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A B S T R A C T

During the structure lifetime, the design loads can modify because of a changing in the use
destination. In common practice, any architectural change of existing buildings, which modifies
the magnitude of loads, requires the evaluation of the load-carrying capacity of structural
members. To this aim a nonlinear analysis considering the rotation capacity of critical regions
until the failure of the structure can be advantageous compared to a simple elastic analysis.
Plastic deformations of ductile elements allow for attaining a more accurate evaluation of
the ultimate load, once the strength of brittle mechanisms has been averted. Exploiting the
actual rotation capacity of critical regions, where plastic hinges form, this paper presents new
analytical closed-form equations to evaluate the ultimate load and the failure mode of an
interior span of a multi-span moment resisting frame, as impacted by the strength of beam–
column joints and the elastic and post-elastic structural response of adjacent elements. Taking
advantage of derived equations, a retrofitting design procedure to identify the proper structural
strengthening of critical regions is proposed. The accuracy of the method is checked through
a comparison with numerical results. The procedure represents a new useful tool for engineers
for the local strengthening of existing reinforced concrete buildings.

1. Introduction

The ultimate load of structures depends on both strength and ductility of members. The relevance to take into account the
effective post-elastic behavior of Reinforced Concrete (R.C.) regions in structural analysis has been fully recognized [1–7] and current
codes provide closed-form equations to evaluate the chord rotation capacity of sections [8,9]. The importance to know the failure
mechanisms, the safety margins and the critical zones of structures is well recognized [10,11]. In addition to the assessment of the
failure mode of RC systems, innovative techniques have been presented for the progressive collapse mitigation of RC frames [12,13],
taking also into account seismic action [14].

The structural performance of Moment Resisting Frame (MRF) structures is influenced by the mechanical features of beam–
column joints [15]. If on one hand for new structures, according to the capacity design, the shear collapse of beam–column joints
is prevented [16] allowing beam–column joints to be assumed rigid and infinitely resistant, on the other hand, particular attention
is required for existing concrete buildings, usually designed for vertical loads [17].

Several studies have been performed to evaluate the post-elastic response of R.C. members [18,19] and beam–column joints [20–
23]. Plastic analysis, taking advantage of the redistribution of moments, allows for the load-carrying capacity of the structure to
increase, leading to more efficient use of the material [24].
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Fig. 1. (a) Multi-span multi-level Moment-Resisting-Frame, (b) Model adopted to analyze the structural response of an interior span.

The plastic behavior of R.C. members can be predicted by Finite Element (FE) numerical models: in implicit models, the stiffness
and strength loss due to member damage is modeled by using nonlinear springs at the member sections [25–27]; in explicit models,
each element is described considering several aspects of the inelastic mechanisms governing the element behavior [28–38]. Explicit
models provide useful information about the effective structural performance of members and the influence of design parameters;
implicit models allow to easily perform a plastic analysis of whole structures.

Although a nonlinear analysis can be performed through FE numerical models, this modeling approach requires a large data set
for the calibration, in addition to computational resources. Vice-versa the designer needs a method that, starting from the mechanical
properties of members, allows an easy prediction of the failure mode and the ultimate load of the structure [39], providing useful
information about the proper structural strengthening strategy to increase the load-carrying capacity. Recent studies have been
carried out to estimate the rotation of sections, which undergo plastic deformation, at failure [40]. The rotation assessment has also
been investigated taking into account the impact due to the uncertainty in the mechanical properties in [41].

In the context of the design of new structures, differently from previous studies, the proposed equations allow to evaluate, in
closed form, the required rotation of critical regions to achieve the theoretical ultimate load, that is the ultimate load assured by
perfectly plastic hinges. Regarding the structural assessment of existing structures, the proposed approach allows to evaluate the
effective ultimate load as affected by the actual rotation capacity of critical regions, where plastic deformation occurs. Moreover,
the brittle shear failure of beam–column joints and the structural behavior of adjacent members, in terms of stiffness, strength and
ductility, are considered. Through the assessment of the effective load-carrying capacity of the structure related to different collapse
mechanisms, the proposed method allows for identifying the proper retrofitting strengthening strategy to increase the load-carrying
capacity, providing closed-form equations easily adopted by practitioners. To prove the reliability and use of the method, the paper
concludes with an application to a case study. The accuracy is checked by a comparison with numerical results and recommendations
for the designer are provided.

2. Failure analysis of reinforced concrete frames

2.1. Preliminary elastic analysis

At the beginning, the elastic response of the R.C. frame under a vertical load, shown in Fig. 1, has to be evaluated.
The moment distribution can be obtained by overlapping the structural behavior of a pinned beam loaded by the distributed

vertical load 𝑞 and by the 𝑀 reaction moments at beam-end (a list of symbols is reported in Appendix C). Assuming Bernoulli–Euler
2
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beam theory, neglecting the shear and axial deformation, indicating with 𝐿 the beam’s span, 𝐸 the Young’s modulus, and 𝐼 the
second moment of area of the beam’s section, 𝑀𝐽 can be evaluated by

𝑀𝐽 =
𝑞𝐿3

12

(

𝐾𝐽
𝐾𝐽𝐿 + 2𝐸𝐼

)

(1)

In the previous equation, 𝐾𝐽 is the overall elastic flexural stiffness at the node due to the adjacent elements 𝑖 = 1, 2, 3

𝐾𝐽 =
3
∑

𝑖=1
𝑘𝑖 =

3
∑

𝑖=1

4𝐸𝐼𝑖
𝐿𝑖

here 𝐼𝑖 and 𝐿𝑖 are second moment of area and length of the upper column (𝑖 = 1), adjacent beam (𝑖 = 2) and bottom column
(𝑖 = 3), Fig. 1.

The bending moment at beam mid-span can be obtained by

𝑀𝑚𝑠 =
𝑞𝐿2

8
−
𝑞𝐿3

12

(

𝐾𝐽
𝐾𝐽𝐿 + 2𝐸𝐼

)

=
𝑞𝐿2

8

[

1 − 2
3

(

𝐾𝐽𝐿
𝐾𝐽𝐿 + 2𝐸𝐼

)]

=

=
𝑞𝐿2

8

[

𝐾𝐽𝐿 + 6𝐸𝐼
3
(

𝐾𝐽𝐿 + 2𝐸𝐼
)

]

=
𝑀𝐽
2

(

1 + 6𝐸𝐼
𝐾𝐽𝐿

)

=𝑀𝐽𝜓

ith

𝜓 = 1
2

(

1 + 6𝐸𝐼
𝐾𝐽𝐿

)

𝑀𝐽 =
𝑀𝑚𝑠
𝜓

=
2𝑀𝑚𝑠

(

1 + 6𝐸𝐼∕𝐾𝐽𝐿
) (2)

Regarding elements 𝑖 = 1, 2, 3, Fig. 1, the moments at element-end, close to the joint, are

𝑀𝑖,𝐽 = 𝜌𝑖𝑀𝐽 (3)

where 𝜌𝑖 is

𝜌𝑖 =
𝑘𝑖
𝐾𝐽

=

4𝐸𝐼𝑖
𝐿𝑖
𝐾𝐽

=

𝐼𝑖
𝐿𝑖

∑3
𝑟=1

𝐼𝑟
𝐿𝑟

.2. First overcoming of the elastic phase by plastic hinge

The vertical load producing the elastic phase overcoming, with the formation of the first plastic hinge on the beam, is evaluated
n the following.

Let 𝑀𝐽 ,𝑢 be the ultimate moment at the beam-ends, and 𝑀𝑚𝑠,𝑢 the ultimate moment at the beam mid-span.
Then the load 𝑞𝐽 ,𝑢, which produces the first plastic hinge at beam-ends and the load 𝑞𝑚𝑠,𝑢, which produces the first plastic hinge

t mid-span, are respectively

𝑞𝐽 ,𝑢 =
12𝑀𝐽 ,𝑢

𝐿3

(

𝐾𝐽𝐿 + 2𝐸𝐼
𝐾𝐽

)

(4)

𝑞𝑚𝑠,𝑢 =
8𝑀𝑚𝑠,𝑢

𝐿2

(

3𝐾𝐽𝐿 + 6𝐸𝐼
𝐾𝐽𝐿 + 6𝐸𝐽

)

(5)

It should be noted that the first hinge could form on the element 𝑖 = 1, 2, 3 at the section adjacent to the node. Let 𝑀𝑖,𝐽 ,𝑢 be the
ultimate moment of the element 𝑖 = 1, 2, 3.

We introduce 𝑀𝑤,𝐽 ,𝑢 the ultimate moment at the beam-end relative to the collapse of the weakest adjacent element. Taking into
account Eq. (3), we have

𝑀𝑤,𝐽 ,𝑢 = min
{𝑀𝑖,𝐽 ,𝑢

𝜌𝑖

}

= min
{

𝑀𝑖,𝐽 ,𝑢
𝐾𝐽
𝑘𝑖

}

𝑖 = 1, 2, 3

so that 𝑞𝑤,𝐽 ,𝑢, the load that produces the first plastic hinge at the weakest adjacent element, is

𝑞𝑤,𝐽 ,𝑢 =
12𝑀𝑤,𝐽 ,𝑢

(

𝐾𝐽𝐿 + 2𝐸𝐼
)

(6)
3
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2.3. Shear failure of the beam–column joint

Beam–column joints of existing reinforced concrete structures are often the weakest element because of the shear failure.
Let 𝑉𝑢 be the beam–column joint ultimate shear. The ultimate shear force of the joint can be evaluated by following equations [17]

𝜎𝑛𝑡 =
|

|

|

|

|

|

𝑁
2𝐴𝑔

−

√

(

𝑁
2𝐴𝑔

)2
+
(

𝑉𝑢
𝐴𝑔

)2|
|

|

|

|

|

≤ 0.3
√

𝑓𝑐

𝜎𝑛𝑐 =
|

|

|

|

|

|

𝑁
2𝐴𝑔

+

√

(

𝑁
2𝐴𝑔

)2
+
(

𝑉𝑢
𝐴𝑔

)2|
|

|

|

|

|

≤ 0.5𝑓𝑐

that represent the required conditions on the maximum tensile stress and compressive stress on the joint required by design code,
where 𝑁 is the axial force acting on the upper column, 𝐴𝑔 is the gross area of the joint panel horizontal section, 𝑓𝑐 is the concrete
compressive strength (in MPa). In particular, 𝑉𝑢 is the smaller value obtained from previous equations assuming 𝜎𝑛𝑡 = 0.3

√

𝑓𝑐 and
𝜎𝑛𝑐 = 0.5𝑓𝑐 .

The joint shear 𝑉𝐽 can be expressed by

𝑉𝐽 =
𝑀𝐽
𝑑𝑙

−
𝑀2
𝑑𝑙

− 𝑉1

where 𝑉1 is the shear in the upper column and 𝑑𝑙 is the beam lever arm, assumed equal for all elements.
The effect of the upper column shear is negligible; so that, considering that 𝑀2 =𝑀𝐽𝑘2∕𝐾𝐽 , we obtain

𝑉𝐽 =
𝑀𝐽
𝑑𝑙

−
𝑀𝐽𝑘2
𝑑𝑙𝐾𝐽

=
𝑀𝐽
𝑑𝑙

(

1 − 𝜌2
)

We introduce the ultimate moment at the beam-end 𝑀𝑉 ,𝐽 ,𝑢 that corresponds to the node shear failure; this can be obtained by
previous equation with 𝑉𝐽 = 𝑉𝑢

𝑀𝑉 ,𝐽 ,𝑢 =
𝑉𝑢𝑑𝑙

(

1 − 𝜌2
)

So that, the load 𝑞𝑉 ,𝐽 ,𝑢 that produces the joint failure, can be obtained by

𝑞𝑉 ,𝐽 ,𝑢 =
12𝑀𝑉 ,𝐽 ,𝑢

𝐿3

(

𝐾𝐽𝐿 + 2𝐸𝐼
𝐾𝐽

)

(7)

The joint shear collapse plays a critical role in the response of frame structures; in fact, having a brittle behavior, this can be
onsidered a failure condition. Differently to the joint collapse, beams have a ductile response; plastic hinges form and can provide
rotation capable to achieve a greater load-carrying capacity.

. Required rotations to achieve the theoretical ultimate load

In the following, the required rotations to achieve the theoretical ultimate load are estimated. We assume that the adjacent
lements do not reach the ultimate moment 𝑀𝑖,𝐽 ,𝑢, with 𝑖 = 1, 2, 3.

.1. First plastic hinge at the beam-end section

We assume that the first plastic hinges occur at the beam-ends. In this case:

𝑞𝐽 ,𝑢 ≤
[

𝑞𝑚𝑠,𝑢, 𝑞𝑉 ,𝐽 ,𝑢, 𝑞𝑤,𝐽 ,𝑢
]

Indicating 𝑀𝐽 ,𝑚𝑠,𝑢 the moment at the beam-end when the ultimate moment 𝑀𝑚𝑠,𝑢 at the beam mid-span is achieved, see Eq. (2),

𝑀𝐽 ,𝑚𝑠,𝑢 =
2𝑀𝑚𝑠,𝑢

(

1 + 6𝐸𝐼∕𝐾𝐽𝐿
)

the previous condition can be expressed as

𝑀𝐽 ,𝑢 ≤
[

𝑀𝐽 ,𝑚𝑠,𝑢,𝑀𝑉 ,𝐽 ,𝑢,𝑀𝑤,𝐽 ,𝑢
]

≡

[

2𝑀𝑚𝑠,𝑢
(

1 + 6𝐸𝐼∕𝐾𝐽𝐿
) ,𝑀𝑉 ,𝐽 ,𝑢,𝑀𝑤,𝐽 ,𝑢

]

(8)

A second hinge can form at beam mid-span; applying limit analysis, the failure load is

𝑞𝑓 =
8
(

𝑀𝑚𝑠,𝑢 +𝑀𝐽 ,𝑢
)

𝐿2
(9)

Nevertheless the plastic design of the structure can be performed only if the beam-end rotation is not lower than:

𝜃 =
𝑞𝑓𝐿3

−
𝑀𝐽 ,𝑢𝐿 (10)
4

𝐽 ,𝑢 24𝐸𝐼 2𝐸𝐼
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and substituting the failure load, Eq. (9), we have

𝜃𝐽 ,𝑢 =
𝐿

6𝐸𝐼
(

2𝑀𝑚𝑠,𝑢 −𝑀𝐽 ,𝑢
)

(11)

The rotation is independent from the stiffness of adjacent elements.

.2. First plastic hinge at the beam mid-span section

Assuming that the first hinge occurs at the beam mid-span, we have

𝑞𝑚𝑠,𝑢 ≤
[

𝑞𝐽 ,𝑢, 𝑞𝑉 ,𝐽 ,𝑢, 𝑞𝑤,𝐽 ,𝑢
]

r equivalently
2𝑀𝑚𝑠,𝑢

(

1 + 6𝐸𝐼∕𝐾𝐽𝐿
) ≤

[

𝑀𝐽 ,𝑢,𝑀𝑉 ,𝐽 ,𝑢,𝑀𝑤,𝐽 ,𝑢
]

(12)

Increasing the load we have two alternative failure modes. If 𝑀𝐽 ,𝑢 < 𝑀𝑉 ,𝐽 ,𝑢, then a second hinge forms at both ends of the beam.
ice-versa, if 𝑀𝑉 ,𝐽 ,𝑢 < 𝑀𝐽 ,𝑢, then the joint collapses.

At first, we consider a second hinge at the beam-ends. To evaluate the required rotation of the beam at mid-span 𝜃𝑚𝑠,𝑢 to perform
plastic design with the complete redistribution of the moment, it can be observed that from 𝑞𝑚𝑠,𝑢, that produces the first hinge at

he beam mid-span, to 𝑞𝑓 , that produces the failure of the structure with the second hinge at beam-end, the increment of the load
s 𝛥𝑞 = 𝑞𝑓 − 𝑞𝑚𝑠,𝑢. In order to allow the moment redistribution, the rotation of the plastic hinge at the beam mid-span under the 𝛥𝑞,
an be expressed by:

𝜃𝑚𝑠,𝑢 =
𝛥𝑞𝐿3

24𝐸𝐼
+
𝛥𝑞𝐿2

4𝐾𝐽
=
𝛥𝑞𝐿2

4

(

𝐾𝐽𝐿 + 6𝐸𝐼
6𝐾𝐽𝐸𝐼

)

(13)

where the first term is due to the elastic deformation of the beam and the second term is related to the joint flexibility.
Supposing 𝑀𝐽 ,𝑢 < 𝑀𝑉 ,𝐽 ,𝑢 the 𝑞𝑓 failure load is given by Eq. (9) and, considering Eq. (5), we obtain

𝛥𝑞 =
8
(

𝑀𝑚𝑠,𝑢 +𝑀𝐽 ,𝑢
)

𝐿2
−

8𝑀𝑚𝑠,𝑢

𝐿2

(

3𝐾𝐽𝐿 + 6𝐸𝐼
𝐾𝐽𝐿 + 6𝐸𝐼

)

=

= 8
𝐿2

[

𝑀𝐽 ,𝑢 −𝑀𝑚𝑠,𝑢

(

2𝐾𝐽𝐿
𝐾𝐽𝐿 + 6𝐸𝐼

)]

So that, the required rotation is

𝜃𝑚𝑠,𝑢 =
(

2
𝐾𝐽

+ 𝐿
3𝐸𝐼

)

𝑀𝐽 ,𝑢 −
2𝐿
3𝐸𝐼

𝑀𝑚𝑠,𝑢 (14)

This result can be checked by a different approach, see Appendix A.
The following conditions have to be respected

𝑀𝐽 ,𝑢𝜌𝑖 < 𝑀𝑖,𝑢 𝑖 = 1, 2, 3

Now we have consider the shear collapse of the joint, 𝑀𝑉 ,𝐽 ,𝑢 < 𝑀𝐽 ,𝑢; in this case the failure load 𝑞𝑓 is

𝑞𝑓 =
8
(

𝑀𝑚𝑠,𝑢 +𝑀𝑉 ,𝐽 ,𝑢
)

𝐿2
(15)

the required rotation is

𝜃𝑚𝑠,𝑢 =
(

2
𝐾𝐽

+ 𝐿
3𝐸𝐼

)

𝑀𝑉 ,𝐽 ,𝑢 −
2𝐿
3𝐸𝐼

𝑀𝑚𝑠,𝑢 (16)

The following conditions have to be respected

𝑀𝑉 ,𝐽 ,𝑢𝜌𝑖 < 𝑀𝑖,𝑢 𝑖 = 1, 2, 3

.3. Beam–column joint collapse

As previously noted, if the first element to collapse is the beam–column joint,

𝑞𝑉 ,𝐽 ,𝑢 ≤
[

𝑞𝐽 ,𝑢, 𝑞𝑚𝑠,𝑢, 𝑞𝑤,𝐽 ,𝑢
]

r equivalently

𝑀𝑉 ,𝐽 ,𝑢 ≤
[

𝑀𝐽 ,𝑢,
2𝑀𝑚𝑠,𝑢

1 + 6𝐸𝐼∕𝐾𝐽𝐿
,𝑀𝑤,𝐽 ,𝑢

]

(17)

we have a brittle failure and the ultimate load can be expressed by Eq. (7).
5
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4. Effective ultimate load as affected by the section rotation capacity

In the following the effective ultimate load as affected by the section rotation capacity is assessed. When the section, where first
lastic hinge forms, can provide the required rotation, Eqs. (11), (14) and (16), we have the complete redistribution of the moment
nd the failure load is given by Eq. (9) or Eq. (15). Otherwise, the ultimate load is influenced by the section rotation effective
apacity. The effective rotation can be estimated through the section curvature capacity taking into account the 𝐿𝑝 plastic hinge

length

𝜃𝑢,𝑒𝑓𝑓 =
(

𝛩𝑢 − 𝛩𝑦
)

𝐿𝑝 (18)

where 𝛩𝑢 is the ultimate curvature and 𝛩𝑦 is the yield curvature.
If the first hinges form at beam-ends, the 𝑞𝑓,𝑒𝑓𝑓 ,𝐽 effective failure load can be obtained by Eq. (10) substituting the effective

otation at the beam end 𝜃𝐽 ,𝑢,𝑒𝑓𝑓

𝑞𝑓,𝑒𝑓𝑓 ,𝐽 = 24𝐸𝐼
𝐿3

(

𝜃𝐽 ,𝑢,𝑒𝑓𝑓 +
𝑀𝐽 ,𝑢𝐿
2𝐸𝐼

)

=
24𝐸𝐼𝜃𝐽 ,𝑢,𝑒𝑓𝑓

𝐿3
+

12𝑀𝐽 ,𝑢

𝐿2
(19)

If the first hinge forms at beam mid-span, the effective increment of load can be obtained by Eq. (13) substituting the beam
mid-span effective rotation 𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓

𝛥𝑞𝑒𝑓𝑓 =
4𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓

𝐿2

(

6𝐾𝐽𝐸𝐼
𝐾𝐽𝐿 + 6𝐸𝐼

)

o that the effective failure load 𝑞𝑓,𝑒𝑓𝑓 ,𝑚𝑠 is

𝑞𝑓,𝑒𝑓𝑓 ,𝑚𝑠 = 𝑞𝑚𝑠,𝑢 + 𝛥𝑞𝑒𝑓𝑓 =
8𝑀𝑚𝑠,𝑢

𝐿2

(

3𝐾𝐽𝐿 + 6𝐸𝐼
𝐾𝐽𝐿 + 6𝐸𝐼

)

+
4𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓

𝐿2

(

6𝐾𝐽𝐸𝐼
𝐾𝐽𝐿 + 6𝐸𝐼

)

=

=
24𝐾𝐽𝐸𝐼

𝐿2
(

𝐾𝐽𝐿 + 6𝐸𝐼
)

(

𝑀𝑚𝑠,𝑢

(

𝐿
𝐸𝐼

+ 2
𝐾𝐽

)

+ 𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓

)

(20)

5. Retrofitting design procedure and application to a case study

5.1. Retrofitting design

An iterative design procedure for identifying the proper retrofitting intervention with the goal to achieve a target vertical load
𝑞𝑓,𝑇 is proposed taking advantage from the closed-form equations previously determined. The start corresponds to identify the
weakest component:

a — beam-end by Eq. (8),
b — beam mid-span by Eq. (12),
c — beam–column joint by Eq. (17),
Then it is possible to identify the relative failure load considering the section rotation capacity:
a — Eq. (19),
b — Eq. (20),
c — Eq. (7).

5.2. Case study

The validity and accuracy of the closed-form equations and proposed retrofitting procedure have been checked by a specific
application. The case study is the existing building Santa Maria Annunziata Hospital, in Bagno a Ripoli near Florence (I). The hospital
was designed in 1966 and built in 1968–1972, taking into account only vertical loads because of the lack of seismic standard code.
The hospital complex is characterized by seven buildings. The Unit No. 1 has been considered. This Unit has a basement floor, four
floors and a walkable roof; the plan of the structure is shown in Fig. 2.

The available design documentation and experimental tests allowed estimating the geometrical characteristics of concrete cross-
sections and reinforcement bars. The geometric characteristics are reported in Table 1 where 𝑏 is the cross-section width, ℎ is the
cross-section height and 𝐿 is the member length.

By experimental tests, the average concrete compressive strength has been estimated 𝑓𝑐𝑚 = 22, 5 N∕mm2, while the average yield
strength of reinforcing bars 𝑓𝑦𝑚 = 440, 0 N∕mm2.

Assuming the stress block model for the concrete and the linear elastic-perfectly plastic behavior for the steel, the ultimate
moment of elements was estimated; the values are reported in Table 2.
6
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Fig. 2. (a) Plan of the Santa Maria Annunziata Hospital and identification of the case study: Structural Unit No. 1 (SU 1), (b) Extract from the existing structural
drawings, (c) Multi-span multi-level Moment-Resisting-Frame of the SU 1, with the frame investigated in bold red (longitudinal section and plan).

Table 1
Geometric characteristics of elements (mm).

Characteristic Top column External beam Bottom column Internal beam

i=1 i=2 i=3

b 500 1200 500 1200
h 400 400 400 400
L 3700 5800 3700 5800

Table 2
Ultimate moments [kNm].

Beam-end Beam mid-span Beam–column joint Top column External beam Bottom column

𝑀𝐽 ,𝑢 𝑀𝑚𝑠,𝑢 𝑀𝑉 ,𝐽 ,𝑢 𝑀1,𝑢 𝑀2,𝑢 𝑀3,𝑢
545 230 147 212 545 242

5.3. Numerical model

To check the failure load and relative collapse mechanism, as estimated by the analytical procedure, a numerical model is
adopted. A FE model of the frame structure, Fig. 2, is developed using the numerical code SAP 2000 [42]. One-dimensional elastic
beam elements with lumped-plasticity are used. In particular, regarding the post-elastic response, a moment–rotation plastic curve,
modeled by a rotational spring placed at the member-end, is adopted for the beam and adjacent elements. The curve is defined by
the ultimate moment and the effective rotation of each member. The brittle shear failure of the beam–column joint is identified by
the moment acting on the beam end 𝑀𝑉 ,𝐽 ,𝑢. In particular, a moment–rotation spring is placed in series with the spring simulating
the response of the beam, at the intersection between the beam and the column, Fig. 3. Additional details of the numerical model
and its capacity to estimate the failure mechanism of R.C. structures, as impacted by an eventual brittle collapse of the beam–column
joint, can be found in [17]. In particular, the numerical model was used to simulate the experimental tests on existing R.C. structures
reported in [22]; the model provided the ultimate loads and displacements with a 2%–3% error with respect to the experimental
tests.
7
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Fig. 3. Identification of the position and moment–rotation curve of hinges simulating the member behavior in the FE numerical model, (a) Moment-Resisting-
Frame, (b) position of plastic hinges (springs) simulating the structural response of critical regions through moment–rotation curves, (c) scheme of the FE
model.

5.4. Results for the case study

Starting from the existing structural configuration, (A — existing structure, Fig. 4), the failure load was 𝑞𝑓 = 𝑞𝑉 ,𝐽 ,𝑢 = 𝑞𝑓0 =
63, 8 kN∕m and it corresponds to the brittle failure of the beam–column joint (the weakest component), Table 3. This results was
checked by numerical analysis that provided a failure load 𝑞𝑓0,𝑛 = 63, 4 kN∕m. It should be observed that this value was a conservative
assessment of the failure load because the confinement of joint, given by adjacent elements, was neglected.

We assume to strengthen the beam–column joint, 𝑀𝑉 ,𝐽 ,𝑢 = 600 kNm. In this case (R1 — retrofitting phase 1) the first plastic
hinge forms at the beam mid-span section and the failure mode is related to the effective ultimate rotation at that section; we have
𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓 = 0, 0020 rad so that the failure load increases to 𝑞𝑓,𝑒𝑓𝑓 ,𝑚𝑠 = 𝑞𝑓1 = 149, 6 kN∕m. This result was checked by numerical
analysis that provided a failure load 𝑞𝑓1,𝑛 = 147, 8 kN∕m.

The failure load 𝑞𝑓 = 𝑞𝑓2 = 184, 3 kN∕m can be achieved by increasing the rotation capacity at the beam mid-span (R2 —
retrofitting phase 2). The numerical load was 𝑞𝑓2,𝑛 = 183, 3 kN∕m. The mechanism is given by the first hinge at mid-span and the
second hinges at the beam-end. The analytical and numerical beam mid-span rotation was 𝜃𝑚𝑠,𝑢 = 𝜃𝑚𝑠,𝑢,𝑛 = 0, 004 rad.

The ultimate bending moment at the beam mid-span was increased to 𝑀𝑚𝑠,𝐽 ,𝑢 = 545 kNm (R3 — retrofitting phase 3). The
first plastic hinge forms at beam-ends and the analytical failure load becomes 𝑞𝑓,𝑒𝑓𝑓 ,𝐽 = 𝑞𝑓3 = 241 kN∕m and the numerical
one 𝑞𝑓3,𝑛 = 240 kN∕m; this collapse mechanism is achieved when the effective rotation capacity is obtained at the beam-ends
𝜃𝐽 ,𝑒𝑓𝑓 = 𝜃𝐽 ,𝑒𝑓𝑓 ,𝑛 = 0.00198 rad, where the first plastic hinges form.

Eventually, a structural strengthening at the beam-ends, capable to increase the rotation capacity is assumed (R4 — retrofitting
phase 4). This allows to perform a complete redistribution of the moment with a second hinge at the beam mid-span, with a related
ultimate load 𝑞𝑓 = 𝑞𝑓4 = 259 kN∕m (𝑞𝑓4,𝑛 = 257 kN∕m); the rotation of the first plastic hinge at the joint was 𝜃𝐽 ,𝑢 = 0, 00274. The
obtained results are summarized in Table 3; the failure modes are shown in Fig. 4.

In particular the comparison between analytical and numerical results highlights the accuracy of the proposed approach, which
can be adopted to estimate the effective load-carrying capacity of frame structures and, identifying the weakest component, suggests
the proper structural reinforcement intervention in terms of strength and ductility for increasing the load-carrying capacity.

6. Influence of the adjacent elements on the failure mechanism

In the previous application, none of the adjacent elements (columns and beams 𝑖 = 1, 2, 3) reached, at the node, the plastic
condition. This situation is quite common; for example, if vertical loads are increased on all spans, the internal columns, with same
length, are approximately stressed only by axial force. However it is possible that adjacent elements achieve the ultimate moment
so that the related effects have to be considered because the rotational stiffness at the joint changes.

6.1. First elastic overcoming on the beam

At first, we reconsider the previously described failure mechanisms; in other words, we assume that the first hinge forms on the
beam and the effects of an eventual failure of the adjacent elements is investigated.
8
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Fig. 4. Failure mechanisms for the existing structure (A) and the structure after a strengthening (Ri): hinge at beam mid-span (R1); hinges at beam mid-span
and beam ends (R2); hinges at beam-ends (R3); hinges at beam-ends and beam mid-span (R4).

Table 3
Failure load and relative mode, (A) existing structure, (𝑅𝑖 𝑖 = 1 ∶ 4) strengthening (dimension: failure load kN/m,
rotation rad; n=numerical result).

Case Failure mode

A Beam–column joint collapse
𝑞𝑓0 = 63, 8 𝑞𝑓0,𝑛 = 63, 4 𝑞𝑓0∕𝑞𝑓0,𝑛 = 1, 01

R1 First hinge at beam mid-span with overcoming of plastic hinge rotation capacity
𝑞𝑓1 = 149.6 𝑞𝑓1,𝑛 = 147.8 𝑞𝑓1∕𝑞𝑓1,𝑛 = 1.01 𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓 = 0.0020

R2 First hinge at beam mid-span – second hinge at beam-ends
𝑞𝑓2 = 184.3 𝑞𝑓2,𝑛 = 183, 3 𝑞𝑓2∕𝑞𝑓2,𝑛 = 1.01 𝜃𝑚𝑠,𝑢 = 0.00443

R3 First hinge at beam-ends with overcoming of plastic hinges rotation capacity
𝑞𝑓3 = 241.3 𝑞𝑓3,𝑛 = 240.3 𝑞𝑓3∕𝑞𝑓3,𝑛 = 1.00 𝜃𝐽 ,𝑢,𝑒𝑓𝑓 = 0.00198

R4 First hinge at beam-ends – second hinge at beam mid-span
𝑞𝑓4 = 259.2 𝑞𝑓4,𝑛 = 257.1 𝑞𝑓4∕𝑞𝑓4,𝑛 = 1.01 𝜃𝐽 ,𝑢 = 0.00274

6.1.1. First plastic hinge forms at the beam-end section
If the first plastic hinge forms at the beam-end section (see paragraph 3.1); we note that, also increasing the load, there is not an

increment of the moment at the node and plastic hinges in the adjacent elements will not form. Results of Section 3.1, not depending
on the joint stiffness, do not undergo any changes.

6.1.2. First plastic hinge forms at the beam mid-span section
Now we consider that first plastic hinge forms at the mid-span section (see paragraph 3.2). In this case an increment of load

can produce hinges in the elements adjacent to the joint; the degradation of the joint stiffness has to be considered to estimate the
required rotation, see Appendix B.

– Case A: hinge on element 𝑖 = 1 and collapse by hinge at the beam-end section. The 𝑞𝑓 failure load is given by Eq. (9) and the
overall required rotation is given by Eq. (A2.1)

– Case B: hinges on elements 𝑖 = 1, 2 and collapse by hinge at the beam-end section The 𝑞𝑓 failure load is always given by Eq. (9)
and the overall required rotation is given by Eq. (A2.2)

– Case C: hinges on elements 𝑖 = 1, 2, 3 In this case the 𝑞𝑓,�̄�𝑅
failure load given by Eq. (A2.3) and the overall required rotation

is given by Eq. (A2.5)

6.2. First hinges on the adjacent elements

We consider that the first hinge forms on the element, without loss of generality, 𝑖 = 1. This situation changes the flexural
stiffness at the beam–column joint, that is 𝐾 (1)

𝐽 , and the moment distribution in the beam. If the second hinge forms on the beam
(beam-end or mid-span section)it is possible to use the analysis reported in the previous paragraph.

Vice versa, if the second forms on the element 𝑖 = 2, the flexural stiffness at the beam–column joint changes to 𝐾 (1,2)
𝐽 with

analogous effects.
Moreover, if a third hinge forms on the element 𝑖 = 3 we have the ‘‘joint rotation mechanism’’ that is equivalent to hinge at the

beam-end section whit a moment �̄�𝑅, Eq. (A2.4).
It should be noted that in the previous we have supposed that the hinge rotation on the adjacent elements are provided, this

should be checked. Moreover we have supposed that there is not the joint shear failure; this brittle mechanism should be verified.
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Table 4
Plastic hinges on adjacent elements – Failure loads and relative mechanisms – Comparison with
numerical results (dimension: moment kNm, failure load kN/m, rotation rad; n=numerical result).

Case Failure mode

1 𝑀1,𝑢 = 150, 𝑀2,𝑢 = 300, 𝑀3,𝑢 = 400, 𝑀𝐽 ,𝑢 = 700, 𝑀𝑚𝑠,𝑢 = 800
Hinges: 𝑖 = 3, 2 - beam-end section - beam mid-span section - Fig. 5
𝑞𝑓 = 356, 7, 3 𝑞𝑓,𝑛 = 353, 8, 9 𝑞𝑓𝑜∕𝑞𝑓𝑜,𝑛 = 1, 01
𝜃𝐽 ,𝑢 = 0, 00164 𝜃𝐽 ,𝑢,𝑛 = 0, 00157 𝜃𝐽 ,𝑢∕𝜃𝐽𝑢,𝑛 = 1, 04

2 𝑀2,𝑢 = 545, 𝑀3,𝑢 = 150, 𝑀𝐽 ,𝑢 = 545, 𝑀𝑚𝑠,𝑢 = 800
Hinges: 𝑖 = 3 - beam-end section - beam mid-span section - Fig. 5
𝑞𝑓 = 319, 9 𝑞𝑓,𝑛 = 317, 4 𝑞𝑓𝑜∕𝑞𝑓𝑜,𝑛 = 1, 01
𝜃𝐽 ,𝑢 = 0, 00233 𝜃𝐽 ,𝑢,𝑛 = 0, 00237 𝜃𝐽 ,𝑢∕𝜃𝐽 ,𝑢,𝑛 = 0, 98

3 𝑀2,𝑢 = 545, 𝑀3,𝑢 = 180, 𝑀𝐽 ,𝑢 = 545, 𝑀𝑚𝑠,𝑢 = 230
Hinges: beam mid-span section - 𝑖 = 3 - beam-end section - Fig. 5
𝑞𝑓 = 184, 3 𝑞𝑓,𝑛 = 182, 9 𝑞𝑓𝑜∕𝑞𝑓𝑜,𝑛 = 1, 01
𝜃𝑚𝑠,𝑢 = 0, 00637 𝜃𝑚𝑠,𝑢,𝑛 = 0, 00651 𝜃𝑚𝑠,𝑢∕𝜃𝑚𝑠,𝑢,𝑛 = 0, 98

Fig. 5. Different failure mechanisms with plastic hinges on adjacent elements and identification of the hinge formation sequence.

6.3. Application to the case study

To check the previous analytical approach, a comparison with numerical simulation has been performed using the FE model
previously described. Some examples are listed in Table 4, with the failure mechanisms shown in Fig. 5. Results highlighted the
accuracy of proposed procedure in terms of both the failure load and required rotation (it should be noted that cases 2 and 3 have
only bottom columns as they represent the structural scheme of the roof level).

7. Conclusions

An analytical framework capable to evaluate the failure load and associated collapse mechanism of an interior span of a moment-
resisting-frame, considering the influence of adjacent members in terms of stiffness, strength, and ductility, in addition to the brittle
failure of beam–column joints, is developed. The analytical assessment of the required rotation to achieve the theoretical ultimate
load with the complete redistribution of the moment can be adopted for the design of new structures. The estimation of the effective
load-carrying capacity of existing structures, as affected by the actual rotation capacity of critical regions, where plastic hinges form,
represents a useful method for engineers to identify the proper structural strengthening to achieve a target vertical load. The method
is based on a nonlinear analysis until the system failure and closed-form equations are provided to evaluate the critical regions and
the effective ultimate load. For sake of simplicity, a symmetric structural scheme is investigated, and the member shear failure
is not considered, as the eventual shear strengthening can be easily defined after the evaluation of the ultimate load related to
the failure mechanism. To illustrate the use of the proposed approach, for the assessment and retrofitting of reinforced concrete
existing buildings, a case study is discussed. The accuracy has been confirmed through the comparison with numerical results and
the retrofitting design procedure is explained. The method shows that, as expected, the critical regions can be correctly estimated
considering the flexural stiffness of adjacent members. The ultimate load is not affected by the stiffness of adjacent members if
plastic hinges form first at the span-ends. Vice versa, if the first plastic hinge forms at the mid-span, and the last plastic hinges arise
at the beam-ends at failure, the effective ultimate load cannot be accurately estimated by neglecting the flexural stiffness of adjacent
members. The method can easily be adopted in common practice by designers to increase the vertical ultimate load, exploiting the
local ductility where required and the strength without reducing the available global ductility.
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Appendix A

The rotation given by Eq. (14) can be also obtained by a global analysis. In fact, for a generic 𝑞 load, the contributions of the
oad and 𝑀𝑚𝑠,𝑢 to the rotation are respectively

𝜃(𝑞)𝑚𝑠,𝑢 = 2
(

𝑞𝐿3

48𝐸𝐼
+
𝑞𝐿2

8𝐾𝐽

)

𝜃(𝑀𝑚𝑠,𝑢)
𝑚𝑠,𝑢 = −2

(𝑀𝑚𝑠,𝑢𝐿
2𝐸𝐼

+
𝑀𝑚𝑠,𝑢

𝐾𝐽

)

nd

𝜃(𝑞,𝑀𝑚𝑠,𝑢)
𝑚𝑠,𝑢 = 𝑞𝐿2

(

𝐿
24𝐸𝐼

+ 1
4𝐾𝐽

)

−
(

𝐿
𝐸𝐼

+ 2
𝐾𝐽

)

𝑀𝑚𝑠,𝑢

When 𝑀𝐽 =𝑀𝐽 ,𝑢, we have 𝑞 = 𝑞𝑓 , given by Eq (9), and substituting in the previous we obtain Eq. (14).

ppendix B

– Case A: hinge on element 𝑖 = 1 and collapse by hinge at the beam-end section
Without loss generality, we assume that a hinge forms at the element 𝑖 = 1, so that 𝑀1,𝐽 = 𝜌1𝑀𝐽 =𝑀1,𝑢.
The load to obtain this condition is

𝑞(1) =
8
(

𝑀1,𝑢∕𝜌1 +𝑀𝑚𝑠,𝑢
)

𝐿2

This condition does not correspond to failure and the required rotation, from Eq. (14), is

𝜃(1)𝑚𝑠,𝑢 =
(

𝐿
3𝐸𝐼

+ 2
𝐾𝐽

) 𝑀1,𝑢

𝜌1
− 2𝐿

3𝐸𝐼
𝑀𝑚𝑠,𝑢

We suppose that a further increasing of the load 𝛥𝑞(1,𝐽 ) gives a hinge at the joint section (in other words, plastic hinges do not
form on the other elements 𝑖 = 2, 3); this corresponds to the failure condition with the 𝑞𝑓 failure load given by Eq. (9). To obtain
his condition the increment of load is

𝛥𝑞(1,𝐽 ) = 𝑞𝑓 − 𝑞(1) =
8
(

𝑀𝐽 ,𝑢 −𝑀1,𝑢∕𝜌1
)

𝐿2

and the increment of the required rotation is

𝛥𝜃(1,𝐽 )𝑚𝑠,𝑢 = 𝛥𝑞(1,𝐽 )𝐿2

(

𝐿
24𝐸𝐼

+ 1
4𝐾1

𝐽

)

where 𝐾1
𝐽 = 𝑘2 + 𝑘3 is the new elastic flexural stiffness at the beam-to-column node. Substituting 𝛥𝑞 we have

𝛥𝜃(1,𝐽 )𝑚𝑠,𝑢 =

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

(

𝑀𝐽 ,𝑢 −
𝑀1,𝑢

𝜌1

)

Hence the overall required rotation is

𝜃(1,𝐽 )𝑚𝑠,𝑢 = 𝜃(1)𝑚𝑠,𝑢 + 𝛥𝜃
(1,𝐽 )
𝑚𝑠,𝑢 =

=

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

𝑀𝐽 ,𝑢 − 2

(

1
𝐾1
𝐽

− 1
𝐾𝐽

)

𝑀1,𝑢

𝜌1
− 2𝐿

3𝐸𝐼
𝑀𝑚𝑠,𝑢 (A2.1)

– Case B: hinges on elements 𝑖 = 1, 2 and collapse by hinge at the beam-end section
Now we suppose that, after the hinge formation on element 𝑖 = 1, a hinge forms in element 𝑖 = 2, and eventually the

system collapses by hinge formation at the beam-end section. When the hinge forms on element 𝑖 = 1 we have 𝑀1,𝐽 = 𝑀1,𝑢 and
𝑀𝐽 = 𝑀1,𝑢∕𝜌1 so that 𝑀2,𝐽 = 𝑀1,𝑢(𝜌2∕𝜌1) and 𝑀3,𝐽 = 𝑀1,𝑢(𝜌3∕𝜌1). In order to have a hinge on element 𝑖 = 2 the moment has to
increase of

𝛥𝑀2,𝐽 =𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1

and the beam-end moment has to increase of

𝛥𝑀 (1,2)
𝐽 = (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2

where �̃�2 = 𝐼2∕𝐿2∕(𝐼2∕𝐿2 + 𝐼3∕𝐿3). So that the moment at the joint is

𝑀 (1,2)
𝐽 =𝑀1,𝑢∕𝜌1 + 𝛥𝑀

(1,2)
𝐽 =𝑀1,𝑢∕𝜌1 + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2 =

=𝑀1,𝑢∕𝜌1
(

1 − 𝜌2∕�̃�2
)

+𝑀2,𝑢∕�̃�2
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s
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‘

and the relative load is

𝑞(1,2) = 8
(

𝑀 (1,2)
𝐽 +𝑀𝑚𝑠,𝑢

)

∕𝐿2

In this condition, the moment on element 𝑖 = 3 is

𝑀3,𝐽 =𝑀1,𝑢(𝜌3∕𝜌1) + 𝛥𝑀
(1,2)
𝐽 �̃�3

=𝑀1,𝑢(𝜌3∕𝜌1) + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)
(

�̃�3∕�̃�2
)

where �̃�3 = 𝐼3∕𝐿3∕(𝐼2∕𝐿2 + 𝐼3∕𝐿3).
The increment of load is

𝛥𝑞(1,2) = 𝑞(1,2) − 𝑞(1) =
8𝛥𝑀 (1,2)

𝐽

𝐿2
=

8
(

𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1
)

𝐿2�̃�2
The increment of required rotation

𝛥𝜃(1,2)𝑚𝑠,𝑢 = 𝛥𝑞(1,2)𝐿2

(

𝐿
24𝐸𝐼

+ 1
4𝐾1

𝐽

)

=

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1
�̃�2

o that the required rotation is

𝜃(1,2)𝑚𝑠,𝑢 = 𝜃(1)𝑚𝑠,𝑢 + 𝛥𝜃
(1,2)
𝑚𝑠,𝑢 =

=
(

𝐿
3𝐸𝐼

+ 2
𝐾𝐽

) 𝑀1,𝑢

𝜌1
+

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1
�̃�2

− 2𝐿
3𝐸𝐼

𝑀𝑚𝑠,𝑢

We suppose to increase the load until to obtain the failure with a hinge form at the beam-end section. The failure load is always
iven from Eq. (9).

In order to obtain this condition, the increment of beam-end section moment is

𝛥𝑀 (1,2,𝐽 )
𝐽 =𝑀𝐽 ,𝑢 −𝑀

(1,2)
𝐽 =𝑀𝐽 ,𝑢 −

(

𝑀1,𝑢∕𝜌1 + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2
)

=𝑀𝐽 ,𝑢 −𝑀1,𝑢∕𝜌1
(

1 − 𝜌2∕�̃�2
)

−𝑀2,𝑢∕�̃�2

whit an increment of load

𝛥𝑞(1,2,𝐽 ) =
8𝛥𝑀 (1,2,𝐽 )

𝐽

𝐿2
=

8
(

𝑀𝐽 ,𝑢 −
(

𝑀1,𝑢∕𝜌1 + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2
))

𝐿2

and an increment of rotation

𝛥𝜃(1,2,𝐽 )𝑚𝑠,𝑢 = 𝛥𝑞(1,2,𝐽 )𝐿2

(

𝐿
24𝐸𝐼

+ 1
4𝐾1,2

𝐽

)

=

=

(

𝐿
3𝐸𝐼

+ 2
𝐾1,2
𝐽

)

[

𝑀𝐽 ,𝑢 −
(

𝑀1,𝑢∕𝜌1 + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2
)]

where 𝐾 (1,2)
𝐽 = 𝑘3, is the new elastic flexural stiffness at the beam-to-column node.

The overall rotation is

𝜃(1,2,𝐽 )𝑚𝑠,𝑢 = 𝜃(1)𝑚𝑠,𝑢 + 𝛥𝜃
(1,2)
𝑚𝑠,𝑢 + 𝛥𝜃

(1,2,𝐽 )
𝑚𝑠,𝑢 =

=
(

𝐿
3𝐸𝐼

+ 2
𝐾𝐽

) 𝑀1,𝑢

𝜌1
+

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1
�̃�2

+

+

(

𝐿
3𝐸𝐼

+ 2
𝐾1,2
𝐽

)

[

𝑀𝐽 ,𝑢 −
(

𝑀1,𝑢∕𝜌1 + (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)∕�̃�2
)]

− 2𝐿
3𝐸𝐼

𝑀𝑚𝑠,𝑢 (A2.2)

– Case C: hinges on elements 𝑖 = 1, 2, 3
After hinges in elements 𝑖 = 1, 2, it is possible to collapse when a further hinge forms at element 𝑖 = 3; in this case we have a

‘joint rotation mechanism’’ with a failure load given by

𝑞𝑓,�̄�𝑅
=

8
(

�̄�𝑅 +𝑀𝑚𝑠,𝑢
)

𝐿2
(A2.3)

where

�̄�𝑅 =
3
∑

𝑟=1
𝑀𝑟,𝐽 ,𝑢 (A2.4)

̄
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with 𝑀𝐽 ,𝑢 > 𝑀𝑅.
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In order to obtain this mechanism from previous condition, it is necessary to increase the moment at the element 𝑖 = 3

𝛥𝑀3,𝐽 =𝑀3,𝑢 −𝑀1,𝑢(𝜌3∕𝜌1) − (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)
(

�̃�3∕�̃�2
)

so that the increment of beam-end section is 𝛥𝑀3 = 𝛥𝑀3,𝐽 . The total required rotation is

𝜃(1,2,3)𝑚𝑠,𝑢 = 𝜃(1)𝑚𝑠,𝑢 + 𝛥𝜃
(1,2)
𝑚𝑠,𝑢 + 𝛥𝜃

(1,2,3)
𝑚𝑠,𝑢 =

=
(

𝐿
3𝐸𝐼

+ 2
𝐾𝐽

) 𝑀1,𝑢

𝜌1
+

(

𝐿
3𝐸𝐼

+ 2
𝐾1
𝐽

)

𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1
�̃�2

+

+

(

𝐿
3𝐸𝐼

+ 2
𝐾1,2
𝐽

)

[

𝑀3,𝑢 −𝑀1,𝑢(𝜌3∕𝜌1) − (𝑀2,𝑢 −𝑀1,𝑢𝜌2∕𝜌1)
(

�̃�3∕�̃�2
)]

− 2𝐿
3𝐸𝐼

𝑀𝑚𝑠,𝑢 (A2.5)

Appendix C. List of symbols

𝑀𝐽 - moment at the beam-end, see Fig. 1
𝑀𝐽 ,𝑢 - ultimate moment at the beam-end
𝑀𝑚𝑠 - moment at beam mid-span, see Fig. 1
𝑀𝑚𝑠,𝑢 - ultimate moment at beam mid-span
𝑀𝑖,𝐽 - moment at the 𝑖 element-end, see Fig. 1
𝑀𝑖,𝐽 ,𝑢 =𝑀𝑖,𝑢 - ultimate moment at the 𝑖 element-end
𝑀𝑤,𝐽 ,𝑢 - ultimate moment at the beam-end relative to the weakest adjacent element failure
𝐾𝐽 - overall elastic flexural stiffness at the node due to the adjacent elements 𝑖 = 1, 2, 3
𝑞𝐽 ,𝑢 - load that produces the first plastic hinge at beam-ends
𝑞𝑚𝑠,𝑢 - load that produces the first plastic hinge at mid-span
𝑞𝑤,𝐽 ,𝑢 - load that produces the first plastic hinge at the weakest adjacent element
𝑉𝑢 - beam–column joint ultimate shear
𝑀𝑉 ,𝐽 ,𝑢 - ultimate beam moment at the beam-end that produces the joint shear failure
𝑞𝑉 ,𝐽 ,𝑢 - load that produces the joint shear failure
𝑞𝑓 - failure load (plastic hinges at the beam-end section and beam mid-span)
𝜃𝐽 ,𝑢 - required rotation at the beam-end to achieve 𝑞𝑓
𝜃𝑚𝑠,𝑢 - required rotation at beam mid-span to achieve 𝑞𝑓
𝜃𝐽 ,𝑢,𝑒𝑓𝑓 - effective rotation at the beam-end
𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓 - effective rotation at the beam mid-span
𝑞𝑓,𝑒𝑓𝑓 ,𝐽 - effective failure load due to the effective rotation 𝜃𝐽 ,𝑢,𝑒𝑓𝑓
𝑞𝑓,𝑒𝑓𝑓 ,𝑚𝑠 - effective failure load due to the effective rotation 𝜃𝑚𝑠,𝑢,𝑒𝑓𝑓
𝜃(1,𝐽 )𝑚𝑠,𝑢 - mid-span required rotation - collapse of 1-element and beam-end
𝜃(1,2,𝐽 )𝑚𝑠,𝑢 - mid-span required rotation - collapse of 1,2-elements and beam-end
𝜃(1,2,3)𝑚𝑠,𝑢 - mid-span required rotation - collapse of adjacent elements
𝑞𝑓,�̄�𝑅

- failure load - plastic hinges at beam mid-span and all adjacent elements
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