
Cosmological information in perturbative forward modeling

Giovanni Cabass,1 Marko Simonović ,2 and Matias Zaldarriaga1
1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

2Theoretical Physics Department, CERN, 1 Esplanade des Particules, Geneva 23, CH-1211, Switzerland

(Received 9 November 2023; accepted 29 January 2024; published 20 February 2024)

We study how well field-level inference with a perturbative forward model can constrain cosmological
parameters compared to conventional analyses. We exploit the fact that in perturbation theory the field-level
posterior can be computed analytically in the limit of small noise. In the idealized case where the only
relevant parameter for the nonlinear evolution is the nonlinear scale, we argue that information content in
this posterior is the same as in the n-point correlation functions computed at the same perturbative order. In
the real universe other parameters can be important, and there are possibly enhanced effects due to
nonlinear interactions of long- and short-wavelength fluctuations that can either degrade the signal or
increase covariance matrices. We identify several different parameters that control these enhancements and
show that for some shapes of the linear power spectrum they can be large. This leads to degradation of
constraints in the standard analyses, even though the effects are not dramatic for a ΛCDM-like cosmology.
The aforementioned long-short couplings do not affect the field-level inference which remains optimal.
Finally, we show how in these examples calculation of the perturbative posterior motivates new estimators
that are easier to implement in practice than the full forward modeling but lead to nearly optimal constraints
on cosmological parameters. These results generalize to any perturbative forward model, including galaxies
in redshift space.
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I. INTRODUCTION

Traditional methods to infer cosmological parameters
from large-scale structure galaxy surveys are based on mea-
suring and analyzing the n-point correlation functions. The
two-point function or its Fourier transform, the power
spectrum, is the most commonly used statistics in the data
analysis. Higher-order statistics, such as the three-point func-
tion or bispectrum, are employed in the data analysis less
often. There are several reasons why tackling the higher-
order n-point functions is difficult. They are harder to
estimate from the data and predict theoretically, particularly
taking into account geometry of the survey, selection func-
tions, and other observational effects. Furthermore, the
length of the data vector grows very fast with each new
n-point function added,making the estimatesof the covariance
matrices computationally unfeasible.While someprogresshas
been made in order to circumvent some of these issues (see
e.g. [1–27]), morework has to be done before the higher-order
statistics can be routinely used in the data analysis.
One alternative to using n-point functions is forward

modeling [28–33].1 In forward modeling one predicts the

full nonlinear density field of matter and galaxies, given
some cosmological parameters and a realization of the
initial conditions. Such a nonlinear field should be directly
compared to the data, without using any summary statistics.
This is nontrivial since the correct form of the likelihood is
in general unknown, which motivates the use of the so-
called likelihood-free inference (see for example [34–36]).
In order to constrain cosmological models, one has to vary
not only all cosmological and nuisance parameters but
also all amplitudes and phases of the initial density field.
This is clearly a formidable task, despite the recent progress
in efficient sampling of large-dimensional parameter space
[37–41]. However, setting these important technical chal-
lenges aside, forward modeling is argued to have a number
of advantages. Most importantly, it includes all available
information from the nonlinear density field, which corre-
sponds to the information from all n-point correlation
functions combined. It also allows for much easier combi-
nation of various types of data, as well as inclusion of all
observational effects such as masks and selection functions,
or various systematic effects, all of which can be forward
modeled. In a nutshell, forward modeling is guaranteed to
give the optimal constraints on cosmological parameterswith
an optimal combination of different datasets, assuming
technical difficulties related to sampling can be overcome.
The full nonlinear forward modeling, which aims at

describing distribution and properties of galaxies on very

1While the term forward modeling is usually intended as the
procedure to obtain a dark matter or biased tracer field from the
linear density field, in this paper we use it interchangeably with
field-level inference.
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small scales, needs very advanced hydrodynamical cos-
mological simulations with realistic subgrid models that
have to be run for each point in the immense parameter
space. While this may be the ultimate way to interpret
cosmological observations in the future, such data analysis
is not feasible at present. A more modest but doable
alternative is perturbative forward modeling. In this
approach, given some realization of the initial conditions,
the nonlinear density field is calculated in perturbation
theory. Using the standard effective field theory methods
applied to a large-scale structure [42–59], this can be done
for the dark matter field and biased tracers in real or redshift
space [60–70].2 One important advantage of perturbative
forward modeling is that it allows for rigorous definition of
the field-level likelihood [71–74], which can be made
arbitrarily precise on large enough scales. A lot of recent
effort was dedicated to clarifying all technical aspects of
this approach [75–77] and making first applications to
mock data from simulations [78–83], leading to encour-
aging proof-of-principle results. On the other hand, per-
turbative forward modeling has a major limitation—it is
applicable only on large scales, where perturbation theory
provides a good description of the nonlinear density field.
Since the importance of nonlinearities in the perturbative
regime is expected to be small by construction, it is
interesting to ask whether perturbative forward modeling
is different from analyses based on a few leading n-point
correlation functions (for some earlier work on this,
see Ref. [71]).
A sharp answer can be given in a simple, Eulerian-like

perturbative setup in which the only relevant parameter is
the nonlinear scale kNL and the variance of the density field
approximated by a positive power of k=kNL controls the
nonlinear expansion. At a given order in perturbation
theory the same nonlinear terms are used to make pre-
dictions both at the field level and for the n-point functions.
It is then easy to argue that the exact same information is
contained in both, provided that they are calculated at the
same order. We will confirm this basic expectation using
explicit calculations. However, the true nonlinear evolution
in our universe is more complicated and there are effects
that can change this simple picture. For example, loops in
perturbation theory can lead to the appearance of new,
potentially large parameters, not controlled by the variance
of the density field. Such large parameters usually appear
due to the averaging over the couplings of long-wavelength
and short-wavelength modes, and it is in such cases that the

field-level inference can be superior to the analysis based
on correlation functions.
The most well-known example are large displacements

generated by the long-wavelength density fluctuations,
where the large parameter is the velocity dispersion.
The long modes in this example displace the short-scale
fluctuations by a large amount from their initial Lagrangian
positions, significantly affecting the nonlinear density field.
Averaging over these large displacements when computing
the two-point function famously leads to the broadening of
the baryon acoustic oscillations (BAO) peak [84–86]. This
can substantially degrade the measurement of the BAO
scale, one of the most important cosmological parameters
inferred from galaxy surveys. On the other hand, assuming
that the effects of large displacements are properly taken
into account, the forward modeling can recover the full
linear theory information about the position of the BAO
peak, as demonstrated in [80]. This is not a surprise, since
the same knowledge of the long-short couplings at the map
level is exploited in the BAO reconstruction algorithms,
used in practice to sharpen the BAO peak and improve
measurement of its position [85,87,88].
In this paper we explore less-known examples of a

different type where averaging over the long-short inter-
actions leads to degradation of errors rather than dilution of
signal. Also in such cases the field-level inference can be
more optimal than the conventional analysis based on
the n-point functions. We identify new large parameters
associated with each of these examples and show that they
are related to the variance of powers of the density contrast
δ. For instance, depending on the shape of the linear power
spectrum, the variance of δ2 on large scales can be very
large, even if the variance of δ is small. In the analyses
using n-point functions, these large parameters can lead to
sizable contributions to the covariance matrices, impacting
the inference of all cosmological parameters. For example,
long modes can modulate the short-scale fluctuations,
which can lead to a large scatter in the power spectrum
on small scales once the average over the long modes is
taken [2,89–92]. As we will see, this contribution to the
small-scale covariance matrix is exactly controlled by
the variance of δ2. The long-short couplings can impact
the covariance on large scales as well. The short modes can
couple (through the nonlinear bias) to produce the long-
wavelength field of biased tracers3 with flat power spec-
trum. Once the short modes are averaged over, their
contribution to the power spectrum and the covariance
matrix (controlled again by the parameter related to the

2Note that even some hybrid forward models which rely on
N-body simulations are essentially perturbative, as long as the
expansion in density fluctuations is assumed in any one of the
steps of producing the final galaxy density field. One typical
example is models where the usual bias expansion is applied to
the full nonlinear matter fields obtained from simulations; see for
example [68]. All the conclusions of this work apply to such
models as well.

3Note that this is not true for dark matter, since the mass and
momentum conservation imply that the long modes produced by
interactions of the short modes are suppressed by k2=q2, where k
is a wave number of the long mode and q a typical wave number
of the short modes. This can be checked explicitly in perturbation
theory. For instance, in the limit q1 ≈ −q2 the F2ðq1; q2Þ kernels
scale as k2=q21, where k ¼ q1 þ q2.
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variance of δ2) is indistinguishable from the shot noise.
However, depending on the observed sample, the amplitude
of this noise can be much larger than the Poisson pre-
diction, producing larger error bars than expected. Unlike
in the standard analyses, none of these issues impact
cosmological inference at the field level, where all relevant
long-short couplings are automatically computed and taken
into account.
One important feature of these examples is that unex-

pectedly large contributions to the covariance do not come
from the fully nonlinear regime, but rather from couplings
of long and short modes. Such interactions are usually
easier to compute in perturbation theory or measure in
simulations. Given this, instead of doing the full forward
modeling, one can look for simple modified estimators for
cosmological parameters which have nearly optimal vari-
ance. This is similar to the case of local primordial non-
Gaussianity in the cosmic microwave background (CMB)
where the optimal estimators for flocalNL have to take into
account the realization of the long modes in the survey [93].
In many aspects we follow the logic of [93] and adopt it to
relevant cases in a large-scale structure. One important
result of our analysis is that the perturbatively calculated
posterior can be used to motivate the form of optimal
estimators, and we will show a couple of examples that
illustrate this point.
The paper is structured as follows: in Sec. II we

derive perturbative expressions for errors on cosmological
parameters at the field level (with and without marginali-
zation over linear bias); in Sec. III we compare the power
spectrum plus bispectrum to forward modeling; in Sec. IV
we discuss three cases where additional parameters beside
the variance of the density field are present in the game, and
consequently the field-level analysis can be different from
standard ones; we conclude in Sec. V. Appendix A collects
some nonperturbative results beyond what we derive in
Sec. II; Appendix B shows how to perturbatively include a
finite shot noise at the field level.

II. FROM LIKELIHOOD TO POSTERIOR-
PERTURBATIVE INVERSION

In this section we show how to arrive at the expression
for the full posterior and the Fisher matrix for cosmological
parameters at the field level, in the limit of small noise. We
apply this formula to the case where the only parameter in
the theory is the nonlinear scale kNL and derive explicit
expressions for the posterior and the Fisher matrix at the
one-loop order.

A. Posterior in the limit of small noise

Let us imagine that the forward model for the nonlinear
galaxy field δg is known in terms of the linear density
field δ. We collect cosmological and bias parameters in θ.
The forward model is then given by

δg ¼ δg½δ; θ� þ ϵg ð1Þ

for a given noise field ϵg. On large scales we can
approximate the likelihood of the galaxy density field as
a Gaussian

L½δ̂gjδ; θ� ¼ normalization

× exp

�
−
1

2

Z
k

jδ̂gðkÞ − δg½δ; θ�ðkÞj2
Pϵ

�
; ð2Þ

where Pϵ is the noise power spectrum. This form of the
likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper.
The fiducial galaxy field δ̂g is given in terms of fiducial

values of the initial field δ̂, fiducial values of parameters θ̂,
and a fiducial noise realization ϵ̂g by

δ̂g ¼ δg½δ̂; θ̂� þ ϵ̂g: ð3Þ

Note that δ is an independent variable that does not depend
on θ, even though it is drawn from a Gaussian distribution
with the variance Pðk; θÞ. The normalization in Eq. (2) is
such that Z

Dδ̂gL½δ̂gjδ; θ� ¼ 1: ð4Þ

Ultimately, we are interested in the posterior for cos-
mological parameters given some realization of the
observed galaxy density field. This posterior is obtained
by integrating the likelihood multiplied by the prior on
initial conditions δ. We will assume that δ has a Gaussian
distribution with the variance given by the linear power
spectrum PðkÞ. Defining pðθÞ to be the prior on cosmo-
logical parameters, the posterior is expressed as

P½θjδ̂g� ¼ normalization ×
Z

Dδ exp

�
−
1

2

Z
k

jδðkÞj2
PðkÞ

−
1

2

Z
k

jδ̂gðkÞ − δg½δ; θ�ðkÞj2
Pϵ

�
× pðθÞ; ð5Þ

where we have now included the normalization of the prior
in the overall factor. In what follows we will set pðθÞ ¼ 1
for simplicity and having in mind situations in which
constraints on cosmological parameters are dominated by
the data. This choice does not change any of our con-
clusions, and if needed the effect of the prior pðθÞ can be
straightforwardly included in all our equations. Note that,
contrary to our starting point, the power spectrum PðkÞ
does not depend on θ. It is easy to see why there is no loss
of generality in making this assumption. Indeed, consider
the case in which P ¼ Pðk; θÞ, which is the case of interest
in cosmology. It is then possible to perform the following
change of variables δðkÞ → δðkÞ=P1=2ðk; θÞ. In terms of the
new integration variables the prior is a normalized Gaussian
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with unit power spectrum, and all dependence of param-
eters is in the forward model. In the rest of the paper we
will not need such a drastic change of variables. It is enough
to use

δðkÞ → τðk; θÞδðkÞ; with τðk; θÞ ¼ Mðk; θÞ
Mðk; θ̂Þ ; ð6Þ

where Mðk; θÞ is the linear transfer function which relates
the primordial potential to δ [for the amplitude of the linear
field A, we simply have τðk; θÞ ¼ A=Â]. In this way the
prior for the new δ field is a normalized Gaussian with a
power spectrum equal to the fiducial linear power spec-
trum, which exactly agrees with Eq. (5).
The main difficulty in calculating the posterior is to carry

out the integral in Eq. (5). In general, this cannot be done
analytically, and one has to rely on numerical sampling of
the likelihood.4 In most of the paper we will focus on the
limit of small noise, relevant for dense spectroscopic
samples on large scales. In this case one can expand the
posterior in Pϵ which simplifies calculations significantly.
For the time being we focus only on the leading order in the
Pϵ → 0 limit, in which the posterior becomes

P½θjδ̂g� ¼ normalization ×
Z

Dδ exp

�
−
1

2

Z
k

jδðkÞj2
PðkÞ

�

× δð∞Þ
D ðδ̂g − δg½δ; θ�Þ; ð7Þ

where the normalization is now only that of the prior and, in
the same way as PðkÞ, it does not depend on θ (hence, we
will drop it from now on to keep the notation as contained
as possible). We leave the discussion of higher orders in Pϵ

for Sec. IV B. In order to exploit the delta function in the
integrand of the posterior, we can do the following change
of variables δ → δg. The posterior can then be written as

P½θjδ̂g� ¼
Z

Dδg

���� ∂δ
∂δg

���� exp
�
−
1

2

Z
k

jδ½δg; θ�ðkÞj2
PðkÞ

�

× δð∞Þ
D ðδ̂g − δgÞ≡ eTr ln J½δ̂g;θ�−

1
2
χ2prior ½δ̂g;θ�; ð8Þ

where the two terms in the final result, one coming from the
prior and the other one coming from the Jacobian, are
denoted by χ2prior and J, respectively. More explicitly

χ2prior½δ̂g; θ�≡
Z
k

jδ½δ̂g; θ�ðkÞj2
PðkÞ ; and

J½δ̂g; θ�≡
���� ∂δ½δg; θ�

∂δg

����
δg¼δ̂g

: ð9Þ

As expected, the final result depends on the realization of
the galaxy density field δ̂g and parameters θ. The key
ingredient needed to find the posterior P½θjδ̂g� is the inverse
of the forward model δ½δg; θ�, which allows us to compute
χ2prior and J. Finding δ½δg; θ� is in general a very difficult
task. However, in perturbative forward modeling the
inverse model is also perturbative and can be calculated
analytically. The full posterior can then be consistently
computed up to a given power of the variance of the density
field, which resembles the more familiar loop expansion for
correlation functions. Such a posterior can be used to do
cosmological inference without the need to run Markov
chain Monte Carlo, and on large scales it is guaranteed to
lead to optimal constraints on cosmological parameters. We
will show a few explicit perturbative examples throughout
the paper.
Before proceeding, let us add two more comments about

Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle
point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to
short scales (e.g. due to shell crossing; see Ref. [95] for a
discussion), but on large scales the assumption of a single
solution is correct. The second observation regards the
change of variables itself: we invert δ ¼ δ−1g ½δg; θ� for
varying θ. Indeed, the Dirac delta in Eq. (7) is a Dirac
delta in a space of dimension equal to the number of Fourier
modes of the linear field (as is clear from the expression of
the Gaussian likelihood, which involves an integral in d3k).
Hence, even if δg ¼ δ̂g we do not obtain δ ¼ δ̂: we do so

only if θ ¼ θ̂. The procedure is the same as that done in
Ref. [93], in which similar calculations were carried out in
the context of constraints on local primordial non-
Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive an explicit expression for the posterior
P½θjδ̂g�, we will assume that the perturbative forward model
can be written as

δgðkÞ ¼
Xþ∞

n¼1

Z
p1;…;pn

ð2πÞ3δð3ÞD ðk− p1���nÞXn

× ðθ;p1;…;pnÞδðp1Þ � � �δðpnÞ≡
Xþ∞

n¼1

δðnÞg ðkÞ; ð10Þ

where Xn are perturbation theory kernels. Note that the
whole dependence on cosmological parameters is in the

4A simple analytical solution exists only if the forward model
is linear in the initial conditions. In this case the integrand
is Gaussian in δ and the integral can be solved to obtain a well-
known expression for the posterior in linear theory. We also
refer to [32] for a discussion of how to carry out the path inte-
gral by expanding around a saddle point found numerically.
Reference [94] instead discusses the saddle point in the high
noise limit.
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kernels Xn. For example, this is the form of the nonlinear
density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the
theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in
practice by the appropriate choice of the power spectrum
for which the velocity dispersion is small.
With our assumptions the forward model can be inverted

perturbatively on large scales, i.e.

δðkÞ ¼
Xþ∞

n¼1

Z
p1;…;pn

ð2πÞ3δð3ÞD ðk − p1���nÞYn

× ðθ; p1;…; pnÞδgðp1Þ � � � δgðpnÞ≡
Xþ∞

n¼1

Δ½n�
g ðkÞ;

ð11Þ

where the Yn kernels can be calculated in term of the
original nonlinearities Xn. Up to cubic order, they are
given by

Y1ðθÞ ¼ X−1
1 ðθÞ; ð12aÞ

Y2ðθ; p1; p2Þ ¼ −X−3
1 ðθÞX2ðθ; p1; p2Þ; ð12bÞ

Y3ðθ;p1;p2;p3Þ ¼
2

3
X−5
1 ðθÞ

�
X2ðθ;p1;p2 þ p3ÞX2ðθ;p2;p3Þ

þX2ðθ;p2;p1 þ p3ÞX2ðθ;p1;p3Þ
þX2ðθ;p3;p1 þ p2ÞX2ðθ;p1;p2Þ

−
3

2
X1ðθÞX3ðθ;p1;p2;p3Þ

�
: ð12cÞ

Notice that in all the examples discussed in this paper we
will consider only multiplicative parameters, for which the
transfer functions, and hence, the kernels X1 and Y1, are
scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when
deriving the inverse kernels Yn. The inverse model defines
simple operations on the galaxy density field (order by
order in δg) which ensures the optimal combination of the
data in order to recover the linear modes. At the few leading
orders they are explicitly given by

Δ½1�
g ðkÞ ¼ Y1ðθÞδgðkÞ; ð13aÞ

Δ½2�
g ðkÞ ¼

Z
p
Y2ðθ; k − p; pÞδgðpÞδgðk − pÞ; ð13bÞ

Δ½3�
g ðkÞ ¼

Z
p1;p2

Y3ðθ; k − p1 − p2; p1; p2Þδgðp1Þ

× δgðp2Þδgðk − p1 − p2Þ; ð13cÞ

and they are simple convolutions of the data. Let us stress
again that the whole dependence on parameters θ is in the
kernels Yn.
It is important to point out that in order to apply these

formulas we will assume that the inverse model is valid up
to the similar scale as the forward model. This is not a
trivial assumption. To get some intuition about possible
differences between these two scales, we can focus on a
simple model of spherical collapse. In this case the
perturbative forward model can be written as5

δsc ¼
X∞
n¼1

νnδ
n
l; ð14Þ

where νn are spherically averaged perturbation theory
kernels and δl is the size of the spherical linear overdensity
or underdensity in real space evolved to the present time.
It is well-known that this series converges to the exact
solution for jδlj < δcr ≈ 1.68. While for 0 < δl < δcr the
nonlinear overdensities δsc can be arbitrarily large, for
δl < 0 this series converges to the true answer only for
voids with δsc½−δcr�≳ −0.7. Let us now turn to the inverse
perturbative model, which can be written as

δl ¼
X∞
n¼1

cnδnsc; ð15Þ

where the coefficients cn can be derived from νn. This series
converges to the true linear solution for jδscj≲ 1, which
corresponds to any δl ≲ 0.5. Note that the inverse perturba-
tive solution correctly predicts δl even for very empty voids,
which the forwardmodel cannot describe.We can see that the
convergence properties for the forward and the inverse
models in this simple example are rather different.
However, in practice we are interested in the nonlinear

model which has only a small number of terms in the
perturbative expansion. The validity of such a model is
even more restricted compared to the full perturbative
series, by the requirement that the variance of the density
field is small and of order hδ2li≲Oð0.1Þ. Using the
spherical collapse as a toy example, we can explicitly
check that with this requirement the forward and inverse
models perform similarly. Up to cubic order we can write

δ½3�sc ¼ δl þ
17

21
δ2l þ

341

567
δ3l: ð16Þ

Note that this is just the spherical average of our cubic
forward model in Eq. (10), assuming the standard dark
matter perturbation theory kernels instead of Xn. The
inverse model is then given by

5The usual perturbative expansion of the exact spherical collapse
solution is in powers of the growth factor. We convert it here into
the expansion in the linear density field evaluated at late times,
such that δl ¼ aδinitial. At the time of collapse, the critical linear
overdensity is approximately δlðacollapseÞ ¼ δcr ≈ 1.68.
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δ½3�l ¼ δsc −
17

21
δ2sc þ

2815

3969
δ3sc: ð17Þ

It can be verified explicitly that both forward and inverse
models reproduce the correct answer to better than 5%, for
jδlj ≲ 0.4 and jδscj ≲ 0.4, respectively. We use this as an
indication that the inversion is valid to the similar scale as
the forward model. The full check of this claim with the
realistic three-dimensional (3D) fields can be done only
using numerical simulations. While the details can be
different due to the mode coupling, we do not expect
the conclusions to change dramatically, as long as the field-
level analysis is performed on scales kmax ≲ 0.1 h=Mpc.

With the forward and inverse models at hand, we can
compute the prior and Jacobian contributions to the full
posterior. In this paper we want to work at an order
equivalent to the one-loop calculations of the two-point
function, and therefore we have to keep all nonlinearities up
to cubic order. Note that this is equivalent to working with
the one-loop power spectrum and the tree-level bispectrum
in the conventional correlation functions approach.
Let us start from the prior term χ2prior. Using the

definitions from the previous section, it immediately
follows that χ2prior can be written as the integral over various

cross spectra of Δ̂½n�
g . Up to cubic order in the observed

galaxy density field we get

χ2prior ¼
Z
k

Δ̂½1�
g ðkÞΔ̂½1�

g ð−kÞ þ 2Δ̂½2�
g ðkÞΔ̂½1�

g ð−kÞ þ Δ̂½2�
g ðkÞΔ̂½2�

g ð−kÞ þ 2Δ̂½3�
g ðkÞΔ̂½1�

g ð−kÞ
PðkÞ : ð18Þ

As expected, this is a function of the data δ̂g and parameters θ through the kernels Yn. In order to calculate the Jacobian
we have to take the derivative of the inverse model with respect to δg first and then set δg ¼ δ̂g. In our setup this is simply
given by

Jðk; k0Þ ¼ Y1ðθÞð2πÞ3δð3ÞD ðk − k0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Jð0Þðk;k0Þ

þ
Xþ∞

n¼1

ðnþ 1Þ
Z
p1;…;pn

ð2πÞ3δð3ÞD ðk − k0 − p1 − � � � − pnÞYnþ1ðθ; p1;…; pn; k0Þδ̂gðp1Þ � � � δ̂gðpnÞ: ð19Þ

Note that in the expression for χ2prior [cf. Eq. (18)], we have PðkÞ in the denominator. This tells us that we have to keep only

terms up to second order in δ̂g in the Jacobian to have correct expressions at one-loop order. Ultimately, we are interested in
Tr ln J since this quantity appears in the log-posterior. Taking the logarithm and keeping all terms at second order, we find

½ln Jðk; k0Þ�1-loop ¼ ln Jð0Þðk; k0Þ þ 2

Z
p
ð2πÞ3δð3ÞD ðk − k0 − pÞY−1

1 ðθÞY2ðθ; p; k0Þδ̂gðpÞ

þ 3

Z
p1;p2

ð2πÞ3δð3ÞD ðk − k0 − p1 − p2ÞY−1
1 ðθÞY3ðθ; p1; p2; k0Þδ̂gðp1Þδ̂gðp2Þ

− 2

Z
p1;p2;k00

ð2πÞ3δð3ÞD ðk − k00 − p1Þð2πÞ3δð3ÞD ðk00 − k0 − p2ÞY−2
1 ðθÞY2ðθ; p1; k00ÞY2ðθ; p2; k0Þδ̂gðp1Þδ̂gðp2Þ:

ð20Þ

We use the convention in which the “one-loop” label indicates that all terms up to one-loop order are taken into account.
Finally, taking the trace leads to

½Tr ln J½δ̂g; θ��1-loop ¼ Npix lnY1ðθÞ þ 3Y−1
1 ðθÞ

Z
k;p

Y3ðθ; p;−p; kÞδ̂gðpÞδ̂gð−pÞ

− 2Y−2
1 ðθÞ

Z
k;p

Y2ðθ; p; k − pÞY2ðθ;−p; kÞδ̂gðpÞδ̂gð−pÞ; ð21Þ

where we have defined the number of pixels6 as Npix ≡ V
R
k.

6Notice that this is not exactly equal to k3max=k3min as it would be in a box: we have Npix ¼ ð4π=3Þðk3max=k3minÞ ≈ 4k3max=k3min.
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In summary, we have derived the negative log-posterior
for the perturbative forward model, in the limit of small
noise and analytically marginalizing over the initial field δ.
This can be written as

− logP½θjδ̂g� ¼
1

2
χ2prior½δ̂g; θ� − Tr ln J½δ̂g; θ�; ð22Þ

where the prior and the Jacobian terms are given by
Eq. (18) and Eq. (21), respectively. Our final result depends
only on the observed galaxy density field δ̂g, convolved
with the kernels of the inverse model Yn. In our convention,
these kernels contain the entire dependence on cosmologi-
cal and nuisance parameters θ, as well as the nonlinear
dynamics. This posterior can be used for data analysis or to
derive optimal estimators for a given cosmological param-
eter, and we will show several examples of this in the rest
of the paper. Finally, one can also calculate the averaged

log-posterior and the corresponding Fisher matrix, given
some fiducial galaxy density field δ̂g. We turn to that in the
next section.

C. Fisher matrix in the perturbative forward model

In order to derive the Fisher matrix for the perturbative
forward modeling, we first have to compute the averaged
negative log-posterior

h− lnP½θjδ̂g�i ¼
1

2
hχ2prior½δ̂g; θ�i − hTr ln J½δ̂g; θ�i; ð23Þ

where the average is done over the fiducial initial con-
ditions. We average the log-posterior assuming that the
error on cosmological parameters does not vary a lot
between realizations of the initial conditions. In the
language of statistics, we are looking at the “Cramér-
Rao” bound. The average of χ2prior can be written as

hχ2priori ¼ V
Z
k

Y2
1ðθÞP̂gðkÞ þ Pg;12ðθ; kÞ þ Pg;22ðθ; kÞ þ Pg;13ðθ; kÞ

PðkÞ ; ð24Þ

where we have used V ¼ ð2πÞ3δð3ÞD ð0Þ, P̂gðkÞ is the measured galaxy power spectrum, and Pg;12ðθ; kÞ, Pg;22ðθ; kÞ, and
Pg;13ðθ; kÞ are defined in terms of higher-order correlation functions in the following way:

Pg;12ðθ; kÞ≡ 2Y1ðθÞ
Z
p
Y2ðθ; p; k − pÞhδ̂gðpÞδ̂gðk0Þδ̂gðk − pÞi0; ð25aÞ

Pg;22ðθ; kÞ≡
Z
p1;p2

Y2ðθ; p1; k − p1ÞY2ðθ; p2;−k − p2Þhδ̂gðp1Þδ̂gðk − p1Þδ̂gðp2Þδ̂gðk0 − p2Þi0; ð25bÞ

Pg;13ðθ; kÞ≡ 2Y1ðθÞ
Z
p1;p2

Y3ðθ; p1; p2; k − p1 − p2Þhδ̂gðp1Þδ̂gðp2Þδ̂gðk − p1 − p2Þδ̂gðk0Þi0: ð25cÞ

In these expressions, the primeon then-point functions of the
observed galaxy density field hδ̂g � � � δ̂gi0 indicates that the
overall factor of ð2πÞ3δð3ÞD ðkþ k0Þ should be removed from
the final result. Note that these correlation functions include
the disconnected pieces. In the Fisher matrix calculation we
will assume that the observed galaxy n-point functions
are evaluated at the fiducial initial conditions and the
fiducial parameters θ̂. Already from this part of the averaged

log-posteriorwe can see that the Fishermatrixwill depend on
the higher-order n-point functions, appropriately combined
with the kernels of the inverse model.
It is instructive to write down explicitly contributions to

the prior at leading order in perturbation theory, which is
sufficient for the one-loop forward model. Keeping the tree-
level bispectrum and disconnected parts of the four-point
function and using kernels for the forward model, we get

P̂1-loop
g ðkÞ ¼ X2

1ðθ̂ÞPðkÞ þ 2

Z
p
X2
2ðθ̂; p; k − pÞPðpÞPðjk − pjÞ þ 6X1ðθ̂ÞPðkÞ

Z
p
X3ðθ̂; p;−p; kÞPðpÞ; ð26aÞ

P1-loop
g;12 ðθ; kÞ ¼ 4Y1ðθÞX2

1ðθ̂Þ
Z
p
Y2ðθ; p; k − pÞð2X2ðθ̂; p;−kÞPðpÞPðkÞ þ X2ðθ̂; p; k − pÞPðpÞPðjk − pjÞÞ; ð26bÞ

P1-loop
g;22 ðθ; kÞ ¼ 2X4

1ðθ̂Þ
Z
p
Y2
2ðθ; p; k − pÞPðpÞPðjk − pjÞ; ð26cÞ

P1-loop
g;13 ðθ; kÞ ¼ 6Y1ðθÞX4

1ðθ̂ÞPðkÞ
Z
p
Y3ðθ; p;−p; kÞPðpÞ: ð26dÞ
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Note that we do not include those contractions that lead to

the results proportional to ð2πÞ3δð3ÞD ðkÞ, which contribute
only to the unobservable zero mode. At leading order in
perturbation theory the fiducial galaxy power spectrum was
evaluated as P̂gðkÞ ¼ X2

1ðθ̂ÞPðkÞ. We are going to use these

equations to evaluate the Fisher matrix for the forward
model for biased tracers in real space, up to one-loop
order in perturbation theory. We next turn to evaluating
hln det Ji ¼ hTr ln Ji. Using results of the previous section,
we get

hTr ln Ji1-loop ¼ Npix lnY1ðθÞ þ 3VX2
1ðθ̂ÞY−1

1 ðθÞ
Z
k;p

Y3ðθ; p;−p; kÞPðpÞ

− 2VX2
1ðθ̂ÞY−2

1 ðθÞ
Z
k;p

Y2ðθ; p; k − pÞY2ðθ;−p; kÞPðpÞ: ð27Þ

This completes our derivation of the averaged log-
posterior at one-loop, and one can proceed by calculating
the Fisher matrix. Before we do that, let us make two
comments. First, note that a nontrivial check of the previous

equations is unbiasedness. If the formulas are correct, then
the derivative of the averaged log-posterior at the fiducial
values of parameters must be zero. Calculating this deriva-
tive explicitly and using Eq. (12a) to Eq. (12c), we find

∂

∂θ
h− lnPi1-loop

����
θ¼θ̂

¼ 2V

Y4
1ðθ̂Þ

Z
k;p

�
Y2ðθ̂; p; k − pÞ ∂

∂θ
Y2ðθ;−p; kÞ − Y2ðθ̂;−p; kÞ

∂

∂θ
Y2ðθ; p; k − pÞ

�����
θ¼θ̂

PðpÞ: ð28Þ

After a simple change of variables k − p → −k in one of the
terms under the integral, the right-hand side vanishes. This
implies that the estimate of the cosmological parameters at
the field level is indeed unbiased. Note that in order be able
to do the change of variables, it is crucial that both integrals
run over all possible values of the momenta. On the other
hand, we always have some maximum wave number up to
which we can trust perturbation theory. In order to preserve
the unbiasedness and implement this cutoff in practice,
one can always apply the window function on the power
spectrum, rather than changing the limits of integration.
The second comment is about higher orders in perturba-

tion theory. So far we have discussed only the leading
nonlinearities, but it is important to stress how a clear loop
expansion in h− lnPi arises if one wants to go further. The
negative log-posterior is expressed in terms of the fiducial
initial conditions via a combination of Eq. (10) and Eq. (11).
Schematically, the solution of δ ¼ δ−1g ½δg; θ� can bewritten in
terms of the fiducial linear field δ̂ as follows:

δ ¼
Xþ∞

m¼1

YmðθÞ
�Xþ∞

n¼1

Xnðθ̂Þδ̂n
�

m
¼

Xþ∞

k¼1

Zkðθ; θ̂Þδ̂k; ð29Þ

where, by construction, the new kernels Zkðθ; θ̂Þ satisfy the
following properties:

Z1ðθ̂; θ̂Þ ¼ 1 and Zk>1ðθ̂; θ̂Þ ¼ 0: ð30Þ

In otherwords, evaluated at the fiducial values of parameters,
the linear field in the inverse model must be equal to the

fiducial linear field. One can explicitly check that this is
indeed the case for the inverse kernels derived above (at one-
loop order). Using Eq. (19), a similar expression in terms
of δ̂ can be found for the Jacobian as well. Therefore, the
negative log-posterior is naturally organized as a perturbative
series in the fiducial linear density field δ̂. It follows that the
expectation value h− lnPi has a clear loop expansion, the
same one as in the standard perturbation theory. To evaluate
the averaged log-posterior at the given order in the loop
expansion, only a finite number of terms in the forward and
inversemodels have to be kept. Note, however, that due to the
linear power spectrum in the denominator in the expression
for hχ2priori and the functional derivative in the Jacobian, the
leading order term in h− lnPi starts at zeroth order in PðkÞ.
This is expected, since in the linear theory, as we will see
shortly, the posterior depends only on the number of pixels.
With all these results at hand, it is straightforward to

calculate the Fisher matrix F, given some fiducial galaxy
density field δ̂g. In practice, we evaluate

F1-loop
αβ ¼ ∂

2

∂θα∂θβ

�
1

2
hχ2prior½δ̂g; θ�i1-loop

− hTr ln J½δ̂g; θ�i1-loop
�����

θ¼θ̂
; ð31Þ

where the first term is given by Eq. (24) and the second
term by Eq. (27), both evaluated up to one-loop order, and
the expectation value refers to averaging over fiducial initial
conditions as discussed under Eq. (23). It is important to
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point out that this formula makes the connection between
perturbative forward modeling and the standard analyses
manifest. As long as the variance of the density field is the
only relevant parameter, the two approaches are equivalent,
order by order in perturbation theory. Before considering
more interesting situations in which new, potentially large
parameters play an important role, we show how the
field-level Fisher matrix works in practice in several
examples of interest.

III. APPLICATIONS OF THE FIELD-LEVEL
POSTERIOR AND FISHER MATRIX

In this section we apply Eq. (22) and Eq. (31) and show
explicitly in some simple setups that the field-level analysis
leads to the same errors on cosmological parameters as the
standard analysis based on the n-point correlation func-
tions, as long as the only relevant parameter in the theory is
the nonlinear scale kNL and the only expansion parameter is
the variance of the density field.

A. Simple examples of the field-level Fisher matrix:
Linear and nonlinear dark matter

Let us begin with two very simple examples: linear
theory and nonlinear dark matter field. In order to keep
expressions as clear as possible, we will focus on the
amplitude of the linear density field A as the only
cosmological parameter of interest.
Let us first consider the simplest possible scenario, in

which the evolution of density fluctuations is linear. In this
example the kernels of the forward model are trivial

X1 ¼ A and Xn>1 ¼ 0; ð32Þ

which implies

Y1 ¼ 1=A and Yn>1 ¼ 0: ð33Þ

This simplifies the form of the posterior significantly, and
we can write (note that we keep using δg for the nonlinear
field even though we are not considering galaxies here)

− lnP½Ajδ̂g� ¼
1

2A2

Z
k

δ̂gðkÞδ̂gð−kÞ
PðkÞ þ Npix lnA: ð34Þ

Finding the maximum of the posterior, we get the optimal
estimator for A,

E ¼ 1

Npix

Z
k

δ̂gðkÞδ̂gð−kÞ
PðkÞ : ð35Þ

Not surprisingly, the optimal estimator for the amplitude of
fluctuations in linear theory coincides with the estimator of
the power spectrum. The averaged negative log-posterior is
given by

h− lnPi ¼ Npix

2A2
þ Npix lnA; ð36Þ

where we have used P̂gðkÞ ¼ Â2PðkÞ and the fiducial value
of the amplitude is set to one, Â ¼ 1. In the absence of
the nonlinear evolution, h− lnPi depends only on the
number of pixels Npix. Using this equation one can
explicitly show that the estimate of the amplitude is
unbiased and that the error is given by the well-known
formula for the linear theory7

1

σ2A
¼ ∂

2h− lnPi
∂A2

����
A¼Â

¼ 2Npix: ð38Þ

A slightly more nontrivial example is the nonlinear
evolution, where the amplitude of the linear field A is still
the only unknown parameter. It is easy to see that in this
case the kernels are given by

XnðAÞ ¼
An

Ân XnðÂÞ and YnðAÞ ¼
Â
A
YnðÂÞ: ð39Þ

Note that all inverse kernels scale as 1=A. This has two
important consequences. One is that χ2prior in Eq. (18) scales
exactly as 1=A2. The other is that only the first term in
Eq. (21) depends on A. The full posterior can then be
written as (setting Â ¼ 1)

− lnP½Ajδ̂g� ¼
1

2A2

Z
k

jδ½δ̂g; Â ¼ 1�ðkÞj2
PðkÞ þ Npix lnA

þ ðA-independent termsÞ: ð40Þ

The optimal estimator for the amplitude of density
fluctuations is

E ¼ 1

Npix

Z
k

jδ½δ̂g; Â ¼ 1�ðkÞj2
PðkÞ : ð41Þ

We can see that in this case the estimator for the amplitude
does not depend only on the nonlinear power spectrum, but
also various other combinations of data which enter the
numerator and which are explicitly written in Eq. (18).
However, by definition of the inverse model, when evalu-
ated at the fiducial values of parameters, it gives the initial
Fourier modes of δ̂ given the observed nonlinear density

7The reader is perhaps more familiar with the formula for the
error of the amplitude of the power spectrum As. Changing
variables from A to As ≡ A2 we find

σ2As
¼ 2

Npix
ð37Þ

as expected.
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field. This means that the amplitude of the matter fluctua-
tions can still be optimally measured from the power
spectrum only, but also of the initial field reconstructed
from δ̂g. Given this, we expect the error on A to be the same
as in the linear theory. Indeed, the averaged log-posterior is
given by

h− lnPi ¼ Npix

2A2
þ Npix lnAþ ðA-independent termsÞ;

ð42Þ

which implies the same error as before

1

σ2A
¼ ∂

2h− lnPi
∂A2

����
A¼Â

¼ 2Npix: ð43Þ

Such a result makes sense since for a fixed nonlinear
model, and in the absence of noise the field-level posterior
should contain all available information on cosmological
parameters from the data optimally combined. In such an
ideal setup, this amount of information saturates the bound
given by the linear theory. While it is difficult to prove this
statement for generic cosmological parameters following
the approach of this section, this can be done using the
nonperturbative formulation of the posterior at the field
level. We defer this general analysis to Appendix A.
Let us make a comment about the derivation above. In

the case of an imperfect inverse model, we can imagine that
the Yn kernels are different from their expression of
Eq. (12), but with the same overall scaling with A intact.
The argument leading to Eq. (40) behaving as 1=A2 still
holds, with the crucial difference that now all the nonlinear
terms in the numerator under the integral will not combine
to the reconstruction of the linear field. As a consequence,
the momentum integral in Eq. (24) multiplied by the
volume will not lead to Npix, and the error bar on A would
be different than in the linear theory, as expected if the
inversion is wrong.8

B. Including the linear bias

Going beyond these idealized examples, things become
more complicated. In the real universe, our ability tomeasure
cosmological parameters depends on their degeneracies in
the linear power spectrum, peculiarities of the nonlinear
evolution, and complexity of galaxy formation which is on
large scales encoded in a number of nuisance parameters one
must marginalize over. It is interesting to show how the field-
level inference boils down to the conventional analysis with
n-point functions even in this case.
In the simplest and observationally most relevant setup in

which one can still gain some intuition in an analytically
tractable way, we allow two parameters: the amplitude A of
the linear density field and the linear bias b1. We keep the
product Ab1 fixed (for simplicity, we assume that Â and b̂1
are both equal to 1). This is inspired by the fact that the
overall amplitude of the power spectrum of biased tracers is
usually very well measured on large scales and such an
assumption does not affect our conclusions. As it is well-
known, since this particular combination multiplies the
linear power spectrum, all information on the amplitude A
in this example must come from the nonlinearities. Here we
compute the posterior and the Fisher matrix for A in
forward modeling. For Ab1 ¼ 1, perturbation theory ker-
nels scale as

X1ðAÞ ¼ 1 and XnðA; p1;…; pnÞ≡ An−1Xnðp1;…; pnÞ;
ð44Þ

and

Y1ðAÞ ¼ 1 and YnðA; p1;…; pnÞ≡ An−1Ynðp1;…; pnÞ:
ð45Þ

Note that here (and the rest of the paper) the kernels without
the explicit dependence on A are evaluated at the fiducial
value Â ¼ 1. The explicit form of the posterior for A is
a bit more complicated in this example. The prior part is
given by

1

2
χ2prior ¼

1

2

Z
k

δ̂gðkÞδ̂gð−kÞ
PðkÞ þ A

Z
k;p

Y2ðp; k − pÞ δ̂gðpÞδ̂gðk − pÞδ̂gð−kÞ
PðkÞ

þ 1

2
A2

Z
k;p1;p2

Y2ðk − p1; p1ÞY2ð−k − p2; p2Þ
δ̂gðp1Þδ̂gðk − p1Þδ̂gðp2Þδ̂gð−k − p2Þ

PðkÞ

þ A2

Z
k;p1;p2

Y3ðk − p1 − p2; p1; p2Þ
δ̂gð−kÞδ̂gðp1Þδ̂gðp2Þδ̂gðk − p1 − p2Þ

PðkÞ : ð46Þ

8Interestingly, things are different for the Jacobian part of h− lnPi. Even if the Yn kernels are wrong but their overall scaling with A is
correct, −Tr ln J ¼ Npix lnAþ ðA-independent termsÞ will continue to hold. This is a coincidence for the amplitude of the density
fluctuations, and it is not true in general for other cosmological parameters.
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The Jacobian term is simpler, and it has the following form:

Tr ln J ¼ 3A2

Z
k;p

Y3ðp;−p; kÞδ̂gðpÞδ̂gð−pÞ − 2A2

Z
k;p

Y2ðp; k − pÞY2ð−p; kÞδ̂gðpÞδ̂gð−pÞ: ð47Þ

Note that the leading terms that correspond to the linear
theory do not depend on A, in agreement with the expect-
ation that all information on the amplitude of δ comes from
the nonlinearities. Given the simple dependence of the log-
posterior on A, it is possible to explicitly write down the
optimal estimator

E ¼−
1

2 quadr

Z
k;p

Y2ðp;k− pÞ δ̂gðpÞδ̂gðk− pÞδ̂gð−kÞ
PðkÞ : ð48Þ

The numerator is the only term in the log-posterior linear in
A, while in the denominator we collect all other quadratic
and quartic combinations of data δ̂g which are all propor-
tional to A2. More precisely, we write

ð− lnPÞ ¼ ð− lnPÞð0Þ þAð− lnPÞð1Þ þA2ð− lnPÞð2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≡quadr

þ� � � :

ð49Þ
Given the realization of data both the numerator and the
denominator can be computed easily since they are just
numbers. This means that in practice one can use the
exact posterior to find the constraints on cosmological
parameters.
However, in order to get a better understanding of the

optimal estimator and simplify equations, it is convenient to
replace the denominator by its average, assuming that it
does not vary significantly between the different realiza-
tions of data. The modified estimator is given by

Ẽ ¼ −
1

2hquadri
Z
k;p

Y2ðp; k − pÞ δ̂gðpÞδ̂gðk − pÞδ̂gð−kÞ
PðkÞ :

ð50Þ
From now on, we will use the tilde to denote such
“simplified” estimators. In our example, the explicit form
of the denominator evaluated at leading order in perturba-
tion theory is

hquadri ¼ V
Z
k;p

�
Y2
2ðp; k − pÞPðpÞPðjk − pjÞ

PðkÞ

þ 2Y2ðp; k − pÞY2ð−p; kÞPðpÞ
�
: ð51Þ

Note that the contributions to prior and Jacobian with cubic
kernels Y3 exactly cancel when taking the average. It is then
easy to explicitly check that the estimator is unbiased,
hẼi ¼ 1, calculating the tree-level galaxy bispectrum and

remembering that X2 ¼ −Y2 in this example. Finally,
computing the variance of Ẽ or using the one-loop
expression for the Fisher matrix from the previous section,
we find that the error on A is given by

1

σ2A
¼ 2V

Z
k;p

�
X2
2ðp; k − pÞPðpÞPðjk − pjÞ

PðkÞ

þ 2X2ðp; k − pÞX2ð−p; kÞPðpÞ
�
: ð52Þ

Note that 1=σ2A ¼ 2hquadri. This is expected since hquadri
is the expectation value of all the terms in the negative log-
posterior which are proportional to A2 and therefore equal
to the Fisher matrix for the amplitude A.
Three comments are in order. First, it is clear from the

expression for the error that the degeneracy between b1 and
A is broken only by nonlinearities. The right hand side of
Eq. (52) has the typical size of V

R
k P

1-loopðkÞ=PðkÞ. This is
an explicit example in which we can see that the loop
counting in forward modeling works the same way as in the
conventional analyses, as discussed above. Since we are
always working at the one-loop order, we expect σ2A to be
exactly the same as the error in the standard joint one-loop
power spectrum and tree-level bispectrum analysis, as we
will demonstrate soon.
Second, theX2 kernel in this setup is equal to theF2 kernel

of standard perturbation theory. It follows that the first of the
two terms in Eq. (52) is nothing but the usualP22ðkÞ diagram
[divided by PðkÞ and integrated in d3k=ð2πÞ3]. It is well-
known that P22ðkÞ has very large contributions from soft
loops at high k. This is due to the shifts inF2, whose variance
is large in a ΛCDM-like cosmology. However, the same
shifts would be present even in a more generic example,
where other cosmological or biased parameters are consid-
ered, and the conclusion below would not change in such
more general setup. Naively, large contributions to P22 from
soft loops would lead to a very small error bar on A. In the
standard calculation of the one-loop power spectrum these
large contributions are usually canceled by the P13 diagram.
For the field-level posterior we expect similar cancellation to
happen. In our case, this is ensured by the second term in
Eq. (52). To see this explicitly, let us remember that the
two infrared contributions (p → 0 and jk − pj → 0) from
P22ðkÞ give

F2
2ðp; k − pÞPðpÞPðjk − pjÞ

PðkÞ → 2
ðp · kÞ2
4p4

PðpÞ; p ≪ k:

ð53Þ
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The only infrared contribution from the Jacobian part in
Eq. (52), instead, is

2F2ðp; k − pÞX2ð−p; kÞPðpÞ

→ 2
ðp · kÞ
2p2

ð−p · kÞ
2p2

PðpÞ ¼ −2
ðp · kÞ2
4p4

PðpÞ; p ≪ k;

ð54Þ

which exactly cancels Eq. (53). One important lesson that we
learn from this result is that one cannot use large displace-
ments to break degeneracies between cosmological and
nuisance parameters, e.g. linear bias and A, even though
at the map level large displacements produce a large effect
and by the equivalence principle they are proportional only to
the amplitude of the fluctuations for any type of tracer. The
reason is that the posterior is expressed as a combination of
data which on average are equal to the summary statistics of
the observed nonlinear field. Therefore, the effects off the
displacements cancel in the final result for the error on
cosmological parameters in the same way they do in equal-
time correlators [96–101]. On the other hand, if the initial
conditions are fixed and known, as is the case in simulations,
the amplitude of the linear density field can be indeed
measured from the displacements [72]. Note that this is
not only the consequence of the cosmic variance cancellation
for the known initial conditions. Even if the biases are
unknown, the nontrivial dynamics involving large shifts is
what allows one to measure A.
The third comment regards the positivity of 1=σ2A. In

Fig. 1 we show that the square bracket in Eq. (52) is very
similar to the one-loop matter power spectrum, P1-loopðkÞ.
This quantity is negative at low k, so one might worry that
this affects the sign of 1=σ2A. However, we must recall

that all our derivations in the previous section assume
integration over all the modes. Therefore, we only need to
show that the large-k limit of the square bracket in Eq. (52)
is positive, whatever the form of the power spectrum. If
this is true, then 1=σ2A is positive-definite. The discussion
about infrared safety helps us to confirm this. Let us
expand the square bracket at next-to-leading order in
1=k, since the leading order vanishes. More precisely, let
us consider only the (angle-averaged) expansion of the
kernels. We have

4

Z
dμF2

2ðp; k − pÞ ¼ 2

3

k2

q2
þ 1138

735
þO

�
q2

k2

�
;

ð55aÞ

4

Z
dμF2ðp; k − pÞF2ð−p; kÞ ¼ −

2

3

k2

q2
þ 152

147
þO

�
q2

k2

�
;

ð55bÞ

where μ ¼ k̂ · p̂. Hence, we see that the contribution to the
square bracket at large k takes the form

1898

735
PðkÞ

Z
dpp2

ð2πÞ2 PðpÞ; ð56Þ

which is manifestly positive for any cosmology.
In practice, one always has to use some finite cutoff kmax.

However, in that case the expression in square brackets in
Eq. (52) is also modified, since the same cutoff has to be
applied in each integration over momenta. One can show
that the error remains positive for any choice of kmax as long
as the cutoff is implemented consistently.

C. Comparison to the joint power spectrum
and bispectrum analysis

It is instructive to compare results of the previous section
with the conventional joint power spectrum and bispectrum
analysis and show explicitly that the likelihood and the
Fisher matrix for cosmological parameters are the same.
To that end, we can compute the posterior and the Fisher
matrix for the standard analysis and compare it with the
field-level results in Eq. (50) and Eq. (52). Let us begin
with the power spectrum. In the setup where Ab1 ¼ 1, the
galaxy power spectrum at leading order in perturbation
theory can be schematically written as

PgðkÞ ¼ PðkÞ þ A2P1-loopðkÞ: ð57Þ

As expected, the only information on the amplitude of the
density fluctuations comes from the nonlinearities. How
well can we measure A this way? We can estimate this
using the Fisher matrix. Using the Gaussian covariance, it is
given by the well-known expression

FIG. 1. Integrand in the square brackets of Eq. (52)
(“Pfield level”) compared with the one-loop standard perturbation
theory power spectrum for a standard ΛCDM cosmology.
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�
1

σ2A

�
P
¼ V

2

Z
k

�
∂PgðkÞ
∂A

1

P2ðkÞ
∂PgðkÞ
∂A

�����
A¼1

¼ 2V
Z
k

�
P1-loopðkÞ
PðkÞ

�
2

: ð58Þ

This result is rather different from the error in Eq. (52),
which schematically looks like

1

σ2A
≈ 2V

Z
k

P1-loopðkÞ
PðkÞ : ð59Þ

Clearly, the signal in the power spectrum analysis is
suppressed by the variance of the density field compared
to the field-level result. In the perturbative setup this means
that the one-loop power spectrum does not carry significant
information about the amplitude of the density fluctuations
once we marginalize over b1. This can be checked numeri-
cally choosing kmax to be in the mildly nonlinear regime
and computing the Fisher matrix. As a consequence, the
leading information in this setup is expected to be only in
the bispectrum.
In order to confirm this expectation, we can explicitly

calculate the bispectrum likelihood. Using the Gaussian
covariance we can write9

χ2B ¼
V
6

Z
q1;q2

½B̂gðq1;q2;−q1 − q2Þ−Bgðq1;q2;−q1− q2Þ�2
Pðq1ÞPðq2ÞPðjq1þ q2jÞ

;

ð62Þ

where the bispectrum estimator is

B̂gðq1; q2;−q1 − q2Þ ¼
1

V
δ̂gðq1Þδ̂gðq2Þδ̂gð−q1 − q2Þ; ð63Þ

and the theoretical model (remembering that Ab1 ¼ 1) is

Bgðq1; q2; q3Þ ¼ 2AX2ðq1; q2ÞPðq1ÞPðq2Þ þ 2 perms:

ð64Þ

Note that the bispectrum likelihood is Gaussian in A, with
the variance

�
1

σ2A

�
B
¼ V

6

Z
q1;q2

B2
gðq1; q2;−q1 − q2Þ

Pðq1ÞPðq2ÞPðjq1 þ q2jÞ
: ð65Þ

Using the explicit form of the theoretical model and
keeping all the permutations, it is easy to show that�
1

σ2A

�
B
¼ 2V

Z
k;p

�
X2
2ðp; k − pÞPðpÞPðjk − pjÞ

PðkÞ

þ 2X2ðp; k − pÞX2ð−p; kÞPðpÞ
�
: ð66Þ

This precisely agrees with Eq. (52), confirming the expect-
ation that the error bar in the field analysis is the same as in
the (power spectrum and) bispectrum analysis at leading
order in perturbation theory. Furthermore, this equivalence
can be checked for the value of the best fit parameter as
well. Using the bispectrum likelihood we get

EB ¼ σ2A ·
V
6

Z
q1;q2

B̂gðq1;q2;−q1− q2Þ ·Bgðq1;q2;−q1 − q2Þ
Pðq1ÞPðq2ÞPðjq1þ q2jÞ

¼ σ2A ·
Z
k;p

X2ðp;k− pÞ δ̂gðpÞδ̂gðk− pÞδ̂gð−kÞ
PðkÞ ; ð67Þ

which is again identical to the field-level result for the
modified estimator Ẽ in Eq. (50). In conclusion, we have
shown that the perturbative forward modeling recovers the
same information about the amplitude of density fluctua-
tions as the few leading correlation functions, computed at
the same order in perturbation theory.
Even though this result was derived in a simple and

analytically tractable case of Ab1 ¼ 1, our conclusions hold
more generally. If the variance of the density field is the
only expansion parameter in the theory, one can show,
order by order in perturbation theory, that the field-level
and the n-point function based inferences of cosmological
parameters are equivalent for any cosmological parameter,
although the explicit demonstration is more involved. If
other, potentially large parameters are present in the theory,
this simple picture can change. We turn to these more
interesting situations next.

IV. BEYOND THE SIMPLE
PERTURBATIVE MODEL

So far we have focused on a universe in which the only
relevant scale for the nonlinear evolution is the nonlinear
scale kNL and the only small expansion parameter is the
variance of the density field. However, the real universe can
be more complicated, and depending on the shape of the
linear power spectrum other scales can play an important
role in the nonlinear dynamics. The most well-known
example is the parameter related to the velocity dispersion

9Note that introducing the finite size bins of width Δk and
replacing the integrals with the sum over triangles, we can rewrite
the likelihood in a more familiar form

χ2B ¼
X
T

ðB̂gðTÞ − BgðTÞÞ2
CBðTÞ

; ð60Þ

where the sum runs over all triangles T ¼ fk1; k2; k3g such that
k1 ≥ k2 ≥ k3. The Gaussian covariance for the bispectrum is

CBðk1; k2; k3Þ ¼
ð2πÞ6Sshape
VV123

Pðk1ÞPðk2ÞPðk3Þ; ð61Þ

where V123 ¼ 8π2k1k2k3Δk3 and Sshape ¼ 6, 2, 1 for equilateral,
isosceles and scalene triangles, respectively.
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which is responsible for the broadening of the BAO peak.
This parameter is given by [102,103]

Σ2 ¼ 1

6π2

Z
kNL

0

dqPðqÞ½1 − j0ðqlBAOÞ þ 2j2ðqlBAOÞ�;

ð68Þ
where lBAO is the BAO scale. Note that the combination
of spherical Bessel functions in the square brackets is such
that it scales as q2 in the limit q ≪ l−1

BAO. Therefore,
neglecting the contribution given by the variance of the
density field on the BAO scale, we can approximate the
previous expression as

Σ2 ≈
1

6π2

Z
kNL

l−1BAO

dqPðqÞ: ð69Þ

The integral is dominated by the peak of the power
spectrum, which in a ΛCDM-like cosmology is at the
equality scale keq. However, given that for our universe
l−1
BAO ≈ keq, we will keep the BAO scale as the lower

boundary of the integral, having in mind a more general
power spectrum for which the maximum in principle can be
at much smaller k. Approximating the linear power spec-
trum as a power law such that PðkÞ ≈ PðkNLÞðk=kNLÞ−n,
we can estimate Σ2 as

Σ2 ≈
1

k2NL

1

3
ðkNLlBAOÞn−1: ð70Þ

Depending on the slope of the power spectrum and position
of the BAO peak, the enhancement ðkNLlBAOÞn−1 can be
large. In ΛCDM this is not dramatic, since we have n ≈ 1.8
and therefore Σ ≈ 2k−1NL at redshift zero. However, note that

1

3
ðkNLlBAOÞn−1 ≈ 4

�
D2ðzÞ
D2ð0Þ

�1−n
3−n
; ð71Þ

such that Σ compared to k−1NL grows at larger redshifts
for 1 < n < 3.
The existence of a large parameter controlled by some

infrared scale implies a possible breakdown of the
simple Eulerian-like forward model that we discussed
in the previous section. Indeed, a simple one-loop calcu-
lation is known to poorly describe the shape of the BAO
peak in the nonlinear two-point correlation function. It is
well-understood that in order to circumvent this issue
one has to either employ Lagrangian perturbation theory
[45,53,55,60,104] or modify predictions of the Eulerian
perturbation theory through the so-called infrared resum-
mation [102,103,105–108]. Therefore, the measurement of
the BAO scale is a well-known counterexample to our
statement in the previous section. The field-level inference
of lBAO is indeed more optimal compared to the measure-
ment from the two-point correlation function [80].

However, we will not further discuss this example here
for two reasons. First, it is rather special, since large
displacements affect only features in the two-point corre-
lation function and the only parameter that is impacted is
lBAO. All other cosmological parameters are unaffected
and our general conclusions still apply. More explicitly, the
average log-posterior is expressed in terms of the n-point
functions of the data, whose smooth part is not impacted by
the large displacements [96–101]. The second reason is that
the simple BAO reconstruction schemes [85,87,88] recover
almost optimal information on lBAO, making the full
forward modeling unnecessary. One may still do the
forward modeling of the reconstructed field, but since in
this case the significant fraction of large displacements is
canceled, this is much closer to the regime that we
discussed in the previous section and our conclusions
remain valid. It would be interesting to check this explicitly
in numerical simulations, and we leave it for future work.
For the rest of this section we will focus instead on

different types of situations in which forward modeling can
be more optimal. Unlike the BAO where the long-short
interactions dilute the signal, in these examples these
interactions increase the error. More precisely, they lead
to large covariance matrices for the n-point functions,
making the standard analyses suboptimal. Importantly, this
affects all cosmological parameters. We will show how
these situations arise and what are the new large parameters
associated with them.

A. Large covariance matrix
from long-wavelength fluctuations

In order to see how the standard analysis can be
suboptimal, we can already use the simplest example of
nonlinear dark matter field. We have shown in the previous
section that in this case the optimal estimator for A is

E ¼ 1

Npix

Z
k

jδ½δ̂g; Â ¼ 1�ðkÞj2
PðkÞ ; ð72Þ

where the numerator has various combinations of the data
δ̂g dictated by the inverse model. In order to highlight new
relevant parameters, in this section we will assume that the
nonlinearities controlled by the variance of the density field
are very small. In this limit the inverse model is well
approximated by the linear term δ ¼ Y1δg and the higher-
order loop contributions are expected to be small. The
approximate estimator valid in such a regime is given by

Ẽ ¼ 1

Npix

Z
k

jδ̂gðkÞj2
PðkÞ ; ð73Þ

assuming Y1 ¼ 1. Such a result is not surprising. This is the
estimator of the nonlinear power spectrum, which in the
limit of small nonlinearities gives the correct estimate of A.
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While such a simplified estimator (which we will inter-
changeably call “naive” and “simplified” in the following)
may lead to correct amplitude of the linear power spectrum,
its variance may be large. We can easily compute that

varðẼÞ ¼ 2V
N2

pix

Z
k

P2
gðkÞ

P2ðkÞ þ
V

N2
pix

Z
k;k0

Tgðk;−k; k0;−k0Þ
PðkÞPðk0Þ ;

ð74Þ
where Tg is a connected four-point function of the data (in
the following, we will drop the hat on correlation functions
of the data for simplicity of notation). Going beyond the
leading result given by the linear theory, a simple estimate
of the one-loop power spectrum in the first term and tree-
level trispectrum in the second term both lead to

varðẼÞ ¼ 2

Npix
½1þOðΔ2ðkmaxÞÞ�; ð75Þ

where Δ2ðkmaxÞ is the variance of the density field at kmax
used in the analysis. As one may expect, corrections
to the linear theory error bars are small at leading order
in perturbation theory. However, going to the one-loop
trispectrum in varðẼÞ something unexpected happens. Due
to the particular momentum configuration there are one-
loop contributions that schematically look like

Tgðk;−k; k0;−k0Þ ⊃ PðkÞPðk0Þ

×
Z
q
P2ðqÞ in the limit q ≪ k; k0:

ð76Þ
This is a well-known result that can be explicitly derived in
perturbation theory [2,89–92] and holds even in the non-
linear regime if one uses nonlinear responses to compute
the covariance matrix [92,109]. Importantly, such contri-
butions to the covariance matrix are not controlled by the
variance of the density field as one may naively expect.
Instead, they are proportional to the new parameter—the
variance of δ2. In general, we can define the following
dimensionless quantity:

σ2n;− ≡
�
k3NL
2π2

�
n−1 Z

q<kNL

PnðqÞ; ð77Þ

such that the ratio of the one-loop and the tree-level
trispectrum contributions to the covariance is given by

T1-loop
g

T tree
g

≈ σ22;−; ð78Þ

for k ∼ kNL. The minus sign in our notation for σ2n;−
indicates that momenta which PnðkÞ is integrated over
are smaller than some scale, which we chose to be kNL.
The existence of a new parameter that controls the loop

expansion is indeed surprising, but it is the consequence of

a specific momentum configuration of the trispectrum that
contributes to the covariance matrix. If all momenta in an n-
point function are different, these parameters never appear.
Importantly, σ22;− can be very large, even when the variance
of the density field is small. To see this explicitly, let us
consider a power-law universe with the IR cutoff k�, which
can be given by the size of the survey or can mimic the
equality scale in a ΛCDM-like universe. In this simplified
setup, the power spectrum is given by

PðkÞ ¼ 2π2ð3 − nÞ
k3NL

�
k
kNL

�
−n
θðk − k�Þ;

with 3=2 < n < 3: ð79Þ

Note that the slope of the power spectrum in the ΛCDM
cosmology at the nonlinear scale is approximately n ≈ 2,
which is in the range we consider. The variance of the
density field is given by

Δ2ðkÞ ¼ 2π2ð3 − nÞ
k3NL

1

2π2

Z
k

kmin

dqq2
�

q
kNL

�
−n

≈
�

k
kNL

�
3−n

;

ð80Þ

where for 3=2 < n < 3 we have neglected the lower bound
of the integral. As usual, the power spectrum is normalized
such that Δ2ðkNLÞ ¼ 1. Also, the variance is smaller than 1
on perturbative scales, and it is growing with k for our
choice of n. We can now explicitly compute σ22;− and find

σ22;− ¼ ð3 − nÞ2
2n − 3

�
k�
kNL

�
3−2n

: ð81Þ

Note that for our choice 3=2 < n < 3 the integral in σ22;− is
dominated in the infrared, and in this estimate we neglected
the upper bound. For n ≈ 2 we have σ22;− ≈ kNL=k�, which
can be much larger than 1. This large parameter can
significantly modify the variance of the estimator for A.
Following Eq. (74) we have

varðẼÞ ¼ 2

Npix

�
1þ Npix

2V

Z
q
P2ðqÞ

�

¼ 2

Npix

�
1þ π2

Npix

Vk3NL
σ22;−

�
: ð82Þ

Using Npix ¼ Vk3max=6π2, we can estimate the correction to
the linear theory error as

Npix

2V

Z
q
P2ðqÞ ¼ π2

Npix

Vk3NL
σ22;− ¼ 1

6

�
kmax

kNL

�
3

σ22;−: ð83Þ

For a ΛCDM-like cosmology where k�≈ keq≈ 0.02 h=Mpc
and kNL ≈ 0.3 h=Mpc, this number at redshift zero is

COSMOLOGICAL INFORMATION IN PERTURBATIVE FORWARD … PHYS. REV. D 109, 043526 (2024)

043526-15



Npix

2V

Z
q
P2ðqÞ ¼ Oð1Þ ×

�
kmax

0.3 h=Mpc

�
3

; ð84Þ

assuming n ≈ 2. We can see that for a ΛCDM-like universe
the correction is not large on perturbative scales and in a
realistic data analysis would be subdominant to other
sources of error, such as marginalization over nuisance
parameters [110]. However, it is easy to imagine a universe
where the situation is very different. For instance, setting k�
to be the fundamental mode of the survey, we can write the
correction to the linear theory errors as

Npix

2V

Z
q
P2ðqÞ ¼ ð3−nÞ2

6ð2n− 3Þ
�
kmax

kNL

�
6−2n

�
3Npix

4π

�2n
3
−1
: ð85Þ

If the power-law power spectrum extends to arbitrarily
large scales, for any kmax there is a volume big enough
when the number of Fourier modes makes this number
bigger than one. Setting n ≈ 2 and kmax ≈ 0.1 h=Mpc and
kNL ≈ 0.3 h=Mpc we find

varðẼÞ ¼ 2

Npix
ð1þOð0.01Þ × N1=3

pix Þ: ð86Þ

For a hypothetical survey with more than one million pixels,
the second term would dominate the covariance. The errors

would then scale only as N2=3
pix . In the extreme case of the

nearly scale-invariant power spectrum with n ≈ 3, the error
bars would improve only logarithmically as in the case of
local non-Gaussianities [93]. This clearly indicates that the
naive estimator is suboptimal. Let us point out that correcting
the naive estimator is not necessary in order to get a detection
ofA: for n ≈ 2, the variance of Ẽ is much less than one for the
typical number of pixels inmodern galaxy surveys.However,
we see that by using Ẽ instead of E we could be paying a very
high price on the error bars. In contrast, as we have shown in
the previous section, the full field-level analysis leads to the
expected optimal result.
The appearance of large parameters σ2n;− in the variance

of “naive” estimators, where one takes a simplified version
of the optimal estimators, is quite generic. For example, let
us consider a case of a linearly biased tracer with unknown
linear bias b1 discussed in Sec. III B. The simplified
estimator is given by Eq. (50):

Ẽ ¼ −σ2A

Z
k;p

Y2ðp;−k − pÞ δ̂gðpÞδ̂gð−k − pÞδ̂gðkÞ
PðkÞ ; ð87Þ

where we have used Eqs. (51) and (52) and the simple
relation between Y2 and X2. Computing hẼ2 − 1i, we see
that the variance of Ẽ contains a piece

varðẼÞ ⊃ ðσ2AÞ2V
Z
k;k0;p

PðpÞ
PðkÞPðk0ÞTgðk; k0;−k − p;−k0 þ pÞX2ð−k − p; pÞX2ð−k0 þ p;−pÞ: ð88Þ

The two relevant contributions in the trispectrum are

Tgðk; k0;−k − p;−k0 þ pÞ ⊃ Pðjkþ pjÞPðjk0 − pjÞPðpÞX2ðkþ p; pÞX2ðk0 − p; pÞ ð89Þ

and

Tgðk; k0;−k − p;−k0 þ pÞ ⊃ PðkÞPðk0ÞPðpÞX2ð−k;−pÞX2ð−k0; pÞ: ð90Þ
We see that both, in the limit p ≪ k; k0, give rise to the large parameter σ22;−, which can make the variance of the naive
estimator much larger than expected.
It is instructive to discuss another possible contribution to the variance of the naive estimator, i.e. the one coming from the

fully connected six-point function

varðẼÞ ⊃ ðσ2AÞ2
Z
k;k0;p;p0

Vhδ̂gðpÞδ̂gðp0Þδ̂gð−k − pÞδ̂gð−k0 − p0Þδ̂gðkÞδ̂gðk0Þi0
PðkÞPðkÞ0 : ð91Þ

For a particular momentum configuration where the pairs
of momenta are opposite (p0 ¼ −p and k0 ¼ −k), we
expect that the one-loop contribution to the six-point
function is controlled by σ23;−. In the universe where large
parameters σ2n;− are infrared-dominated, we expect that
σ23;− ≫ σ22;− and this would be the leading contribution to
the variance. This expectation is, however, wrong since

σ23;− appears only for special arrangements of momenta,
unlike in the case of the estimator in Eq. (73) where the
large parameter σ22;− exists for all momentum configura-
tions of the four-point function. We can check this by
explicitly evaluating the six-point function. Taking
X2 ¼ 1 for simplicity (this does not change our con-
clusions), we get
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varðẼÞ ⊃ ðσ2AÞ2
V

Z
k;k0;p;p0

ð2πÞ3δð3ÞD ðkþ k0Þð2πÞ3δð3ÞD ðpþ p0Þ
PðkÞPðk0Þ PðpÞPðjkþ pjÞPðkÞ

Z
q
P3ðqÞ

≈
ðσ2AÞ2
V

Z
k;p

PðpÞPðjkþ pjÞ
PðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≈ 1

Vσ2
A

Z
q
P3ðqÞ ≈ σ2A

V2

Z
q
P3ðqÞ; ð92Þ

where we have isolated the part of the six-point function
that can give rise to σ23;− with two Dirac delta functions

ð2πÞ3δð3ÞD ðkþ k0Þ=V and ð2πÞ3δð3ÞD ðpþ p0Þ=V. Crucially,
the presence of the factor 1=V2 from these two Dirac
deltas guarantees that even in the worst-case scenario of a
scale-invariant power spectrum with n ¼ −3, this contri-
bution to the variance is never large: indeed, we would have
σ23;− ∼ V2 so that the variance would scale as 1=Npix, i.e.
much faster than the σ22;− contribution discussed above; see
e.g. Eq. (85).
While this argument shows that σ23;− does not produce

the leading contribution to the variance of Ẽ, it also
suggests to us that it will enter its skewness, where the
connected six-point function automatically appears in the
configuration where all momenta are “pinched” two-by-
two. We can see this already for the simple estimator of
Eq. (73) for the nonlinear dark matter, i.e.

Ẽ ¼ 1

Npix

Z
k

jδ̂gðkÞj2
PðkÞ : ð93Þ

The skewness of the estimator is given by

skewnessðẼÞ ¼ hðẼ − 1Þ3i
σ3A

; ð94Þ

where

hðẼ − 1Þ3i ¼ 8

N2
pix

þ 1

N3
pix

Z
k;k0;k00

×
hδ̂gðkÞδ̂gð−kÞδ̂gðk0Þδ̂gð−k0Þδ̂gðk00Þδ̂gð−k00Þic

PðkÞPðk0ÞPðk00Þ :

ð95Þ

Note that in the second term we have to keep only the
connected six-point function. Naively, this contribution is
suppressed by Δ4ðkmaxÞ, but similar to the case of the
variance, there is a one-loop contribution to the connected
six-point function which is much bigger and can be
estimated as

hðẼ − 1Þ3i ¼ 8

N2
pix

�
1þ 1

8

Z
k;k0

Z
q
P3ðqÞ

�

¼ 8

N2
pix

�
1þ 1

72

�
kmax

kNL

�
6

σ23;−

�
: ð96Þ

This is the analog of Eq. (82) for the variance of Ẽ. We can
see that the new large parameter

σ23;− ¼ ð3 − nÞ3
3n − 3

�
k�
kNL

�
3−3n

ð97Þ

appears, making the second contribution potentially much
bigger than the first one. Assuming the perfect power-law
power spectrum and setting k� to be the fundamental mode
of the survey, we can estimate the skewness as

skewnessðẼÞ ¼ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
Npix

p ð1þOð10−5Þ × NpixÞ; ð98Þ

for typical numbers we used before: n ≈ 2 and kmax ≈
0.1 h=Mpc and kNL ≈ 0.3 h=Mpc. In this hypothetical
universe, even for Oð105Þ pixels, corrections to the naive
result become significant. For steeper power spectra, the
corrections are even more pronounced. However, as before,
in ΛCDM-like cosmology, these effects are never large on
perturbative scales.
It is worth emphasizing that so far we have considered

the case where kmax < kNL, such that for ΛCDM-like
cosmologies the impact of σ22;− or σ23;− is not dramatic.
However, if kmax > kNL, even in ΛCDM there can be large
contributions to the variance of the power spectrum
estimator. Weak lensing is the natural place where we
would expect this effect to show up.10 In that case it is
worth exploring alternative, more optimal estimators. We
will come back to this in Sec. IV C.

B. Large noise from mildly nonlinear scales

In the previous section we have shown how long-
wavelength fluctuations can lead to a possibly large
variance of naive estimators on small scales. It is interesting

10Notice that here we are disregarding other effects that could
prove to dominate the error budget in realistic scenarios, e.g. the
supersample covariance.
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to ask whether the opposite can happen. For dark matter
the answer is no, since due to momentum conservation
the impact of small-scale fluctuations on large scales is
strongly suppressed. However, for biased tracers the sit-
uation is different. Let us consider a galaxy density field
where nonlinearities induced by biasing and the shot noise
Pϵ are very small. In this limit the variance of the naive
estimator of Eq. (74) for the amplitude of the linear power
spectrum can be written as

varðẼÞ ¼ 2V
N2

pix

Z
k

P2
gðkÞ

P2ðkÞ ; ð99Þ

where we are neglecting the trispectrum contribution
assuming that the power spectrum is such that σ22;− is
not a large number. The galaxy power spectrum is given by
(assuming fiducial values of the amplitude and b1 to be 1)

PgðkÞ ¼ PðkÞ þ Pϵ þ
b22
2

Z
q
PðqÞPðjk − qjÞ þ � � � ; ð100Þ

where the ellipses denote the other one-loop terms that are
all suppressed by Δ2ðkmaxÞ. Even in the limit Pϵ → 0 that
we consider in this paper, there is an effective noise at large
scales given by the third term in the previous equation.
Defining

Iδ2δ2ðkÞ≡ 2

Z
q
PðqÞPðjk − qjÞ; ð101Þ

we can see that the large-scale limit of the effective noise is
given by the variance of δ2. It is important to stress that
this term can dominate the total noise even in a vanilla
ΛCDM-like cosmology. Some well-known examples are
small-mass dark matter halos [62,111] or neutral hydrogen
[66,70,112]. In these examples the amplitude of the noise
on large scales can be even 10 times larger than the naive
Poisson expectation, and using the field-level methods
one can show that this noise comes exactly from the
quadratic bias nonlinearities we discuss here [62,66,70].
In a conventional analysis such a large noise contributes to
the covariance matrix, and it can lead to larger errors. On
the other hand, the field-level analysis remains optimal.
While it is possible to have a tracer such that Iδ2δ2ðkÞ ≫

Pϵ on all scales of interest, this does not automatically
imply a dramatic difference in the errors between conven-
tional analyses and forward modeling. The reason is that
the errors can still be dominated by the cosmic variance. To
see this explicitly, we can write

Iδ2δ2ðkÞ ¼ 2PðkÞ
Z
q<k

PðqÞ þ 2

Z
q>k

P2ðqÞ

¼ 2PðkÞ
Z
q<k

PðqÞ þ σ22;þðkÞ
k3NL

; ð102Þ

where we have defined

σ22;þðkÞ≡ 2k3NL

Z
q>k

P2ðqÞ: ð103Þ

This new parameter is similar to σ22;− but with some very
important differences. For instance, it is important to note
that this parameter depends on scale. While the integral is
still infrared dominated, the range of integration has a
natural IR cutoff at the scale of interest k. This is a
consequence of the fact that for each k we are considering
the effects of shorter modes that combine to produce the
effective noise on larger scales. Theþ sign in the definition
indicates that one has to calculate the contribution to the
variance of δ2 coming only from modes larger than k. In a
simple power-law universe, we can estimate

σ22;þðkÞ ¼ 2k3NLPðkÞ
3 − n
2n − 3

�
k
kNL

�
3−n

≈ 2k3NLPðkÞΔ2ðkÞ:

ð104Þ
Note that this implies that

Iδ2δ2ðkÞ ¼ 2PðkÞ
Z
q<k

PðqÞ þ σ22;þðkÞ
k3NL

≈ 4PðkÞΔ2ðkÞ;

ð105Þ
While σ22;þðkÞ can be much bigger than one, its contribution
to the variance of the estimator is controlled by the ratio of
Iδ2δ2ðkÞ and PðkÞ, which is small. More precisely

varðẼÞ ≈ 2V
N2

pix

Z
k
ð1þ b22Δ2ðkÞÞ2: ð106Þ

Depending on the value of b2, the linear theory variance can
be increased by Oð1Þ for kmax ≈ kNL. While these effects
are not parametrically large, it would be worth exploring
the possibility to reduce the effective noise using the field-
level analysis in the future.
One might wonder whether higher-order terms in the

bias expansion can contribute with new large parameters to
the effective noise. For example, including ðb3=6Þ × δ3 in
the forward model leads to the following two-loop con-
tribution to the shot noise:

b23
6

Z
p;q

Pðjk − p − qjÞPðpÞPðqÞ: ð107Þ

However, we see that in the low-k limit this contribution is
suppressed with respect to I δ2δ2ðkÞ by the variance of the
density field on large scales, which is a small parameter.
This is generically true for higher-order contributions.
Let us finish this section by pointing out one interesting

result that follows from this discussion. Given that at the
field level we can predict the realization of the long-
wavelength fluctuations that lead to the effective noise,
we can also use these fluctuations in the data to infer
cosmological and nuisance parameters. In particular, we
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can measure b2 from the amplitude of the effective noise.
We show this explicitly in Appendix B. Note that this is
very different from the conventional power spectrum
analysis. There, following the standard prescription for
renormalized bias, b2 can be measured only from a shape of
loop corrections which is different from the flat power
spectrum of the noise. This suggest that there is a different,
potentially more optimal renormalization scheme, in which
information on bias parameters can be obtained from the
amplitude of the effective noise even in the power spectrum
analysis. We leave exploration of this interesting possibility
for future work.

C. Simple nearly optimal estimators

We have seen in previous sections how in different
situations standard power spectrum and bispectrum estima-
tors can have large variances due to various large param-
eters which emerge from averaging over interactions of
long-wavelength and short-wavelength modes. On the
other hand, in forward modeling, all such interactions
are explicitly taken into account and the analysis is always
optimal. We have shown that for the simple perturbative
model and in the limit of small noise, the posterior can be
calculated analytically, and for any cosmological parameter
of interest, one can find the optimal estimator in terms of
simple operations on the data δ̂g. However, our equations
do not apply in all regimes of interest. One example where
the variance of naive estimators can be large due to σ22;− and
where one would benefit from doing the full field-level
analysis is measurement of As from small scales beyond
kNL. Since our perturbative equations do not apply there,
one would have to do the full forward modeling which is
technically challenging. In this section we would like to
show that it is possible to find a middle ground and keep the
simplicity of the conventional analyses by using modified,
forward-model-inspired estimators that are nearly optimal.
In order to see how to construct these nearly optimal

estimators, we will first take a closer look at how the large
parameters cancel in the field-level analysis. We will focus
on σ22;− since it can have the largest impact in practice. First,
in the case of the nonlinear dark matter, the variance of the
optimal estimator of Eq. (72) scales as

varðEÞ ¼ 2

Npix
½1þOðΔ4ðkmaxÞÞ�; ð108Þ

i.e. without σ22;− appearing. This is manifest by the virtue of
the inverse model which is correct at one-loop order. We
emphasize that including Y3 in the inverse model is crucial:
σ22;− can appear in the one-loop trispectrum also from
diagrams involving the X3 kernel of the forward model.
A similar cancellation of σ22;− must happen in the case of

a linearly biased tracer discussed in Sec. III B, even though
it is a bit more difficult to show it explicitly. For simplicity,

we focus on the contribution of Eq. (89) to the variance of
the simplified estimator varðẼÞ for the amplitude of the
power spectrum. Let us recall that this contribution makes
the variance of the estimator behave as (for a power-law
universe with the spectral index n ≈ 2)

varðẼÞ ¼ 2

Npix
ð1þOð0.01Þ × N1=3

pix Þ: ð109Þ

That is, while it is always a perturbative correction [varðẼÞ
remains ≪ 1 for a sufficiently large number of pixels], this
contribution can make the variance suboptimal and scale as
1=N2=3

pix if Npix ≳ 106. To understand better this contribution
and how it is canceled when using the optimal estimator, it
is useful to expand the simplified estimator in terms of
the realization of the initial conditions δ̂ from which the
observed tracer field δ̂g is generated [93]:

Ẽ ⊃ Ẽð1Þ þ Ẽð2Þ ¼ σ2A

Z
k

1

PðkÞ δ̂ðkÞδ̂
ð2Þ
g ð−kÞ

þ σ2A

Z
k

jδ̂ð2Þg ðkÞj2
PðkÞ ; ð110Þ

where we have used the relation Y2 ¼ −X2 and by the ⊃
symbol we mean that we work at leading and next-to-
leading order in δ̂, but consider only terms that come from
expanding δ̂gðkÞ in Eq. (87) at second order. The term that
gives rise to σ22;− in the variance of the estimator is hẼ2

ð2Þi.
More precisely, we have

var

�Z
k

jδ̂ð2Þg ðkÞj2
PðkÞ

�
σ2
2;−

¼ 48

Z
k;k0;p

P2ðpÞPðjkþ pjÞPðk0 − pÞ
PðkÞPðk0Þ

×X2ðkþ p;pÞX2ðk0− p;pÞ
×X2ð−k− p;pÞX2ð−k0 þ p;−pÞ

∼N2
pixN

−2
3
ð3þnÞ

pix ; ð111Þ
where by the subscript we indicate that we are focusing
only on the contribution that gives rise to σ22;−. In the last
line we have used the assumption of an exact power-law
universe without the IR cutoff k� to estimate the scaling of
the variance with the number of pixels. On the other hand,
the full field-level estimator of Eq. (48) is given by

E ¼ Ẽ
1þ δE

; ð112Þ

where we have defined

δE ≡ quadr − hquadri
hquadri ð113Þ

and used Eqs. (51) and (52). It is now straightforward to see
that in the variance of the full estimator E the contribution
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from varðẼð2ÞÞ is canceled; i.e. there is no appearance of
σ22;−. Indeed, δE has zero mean so its typical value is given
by its variance. The contribution to its variance that
contains the parameter σ22;− comes from the second line
of Eq. (46), and is precisely given by

varðδEÞσ2
2;−

¼ ðσ2AÞ2var
�Z

k

jδ̂ð2Þg ðkÞj2
PðkÞ

�
σ2
2;−

∼ N
−2
3
ð3þnÞ

pix :

ð114Þ

Hence, we see that for large Npix the typical value of δE is
small, and we can approximate

E ≈
Ẽ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðδEÞp ≈ Ẽ − Ẽ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðδEÞ

p
: ð115Þ

Let us stress again that the smallness of δE does not imply
that the estimators Ẽ and E are the same. As we saw above,
the naive estimator can have the suboptimal variance, even
though all contributions decay with the number of pixels
Npix. Computing the variance of E in this approximation is
easy. First, it is straightforward to see that at leading order

varðẼð1ÞÞ ¼ σ2A: ð116Þ

Then, using this leading order result varðẼÞ ¼ varðẼð1ÞÞ,
we see that the part of the variance of Ẽð2Þ that contains the
large parameter σ22;− cancels with the contribution coming
from the variance of δE. We can treat the contribution
from Eq. (90) in a similar way. This time it cancels with the
part of “quadr” that contains the cubic interactions Y3.
More precisely, the cancellation comes from the terms
Y3 ∼ X2X2. In conclusion, the approximation to the true
estimator given by Eq. (115) is good enough to ensure that
the estimator is nearly optimal. This is the analog of the
estimator for local primordial non-Gaussianities derived
in [93].
We can also construct a simple estimator for the casewhere

As is measured from nonlinear modes where our formulas do
not apply. This is particularly relevant for weak lensing
surveys where most of the signal comes from k > kNL. In
order to do so,we can start from the observation that the large
covariance matrix for the naive estimator in Eq. (73) was
coming from two long modes modulating the short-scale
power spectrum. Indeed, the leading contribution to the
covariance matrix even in the nonlinear regime can be
expressed through the so-called response of PgðkÞ to the
two long modes [109].11 This response is defined as

R2ðk; p1; p2Þ ¼
1

2

1

PgðkÞ
∂
2PgðkÞ

∂δðp1Þ∂δðp2Þ
����
δðpiÞ¼0

; ð117Þ

where pi ≪ k, and it can be in principle measured in
simulations [109]. What we want to achieve is to “remove”
this modulation of the power spectrum by the long modes.
We can define the followingmodified estimator for the power
spectrum:

P̂new
g ðkÞ≡ P̂gðkÞ−Y2

1

Z
p≪k

R2ðk;p;−pÞδ̂gðpÞδ̂gð−pÞP̂gðkÞ;

ð118Þ

wherewehave used δðpÞ ¼ Y1δgðpÞ onvery large scales. It is
easy to show that large covariance of the standard power
spectrum estimator P̂gðkÞ is exactly canceled by the second
term. For this reason we expect this new estimator to be
nearly optimal. Some indirect evidence for this can be found
for instance in Ref. [2] where it is shown that constraints on
cosmological parameters for a joint power spectrum and
bispectrum analysis improve once the cross covariance
between the two is taken into account. The reason is that
the bispectrum partially takes into account the effects of the
long modes on the small-scale power spectrum that we
discussed here. To include the whole information at leading
order onewould also have to include the trispectrum. It is also
important to note that P̂new

g ðkÞ is not unbiased. However, the
bias is proportional to thevariance of the field on large scales,
and therefore it can easily be computed in either perturbation
theory or simulations. In its essence, the proposed new
estimator is a version of reconstruction where the scatter in
P̂gðkÞ induced by two long modes is reduced by using
the knowledge of realization of large-scale galaxy density
field. This is in spirit very similar to the standard BAO
reconstruction, but with the aim of undoing real gravitational
nonlinearities rather than displacements. It would be inter-
esting to explore this strategy in more detail and test it on
simulations or real data. We leave this interesting inves-
tigation for future work.
Finally, let us briefly comment on the case of large noise

from mildly nonlinear scales that we discussed in the
previous section. There too we can define

P̂new
g ðkÞ≡ P̂gðkÞ −

b2Y2
1

2

Z
k<q<kNL

δ̂gðpÞδ̂gðk − pÞ; ð119Þ

and check again that the second term cancels the large
contribution to the effective noise in PgðkÞ. Even though we
have argued that the noise contribution coming from a
quadratic galaxy does not lead to parametrically large error
bars, it would be interesting to explore this in more detail
and check if even a moderate improvement of cosmological
constraints is possible for very dense tracers such as neutral
hydrogen. We leave this for future work.

11More generally, responses can be defined and measured for
the nonlinear field rather than the power spectrum [113].
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In summary, we have shown in this section a few
examples of new simple estimators for the power spectrum
and bispectrum. Their form is inspired by computing
the full perturbative posterior and identifying relevant
long-short interactions that can make the standard analyses
suboptimal. The variance of new estimators does not suffer
from large parameters such as σ22;− or σ22;þðkÞ. Therefore,
these estimators are nearly optimal, but still much simpler
to implement in practice than the full forward modeling.
This is particularly true in regimes where the simple
perturbative model does not hold, such as the nonlinear
regime.

V. CONCLUSIONS

In this work we have studied how well perturbative
forward modeling can constrain cosmological parameters
compared to conventional analyses based on n-point func-
tions. We have focused on the case where cosmic variance
dominates the error budget. In this limit it is easy to derive the
field-level posterior for cosmological parameters. We have
shown that perturbative forward modeling is equivalent to
conventional analyses: once the field is predicted at a given
order in perturbation theory, an analysis with all the corre-
lation functions one can correctly predict at that order will
achieve the same errors on cosmological parameters.
As all theorems, our result relies on several assumptions,

the main one being that the only relevant parameter for the
nonlinear evolution is the nonlinear scale. While this is true
in most situations of interest, even in ΛCDM-like cosmol-
ogies we know that there are other relevant parameters that
change this simplified picture. In the conventional analyses
these parameters can lead to either a depletion of the signal
or an increase of errors, making them suboptimal. We
discussed some examples, such as broadening of the BAO
peak or large contributions to the covariance matrix due to
the long modes. On the other hand, in all such cases the
field-level analysis remains optimal. Given these counter-
examples to our general claim, one may argue that the field-
level inference is the only way to harvest all cosmological
information. However, we have argued that in all relevant
cases one can do a simple reconstruction and use simple
modified estimators that are nearly optimal.
Do the results of this work mean that perturbative forward

modeling should not be pursued further?We think it is still an
interesting direction to follow. However, we argue that one
should carry out forward modeling fully perturbatively; i.e.
the marginalization over the initial conditions should also be
carried out in perturbation theory. It is only at this level that:
(1) the non-Gaussianity of the likelihood and themodulation
of the noise by matter fluctuations can be consistently
included; (2) the correct comparison to analyses based on
correlation functions can be carried out; and (3) one can have
a systematic understanding of how to implement the theo-
retical error [114,115] at the field level. In such a setup the
usefulness of perturbative forward modeling over standard

analyses would not come from obtaining better constraints
on cosmology, but from having an alternative way to include
information from higher-order correlation functions.
Importantly, we believe that if this direction is pursued
further and perturbative forward modeling is to be success-
fully applied to data, a full understanding of renormalization
at the field level and how it compareswith renormalization of
correlation functions must be achieved. While here we have
not discussed this topic in detail, it being far from the scope of
thiswork, an interesting applicationof the formalismweused
in thiswork is presented inAppendixB,wherewe extend our
formulas beyond the zero-noise, cosmic-variance-limited
case discussed in the main text and apply them to show that
the “effective noise” discussed in Sec. IV B carries informa-
tion on the amplitude of the quadratic bias b2 of the tracer
under consideration, even if the amplitude of the shot noise
Pϵ is marginalized over. This goes against the usual lore,
where it is assumed that the low-k limit of Iδ2δ2ðkÞ is fully
degenerate with Pϵ, and hence, it is reabsorbed by it after
renormalization. We leave a more detailed investigation to
future work.
There are many other aspects of our work that require

further investigation. For example, a key ingredient in
building the posterior was the inverse model. It would be
very important to test the inverse model in simulations and
check its range of validity. Related to this, it would also be
interesting to evaluate our perturbative posterior given
some data δ̂g and compare it to the full forward modeling.
As we have explained, constraints on the BAO scale are the
only ones we expect to differ significantly. Therefore, it
would also be interesting to apply our methods to the
reconstructed galaxy field, where the large displacements
are largely removed and the agreement with the optimal
analysis is expected to be much better. Along the same
lines, one could try to implement our new nearly optimal
estimators in practice and check if they lead to tightening of
the error bars, particularly in the case of weak lensing. All
our results can be straightforwardly generalized to redshift
space. Finally, it would be interesting to do it explicitly, test
the inverse model in redshift space and develop a pipeline
for a realistic spectroscopy survey.
We conclude with some words on primordial non-

Gaussianity. Reference [116] discussed constraints on
primordial non-Gaussianity of the equilateral type at the
field level. The results of this work can be straightforwardly
applied to the case of non-Gaussian initial conditions12: the
only difference in the formulas of Sec. II will be that
the prior is not anymore a Gaussian but depends on the
primordial bispectrum. The posterior at the field level will
still be a combination of suitably weighted correlation
functions of the data: hence, we expect that, for non-
Gaussianity of the equilateral and orthogonal type, working

12For recent constraints on primordial non-Gaussianity from
BOSS data see Refs. [117–119].
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at a given loop order at the field level will give the same
constraints on fNL as the correlation functions that we
correctly capture at that order. It is interesting that local-
type primordial non-Gaussianities are enhanced in the
infrared: however, unlike the case of CMB anisotropies
discussed in Ref. [93], the presence of the transfer function
never allows one to achieve scale invariance, and con-
sequently the effects discussed in Sec. IVA will never be
dramatic.
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APPENDIX A: FROM LIKELIHOOD
TO POSTERIOR-NONPERTURBATIVE

INVERSION

In this appendix we show how we can extend the results
of Sec. II to all orders in perturbation theory. The difficulty
of the calculation lies in how to treat the Dirac delta
functional to which the likelihood reduces in the limit of
small noise. For this purpose we introduce the following
compact notation:

(i) We use Greek indices to denote functionals of
momentum k. The initial conditions δðkÞ become
the “coordinates” δμ. Similarly, the fiducial initial
conditions δ̂ðkÞ become δ̂μ. We will need to take
functional derivatives with respect to δ̂ðkÞ, and not
with respect to δðkÞ: since there is no possibility of
confusion we denote these simply by ∂μ, without any
superscript.

(ii) Latin indices are used for the remaining parameters,
i.e. θ. We use ∂i to denote derivatives with respect to
these parameters. These derivatives are always
evaluated at the fiducial values θ̂ of these parame-
ters: hence, we do not need to use any further
symbol.

(iii) We define the following quantities (we use the letter
“F” as in “forward model”):

Fμ ¼ δg½δ; θ�ðkÞ; ðA1aÞ

F̃μ ¼ F½δ̂; θ�ðkÞ; ðA1bÞ

F̂μ ¼ F½δ̂; θ̂�ðkÞ; ðA1cÞ

Xμ ¼ F̂μ − F̃μ; ðA1dÞ

D̃μ
ν ¼ ∂νF̃μ; ðA1eÞ

D̃μ
ν1ν2���νn ¼ ∂ν1∂ν2 � � � ∂νn F̃μ: ðA1fÞ

Then, we define Ĩμ
ν as the matrix inverse of

Eq. (A1e). That is,

Ĩμ
ρD̃

ρ
ν ¼ δμν ¼ δν

μ ¼ D̃ρ
νĨ

μ
ρ: ðA2Þ

(iv) Similar definitions hold for the derivatives of F̂μ.
That is, we have

D̂μ
ν ¼ ∂νF̂

μ; etc: ðA3Þ

(v) The remaining definitions we need are those for the
prior. We have

P̂ ¼ P½δ̂�: ðA4Þ

Moreover, we also define the symmetric matrices

PðkÞð2πÞ3δð3ÞD ðkþ k0Þ ¼ Pμν; ðA5aÞ

P−1ðkÞð2πÞ3δð3ÞD ðkþ k0Þ ¼ Pμν; ðA5bÞ

so that

∂μ ln P̂ ¼ −Pμνδ̂
ν and ∂μ∂ν ln P̂ ¼ −Pμν: ðA6Þ

After cleaning up we will arrive at expressions involving
only P̂ together with its derivatives ∂μ ln P̂ and ∂μ∂ν ln P̂,
the derivatives of F̂μ with respect to the parameters θ at
their fiducial values θ̂, the matrix Îμ

ν, and the matrices
D̂μ

ν1ν2���νn with their derivatives ∂iD̂
μ
ν1ν2���νn . At the end of

Sec. A 3 we will drop out all “hat” superscripts to make the
notation as compact as possible. We will also need to take
averages of various expressions over δ̂: we denote these
simply by h� � �i.

1. Marginalization over initial conditions

As discussed in Sec. II A, in the cosmic-variance-limited
case the conditional likelihood becomes a Dirac delta
functional. We recall Eq. (7), i.e.

P½δ̂gjθ� ¼
Z

Dδδð∞Þ
D ðF̂ − FÞP½δ�: ðA7Þ

In Sec. II we carried out this integral by solving perturba-
tively the delta functional for δ in terms of δg. Now we
will see how to carry out this integral at all orders in δ.
Before proceeding notice that we have only considered a
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dependence of the forward model, and not of the prior, on
θ. As discussed in Sec. II there is no loss of generality in
doing this.
Back to Eq. (A7). We do the change of variables

δμ ¼ δ̂μ þ Δμ: ðA8Þ

The advantage is that we expect that the integrand peaks at
Δμ ¼ 0, so it pays to write

Fμ − F̂μ ¼ D̃μ
νΔν þ 1

2!
D̃μ

νρΔνΔρ þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡G½Δ�μ

− Xμ; ðA9Þ

and after changing variables from Δμ to Yμ ¼ G½Δ�μ we get

− lnP½δ̂gjθ� ¼ − lnP½δ̂þG−1½X�� − ln

���� ∂G
−1½X�
∂X

����: ðA10Þ

It is important to emphasize that here we consider only
the solution of Yμ ¼ G½Δ�μ connected to linear theory, as
we have done throughout the rest of the paper. If the
forward model is built from a filtered field, and is itself cut
at a finite momentum (or if equivalently we are working
with a coarse enough lattice in real space), this is a good
assumption.
What we need to do now is to compute derivatives

∂i1 � � � ∂in : the key point that comes to our help is that Xμ

vanishes if θ ¼ θ̂. Let us first check that the average of the
first derivative vanishes once we average over the fiducial
initial conditions (Sec. A 2), and then obtain expressions
for the second derivatives (Sec. A 3).

2. Unbiasedness

Showing unbiasedness is now straightforward irrespec-
tive of what kind of parameter we are looking at. First, we
need an expression for G−1½X�μ. Luckily we only need this
as a power series in Xμ. Given the definition of Eq. (A9), it
is easy to see that

G−1½X�μ ¼ Ĩμ
νXν −

1

2
Ĩν

βĨ
μ
ρĨ

σ
αD̃

ρ
σνXαXβ þ � � � : ðA11Þ

To obtain this equation we have used the relation

∂νĨ
μ
α ¼ −Ĩμ

ρD̃
ρ
σνĨ

σ
α; ðA12Þ

and the tensor multiplying XαXβ is symmetric in α ↔ β
because D̃ρ

σν ¼ D̃ρ
νσ . Notice that we need the expansion

up to second order because of the Jacobian in Eq. (A10).
Being careful about the sign in the definition of Xμ in
Eq. (A1d), we obtain

−∂i lnP½δ̂gjθ̂� ¼ ð∂ν ln P̂ÞÎν
μ∂iF̂

μ þ ∂νfÎν
μ∂iF̂

μg: ðA13Þ

It is easy to see that the average of Eq. (A13) over the
fiducial initial conditions vanishes. We can—somewhat
suggestively—rewrite it as

−∂i lnP½δ̂gjθ̂� ¼ ð∂ν ln P̂Þ|fflfflfflffl{zfflfflfflffl}
¼Γρ

ρν

Îν
μ∂iF̂

μþ ∂νfÎν
μ∂iF̂

μ|fflfflfflffl{zfflfflfflffl}
¼Vν

i

g ¼∇μV
μ
i ;

ðA14Þ
where averaging over δ̂ is equivalent to integrating over δ̂
with a measure given by a diagonal metric with determinant
equal to P̂. Using Stokes’ theorem, and the fact that the
measure vanishes exponentially fast on the “boundary,”
we get

h−∂i lnP½δ̂gjθ̂�i ¼ 0: ðA15Þ

3. Second derivatives of log-posterior

When looking at second derivatives the algebra becomes
more complicated. It is helpful to define the matrix Zμ

ν as

Zμ
ν ¼

∂G−1½X�μ
∂Xν ; ðA16Þ

with ðZ−1Þμν as its matrix inverse. Then, we have that
−∂i∂j lnP½δgjθ̂� contains four terms: two come from the
prior and two come from the Jacobian. More precisely, we
have

−∂i∂j lnP½δ̂gjθ̂�
¼−ð∂μ∂ν ln P̂Þ∂iG−1½X�μ∂jG−1½X�ν − ð∂μ ln P̂Þ∂i∂jG−1½X�μ
þðZ−1ÞνρðZ−1Þσμ∂iZμ

ν∂jZρ
σ − ðZ−1Þνμ∂i∂jZμ

ν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡J11ij þJ02ij

; ðA17Þ

where we have used the relation

∂iðZ−1Þμα ¼ −ðZ−1Þμρð∂iZρ
σÞðZ−1Þσα: ðA18Þ

In order to compute the last term in Eq. (A17) we need to
extend Eq. (A11) to third order. We get

G−1½X�μ ¼ Ĩμ
νXν −

1

2
Ĩν

βĨ
μ
ρĨ

σ
αD̃

ρ
σνXαXβ

þ Ĩμ
νMν

αβγXαXβXγ þ � � � ; ðA19Þ
where

Mν
αβγ ¼ −

1

6
D̃ν

ρσλĨ
ρ
αĨ

σ
βĨ

λ
γ þ

1

2
D̃ν

ρσĨ
ρ
αĨ

σ
λD̃

λ
κηĨ

κ
βĨ

η
γ:

ðA20Þ
We then have all the ingredients to compute all four terms
of Eq. (A17). From now on we drop all “hat” superscripts:
all quantities are intended as evaluated at θ̂.
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(i) The first prior term, involving the first derivative
squared of the forward model, is given by

∂iG−1½X�μ∂jG−1½X�ν ¼ Iμ
ρIν

σ∂iFρ
∂jFσ: ðA21Þ

(ii) The second prior term, which instead involves the
second derivative of the forward model, is given by

∂i∂jG−1½X�μ ¼−Iμ
ν∂i∂jFνþ 2Iμ

αIβ
ν∂ðiFν

∂jÞDα
β

−Iν
βIμ

ρIσ
αDρ

σν∂ðiFα
∂jÞFβ: ðA22Þ

(iii) The first of the two Jacobian terms is

J11ij ¼ Iν
ρIσ

μ∂iDρ
σ∂jDμ

ν

− 2Iμ
νDρ

σμIσ
λI γ

ρ∂ðiFν
∂jÞDλ

γ

þ I γ
λDσ

ργDμ
ναIρ

μIα
βIν

σ∂iFλ
∂jFβ: ðA23Þ

(iv) Unsurprisingly, −ðZ−1Þνμ∂i∂jZμ
ν is by far the most

complicated term. We have

J02ij ¼ Iβ
α∂i∂jDα

β − 2Iσ
αIβ

ρ∂iDρ
σ∂jDα

β þ 4Iρ
σI γ

αDα
βρIβ

λ∂ðiFσ
∂jÞDλ

γ

þ Iρ
λI γ

σDα
βρIβ

α∂ðiFσ
∂jÞDλ

γ þ Iρ
αDα

βρIβ
λI γ

σ∂ðiFσ
∂jÞDλ

γ

− 2Iρ
αIβ

ρ∂ðiFσ
∂jÞDα

βρ − Iρ
σIβ

αDα
βρ∂i∂jFσ þDμ

νρσIν
μIρ

αIσ
β∂iFβ

∂jFα

−Dρ
γλDμ

ησIλ
μI γ

ρIη
αIσ

β∂iFβ
∂jFα − 2Dρ

γλDμ
ησIλ

μI γ
αIη

βIσ
ρ∂iFβ

∂jFα: ðA24Þ

In the next sections we use these expressions to show that,
if one knows the full matrix Iμ

ν, the field level reproduces
the linear-theory errors for parameters that appear only in
the linear power spectrum.
Before proceeding, we emphasize that there is actually a

great simplification in Eq. (A17). By direct calculation one
can show that −ð∂μ ln P̂Þ∂i∂jG−1½X�μ and −ðZ−1Þνμ∂i∂jZμ

ν

combine to give

−ð∂μ ln P̂Þ∂i∂jG−1½X�μ − ðZ−1Þνμ∂i∂jZμ
ν

¼ ∇μf∂i∂jG−1½X�μg; ðA25Þ

where the “covariant derivative” ∇μ is defined in the same
way as in Eq. (A14).
Also, notice that a relation of the sort of Eq. (A25)

should have been expected. It essentially shows that,
on average, the error is controlled by “first derivatives
squared” of the forward model, and not second derivatives.
This is in line with the “standard” Fisher matrix expressions
for marginalization over parameters; see e.g. Eq. (62) of
Ref. [120] for a review.

4. Reproducing linear theory

Let us now show that, for parameters appearing in the
linear matter power spectrum, the forward model reproduces
linear theory if the inverse matrix Iμ

ν is known exactly.
Recall the discussion in Sec. II A: whatever the parameter we
are looking at, we can make the change of variables

δðkÞ → τðk; θÞδðkÞ; with τðk; θÞ ¼ Mðk; θÞ
Mðk; θ̂Þ : ðA26Þ

The prior for the new δ is a Gaussian with a power spec-
trum equal to the fiducial linear power spectrum at that
redshift, and all the dependence on the parameters θ is
now in the forward model. We can then use the results of
Sec. A 3.
For simplicity of notation we denote derivatives with

respect to the single cosmological parameter we are
focusing on (evaluated at their fiducial) via 0 and ∂i0 . It
then proves useful to define the field γðkÞ and the matrix
Γðk; k0Þ as

γðkÞ ¼ τ0ðk; θ̂Þ
τðk; θ̂Þ δðkÞ;

Γðk; k0Þ ¼ ∂γðkÞ
∂δðk0Þ ¼

τ0ðk; θ̂Þ
τðk; θ̂Þ ð2πÞ

3δð3ÞD ðk − k0Þ: ðA27Þ

Then, the key result is that derivatives with respect to any
parameter can be rewritten in terms of derivatives with
respect to the initial conditions. For example, it is easy to
see that

∂i0F
μ ¼ γνDμ

ν; i:e: F0ðk; θ̂Þ ¼
Z
k0

τ0ðk0; θ̂Þ
τðk0; θ̂Þ δðk

0Þ∂Fðk; θ̂Þ
∂δðk0Þ :

ðA28Þ

One can see why this formula works by expanding the
forward model in a power series in τðk; θÞδðkÞ: Eq. (A28) is
a consequence of the fact that τðk; θÞ and δðkÞ enter always
in this particular combination in this power series.
With the chain rule, and the fact that ∂i0∂μ ¼ ∂μ∂i0 we can

obtain similar formulas for other derivatives appearing in
Eq. (A23). More precisely, we have
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∂i0D
μ
ν ¼ ∂ν∂i0F

μ ¼ ∂νðγρDμ
ρÞ ¼ Γρ

νDμ
ρ þ γρDμ

ρν:

ðA29Þ

We can then use Eqs. (A28), (A29) in Eq. (A17). Recalling
Eq. (A6), all terms combine to give

−∂2i0 lnP½δ̂gjθ̂� ¼ Pμνγ
μγν þ Γα

βΓβ
α þ total divergence:

ðA30Þ

Using the relations

γμ ¼ Γμ
νδ

ν and hδμδνi ¼ Pμν; ðA31Þ

we see that the average error per d3k=ð2πÞ3 and per unit
volume is

2

�
τ0ðk; θ̂Þ
τðk; θ̂Þ

�
2

; ðA32Þ

i.e. the same as in linear theory.
We also emphasize that, while to arrive at Eq. (A30) we

have dropped the total divergence, we have explicitly
checked that if we consider also all the terms coming from
Eqs. (A22), (A24) we obtain13

−∂2i0 lnP½δ̂gjθ̂� ¼ 3Pμνγ
μγν − Γα

βΓβ
α; ðA33Þ

whose average is clearly the same as Eq. (A30).

APPENDIX B: INCLUDING FINITE SHOT NOISE
(AND SHOT NOISE RENORMALIZATION)

In this appendix we want to address the following
question. In Sec. IV B we have seen how it is the “effective
noise”

Pϵ þ
b22
4
lim
k→0

Iδ2δ2ðkÞ ðB1Þ

and not only the shot noise Pϵ that controls the variance of
the naive estimator for the amplitude of the linear power
spectrum. There we were focusing on the scenario where
Pϵ ≪ PðkÞ, the quadratic bias b2 is fixed, and we want to
measure As. But what if we instead want to measure b2?
And what if we do not know what Pϵ is, and want to
marginalize over it? Is there some information on b2
contained in the effective noise?
To answer this question we need to include a finite Pϵ in

our calculation of the posterior. It is sufficient, however, to
assume the following: (1) the limit Pϵ ≪ PðkÞ; (2) that the

fiducial noise is zero. In this case, we can derive a
perturbative expansion of the posterior via14

L½δ̂gjδ; θ� ¼
�
1þ Pϵ

2

Z
k

∂
2

∂δ̂gðkÞ∂δ̂gð−kÞ

þ P2
ϵ

8

Z
k;p

∂
4

∂δ̂gðkÞ∂δ̂gð−kÞ∂δ̂gðpÞ∂δ̂gð−pÞ
þ � � �

�

× δð∞Þ
D ðδ̂g − δg½δ; θ�Þ: ðB3Þ

At this point it is straightforward to compute the
posterior at each order in Pϵ=PðkÞ by bringing the series
of derivatives out of the functional integral of Eq. (5).
We obtain

− lnP½θjδ̂g� ¼
1

2
χ2prior½δ̂g; θ� − Tr ln J½δ̂g; θ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡−lnP½θjδ̂g�0

þ Pϵ

2

Z
k

�
∂
2h− lnP½θjδ̂g�i0
∂δ̂gðkÞ∂δ̂gð−kÞ

þ ∂h− lnP½θjδ̂g�i0
∂δ̂gðkÞ

∂h− lnP½θjδ̂g�i0
∂δ̂gð−kÞ

�

þ � � � ; ðB4Þ

where the higher orders in Pϵ are straightforwardly
obtained from Eq. (B3) using

∂P½θjδ̂g�0
∂δgðkÞ

¼ −P½θjδ̂g�0
∂ð− lnP½θjδ̂g�0Þ

∂δgðkÞ
: ðB5Þ

After averaging over the fiducial initial conditions, we
see that the leading order in this expansion is still given by
the formulas of Sec. II. More precisely, we find

13Notice that, in order to derive this result, one needs also
quantities such as ∂2i0F

μ and ∂i0D
μ
νρ. These are straightforwardly

obtained from Eqs. (A28), (A29).

14There are many ways to derive this expansion, e.g. via the
Fourier transform. For one-dimensional integrals in dx one can
write

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
½d−fðxÞ�2

2σ2 ¼
Z þ∞

−∞
dJe−

σ2J2
2 eiJ½d−fðxÞ�

¼
Z þ∞

−∞
dJ

�Xþ∞

n¼0

ð−1Þnσ2nJ2n
2nn!

�
eiJ½d−fðxÞ�

¼
Z þ∞

−∞
dJ

�Xþ∞

n¼0

σ2n

2nn!

�
∂
2n

∂d2n
eiJ½d−fðxÞ�

¼
Xþ∞

n¼0

σ2n

2nn!
∂
2n

∂d2n
δð1ÞD ðd − fðxÞÞ; ðB2Þ

where the Dirac delta is normalized such that
Rþ∞
−∞ dxδð1ÞD ðxÞ ¼ 1.
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h− lnP½θjδ̂g�0i ¼
δb22
4

V
Z
k;p

PðpÞPðjk − pjÞ
PðkÞ ; ðB6Þ

which is a one-loop term. Notice that here we have
already expanded up to second order in δθ ¼ δb2. The
first order in δb2 vanishes, consistently with unbiasedness.
For the same reason, also the linear order in Pϵ vanishes
(one can use the formalism of Appendix A to provide a
nonperturbative proof of this). One can then derive, in a
straightforward albeit tedious way, the orders δb2 × Pϵ and
P2
ϵ , both at tree level and at one-loop order. Let us, however,

discuss the expression for the error on b2 after marginali-
zation over Pϵ. By inverting the matrix of second deriv-
atives of minus the log-posterior with respect to b2 and Pϵ,
we find

1

σ2b2
¼ ∂

2h− lnP½θjδ̂g�i
∂b22

−
�
∂
2h− lnP½θjδ̂g�i

∂b2∂Pϵ

�
2

×

�
∂
2h− lnP½θjδ̂g�i

∂P2
ϵ

�
−1
: ðB7Þ

This error can be expanded in loops, i.e. in powers of
Δ2ðkÞ. The leading-order (LO) contribution will be a one-
loop term, the next-to-leading-order contribution (NLO) a
two-loop term, and so on. From this expression we can now
see that the explicit form of minus the log-posterior at
orders δb2 × Pϵ and P2

ϵ is not important. What is crucial is

that at tree level only the order P2
ϵ is not vanishing, being

equal to

∂
2h− lnP½θjδ̂g�i

∂P2
ϵ

¼ V
2

Z
k

1

P2ðkÞ at tree level: ðB8Þ

This leads to

−
�
∂
2h− lnP½θjδ̂g�i

∂b2∂Pϵ

�
2
�
∂
2h− lnP½θjδ̂g�i

∂P2
ϵ

�
−1

¼NLO; ðB9Þ

and consequently

1

σ2b2

����
LO

¼ ∂
2h− lnP½θjδ̂g�0i

∂b22
¼ V

2

Z
k;p

PðpÞPðjk − pjÞ
PðkÞ :

ðB10Þ
This tells us that at the field level not only can we still
constrain b2 after marginalizing over Pϵ and that there is
information on b2 in the amplitude of the effective noise,
but also that the error on b2 becomes smaller the larger the
low-k limit of Iδ2δ2ðkÞ is. This suggests that one should not
let Pϵ absorb after renormalization the full limk→0 Iδ2δ2ðkÞ,
but only the part of the loop integral in limk→0 Iδ2δ2ðkÞ from
∼kNL to very UV modes. This would be similar to what
happens with the speed of sound and the low-k limit of P13

for the nonlinear dark matter. A more detailed investigation
of this is left to future work.

[1] R. Scoccimarro, The bispectrum: From theory to obser-
vations, Astrophys. J. 544, 597 (2000).

[2] E. Sefusatti, M. Crocce, S. Pueblas, and R. Scoccimarro,
Cosmology and the bispectrum, Phys. Rev. D 74, 023522
(2006).

[3] T. Baldauf, L. Mercolli, M. Mirbabayi, and E. Pajer,
The bispectrum in the effective field theory of large scale
structure, J. Cosmol. Astropart. Phys. 05 (2015) 007.

[4] R. E. Angulo, S. Foreman, M. Schmittfull, and L.
Senatore, The one-loop matter bispectrum in the effective
field theory of large scale structures, J. Cosmol. Astropart.
Phys. 10 (2015) 039.

[5] H.Gil-Marín, J.Noreña, L.Verde,W. J. Percival, C.Wagner,
M. Manera, and D. P. Schneider, The power spectrum and
bispectrum of SDSS DR11 BOSS galaxies—I. Bias and
gravity, Mon. Not. R. Astron. Soc. 451, 539 (2015).

[6] Z. Slepian et al., The large-scale three-point correlation
function of the SDSS BOSS DR12 CMASS galaxies, Mon.
Not. R. Astron. Soc. 468, 1070 (2017).

[7] H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein,
C.-H. Chuang, F.-S. Kitaura, S. A. Rodríguez-Torres,
and M. D. Olmstead, The clustering of galaxies in the
SDSS-III Baryon Oscillation Spectroscopic Survey: RSD

measurement from the power spectrum and bispectrum of
the DR12 BOSS galaxies, Mon. Not. R. Astron. Soc. 465,
1757 (2017),

[8] Z. Slepian et al., Detection of baryon acoustic oscillation
features in the large-scale three-point correlation function
of SDSS BOSS DR12 CMASS galaxies, Mon. Not. R.
Astron. Soc. 469, 1738 (2017).

[9] D. W. Pearson and L. Samushia, A detection of the baryon
acoustic oscillation features in the SDSS BOSS DR12
galaxy bispectrum, Mon. Not. R. Astron. Soc. 478, 4500
(2018).

[10] A. Eggemeier, R. Scoccimarro, and R. E. Smith, Bias loop
corrections to the galaxy bispectrum, Phys. Rev. D 99,
123514 (2019).

[11] A. Oddo, E. Sefusatti, C. Porciani, P. Monaco, and A. G.
Sánchez, Toward a robust inference method for the galaxy
bispectrum: Likelihood function and model selection,
J. Cosmol. Astropart. Phys. 03 (2020) 056.

[12] A. Moradinezhad Dizgah, M. Biagetti, E. Sefusatti, V.
Desjacques, and J. Noreña, Primordial non-Gaussianity
from biased tracers: Likelihood analysis of real-space
power spectrum and bispectrum, J. Cosmol. Astropart.
Phys. 05 (2021) 015.

CABASS, SIMONOVIĆ, and ZALDARRIAGA PHYS. REV. D 109, 043526 (2024)

043526-26

https://doi.org/10.1086/317248
https://doi.org/10.1103/PhysRevD.74.023522
https://doi.org/10.1103/PhysRevD.74.023522
https://doi.org/10.1088/1475-7516/2015/05/007
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stx488
https://doi.org/10.1093/mnras/stx488
https://doi.org/10.1093/mnras/sty1266
https://doi.org/10.1093/mnras/sty1266
https://doi.org/10.1103/PhysRevD.99.123514
https://doi.org/10.1103/PhysRevD.99.123514
https://doi.org/10.1088/1475-7516/2020/03/056
https://doi.org/10.1088/1475-7516/2021/05/015
https://doi.org/10.1088/1475-7516/2021/05/015


[13] A. Eggemeier, R. Scoccimarro, R. E. Smith, M. Crocce, A.
Pezzotta, and A. G. Sánchez, Testing one-loop galaxy bias:
Joint analysis of power spectrum and bispectrum, Phys.
Rev. D 103, 123550 (2021).

[14] D. Alkhanishvili, C. Porciani, E. Sefusatti, M. Biagetti, A.
Lazanu, A. Oddo, and V. Yankelevich, The reach of next-
to-leading-order perturbation theory for the matter bispec-
trum, Mon. Not. R. Astron. Soc. 512, 4961 (2022).

[15] A. Oddo, F. Rizzo, E. Sefusatti, C. Porciani, and P.
Monaco, Cosmological parameters from the likelihood
analysis of the galaxy power spectrum and bispectrum in
real space, J. Cosmol. Astropart. Phys. 11 (2021) 038.

[16] T. Baldauf, M. Garny, P. Taule, and T. Steele, Two-loop
bispectrum of large-scale structure, Phys. Rev. D 104,
123551 (2021).

[17] M.M. Ivanov, O. H. E. Philcox, T. Nishimichi, M.
Simonović, M. Takada, and M. Zaldarriaga, Precision
analysis of the redshift-space galaxy bispectrum, Phys.
Rev. D 105, 063512 (2022).

[18] O. H. E. Philcox and M.M. Ivanov, BOSS DR12 full-
shape cosmology: ΛCDM constraints from the large-scale
galaxy power spectrum and bispectrum monopole, Phys.
Rev. D 105, 043517 (2022).

[19] O. H. E. Philcox, M. M. Ivanov, M. Zaldarriaga, M.
Simonovic, and M. Schmittfull, Fewer mocks and less
noise: Reducing the dimensionality of cosmological ob-
servables with subspace projections, Phys. Rev. D 103,
043508 (2021).

[20] O. H. E. Philcox, Cosmology without window functions:
Quadratic estimators for the galaxy power spectrum, Phys.
Rev. D 103, 103504 (2021).

[21] O. H. E. Philcox, Cosmology without window functions.
II. Cubic estimators for the galaxy bispectrum, Phys. Rev.
D 104, 123529 (2021).

[22] K. Pardede, F. Rizzo, M. Biagetti, E. Castorina, E.
Sefusatti, and P. Monaco, Bispectrum-window convolution
via Hankel transform, J. Cosmol. Astropart. Phys. 10
(2022) 066.

[23] F. Rizzo, C. Moretti, K. Pardede, A. Eggemeier, A. Oddo,
E. Sefusatti, C. Porciani, and P. Monaco, The halo
bispectrum multipoles in redshift space, J. Cosmol. As-
tropart. Phys. 01 (2023) 031.

[24] M.M. Ivanov, O. H. E. Philcox, G. Cabass, T. Nishimichi,
M. Simonović, and M. Zaldarriaga, Cosmology with the
galaxy bispectrum multipoles: Optimal estimation and
application to BOSS data, Phys. Rev. D 107, 083515
(2023).

[25] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore,
and P. Zhang, The one-loop bispectrum of galaxies in
redshift space from the effective field theory of large-scale
structure, arXiv:2211.17130.

[26] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore,
and P. Zhang, The BOSS bispectrum analysis at one loop
from the effective field theory of large-scale structure,
arXiv:2206.08327.

[27] K. Pardede, E. Di Dio, and E. Castorina, Wide-angle
effects in the galaxy bispectrum, J. Cosmol. Astropart.
Phys. 09 (2023) 030.

[28] F. S. Kitaura and T. A. Ensslin, Bayesian reconstruction
of the cosmological large-scale structure: Methodology,

inverse algorithms and numerical optimization, Mon. Not.
R. Astron. Soc. 389, 497 (2008).

[29] J. Jasche and B. D. Wandelt, Bayesian physical
reconstruction of initial conditions from large scale
structure surveys, Mon. Not. R. Astron. Soc. 432, 894
(2013).

[30] H. Wang, H. J. Mo, X. Yang, and F. C. v. d. Bosch,
Reconstructing the initial density field of the local uni-
verse: Methods and tests with mock catalogs, Astrophys. J.
772, 63 (2013).

[31] M. Ata, F.-S. Kitaura, and V. Müller, Bayesian inference of
cosmic density fields from non-linear, scale-dependent,
and stochastic biased tracers, Mon. Not. R. Astron. Soc.
446, 4250 (2015).

[32] U. Seljak, G. Aslanyan, Y. Feng, and C. Modi, Towards
optimal extraction of cosmological information from non-
linear data, J. Cosmol. Astropart. Phys. 12 (2017) 009.

[33] C. Modi, Y. Feng, and U. Seljak, Cosmological
reconstruction from galaxy light: Neural network based
light-matter connection, J. Cosmol. Astropart. Phys. 10
(2018) 028.

[34] J. Alsing, B. Wandelt, and S. Feeney, Massive optimal data
compression and density estimation for scalable, like-
lihood-free inference in cosmology, Mon. Not. R. Astron.
Soc. 477, 2874 (2018).

[35] J. Alsing, T. Charnock, S. Feeney, and B. Wandelt, Fast
likelihood-free cosmology with neural density estimators
and active learning, Mon. Not. R. Astron. Soc. 488, 4440
(2019).

[36] N. Jeffrey, J. Alsing, and F. Lanusse, Likelihood-free
inference with neural compression of DES SV weak
lensing map statistics, Mon. Not. R. Astron. Soc. 501,
954 (2021).

[37] J. Jasche and F. S. Kitaura, Fast Hamiltonian sampling for
large scale structure inference, Mon. Not. R. Astron. Soc.
407, 29 (2010).

[38] J. Jasche and G. Lavaux, Physical Bayesian modelling of
the non-linear matter distribution: New insights into the
nearby universe, Astron. Astrophys. 625, A64 (2019).

[39] B. Dai and U. Seljak, Translation and rotation equivariant
normalizing flow (TRENF) for optimal cosmological
analysis, Mon. Not. R. Astron. Soc. 516, 2363 (2022).

[40] J. Robnik, G. B. De Luca, E. Silverstein, and U. Seljak,
Microcanonical Hamiltonian Monte Carlo, arXiv:2212
.08549.

[41] C. Modi, Y. Li, and D. Blei, Reconstructing the universe
with variational self-boosted sampling, J. Cosmol. Astro-
part. Phys. 03 (2023) 059.

[42] P. McDonald and A. Roy, Clustering of dark matter tracers:
generalizing bias for the coming era of precision LSS,
J. Cosmol. Astropart. Phys. 08 (2009) 020.

[43] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga,
Cosmological non-linearities as an effective fluid,
J. Cosmol. Astropart. Phys. 07 (2012) 051.

[44] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore, The
effective field theory of cosmological large scale struc-
tures, J. High Energy Phys. 09 (2012) 082.

[45] R. A. Porto, L. Senatore, and M. Zaldarriaga, The
Lagrangian-space effective field theory of large scale
structures, J. Cosmol. Astropart. Phys. 05 (2014) 022.

COSMOLOGICAL INFORMATION IN PERTURBATIVE FORWARD … PHYS. REV. D 109, 043526 (2024)

043526-27

https://doi.org/10.1103/PhysRevD.103.123550
https://doi.org/10.1103/PhysRevD.103.123550
https://doi.org/10.1093/mnras/stac567
https://doi.org/10.1088/1475-7516/2021/11/038
https://doi.org/10.1103/PhysRevD.104.123551
https://doi.org/10.1103/PhysRevD.104.123551
https://doi.org/10.1103/PhysRevD.105.063512
https://doi.org/10.1103/PhysRevD.105.063512
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1103/PhysRevD.103.043508
https://doi.org/10.1103/PhysRevD.103.043508
https://doi.org/10.1103/PhysRevD.103.103504
https://doi.org/10.1103/PhysRevD.103.103504
https://doi.org/10.1103/PhysRevD.104.123529
https://doi.org/10.1103/PhysRevD.104.123529
https://doi.org/10.1088/1475-7516/2022/10/066
https://doi.org/10.1088/1475-7516/2022/10/066
https://doi.org/10.1088/1475-7516/2023/01/031
https://doi.org/10.1088/1475-7516/2023/01/031
https://doi.org/10.1103/PhysRevD.107.083515
https://doi.org/10.1103/PhysRevD.107.083515
https://arXiv.org/abs/2211.17130
https://arXiv.org/abs/2206.08327
https://doi.org/10.1088/1475-7516/2023/09/030
https://doi.org/10.1088/1475-7516/2023/09/030
https://doi.org/10.1111/j.1365-2966.2008.13341.x
https://doi.org/10.1111/j.1365-2966.2008.13341.x
https://doi.org/10.1093/mnras/stt449
https://doi.org/10.1093/mnras/stt449
https://doi.org/10.1088/0004-637X/772/1/63
https://doi.org/10.1088/0004-637X/772/1/63
https://doi.org/10.1093/mnras/stu2347
https://doi.org/10.1093/mnras/stu2347
https://doi.org/10.1088/1475-7516/2017/12/009
https://doi.org/10.1088/1475-7516/2018/10/028
https://doi.org/10.1088/1475-7516/2018/10/028
https://doi.org/10.1093/mnras/sty819
https://doi.org/10.1093/mnras/sty819
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1093/mnras/staa3594
https://doi.org/10.1093/mnras/staa3594
https://doi.org/10.1111/j.1365-2966.2010.16897.x
https://doi.org/10.1111/j.1365-2966.2010.16897.x
https://doi.org/10.1051/0004-6361/201833710
https://doi.org/10.1093/mnras/stac2010
https://arXiv.org/abs/2212.08549
https://arXiv.org/abs/2212.08549
https://doi.org/10.1088/1475-7516/2023/03/059
https://doi.org/10.1088/1475-7516/2023/03/059
https://doi.org/10.1088/1475-7516/2009/08/020
https://doi.org/10.1088/1475-7516/2012/07/051
https://doi.org/10.1007/JHEP09(2012)082
https://doi.org/10.1088/1475-7516/2014/05/022


[46] L. Senatore and M. Zaldarriaga, Redshift space distortions
in the effective field theory of large scale structures,
arXiv:1409.1225.

[47] L. Senatore, Bias in the effective field theory of large scale
structures, J. Cosmol. Astropart. Phys. 11 (2015) 007.

[48] M. Lewandowski, A. Perko, and L. Senatore, Analytic
prediction of baryonic effects from the EFT of large scale
structures, J. Cosmol. Astropart. Phys. 05 (2015) 019.

[49] M. Mirbabayi, F. Schmidt, and M. Zaldarriaga, Biased
tracers and time evolution, J. Cosmol. Astropart. Phys. 07
(2015) 030.

[50] R. Angulo, M. Fasiello, L. Senatore, and Z. Vlah, On the
statistics of biased tracers in the effective field theory of
large scale structures, J. Cosmol. Astropart. Phys. 09
(2015) 029.

[51] M. Lewandowski, L. Senatore, F. Prada, C. Zhao, and
C.-H. Chuang, EFT of large scale structures in redshift
space, Phys. Rev. D 97, 063526 (2018).

[52] A. A. Abolhasani, M. Mirbabayi, and E. Pajer, Systematic
renormalization of the effective theory of large scale
structure, J. Cosmol. Astropart. Phys. 05 (2016) 063.

[53] Z. Vlah, M. White, and A. Aviles, A Lagrangian effec-
tive field theory, J. Cosmol. Astropart. Phys. 09 (2015)
014.

[54] D. Blas, M. Garny, M. M. Ivanov, and S. Sibiryakov,
Time-sliced perturbation theory for large scale structure I:
General formalism, J. Cosmol. Astropart. Phys. 07 (2016)
052.

[55] Z. Vlah, E. Castorina, and M. White, The Gaussian
streaming model and convolution Lagrangian effective
field theory, J. Cosmol. Astropart. Phys. 12 (2016) 007.

[56] V. Desjacques, D. Jeong, and F. Schmidt, Large-scale
galaxy bias, Phys. Rep. 733, 1 (2018).

[57] A. Perko, L. Senatore, E. Jennings, and R. H. Wechsler,
Biased tracers in redshift space in the EFT of large-scale
structure, arXiv:1610.09321.

[58] S.-F. Chen, Z. Vlah, E. Castorina, and M. White, Redshift-
space distortions in Lagrangian perturbation theory,
J. Cosmol. Astropart. Phys. 03 (2021) 100.

[59] G. Cabass, M.M. Ivanov, M. Lewandowski, M.
Mirbabayi, and M. Simonović, Snowmass white paper:
Effective field theories in cosmology, Phys. Dark Universe
40, 101193 (2023).

[60] T. Baldauf, E. Schaan, and M. Zaldarriaga, On the reach of
perturbative descriptions for dark matter displacement
fields, J. Cosmol. Astropart. Phys. 03 (2016) 017.

[61] T. Baldauf, E. Schaan, and M. Zaldarriaga, On the reach of
perturbative methods for dark matter density fields,
J. Cosmol. Astropart. Phys. 03 (2016) 007.

[62] M. Schmittfull, M. Simonović, V. Assassi, and M.
Zaldarriaga, Modeling biased tracers at the field level,
Phys. Rev. D 100, 043514 (2019).

[63] A. Taruya, T. Nishimichi, and D. Jeong, Grid-based
calculation for perturbation theory of large-scale structure,
Phys. Rev. D 98, 103532 (2018).

[64] M. McQuinn and A. D’Aloisio, The observable 21 cm
signal from reionization may be perturbative, J. Cosmol.
Astropart. Phys. 10 (2018) 016.

[65] M. Schmittfull, M. Simonović, M. M. Ivanov, O. H. E.
Philcox, and M. Zaldarriaga, Modeling galaxies in redshift

space at the field level, J. Cosmol. Astropart. Phys. 05
(2021) 059.

[66] C. Modi, M. White, A. Slosar, and E. Castorina, Recon-
structing large-scale structure with neutral hydrogen sur-
veys, J. Cosmol. Astropart. Phys. 11 (2019) 023.

[67] F. Schmidt, An n-th order Lagrangian forward model for
large-scale structure, J. Cosmol. Astropart. Phys. 04 (2021)
033.

[68] N. Kokron, J. DeRose, S.-F. Chen, M. White, and R. H.
Wechsler, The cosmology dependence of galaxy clustering
and lensing from a hybrid N-body–perturbation theory
model, Mon. Not. R. Astron. Soc. 505, 1422 (2021).

[69] A. Taruya, T. Nishimichi, and D. Jeong, Grid-based
calculations of redshift-space matter fluctuations from
perturbation theory: UV sensitivity and convergence at
the field level, Phys. Rev. D 105, 103507 (2022).

[70] A. Obuljen, M. Simonović, A. Schneider, and R.
Feldmann, Modeling HI at the field level, Phys. Rev. D
108, 083528 (2023).

[71] F. Schmidt, F. Elsner, J. Jasche, N. M. Nguyen, and G.
Lavaux, A rigorous EFT-based forward model for large-
scale structure, J. Cosmol. Astropart. Phys. 01 (2019) 042.

[72] F. Elsner, F. Schmidt, J. Jasche, G. Lavaux, and N.-M.
Nguyen, Cosmology inference from a biased density field
using the EFT-based likelihood, J. Cosmol. Astropart.
Phys. 01 (2020) 029.

[73] G. Cabass and F. Schmidt, The EFT likelihood for large-
scale structure, J. Cosmol. Astropart. Phys. 04 (2020) 042.

[74] F. Schmidt, Sigma-eight at the percent level: The EFT
likelihood in real space, J. Cosmol. Astropart. Phys. 04
(2021) 032.

[75] G. Cabass and F. Schmidt, The likelihood for LSS:
Stochasticity of bias coefficients at all orders, J. Cosmol.
Astropart. Phys. 07 (2020) 051.

[76] F. Schmidt, G. Cabass, J. Jasche, and G. Lavaux, Unbiased
cosmology inference from biased tracers using the EFT
likelihood, J. Cosmol. Astropart. Phys. 11 (2020) 008.

[77] G. Cabass, The EFT likelihood for large-scale structure in
redshift space, J. Cosmol. Astropart. Phys. 01 (2021) 067.

[78] A. Barreira, T. Lazeyras, and F. Schmidt, Galaxy bias from
forward models: Linear and second-order bias of Illus-
trisTNG galaxies, J. Cosmol. Astropart. Phys. 08 (2021)
029.

[79] T. Lazeyras, A. Barreira, and F. Schmidt, Assembly bias in
quadratic bias parameters of dark matter halos from
forward modeling, J. Cosmol. Astropart. Phys. 10
(2021) 063.

[80] I. Babić, F. Schmidt, and B. Tucci, BAO scale inference
from biased tracers using the EFT likelihood, J. Cosmol.
Astropart. Phys. 08 (2022) 007.

[81] A. Andrews, J. Jasche, G. Lavaux, and F. Schmidt,
Bayesian field-level inference of primordial non-Gaussian-
ity using next-generation galaxy surveys, Mon. Not. R.
Astron. Soc. 520, 5746 (2023).

[82] A. Kostić, N.-M. Nguyen, F. Schmidt, and M. Reinecke,
Consistency tests of field level inference with the EFT
likelihood, J. Cosmol. Astropart. Phys. 07 (2023) 063.

[83] J. Stadler, F. Schmidt, and M. Reinecke, Cosmology
inference at the field level from biased tracers in red-
shift-space, J. Cosmol. Astropart. Phys. 10 (2023) 060.

CABASS, SIMONOVIĆ, and ZALDARRIAGA PHYS. REV. D 109, 043526 (2024)

043526-28

https://arXiv.org/abs/1409.1225
https://doi.org/10.1088/1475-7516/2015/11/007
https://doi.org/10.1088/1475-7516/2015/05/019
https://doi.org/10.1088/1475-7516/2015/07/030
https://doi.org/10.1088/1475-7516/2015/07/030
https://doi.org/10.1088/1475-7516/2015/09/029
https://doi.org/10.1088/1475-7516/2015/09/029
https://doi.org/10.1103/PhysRevD.97.063526
https://doi.org/10.1088/1475-7516/2016/05/063
https://doi.org/10.1088/1475-7516/2015/09/014
https://doi.org/10.1088/1475-7516/2015/09/014
https://doi.org/10.1088/1475-7516/2016/07/052
https://doi.org/10.1088/1475-7516/2016/07/052
https://doi.org/10.1088/1475-7516/2016/12/007
https://doi.org/10.1016/j.physrep.2017.12.002
https://arXiv.org/abs/1610.09321
https://doi.org/10.1088/1475-7516/2021/03/100
https://doi.org/10.1016/j.dark.2023.101193
https://doi.org/10.1016/j.dark.2023.101193
https://doi.org/10.1088/1475-7516/2016/03/017
https://doi.org/10.1088/1475-7516/2016/03/007
https://doi.org/10.1103/PhysRevD.100.043514
https://doi.org/10.1103/PhysRevD.98.103532
https://doi.org/10.1088/1475-7516/2018/10/016
https://doi.org/10.1088/1475-7516/2018/10/016
https://doi.org/10.1088/1475-7516/2021/05/059
https://doi.org/10.1088/1475-7516/2021/05/059
https://doi.org/10.1088/1475-7516/2019/11/023
https://doi.org/10.1088/1475-7516/2021/04/033
https://doi.org/10.1088/1475-7516/2021/04/033
https://doi.org/10.1093/mnras/stab1358
https://doi.org/10.1103/PhysRevD.105.103507
https://doi.org/10.1103/PhysRevD.108.083528
https://doi.org/10.1103/PhysRevD.108.083528
https://doi.org/10.1088/1475-7516/2019/01/042
https://doi.org/10.1088/1475-7516/2020/01/029
https://doi.org/10.1088/1475-7516/2020/01/029
https://doi.org/10.1088/1475-7516/2020/04/042
https://doi.org/10.1088/1475-7516/2021/04/032
https://doi.org/10.1088/1475-7516/2021/04/032
https://doi.org/10.1088/1475-7516/2020/07/051
https://doi.org/10.1088/1475-7516/2020/07/051
https://doi.org/10.1088/1475-7516/2020/11/008
https://doi.org/10.1088/1475-7516/2021/01/067
https://doi.org/10.1088/1475-7516/2021/08/029
https://doi.org/10.1088/1475-7516/2021/08/029
https://doi.org/10.1088/1475-7516/2021/10/063
https://doi.org/10.1088/1475-7516/2021/10/063
https://doi.org/10.1088/1475-7516/2022/08/007
https://doi.org/10.1088/1475-7516/2022/08/007
https://doi.org/10.1093/mnras/stad432
https://doi.org/10.1093/mnras/stad432
https://doi.org/10.1088/1475-7516/2023/07/063
https://doi.org/10.1088/1475-7516/2023/10/060


[84] M. Crocce and R. Scoccimarro, Nonlinear evolution of
baryon acoustic oscillations, Phys. Rev. D 77, 023533
(2008).

[85] N. Padmanabhan, M. White, and J. D. Cohn, Reconstruct-
ing baryon oscillations: A Lagrangian theory perspective,
Phys. Rev. D 79, 063523 (2009).

[86] N. S. Sugiyama and D. N. Spergel, How does non-linear
dynamics affect the baryon acoustic oscillation?, J. Cos-
mol. Astropart. Phys. 02 (2014) 042.

[87] D. J. Eisenstein, H.-j. Seo, E. Sirko, and D. Spergel,
Improving cosmological distance measurements by
reconstruction of the baryon acoustic peak, Astrophys.
J. 664, 675 (2007).

[88] M. Schmittfull, T. Baldauf, and M. Zaldarriaga, Iterative
initial condition reconstruction, Phys. Rev. D 96, 023505
(2017).

[89] C. D. Rimes and A. J. S. Hamilton, Information content of
the non-linear matter power spectrum, Mon. Not. R.
Astron. Soc. 360, L82 (2005).

[90] A. J. S. Hamilton, C. D. Rimes, and R. Scoccimarro, On
measuring the covariance matrix of the nonlinear power
spectrum from simulations, Mon. Not. R. Astron. Soc. 371,
1188 (2006).

[91] I. Mohammed, U. Seljak, and Z. Vlah, Perturbative
approach to covariance matrix of the matter power spec-
trum, Mon. Not. R. Astron. Soc. 466, 780 (2017).

[92] A. Barreira and F. Schmidt, Response approach to the
matter power spectrum covariance, J. Cosmol. Astropart.
Phys. 11 (2017) 051.

[93] P. Creminelli, L. Senatore, and M. Zaldarriaga, Estimators
for local non-Gaussianities, J. Cosmol. Astropart. Phys. 03
(2007) 019.

[94] M. McQuinn, On the primordial information available to
galaxy redshift surveys, J. Cosmol. Astropart. Phys. 06
(2021) 024.

[95] Y. Feng, U. Seljak, and M. Zaldarriaga, Exploring the
posterior surface of the large scale structure reconstruction,
J. Cosmol. Astropart. Phys. 07 (2018) 043.

[96] M. Peloso and M. Pietroni, Galilean invariance and the
consistency relation for the nonlinear squeezed bispectrum
of large scale structure, J. Cosmol. Astropart. Phys. 05
(2013) 031.

[97] A. Kehagias and A. Riotto, Symmetries and consistency
relations in the large scale structure of the universe, Nucl.
Phys. B873, 514 (2013).

[98] P. Creminelli, J. Noreña, M. Simonović, and F. Vernizzi,
Single-field consistency relations of large scale structure,
J. Cosmol. Astropart. Phys. 12 (2013) 025.

[99] P. Creminelli, J. Gleyzes, M. Simonović, and F. Vernizzi,
Single-field consistency relations of large scale structure.
Part II: Resummation and redshift space, J. Cosmol.
Astropart. Phys. 02 (2014) 051.

[100] P. Creminelli, J. Gleyzes, L. Hui, M. Simonović, and
F. Vernizzi, Single-field consistency relations of large
scale structure. Part III: Test of the equivalence principle,
J. Cosmol. Astropart. Phys. 06 (2014) 009.

[101] M. Mirbabayi, M. Simonović, and M. Zaldarriaga,
Baryon acoustic peak and the squeezed limit bispectrum,
arXiv:1412.3796.

[102] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, Equivalence principle and the baryon acoustic
peak, Phys. Rev. D 92, 043514 (2015).

[103] D. Blas, M. Garny, M. M. Ivanov, and S. Sibiryakov, Time-
sliced perturbation theory II: Baryon acoustic oscillations
and infrared resummation, J. Cosmol. Astropart. Phys. 07
(2016) 028.

[104] J. Carlson, B. Reid, and M. White, Convolution Lagran-
gian perturbation theory for biased tracers, Mon. Not. R.
Astron. Soc. 429, 1674 (2013).

[105] L. Senatore and M. Zaldarriaga, The IR-resummed effec-
tive field theory of large scale structures, J. Cosmol.
Astropart. Phys. 02 (2015) 013.

[106] Z. Vlah, U. Seljak, M. Y. Chu, and Y. Feng, Perturbation
theory, effective field theory, and oscillations in the power
spectrum, J. Cosmol. Astropart. Phys. 03 (2016) 057.

[107] L. Senatore and G. Trevisan, On the IR-resummation in the
EFTofLSS, J. Cosmol. Astropart. Phys. 05 (2018) 019.

[108] M. M. Ivanov and S. Sibiryakov, Infrared resummation for
biased tracers in redshift space, J. Cosmol. Astropart. Phys.
07 (2018) 053.

[109] A. Barreira and F. Schmidt, Responses in large-scale
structure, J. Cosmol. Astropart. Phys. 06 (2017) 053.

[110] D. Wadekar, M. M. Ivanov, and R. Scoccimarro, Cosmo-
logical constraints from BOSS with analytic covariance
matrices, Phys. Rev. D 102, 123521 (2020).

[111] C. Modi, E. Castorina, and U. Seljak, Halo bias in
Lagrangian space: Estimators and theoretical predictions,
Mon. Not. R. Astron. Soc. 472, 3959 (2017).

[112] F. Villaescusa-Navarro et al., Ingredients for 21 cm in-
tensity mapping, Astrophys. J. 866, 135 (2018).

[113] A. Taruya and K. Akitsu, Lagrangian approach to super-
sample effects on biased tracers at field level: Galaxy
density fields and intrinsic alignments, J. Cosmol. Astro-
part. Phys. 11 (2021) 061.

[114] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, Large-scale structure constraints with con-
trolled theoretical uncertainties, arXiv:1602.00674.

[115] A. Chudaykin, M. M. Ivanov, and M. Simonović,
Optimizing large-scale structure data analysis with the
theoretical error likelihood, Phys. Rev. D 103, 043525
(2021).

[116] D. Baumann and D. Green, The power of locality:
Primordial non-Gaussianity at the map level, J. Cosmol.
Astropart. Phys. 08 (2022) 061.

[117] G. Cabass, M.M. Ivanov, O. H. E. Philcox, M. Simonović,
and M. Zaldarriaga, Constraints on single-field inflation
from the BOSS galaxy survey, Phys. Rev. Lett. 129,
021301 (2022).

[118] G. D’Amico, M. Lewandowski, L. Senatore, and P. Zhang,
Limits on primordial non-Gaussianities from BOSS gal-
axy-clustering data, arXiv:2201.11518.

[119] G. Cabass, M.M. Ivanov, O. H. E. Philcox, M. Simonović,
and M. Zaldarriaga, Constraints on multifield inflation
from the BOSS galaxy survey, Phys. Rev. D 106, 043506
(2022).

[120] A. Heavens, Statistical techniques in cosmology, arXiv:
0906.0664.

COSMOLOGICAL INFORMATION IN PERTURBATIVE FORWARD … PHYS. REV. D 109, 043526 (2024)

043526-29

https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1103/PhysRevD.79.063523
https://doi.org/10.1088/1475-7516/2014/02/042
https://doi.org/10.1088/1475-7516/2014/02/042
https://doi.org/10.1086/518712
https://doi.org/10.1086/518712
https://doi.org/10.1103/PhysRevD.96.023505
https://doi.org/10.1103/PhysRevD.96.023505
https://doi.org/10.1111/j.1745-3933.2005.00051.x
https://doi.org/10.1111/j.1745-3933.2005.00051.x
https://doi.org/10.1111/j.1365-2966.2006.10709.x
https://doi.org/10.1111/j.1365-2966.2006.10709.x
https://doi.org/10.1093/mnras/stw3196
https://doi.org/10.1088/1475-7516/2017/11/051
https://doi.org/10.1088/1475-7516/2017/11/051
https://doi.org/10.1088/1475-7516/2007/03/019
https://doi.org/10.1088/1475-7516/2007/03/019
https://doi.org/10.1088/1475-7516/2021/06/024
https://doi.org/10.1088/1475-7516/2021/06/024
https://doi.org/10.1088/1475-7516/2018/07/043
https://doi.org/10.1088/1475-7516/2013/05/031
https://doi.org/10.1088/1475-7516/2013/05/031
https://doi.org/10.1016/j.nuclphysb.2013.05.009
https://doi.org/10.1016/j.nuclphysb.2013.05.009
https://doi.org/10.1088/1475-7516/2013/12/025
https://doi.org/10.1088/1475-7516/2014/02/051
https://doi.org/10.1088/1475-7516/2014/02/051
https://doi.org/10.1088/1475-7516/2014/06/009
https://arXiv.org/abs/1412.3796
https://doi.org/10.1103/PhysRevD.92.043514
https://doi.org/10.1088/1475-7516/2016/07/028
https://doi.org/10.1088/1475-7516/2016/07/028
https://doi.org/10.1093/mnras/sts457
https://doi.org/10.1093/mnras/sts457
https://doi.org/10.1088/1475-7516/2015/02/013
https://doi.org/10.1088/1475-7516/2015/02/013
https://doi.org/10.1088/1475-7516/2016/03/057
https://doi.org/10.1088/1475-7516/2018/05/019
https://doi.org/10.1088/1475-7516/2018/07/053
https://doi.org/10.1088/1475-7516/2018/07/053
https://doi.org/10.1088/1475-7516/2017/06/053
https://doi.org/10.1103/PhysRevD.102.123521
https://doi.org/10.1093/mnras/stx2148
https://doi.org/10.3847/1538-4357/aadba0
https://doi.org/10.1088/1475-7516/2021/11/061
https://doi.org/10.1088/1475-7516/2021/11/061
https://arXiv.org/abs/1602.00674
https://doi.org/10.1103/PhysRevD.103.043525
https://doi.org/10.1103/PhysRevD.103.043525
https://doi.org/10.1088/1475-7516/2022/08/061
https://doi.org/10.1088/1475-7516/2022/08/061
https://doi.org/10.1103/PhysRevLett.129.021301
https://doi.org/10.1103/PhysRevLett.129.021301
https://arXiv.org/abs/2201.11518
https://doi.org/10.1103/PhysRevD.106.043506
https://doi.org/10.1103/PhysRevD.106.043506
https://arXiv.org/abs/0906.0664
https://arXiv.org/abs/0906.0664

