for determining the initial velocity. The uncatalyzed rates
were determined in the same manner and subtracted from the
total observed rates. Stock solutions of inhibitors (10–20mM) were
prepared in distilled-deionized water and dilutions up to 0.01mM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 15min at room tempera-
ture prior to assay, in order to allow for the formation of the
enzyme-inhibitor complex. The inhibition constants were obtained
by non-linear least-squares methods using PRISM 3 and the
Cheng-Prusoff equation, whereas the kinetic parameters for the
uninhibited enzymes from Lineweaver-Burk plots, as reported ear-
lier27,28, and represent the mean from at least three different
determinations. GsaCAb concentration in the assay system was of
11.9 nM.

Results and discussion

GsaCAb shows catalytic properties for the physiologic reaction
similar to those of the slow human isoform hCA I, being however
slightly less effective as a catalyst compared to hCA I (Table 1). On
the other hand, it should be stressed that many CAs are among
the most effective catalysts known in nature14,15, and even this
level of activity is in fact quite significant.

We have investigated the inhibition profile of GsaCAb with a
panel of sulphonamides and sulfamates (Figure 1) known to
effectively inhibit many classes of CAs, with some of these deriva-
tives being clinically used drugs for decades, in the treatment of a
multitude of diseases, as shown in the introduction. The names of
the relevant drugs are reported in Figure 1, and as mentioned
above, they are used as diuretics, antiglaucoma drugs, antiepilep-
tics or for the management of other disorders connected with CA
activity disbalances14,15. The GsaCAb inhibition data with these
compounds, as well as those for hCA I and II (for comparison rea-
sons), are shown in Table 2.

As seen from Table 2, where the inhibition data of the human
a-class isoforms hCA I and II were also included for comparison,
all investigated sulphonamides/sulfamates inhibited GsaCAb, with
inhibition constants raging between 81.9 nM and 24.8 mM. The fol-
lowing structure-activity relationship (SAR) should be noted
regarding the inhibition data of Table 2:

i. The most effective GsaCAb inhibitors were compounds 13
and 14, the deacetylated precursors of acetazolamide and
methazolamide, which showed KI values of 81.9–139.7 nM,

which is 5.1–5.6 times a better inhibitory activity compared
to the clinically used derivatives AAZ and MZA (Table 2). As
seen in Table 2, these precursors are less effective as hCA I
and II inhibitors compared to the acetylated derivatives used
as drugs.

ii. A rather large number of derivatives, such as 1–3, 7, 15–20,
2–24, AAZ, MZA, EZA, DZA, BZA, SLT and HCT, showed
less effective inhibition, but anyhow with KIs <1000 nM. The
SAR is rather difficult to rationalise in this case as these com-
pounds belong to very heterogeneous classes of sulphona-
mides, both aromatic (benzene sulphonamides) and
heterocyclic derivatives. However, it seems that rather simple
and elongated scaffolds lead to effective inhibition whereas
the inclusion of bulkier substituents (e.g. in 21 compared to
22–24, or BRZ compared to DZA) is detrimental for the
inhibitory activity.

iii. Compounds showing low micromolar inhibition of GsaCAb
were 4–6, 8–10, 21, DCP, BRZ, TPM, ZNS, SLP; IND, VLX,
CLX and SAC. These compounds had KIs in the range of
1.63–9.1 mM. As above, they belong to a large number of
diverse chemotypes in order to draw a rationalisation of their
SAR. Saccharin, also being a medium potency inhibitor, is

Table 1. Kinetic parameters for the CO2 hydration reaction catalysed by a- and
b-class CA enzymes: the human cytosolic isozymes hCA I and II (a-class) at
20 �C and pH 7.5 in 10mM HEPES buffer, and GsaCAb (measured at 20 �C, pH
8.3 in 20mM TRIS buffer and 10mM NaClO4) are shown. Inhibition data with
the clinically used sulphonamide acetazolamide are also presented.

Isozyme Activity level
kcat kcat/Km KI (acetazolamide)
(s�1) (M�1 � s�1) (nM)

hCA Ia Moderate 2.0� 105 5.0� 107 250
hCA IIa Very high 1.4� 106 1.5� 108 12
GsaCAbb Low-moderate 1.1� 105 7.58� 106 460.5
aFrom ref. [12,15]; bFrom ref. [1].

Table 2. Inhibition of b-CA from G. salaris and human isoforms hCA I and hCA
II with sulphonamides 1–24 and the clinically used drugs AAZ-HCT, by a
stopped-flow assay26.

KI (nM)
a

Inhibitor hCA I hCA II GsaCAb

1 28,000 300 522.8
2 25,000 240 589.2
3 79 8 388.8
4 78,500 320 3115
5 25,000 170 2144
6 21,000 160 7790
7 8300 60 854.4
8 9800 110 7266
9 6500 40 8879
10 7300 54 9103
11 5800 63 16900
12 8400 75 24820
13 8600 60 81.9
14 9300 19 139.7
15 5500 80 419.8
16 9500 94 616.1
17 21,000 125 917.4
18 164 46 687.6
19 109 33 489.1
20 6 2 631.8
21 69 11 5839
22 164 46 765.9
23 109 33 653.2
24 95 30 382.2
AAZ 250 12 460.5
MZA 50 14 721.7
EZA 25 8 545.9
DCP 1200 38 3261
DZA 50,000 9 399.1
BRZ 45,000 3 5063
BZA 15 9 716.3
TPM 250 10 8558
ZNS 56 35 8576
SLP 1200 40 7288
IND 31 15 7423
VLX 54,000 43 3892
CLX 50,000 21 4621
SLT 374 9 877.1
SAC 18,540 5959 1635
HCT 328 290 776.8
aMean from three different assays. Errors (data not shown) were in the range of
± 10% of the reported data.
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among the most selective ones for inhibiting GsaCAb over
the human isoforms (Table 2).

iv. 4,6-disubstituted-1,3-benzene disulfonamides 11 and 12
were the least effective GsaCAb inhibitors, with KIs in the
range of 16.9–24.8 mM (Table 2).

v. The inhibition profile of GsaCAb and hCA I/II are very differ-
ent, obviously due to the fact that they belong to diverse
genetic CA families. Unfortunately, no GsaCAb-selective
inhibitors (over the hCAs investigated here) were detected
so far.

Conclusions

The Monogenean platyhelminth Gyrodactylus salaris, a fish parasite
of salmon and other economically relevant aquaculture fish spe-
cies, encodes for a b-class CA, GsaCAb, which has been investi-
gated here for its inhibition profile with sulphonamides/
sulfamates, as a possible antiparasitic drug target. We identified
several effective GsaCAb inhibitors, belonging to simple heterocyc-
lic sulphonamide derivatives, the deacetylated precursors of aceta-
zolamide and methazolamide, which showed KI values of
81.9� 139.7 nM. Many other simple benezenesulfonamides and
clinically used agents, such as acetazolamide, methazolamide,
ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydro-
chlorothiazide showed inhibition constants <1 mM. The least
effective GsaCAb inhibitors were 4,6-disubstituted-1,3-benzene
disulfonamides, with KIs in the range of 16.9� 24.8 mM. Although
no GsaCAb-selective inhibitors were detected so far, this prelimin-
ary investigation may be helpful for better understanding the SAR
for inhibition of this parasite enzyme and for the potential devel-
opment of more effective and eventually parasite-selective
inhibitors.
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