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Abstract
Until now the problem of estimating circular densities when data are observed
with errors has been mainly treated by Fourier series methods. We propose
kernel-based estimators exhibiting simple construction and easy implementa-
tion. Specifically, we consider three different approaches: the first one is based
on the equivalence betweenkernel estimators using data corruptedwith different
levels of error. This proposal appears to be totally unexplored, despite its poten-
tial for application also in the Euclidean setting. The second approach relies on
estimators whose weight functions are circular deconvolution kernels. Due to
the periodicity of the involved densities, it requires ad hoc mathematical tools.
Finally, the third one is based on the idea of correcting extra bias of kernel estima-
torswhich use contaminated data and is essentially an adaptation of the standard
theory to the circular case. For all the proposed estimators, we derive asymptotic
properties, provide some simulation results, and also discuss some possible gen-
eralizations and extensions. Real data case studies are also included.

KEYWORDS
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1 INTRODUCTION

Circular data arise when the sample space is described by a
unit circle. If compared to a linear scale, the main features
of circular observations are that the beginning and the
end of themeasurement scale coincide, and their common
location, which determines the origin (or zero direction),
is arbitrarily chosen. Once the origin and the direction of
rotation have been fixed, any circular observation can be
measured by an angle ranging, in radians, from 0 to 2!.
Circular data often arise in biology, meteorology, and geol-
ogy; other examples include phenomena that are periodic
in time. For comprehensive accounts of circular statistics
see, for example, Fisher (1993) and Jammalamadaka and
SenGupta (2001), and for collections of recent advances see
Ley and Verdebout (2017, 2018).
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We discuss the problem of nonparametrically esti-
mating a circular density when, instead of observing a
random sample from that density, a version contami-
nated by measurement errors is available. This is the
classical errors-in-variables problem. Differently from
the Euclidean setting, where kernel-type estimators have
been widely employed for this problem (see, e.g., Delaigle
(2014) and the references therein), in the circular setting
only trigonometric series estimators have been developed.
In particular, Efromovich (1997) proposed an estimator
constructed by approximating the target density as a
truncated series where the theoretical coefficients of the
trigonometric basis are replaced by the empirical ones.
Then Comte and Taupin (2003), using a model selec-
tion procedure, derived an adaptive penalized contrast
estimator, and Johannes and Schwarz (2013) proposed
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an orthogonal series estimator which is optimal in the
minimax sense.
In this paper, we introduce estimators which have the

advantage of being defined in terms of simple averages,
and thus favoring intuition, flexibility, and saving compu-
tational time. Specifically, we pursue three routes.
The first one originates from the quite general idea that

the two following links have the same nature: (a) the link
between an estimate based on unavailable data and that
which is based on current sample and (b) the link between
this latter and an estimate based on the sample artificially
corrupted by adding noise drawn from the error distribu-
tion. This idea provides the basis to formulate equations
where the uncorrupted estimate is the unknown, leading
to estimators which are corrected by means of a differ-
ence or a ratio. Importantly, due to its generality, we note
that this equivalence idea applies in principle to all estima-
tion methods, both for regression and density estimation,
regardless of whether data are directional or not. In fact,
the only constraint seems to be knowledge of the error dis-
tribution.
The second one relies on estimators which share the

structure of classical density deconvolution estimators,
whose weight functions are defined as Fourier series
whose coefficients are represented by the ratio of the
Fourier coefficients of a circular kernel and those of the
error density. The fact that an infinite summation is
involved in the Fourier expansion also poses the challenge
of selecting the number of terms to obtain a truncated ver-
sion of it.
The third approach is based on the idea of correcting the

extra bias due to the measurement error of the naive ker-
nel estimator which uses contaminated data. In particu-
lar, using the idea of low-order approximations of Carroll
and Hall (2004), starting from a Taylor-like series expan-
sion, the estimator is obtained as the difference between
the naive kernel density estimator and a consistent esti-
mator of the excess bias due to the measurement errors. A
possible generalization is to consider different smoothing
degrees for the two terms appearing in its formulation.
To motivate our research, we note that determining the

distribution of wind or marine current directions consti-
tutes a very relevant field of application for our proposed
methods because direction data are typically affected by
various sources of noise. In particular, surface wind direc-
tion data are the object of different fields of study. Themain
features of such data are the instantaneous nature and an
inherent, strong variability even in very small periods of
time. Surely, there is a widespread interest in establishing
prevailing winds, defined as the dominant wind directions
in an area. Classical problems involving prevailing winds
analysis are forecasting wildfire directions, determining
seasonal wind direction variations, or optimizingwind tur-

bine locations. Also, in aviation, a crosswind landing is a
typical maneuver in which a significant component of the
wind is perpendicular to the runway axis. Surface winds
can be obviously conceived as prevailing winds perturbed
by random noise which may be due to changes of wind
speed and other meteorological conditions. Additionally,
land-based surface wind measurements without exposure
problems hardly exist. The requirement of open, level ter-
rain is difficult to meet, and most wind stations over land
are perturbed by topographic effects or surface cover, or by
both. Finally, instruments are typically prone to measure-
ment error, including deterioration and miscalibration.
A practical way used to obtain the prevailing wind direc-

tion lies in averaging the observations belonging tomore or
less prolonged time intervals, and then to depict the distri-
bution of these averages by a rose diagram. An alternative
to this somewhat arbitrary approach is to deconvolve wind
data after appropriately modeling the error distribution.
Typical targets are the average direction or the most

common ones.More robust indicators, based on the cumu-
lative distribution function, like probability of intervals
centered on the mode, are often required.
The paper is organized as follows. Section 2 collects

some preliminaries about Fourier series representation of
circular densities, and Section 3 recalls some theory about
kernel estimation of circular densities in the errors-free
case. In Section 4, we discuss the errors-in-variables prob-
lem, and we study the proposed approaches for kernel esti-
mation of a circular density when data are observed with
error, providing some asymptotic properties. Then, in Sec-
tion 5we present some simulation results, and in Section 6
we report two illustrative examples using real datasets, one
on ant directions, and the other on wind directions. In Sec-
tion 7, we end with some conclusions.

2 SOME PRELIMINARIES

Denote as " and #" a circular random variable and its
probability density function, respectively. Due to the cir-
cular domain, #" is 2!-periodic, that is #"($) = #"($ +2%!) for any integer %; then its characteristic function&"(') = ([)*'"] is just defined for integer ' and satisfies&"(') = &"+2!('),' ∈ ℤ, with |&"(')| ≤ 1, and &"(0) =1. Notice that the complex numbers {&"('),' ∈ ℤ} are the
coefficients in the Fourier series representation of #" and
correspond to the trigonometric moments of " about the
mean direction, that is

&"(') = -' + *.', -' = ([cos('")], .' = ([sin('")].
Clearly, for any' ∈ ℤ,-−' = -', .−' = −.', |-'| ≤ 1, and
|.'| ≤ 1.
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250 MARZIO et al.

Assuming that #" is square integrable on [0, 2!), analo-
gously to the inversion formula for characteristic functions
of real-valued random variable, one can represent #"(0),0 ∈ [0, 2!), through the Fourier series

#"(0) = 12! ∞∑
'=−∞&"(') exp(−*'0)

= 12!
{1 + 2 ∞∑

'=1 (-' cos('0) + .' sin('0))}. (1)

When " = 2(3452!), where 2 is a real valued random
variable with probability density function #2 , then " has
probability density function

#"(0) = ∞∑
6=−∞#2(0 + 2!6)

and its distribution is said to be the wrapped version of the
distribution of 2. The trigonometric moment of order ' of
the resulting wrapped distribution is equal to the value of
the characteristic function of 2, say &2 , at (integer) ', that
is &"(') = &2(').
The smoothness of #", which is usuallymeasured by the

number of continuous derivatives it has over somedomain,
can be defined according to the rate of decay to zero of
the coefficients in its Fourier representation. Formally, fol-
lowing Efromovich (1997), #" is said to be supersmooth if&"('), ' ∈ ℤ, has exponential decay, that is

70(|'| + 1)80)−9|'|8 ≤ |&"(')| ≤ 71(|'| + 1)81)−9|'|8 ,
while it is ordinary smooth if &"(') exhibits polynomial
decay, that is

70(|'| + 1)−80 ≤ |&"(')| ≤ 71(|'| + 1)−81 ,
where 8, 9, 70, 71 are constants inℝ+ and 80,81 are both inℝ.
Examples of supersmooth densities include the den-

sities of wrapped Normal, wrapped Cauchy, and von
Mises distributions; conversely, the wrapped Laplace and
the wrapped Gamma densities are examples of ordinary
smooth ones.

3 CIRCULAR DENSITY ESTIMATION
IN THE ERRORS-FREE CASE

Given a random sample of angles Θ1, … ,Θ< from an
unknown circular density #Θ, the kernel estimator of #Θ
at $ ∈ [0, 2!) is given by

#̂Θ($; >) = 1< <∑
*=1 ?>(Θ* − $), (2)

where ?> is a circular kernel, that is a periodic, unimodal,
symmetric density functionwith the concentration param-
eter > > 0, which admits the convergent Fourier series rep-
resentation

?>($) = 1 + 2∑∞'=1 @'(>) cos('$)2! .
Notice that, with respect to the general Fourier series rep-
resentation as formulated in (1), due to the symmetry, the
Fourier coefficients of?> satisfy .' = 0 and -' = @'(>) for
any '. As it happens in the linear setting, the role of the
kernel function is to emphasize, in the estimation process,
the contribution of the observations which are in a neigh-
borhood of the estimation point. Here, the concentration
parameter > controls the width of that neighborhood play-
ing the inverse role of the bandwidth in the linear case,
in the sense that smaller values of > give wider neighbor-
hoods.
In the following sections, estimator (2) will be denoted

as kernel density estimator (KDE).
Letting AB(?>) = ∫ !−! ?>(C) sinB(C)DC, we say that ?>

is a Eth sin-order kernel if AB(?>) = 0 for 0 < B < E andAE(?>) ≠ 0. Classical examples of second sin-order kernels
include the von Mises density with @'(6) = '(6)∕0(6),
where '(6) is the modified Bessel function of the first
kind and order '; the wrapped Normal and wrapped
Cauchy densities with @'(6) = 6'2 and @'(6) = 6', respec-
tively.
The asymptotic properties of #̂Θ($; >), as obtained by Di

Marzio et al. (2009), are collected in the following.

Result 1. Given the random sample Θ1, … ,Θ< from #Θ,
consider estimator #̂Θ($; >), $ ∈ [0, 2!), with a second sin-
order kernel ?>. If
(i) #Θ is twice continuously differentiable in a neighbor-

hood of $,
(ii) > increases with < in such a way that, for ' ∈ ℤ+,

lim>→∞ 1 − @'(>)1 − @2(>) = '24 ,
(iii) > increases with < in such a way that, for ' ∈ ℤ+,

lim<→∞@'(>) = 1 and lim<→∞ 1< ∞∑
'=1 @2'(>) = 0,

then

([#̂Θ($; >)] − #Θ($) = (1 − @2(>))4 #(2)Θ ($) + H(1 − @2(>)),
and

IJK[#̂Θ($; >)] =
(1 + 2∑∞'=1 @2'(>))2!< #Θ($) + H(∑∞'=1 @2'(>)<

).
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4 KERNEL DENSITY ESTIMATION IN
THE ERRORS-IN-VARIABLES CASE

Now, we consider the problem of estimating the density of
a circular random variable Θ, say #Θ, when data are con-
taminated by measurement errors, that is we have < real-
izations Φ1, … ,Φ< of the random variable

Φ = (Θ + M)mod(2!), (3)

where M is a random angle independent of Θ, with density#M assumed to be known and symmetric around zero. We
also assume that #Θ,#M and the density #Φ of Φ are square
integrable densities on [0, 2!) such that all of them admit
an absolutely convergent Fourier series representation.
In the Euclidean setting, some variations of the above

model have been studied. The case where M is not inde-
pendent of Θ, named Berkson errors case, has been con-
sidered, for example, in Delaigle (2007). A further model
with classical measurement errors having heteroscedas-
tic nature has been studied, for example, by Delaigle and
Meister (2008). The case of unknown error density has
been considered, among others, by Delaigle et al. (2008)
and Delaigle and Meister (2008).
In the sequel, we discuss three different approaches. The

first one relies on the equivalence between estimators with
different levels of errors, the second one exploits the fact
that #Φ is a convolution between #Θ and #M, and the third
one is based on the estimation of the increase in bias due
to the measurement error.

4.1 Equivalence-based approach

We hypothesize that the link between the estimate based
on theΘ*s and the estimate based on the corrupted dataΦ*s
is the same as the link between this latter and the estimate
based on sample data corrupted by an additional (simu-
lated) level of error, that is

#̂Θ($; >) ∶ #̂Φ($; >) = #̂Φ($; >) ∶ #̂Ψ($; >),
where

Ψ* = (Φ* + M∗* )mod (2!),
with the M∗* s being drawn from the error density.
Considering the symbol “:” either as a difference or a

ratio, one can, respectively, define estimators like the fol-
lowing ones:

EQDκ($) = 2#̂Φ($; >) − #̂Ψ($; >) (4)

EQRκ($) = (#̂Φ($; >))2#̂Ψ($; >) . (5)

We observe that this method cannot be considered a
resampling one because we draw the M∗* s from the known#M, rather than from a sample of a smoothed version of
the data. As in resampling schemes, particularly for small
datasets, it will be better to generate R > 1 artificial sam-
ples and use an average of the estimates #̂Ψ,B($; >), B =1,… ,R in order to reduce the effect of random fluctuations.
Concerning the asymptotic properties, we get the follow-

ing.

Result 2. Given random samplesΦ1, … ,Φ< and Ψ1, … ,Ψ<,
under assumptions (*)–(***) of Result 1, and assuming that
the derivatives of #Θ are continuous up to order 4, and thatM has finite second-ordermoment and concentrates around
0, for estimator EQDκ($) we get
([EQDκ($)] − #Θ($) =14{#(2)Θ ($)(1 − @2(>)) − (1 − S2(>M))24 #(4)Θ ($)}

+ H(1 − @2(>)) + H({1 − S2(>M)}2).
and

IJK[EQDκ($)] =
(1 + 2∑∞'=1 @2'(>))2!< #Θ($) + H(∑∞'=1 @2'(>)<

),
where @'(>) and S'(>M) are the 'th coefficients of the
cosine terms in the Fourier series representation of ?> and#M, respectively.
Proof. See Appendix. □
Remark 1. It seems clear that the more the measure-
ment error is concentrated, the more accurate is the
estimator, due to a bigger value of S2(>M). Specifically,lim>M→∞ S2(>M) = 1 gives the same properties as the error-
free case. This is true for all the estimators presented in
the sequel.

Remark 2. Using the following linearization arguments:

EQRκ($) − #Θ($)
= (#̂Φ($; >))2 − #Θ($)#̂Ψ($; >)#̂Ψ($; >)
= (#̂Φ($; >))2 − #Θ($)#̂Ψ($; >)#Θ($)

[1 − {#̂Ψ($; >) − #Θ($)}#̂Ψ($; >)
],

observe that, if M concentrates around 0, by a first-
order Taylor-series expansion of #̂Ψ for Ψ* around Θ*, the
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second term in squared brackets, being UV(1), can be
dropped. So, using the assumptions in Result 2, starting
from the approximation

EQRκ($) − #Θ($) ≈ (#̂Φ($; >))2 − #Θ($)#̂Ψ($; >)#Θ($) ,
we have that the estimator EQRκ($) shares the asymptotic
properties of the estimator EQDκ($).
Remark 3. If M and M∗ are error terms having different dis-
tributions, such that M ⟂ M∗, and M∗ ⟂ Θ, using the assump-
tion of Result 2 and assuming that both M and M∗ have
finite second sin-order moments and concentrate around
0, it can be shown that the asymptotic bias of estimator
(4) depends on both the levels of error via their second
sin-order moments. In particular, denoting as Y2(>M∗) the
second Fourier coefficient of the density of M∗, and rea-
soning as in the proof of Result 2, with the caveat that
the second sin-order moments of M and M∗—which are,
respectively, given by {1 − @2(>Z)}∕2 and {1 − Y2(>Z∗)}∕2—
do not cancel, it can be shown that the asymptotic bias
is

([EQD>($)] − #Θ($) ∼ #(2)Θ ($)4 {(1 − @2(>)) + (1 − S2(>M))−(1 − Y2(>M∗))}.
More general versions of the above estimators can be

also defined by using two distinct smoothing parameters
for the two terms in the difference and the ratio, respec-
tively, appearing in (4) and (5). For example, for the first
case, one can define

EQD>1,>2 ($) = 2#̂Φ($; >1) − #̂Ψ($; >2).
Remark 4. Curiously, despite its simplicity, we notice that
the proposed equivalence approach appears to be unex-
plored in the Euclidean setting. When linear variables are
observed with error, assuming that the error density is
known, the same scheme can be used by simply replac-
ing circular kernels by linear ones. It should come as no
surprise that the asymptotic properties of such defined
Euclidean estimators have identical rates of convergence
as those of Result 2.

4.2 Deconvolution approach

Considering that #Φ is the circular convolution of #Θ and#M, that is, for $ ∈ [0, 2!),

#Φ($) = ∫
2!

0 #Θ(\)#M($ − \)D\, (6)

the estimation of #Θ reduces to a circular density deconvo-
lution problem. Due to (6), for ' ∈ ℤ, we have

&Φ(') = &Θ(')&M('),
then, if &M(') ≠ 0 for any ' ∈ ℤ, a possible estimator of#Θ($) is

12! ∞∑
'=−∞

&̂Φ(')&M(') )−*'$,
where &̂Φ(') = 1< ∑<B=1 )*'ΦB is the empirical version of&Φ('). Now, the decay of &M(') requires some regulariza-
tion technique, which can be produced by using the char-
acteristic function of a circular kernel ?>, say &?> ('), as a
tapering factor. According to this approach, a kernel-type
estimator for #Θ can be defined as
D>($) = 12! ∞∑

'=−∞
&̂Φ(')&M(') &?> ('))−*'$

= 12!< <∑
B=1

(1 + 2 ∞∑
'=1

@'(>)S'(>M) cos('($ − ΦB))). (7)
Note that D>(⋅) has the form of a classical kernel density
estimator whose weight function is

?̃>($) = 12!
{1 + 2 ∞∑

'=1
@'(>)S'(>M) cos('$)

}.
In order to guarantee its definiteness, we also assume

that (a) the error density is an infinitely divisible distribu-
tion, that is it has nonvanishing Fourier coefficients S'(>M)
for any integer ', and (b) both ?> and ?̃> are square inte-
grable functions, that is, using Parseval’s identity,

12!
(1 + 2 ∞∑

'=1 @2'(>)
) <∞ and 12!

(1 + 2 ∞∑
'=1

@2'(>)S2'(>M)
) <∞.

Alternatively, estimator (7) can be derived by refer-
ence to the so-called unbiased score method, which has
been introduced in Stefanski and Carroll (1990) for the
Euclidean setting. It requires that the conditional expecta-
tion of the unknown kernel _> evaluated at $ − ΦB is equal
to a given kernel ?> evaluated at $ − ΘB

([_>($ − ΦB)|ΘB] = ?>($ − ΘB). (8)
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Then, by working in the Fourier domain, one has

∫
2!

0 )*'$([_>($ − ΦB)|ΘB]D$ = ∫
2!

0 )*'$?>($ − ΘB)D$.
Hence, assuming that we can interchange integral and
expectation and using a change of variable, this leads to

([)*'MB ∫ 2!
0 )*'`_>(`)D`|ΘB

] = ∫
2!

0 )*'`?>(`)D`,
which finally yields &M(')&_> (') = &?> ('). Hence, we
obtain

_>($) = 12! ∞∑
'=−∞&_> (') exp(−*'$)

= 12!
{1 + 2 ∞∑

'=1
@'(>)S'(>M) cos('$)

},
and so _>($) = ?̃>($).
The asymptotic properties of estimator (7) are collected

in the following

Result 3. Given a random sample Φ1, … ,Φ< from #Φ,
assume (3). Then, for estimatorD>($)with ?> being a sec-
ond sin-order kernel, under assumptions (*)–(***) of Result
1, one has

([D>($)] − #Θ($) = (1 − @2(>))4 #(2)Θ ($) + H(1 − @2(>)),
and

IJK[D>($)] =
(1 + 2∑∞'=1 @2'(>)∕S2'(>M))2!< #Θ($)
+ H(∑∞'=1 @2'(>)∕S2'(>M)<

).
Proof. See Appendix. □
Note that, as expected after considering Equation (8),

only the variance of Dκ($) is affected by the measurement
errors. Thus, differently from the errors-free case, the con-
vergence rate of the estimator is driven by the rate of decay
of the coefficients in the Fourier series representation of#M, as well as by the smoothness of #Θ.
The practical implementation of estimator (7) always

requires a truncation of the infinite summation appearing
in its formulation, by using a sufficiently large number of
terms. However, according to the nature of the error den-
sity, the coefficients S'(>M) can go to zero too fast yielding

instability problems; therefore, we could select the number
of coefficients, say V, with the specific aim of reducing this
instability. This leads to a further estimator, which depends
on two tuning parameters, > and V. Specifically, when we
select also the number of coefficients we obviously have no
longer a deconvolution estimator, but a kind of trigonomet-
ric series estimator as follows:

Dκ,p($) = 12!< <∑
B=1

(1 + 2 V∑
'=1

@'(>)S'(>M) cos('($ − ΦB))).
Concerning the asymptotic properties, Result 3 holds for
the bias, while in the variance the infinite summation
reduces to a V-term one.

4.3 Removing an estimate of the excess
of bias

Removing an estimate of the bias due to measurement
errors is an alternate route. Consider the naive kernel esti-
mator of #Θ($) as defined in Equation (2), but based onΦ1, … ,Φ<. By expanding ?>(Φ* − $) for Φ* around Θ* , one
has

#̂Φ($; >) ≈#̂Θ($; >) + 1< <∑
*=1 sin(Φ* − Θ*)?(1)> (Θ* − $)

+ 12< <∑
*=1 sin2(Φ* − Θ*)?(2)> (Θ* − $).

Then, taking the expectation, and observing that
E[sin2(M*)] = (1 − S2(>M))∕2, leads to the asymptotic
expression of the excess of bias conditional on the Θ*s

(1 − S2(>M))4< <∑
*=1 ?(2)> (Θ* − $), (9)

which can be estimated on the basis of the corrupted sam-
ple. This enables us to define a bias-corrected estimator as

B>($) = #̂Φ($; >) − (1 − S2(>M))4< <∑
*=1 ?(2)> (Φ* − $). (10)

Surely, the second term of the RHS of (10) is an estimate of
(9) because of the use ofΦ*s. Then, the precision of estima-
tor (10) heavily relies on the variance of the measurement
errors. Moreover, differently from estimator (7), it requires
only the knowledge of S2(>M) and is not limited to the cases
where S'(>M) ≠ 0, ' ∈ ℤ+. Further, the above estimator
shares the structure of a classical kernel density estimator
with weight function ?>($) − (1 − S2(>M))∕4?(2)> ($). The
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Euclidean counterpart of this estimator has been studied
by Stefanski (1985), Carroll and Hall (2004), and Delaigle
(2008).
The asymptotic properties are collected in the following.

Result 4. Given the random sample Φ1, … ,Φ< from #Φ,
consider estimator B>($), $ ∈ [0, 2!), where?> is a second
sin-order kernel satisfying assumptions (**)–(***) of Result
1. If #Θ and #Φ have continuous derivatives up to order
2 and 4, respectively, and #M has finite second sin-moment,
then we have

([B>($)] − #Θ($) = 1 − @2(>)(2 − S2(>M))4 #(2)Φ ($) + H(1 − @2(>)),
and

IJK[B>($)] =#Φ($)2!<
{1 + 2 ∞∑

'=1 @2'(>)
[1 + '2(1 − S2(>M))4 ]2}

+ H(∑∞'=1 @2'(>)<
).

Proof. See Appendix. □
Notice that, as forResult 2, Result 4uses a double asymp-

totic approach. For some considerations about the dou-
ble asymptotic approach for the Euclidean counterpart, see
Delaigle (2008).
We note that the asymptotic bias has the same order as

in the deconvolution approach.
Since the second term of Equation (10) is an estimate of

the extra bias, it could reasonably have a separate smooth-
ing parameter with respect to the naive estimator #̂Φ($; >),
leading to a slight modification

B>1,>2 ($) = #̂Φ($; >1) − (1 − S2(>M))4< <∑
*=1 ?(2)>2 (Φ* − $).

5 SIMULATIONS

In order to explore the potential of each method, we
firstly propose a simulation study where the best possi-
ble smoothing degrees are selected, then we consider the
case where the smoothing degree is data-driven. Notice
that the best smoothing degree analysis allows us to estab-
lishwhich is the best estimator regardless of the smoothing
selection rule behavior. Also, consider that for the circular
setting such a rule does not still exist when the data are
affected by measurement errors.
Since the proposed methods produce estimates which,

although integrating to one, can be negative, in the follow-
ing we consider their normalized versions by replacing the
negative values by zero and then rescaling.

5.1 Simulation models

Our simulation setting considers a number of models
where the target population #Θ is the von Mises density
(vM), while for the error densities #M we specify a wrapped
Normal (wN) error model for the supersmooth case and
a wrapped Laplace (wL) model for the ordinary smooth
one. The noise-to-signal ratio (NSR), which is defined as
the ratio between the circular variance of M and that of Θ,
is taken as 25%, 33%, and 45%. For each of these cases, we
consider both a supersmooth and ordinary smooth error
density with zero mean direction and different values of
the concentration parameter chosen in order to obtain the
values of NSR as described in the following scenarios:

∙ Scenario 1: NSR = 25%
(a) target density: vM(!, 2), supersmooth error density:

wN(0, .92)
(b) target density: vM(!, 1), ordinary smooth error den-

sity: wL(0, .40)∙ Scenario 2: NSR = 33%
(a) target density: vM(!, 2), supersmooth error density:

wN(0, .90)
(b) target density: vM(!, 1), ordinary smooth error den-

sity: wL(0, .47)∙ Scenario 3: NSR = 45%
(a) target density: vM(!, 8), supersmooth error density:

wN(0, .97)
(b) target density: vM(!, 1.3), ordinary smooth error

density: wL(0, .50).
The simulation models are depicted in Figure 1, where,

for illustrative purposes, we set the mean of Θ equal to the
error mean. Notice that the concentration parameter takes
nonnegative real values for both wL and vM but for wL
lower values of the concentration parameter give higher
concentration, while for vM the opposite holds. As for wN,
the concentration parameter ranges from 0 to 1 with the
concentration increasing with the value of the parameter.
Let b'(>Θ) and >Θ be, respectively, the 'th Fourier coef-
ficient, ' ∈ ℤ+, and the smoothing parameter of #Θ. We
have b'(>Θ) = '(>Θ)∕0(>Θ), and S'(>M) equals >'2M and>−2M ∕('2 + >−2M ), respectively, for the wN and wL error dis-
tributions.

5.2 Best possible smoothing degree

In this simulation study, we compare the performance of
some of the proposed estimators using the best possible
smoothing degree. Specifically, we use 200 samples drawn
according to the previous scenarios where, for each esti-
mator, we select the smoothing degrees as the minimizers,
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F IGURE 1 Scenarios 1–3 simulation models

over a grid of values, of the averaged integrated squared
error (AISE).
We compare the proposed estimators with the naive ker-

nel density estimator and evaluate performance in terms
of AISE. Data are drawn from the simulation models
described in the previous section, and a von Mises density
is employed as the kernel. For each simulation, we gener-
ate 200 samples of size < = 200, 500, and 1000. The results
are collected in Table 1.
In general, we can see that, for a given combination of

target and error density, every estimator deteriorates when
the noise to signal ratio increases and the error density
is supersmooth.
In further comparisons, we see that the naive kernel

density estimator KDE shows the highest values of AISE
and the lowest convergence rates. The deconvolution-
based estimator D>, where the infinite sum is approxi-
mated by the sum of 20 ratio coefficients, in agreement
with our theoretical results, performs reasonably when the
error density is ordinary smooth, otherwise the result is
very poor. Notice that our sequence of ratio coefficients is
not necessarily decreasing as the order increases. However,
if we apply to this estimator a simple regularization strat-
egy, consisting in using only the decreasing part of the ratio
series, we greatly improve the performance obtaining an

estimator, which we call regularizedD> and denote by ED>,
which is generally superior to the naive one and nonregu-
larized one.
The V-term deconvolution-based estimator Dκ,p, where

both > and V are smoothing parameters, seems to present
the best results for every sample size and simulation set-
ting. In particular, we select > and V by minimizing the
AISE over a two-dimensional grid.
The bias-correction estimator B> has generally a good

performance although affected by the type of error density.
We notice that, when the error density is ordinary smooth,
it does not have the same efficiency as the deconvolution
ones because the bias correction refers only to the lead-
ing term. The bias-correction estimator with two different
smoothing parametersB>1,>2 shows a certain improvement
compared to B>.
Finally, the results of the equivalence-based estimatorEQDκ1,κ2 seem to be very similar to the best ones. This

estimator improves the correction of the bias due to the
measurement error. Simulations for the equivalence-based
estimator EQRκ1,κ2 lead to very similar results, which have
not been presented here. Indeed, such similarity was
expected on the basis of Remark 2 which shows that
estimators EQRκ and EQDκ are asymptotically equivalent
in the case of one smoothing parameter. Surely, for small

 15410420, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13431 by U
niversita D

i Firenze Sistem
a, W

iley O
nline Library on [06/02/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



256 MARZIO et al.

TABLE 1 AISE (× 1000) over 200 samples of size 200, 500 and 1000 drawn from the target population contaminated by noise from
different error populations
NSR de df g KDE hi jhi hk,l mi min ,io pqhkn ,ko25% vM(!, 2) wN(0, .92) 200 1.758 2.390 1.576 0.965 1.564 1.392 1.031

500 1.282 2.089 1.121 0.577 1.018 0.867 0.613
1000 1.052 1.931 0.958 0.333 0.749 0.614 0.416

vM(!, 1) wL(0, .40) 200 1.030 0.932 0.887 0.741 0.985 0.888 0.727
500 0.698 0.555 0.566 0.355 0.621 0.539 0.376
1000 0.545 0.374 0.430 0.191 0.443 0.370 0.23833% vM(!, 2) wN(0, .90) 200 2.221 5.221 2.342 1.076 1.914 1.707 1.184
500 1.702 4.900 1.908 0.721 1.296 1.105 0.746
1000 1.455 4.716 1.749 0.453 0.987 0.817 0.538

vM(!, 1) wL(0, .47) 200 1.265 1.079 0.925 0.869 1.182 1.062 0.766
500 0.919 0.661 0.736 0.431 0.793 0.686 0.445
1000 0.762 0.456 0.650 0.240 0.600 0.502 0.28045% vM(!, 8) wN(0, .97) 200 5.779 6.149 4.738 2.675 4.529 4.004 2.492
500 4.541 4.877 3.770 1.547 2.957 2.492 1.395
1000 4.093 4.451 3.603 1.028 2.333 1.912 0.991

vM(!, 1.3) wL(0, .50) 200 1.915 1.476 1.552 1.096 1.707 1.533 1.019
500 1.450 0.877 1.160 0.510 1.159 0.989 0.603
1000 1.292 0.636 1.079 0.328 0.934 0.782 0.443

KDE assumes no error, while codes D,B, and EQD, respectively, refer to the deconvolution, bias-correction, and equivalence method, all addressing observation
error. Bold font indicates the best performance.

samples, slight differences in the estimate are also due to
the fact thatEQDκ requires both clipping and normalizing,
while EQRκ only rescaling.
5.3 Data-driven smoothing degree

In this section, we provide some evidence about the per-
formance of the estimators when the smoothing degrees
are data-driven. The simulation models remain the
same as before. Our smoothing degree selection method
implements the plug-in principle, where the unknown
quantities in the asymptotic mean integrated squared
error formulations are calculated on the basis of a para-
metric assumption of the population of the error free data.
A simple plug-in selector can be obtained by replacing
the unknown density appearing in the asymptotic mean
integrated squared error formula by a reference density,
say r. In the special case where r and #M are assumed
to be circular densities sharing the same wrapped stable
distribution, with respective concentration parameters s
and >M, then their convolution is still the same wrapped
stable density with concentration parameter being the
product between s and >M. Then, assuming that >M is
known, s can be directly estimated from the data by the
ratio of the estimated concentration parameter of the
convolution and >M. Beyond this special case, a naive
estimate of s can be obtained using corrupted data. In

our simulation study, we assume a von Mises population
for r whose concentration parameter is estimated from
corrupted data using classical maximum likelihood.
Clearly, the use of a data-driven smoothing degree

leads to an increase of the AISE. The average deteriora-
tion observed for the estimators KDE, D>, ED>, B>, andEQDκ1,κ2 are, respectively, 13.8%, 28.8%, 73.4%, 34.8%, and38%. The results are depicted in Table 2. We see that rela-
tive merits remain similar to the previous study with the
equivalence-based estimator being clearly superior. Notice
that the smoothing selection task for this latter estimator is
much less problematic than the usual in errors-in-variable
problems because each estimator of the ratio (difference)
is estimated using the appropriated sample, avoiding the
classical situation where we have a sample drawn from a
density different from the target one. On the other hand,
the deconvolution-based estimator clearly suffers from a
badly selected smoothing degree in supersmooth cases.

6 REAL DATA EXAMPLES

6.1 Ant data

As an illustrative example, we apply our estimators to a
dataset previously used by Efromovich (1997) for circular
density estimation with errors-in-variables. The dataset
has been firstly described by Fisher (1993, Appendix B.7)
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TABLE 2 AISE (× 1000) obtained using a plug-in approach over 200 samples of size 200, 500, and 1000 drawn from the target population
contaminated by noise from different error populations. Others settings as in Table 1
NSR de df g KDE hi jhi mi pqhkn ,ko25% vM(!, 2) wN(0, .92) 200 1.908 2.408 2.367 1.772 1.435

500 1.410 2.099 2.046 1.245 0.875
1000 1.162 1.938 1.884 0.994 0.605

vM(!, 1) wL(0, .40) 200 1.282 1.651 1.651 1.342 0.764
500 0.795 0.646 0.646 0.756 0.490
1000 0.620 0.437 0.424 0.557 0.31533% vM(!, 2) wN(0, .90) 200 2.422 5.275 5.216 2.229 1.681
500 1.876 4.977 4.913 1.647 1.055
1000 1.607 4.765 4.713 1.375 0.755

vM(!, 1) wL(0, .47) 200 1.664 2.803 2.803 1.756 0.769
500 1.063 0.866 0.865 1.016 0.560
1000 0.874 0.628 0.597 0.786 0.37945% vM(!, 8) wN(0, .97) 200 6.314 6.175 6.161 5.829 4.084
500 4.948 4.884 4.793 4.517 2.503
1000 4.487 4.455 4.252 4.143 1.882

vM(!, 1.3) wL(0, .50) 200 2.262 2.350 2.350 2.255 1.198
500 1.663 1.208 1.179 1.519 0.759
1000 1.466 1.126 1.748 1.285 0.564

and concerns the directions chosen by 100 ants in response
to an evenly illuminated black target placed at !. To esti-
mate the density of the chosen directions, Fisher (1993)
showed that classical parametric models, like von Mises,
are not suited. However, he argued that the population
is unimodal since the ants move toward the target with
some variation. The rationale behind considering this
density estimation problem as an errors-in-variables one
is that, due to the typical jerky movement of the insect,
the point where the ant intersects the circle can be treated
as indirect observation of the direction chosen by the ant.
Efromovich (1997) used a nonparametric approach

based on orthogonal trigonometric series and obtained a
remarkable result. In fact, his estimate revealed the pres-
ence of threemodes, in contrast with unimodality detected
by previous studies. However, from Figure 2 we conclude
that his estimate appears to be artificially symmetric and
also shows the pitfall of detecting themodes in partial con-
trast with data location (see the mode estimation in the
right tail).
As an error model for our estimators, we use a wrapped

Normal error with zero mean and concentration equal to
0.88, which is very similar to the scenario proposed by
Efromovich (1997).We compare theV-termdeconvolution-
based estimator Dκ,p, the bias-correction estimator B>,
and the equivalence-based one EQDκ1,κ2 , suitably nor-
malized, with both the orthogonal series estimator of
Efromovich (1997), here denoted by orthogonal series
(OS), and the standard circular KDE. A von Mises ker-

nel is used throughout. As for the smoothing degree
selection, classical least square cross-validation has been
employed. According to this criterion, given a random
sample 21, … ,2< from a density #, for a generic kernel-
type estimator of # with smoothing parameter >, #̂(⋅; >),
the optimal value of > is the minimizer of

∫ #̂(t; >)2Dt − 2<−1∑* #̂−*(2*; >),
where #̂−* is the leave-one-out version of #̂, obtained after
removing 2* from the sample. As can be seen in Figure 2,
our estimators confirmmultimodality, differently from the
standard circular kernel density estimator. However, our
modes are differently located from those ones highlighted
by the trigonometric series method. We are also able to
endorse the asymmetry of the sample.

6.2 Surface wind data

In this application, we estimate prevailing winds as
described in the Introduction. We use wind data from
NOAA database. Specifically, we consider Station 42059,
which lies in the Eastern Caribbean Sea, 180 nautical miles
SSW of Ponce, Puerto Rico. We focus on instantaneous
wind directions observed at 06.00 a.m. during Summer
2009. Only odd calendar days have been considered in
order to satisfy a stochastic independence assumption.
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F IGURE 2 Ants data and density estimates of the directions. KDE is based on direct data, while the other estimates assume a wrapped
Normal error with zero mean and concentration equal to 0.88
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Concerning the error distribution, based on observed
ranges of moment-to-moment fluctuations over 10 min,
we conclude that the measurement error can be approx-
imated by a wrapped Normal error with zero mean and
concentration equal to 0.975. The results, using a von
Mises kernel, are shown in Figure 3. Due to the shape of
the data, we use plug-in rule, where the reference curve is
von Mises, and the population concentration is estimated
by maximum likelihood. In Table 2, we have seen that,
when the plug in selector is used, the most successful
method is the equivalence one. This was seen to hold true
also for these data, and so only this estimate is shown.
Although mode is confirmed, we can observe a clear

effect of deconvolution in generating a more concentrated
and regular shape due to the reduction of the effect of noise
in the data.

7 CONCLUSIONS

In this paper, we have explored the errors-in-variables den-
sity estimation problem for circular data. We have pursued
the kernel approach, as an alternative to the trigonometric
series estimators. Intuition, flexibility, and ease of imple-
mentation are features of our approach.
However, we notice that research on kernel density esti-

mation for circular data with errors-in-variables requires
more attention. Surely, the selection of the smoothing
degree is a challenging, nearly unexplored field. Also, con-
sider the case of errors which depend on unobserved data
values. Practical applications for such a model are, for
example, time recording data, where some clock posi-
tions, like integers, half or quarter of hours are more fre-
quently recorded due to the natural attitude of the observer
to rounding. Regression, that is when predictor variables
are observed with errors, and multivariate settings, that is
hyperspherical and toroidal data, remain, at the moment,
unexplored as well.
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APPENDIX A
Proof of Result 2. For the bias, we start by observing that

([EQDκ($)] = 2∫ 2!
0 ?>(u − $)#Φ(u)Du − ∫

2!
0 ?>(v − $)#Ψ(v)Dv.

Now, for a circular convolution, say#Ω, of a circular den-
sity #" and a circular density #x , ifx concentrates around
0, one can consider the following Vth order Taylor series
representation:

#Ω(0) = #"(0) + V∑
B=1

#(B)" (0)B! ∫
2!

0 sinB(C)#x(C)DC
+H(∫

2!
0 sinV+1(C)#x(C)DC).

Then recalling that #Φ and #Ψ, respectively, are the circu-
lar convolutions of #Θ and #M, and of #Φ and #M, the fact
that M concentrates around 0 enables the use of the above
expansion for both #Φ and #Ψ. Then, the same expansion
applies also for the Bth term in the expansion of #Ψ, which
is the circular convolution of #(B)Φ and #M. In particular, by
considering all the expansions up to the second order, and
using ∫ 2!0 sin2(C)#M(C)DC = (1 − S2(>M))∕2, one has

([EQDκ($)] =2∫ 2!
0 ?>(\ − $){#Θ(\) + (1 − S2(>M))4 #(2)Θ (\) + H(1 − S2(>M))}D\

− ∫
2!

0 ?>(\ − $){#Θ(\) + (1 − S2(>M))2 #(2)Θ (\) + (1 − S2(>M))21 6#(4)Θ (\)
+ H([1 − S2(>M)]2)}D\
= ∫

2!
0 ?>(\ − $)#Θ(\)D\ − (1 − S2(>M))21 6∫ 2!

0 ?>(\ − $)#(4)Θ (\)D\
+ H([1 − S2(>M)]2).

Now, note that the first term in the leading term of
the above expectation corresponds to the expectation of
a standard kernel estimator of #Θ. Then using the fact ?>
is a circular kernel satisfying the assumptions in Result
1, standard asymptotic arguments for this quantity along

with a first-order approximation of the second term lead to
the bias result. For the asymptotic variance, by using the
first-order version of the above expansion of convolution
for both #Φ and #Ψ, we can finally use

Var[EQDκ($)] ≈ 1< ∫
2!

0 ?2>(\ − $)#Θ($)D\,
which, using classical circular kernel density estimation
theory, leads to the result.
Proof of Result 3. The asymptotic bias directly follows by

considering identity (8) and using Result 1. The asymptotic
variance directly follows by using Parseval’s identity.
Proof of Result 4. We start by observing that, for $ ∈ ℝ,

letting

y>($) = ?>($) − (1 − S2(>M))4 ?(2)> ($),
the estimator can be rewritten as a standard kernel estima-
tor with kernely>. Now, we have that the 'th coefficient
in the Fourier series representation ofy>, say z'(>), sat-
isfies

z'(>) = @'(>)(1 + '2 (1 − S2(>M))4 ).

Hence, y> is a second sin-order kernel, such that, asM is concentrated around 0, AB(y>) = U(AB(?>)). Then,
using Result 1, with z'(>) as the Fourier coefficients,
leads to both the asymptotic bias and the asymptotic
variance. □
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