
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

A compositional approach
for quantitative evaluation of
stochastic workflows

Riccardo Reali

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

A compositional approach
for quantitative evaluation of
stochastic workflows

Riccardo Reali

Advisor:

Prof. Enrico Vicario

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Kishor S. Trivedi, Duke University
Prof. Katinka Wolter, Freie Universität Berlin

XXXV ciclo —March 2023

Ai miei genitori Graziella e Roberto
Ai miei fratelli Tommaso e Ludovico

Ai miei nonni Vezio, Rita, Armanda ed Enrico
A Maria Chiara

ii

Acknowledgments
This thesis work is the result of synergies with other people who supported me
during the last three years, providing technical, scientific and emotional support.

I would like to thankmy advisor Prof. EnricoVicario for guidingme through this
journey, providing me with the knowledge and the means to learn my way through
the world of research, without ever doubtingmy potential and always givingme his
trust. I would like to thank Prof. Laura Carnevali, for providing me with scientific,
technical and, more importantly, emotional support in doing this complicated but
rewarding work and for instilling in me her dedication in doing research. I would
like to thank Prof. Marco Paolieri, for providing support in the research work con-
ducted on the compositional quantitative analysis method and in the implementa-
tion of the Eulero library. I would like to thank PhD. Benedetta Picano, for provid-
ing support in the research work conducted on the auctions and matching game
approach for the service selection problem. I would like to thank Professor Paola
Cappanera and Doctors Leonardo Scommegna, Federico Tammaro and Leonardo
Paroli, for contributing to some of the research works carried out during these three
years. I would like to thank all the Software Technologies Laboratory fellows for
making the work environment a stimulating crossroads of knowledge and ideas. I
would like to thank Professors András Horváth, Giuliano Casale, Andrea Vandin,
Kishor Trivedi and Katinka Wolter for the time spent to take part in the supervision
of this thesis work. I would like to thank Simona Altamura and Antonella Gullotto,
for always providing administrative support with speed and meticulous attention
to details. I would like to thank Regione Toscana that supported this thesis work, as
part of the Pegaso program.

I would like to thank my mother Graziella, my father Roberto and my brothers
Tommaso and Ludovico, for supporting me in the most difficult moments without
ever ceasing to believe in me. I would like to thank Maria Chiara, for being my first
supporter and my point of reference, the shoulder to cry on and the smile to laugh
with. I would like to thank the fellows from Coro Giovanile Effetti Sonori, Coro Gio-
vanile Toscano and Compagnia degli Irriducibili, for joining me on this journey, gifting
me moments of music, drama, enjoyment and sincere friendship, which are always
good for both body and soul. I would like to thank my friends Andrei, for teaching
me how enduring friendship can be, even when we lose contact of each other. Fi-
nally, I would like to thank all the other people that took part of this journey, helping
me to reach this success.

iii

Abstract

Workflows describe processes of concurrent activities orchestrated by prece-
dence constraints and control-flow constructs and are successfully applied to a
large variety of material and digital processes from multiple contexts (e.g sup-
ply chain management, composite web services, cloud ‘functions as a service’.
For people employed in this contexts, scientificmethods are relevant to enhance
the knowledge of the active processes, and to determine what are the better de-
cisions to take to maximize the productivity or to minimize the loss of the con-
sidered business. From this perspective, the prediction of the completion time
of a workflow is crucial to design and plan the activities of a business.

In this thesis, we evaluate a stochastic upper bound on the completion time
Probability Density Function (PDF) of complex workflows through an efficient
and accurate compositional approach. Workflows are specified as structure
trees, a hierarchical representation that is based on Stochastic Time Petri Nets
(STPNs), that permits decomposition into a hierarchy of subworkflows with
positively correlated response times, guaranteeing that a stochastically larger
completion time PDF is obtained when intermediate results are approximated
by stochastically larger PDFs andwhen dependencies are simplified by replicat-
ing activities appearing in multiple subworkflows. The method is implemented
in Eulero, a novel Java library that enables bothmodeling of complexworkflows
through the structure tree and evaluation of their completion time PDF.

Predicting the completion time of a workflow can be exploited in an envi-
ronment of competition, where a set of resource-constrained aggregators se-
lects service providers for the implementation of workflows requested by a set
of customers, managing the Service Level Agreement (SLA) on both the sides.
In particular, each aggregator selects the implementation of elementary services
through aVickrey-Clarke-Groves-based auction game,where eachprovider bids
CumulativeDistribution Function (CDF) of the offered service completion time.
On awarding of the auction, the aggregator can safely predict end-to-end com-
pletion times that can guarantee to each customer, and the consequent reward
that can obtain. The resource-constrained assignment problem between cus-
tomers and aggregators is thus solved through a matching game with exter-
nalities and incomplete information that aims at maximizing efficient usage of
resources in the system according to a collective utility function. The impact of
possible cheating strategies to improve the utility of some players is also ana-
lyzed, together with the stability of the formulated matching game.

Then, the presented methods are then demonstrated in a Model-Driven En-
gineering (MDE) approach that implements Model-to-Model transformations
to map cases of textile manufacturing district production to the proposed sci-
entific application domain, enabling to perform of the methods to real-world
contexts.

Contents

Contents 1

1 Introduction 3

2 A compositional approach for complex workflow evaluation 9
2.1 Workflow modeling . 10
2.2 Workflow complexity . 18
2.3 Workflow evaluation . 22
2.4 Experimentation . 32

3 The Eulero Library 45
3.1 Library overview . 46
3.2 The package Modeling . 47
3.3 The package Evaluation . 50
3.4 The package ModelGeneration . 53

4 A game-theoretical approach for workflow service selection 59
4.1 Problem statement and approach . 60
4.2 Auction-based service selection . 63
4.3 Matching-based customers-aggregators assignment 70
4.4 Experimentation . 74

5 Model-Driven Engineering for manufactures predictive analysis 81
5.1 A metamodel of a manufacturing district 82
5.2 Demonstration on a case of study . 85

6 Conclusions 93

A Publications 95

Bibliography 97

1

Chapter 1

Introduction

Workflowmodels describe processes of concurrent activities that are orchestrated by
precedence constraints and control-flow constructs. Over the years, a set of elemen-
tary patterns has emerged to define workflows: the sequence pattern for consecutive
activities, the split/join pattern for independent prerequisites, and the choice/merge
for alternative activities; complex workflows can also break the well-formed nesting
properties of these elementary patterns, by including directed acyclic graphs (DAGs)
of dependencies between activities and loops that repeat some activity [1]. This ab-
straction has been successfully applied to a large variety of material and digital pro-
cesses frommultiple contexts, including supply chainmanagement [2], administra-
tion [3, 4], composite web services [5], cloud “functions as a service” [6].

When a workflow includes a stochastic model for the duration of activities and
for the outcome of control-flow patterns, its quantitative evaluation can provide
valuable metrics to achieve tradeoffs between performance goals (e.g., average re-
sponse time, subtask dispersion, energy consumption) during different stages of
system design and operation [7, 8, 9, 10, 11]. This approach is particularly useful
for the analysis of Service Level Agreements (SLAs) with soft deadlines and penalty
functions [12, 13], which can be defined as rewards calculated from the Probability
Density Function (PDF) of the end-to-end response time of the workflow. For exam-
ple, the probability of missing a soft deadline Tmax can be obtained by integrating
the PDF over [Tmax,+∞); the expected penalty can be evaluated by multiplying the
PDF by the penalty function and integrating over all response times. These metrics
require not only summary statistics such asmean and variance, but also the entire re-
sponse time PDF: while simulation and other approximation methods can speed up
its evaluation for complex workflows, many applications require additional safety
guarantees. For example, soft deadlines require a stochastically ordered approxima-
tion (i.e., a PDF with an integral that is an upper bound of the integral of the exact
result) to avoid underestimating the probability of missing a deadline. Even more
critically, the evaluation of expected penalties depends on the accuracy of the PDF

3

Introduction 4

at every point, instead of its cumulative integral.
At the same time, exact analytical and numerical methods cannot be applied

to large workflows because of two main sources of computational complexity. In
fact, activity durations have general (i.e., non-Exponential) probability distributions
(GEN), often within firm bounds enforced by design or by contract, which result in
a non-Markovian stochastic process [14, 15] ofworkflowexecution, butwhich can be
critical to fit data collected by web applications. In principle, if the workflowmodel
never reaches a state where two GEN activities overlap their durations, satisfying
the enabling restriction, then transient analysis can still resort to numerical solution
techniques [16, 17, 18]. Also, multiple concurrent GEN durations can be managed
by approximation through Continuous PHase type (CPH) distributions [19, 20],
also with the support of various tools [21, 22, 23]. In other cases, renewal theory
can be exploited to evaluate the behavior of a workflow over time. In this case, the
evaluation exploits regenerative states, i.e. states where the Markov property holds
again, by evaluating a global and a local kernels and employing them in a set of
equations of Volterra [24, 25, 26]. However, more often the interleaving of activities
in concurrent subworkflows leads to break the enabling restriction, to significantly
reduce the number of regeneration states, to get a state-space explosion and to com-
plex stochastic dependencies due to their overlapping GEN durations [27], which
disable the mentioned solutions.

This sources of complexity lead to the necessity of implementing compositional
analysis approaches. A compositional approach can address both issues by avoid-
ing the explicit representation of interleavings, limiting state space explosion and
simplifying the stochastic processes of individual components [27]. In [28], mean
and standard deviation of workflow response time are derived through an efficient
bottom-up calculus when activities with GEN duration are composed by fork/join,
sequence, and repetition; the approach is extended in [29] for the special case of
Continuous Phase (CPH) durations. In [30], the completion time of an acyclic at-
tack tree with CPH delays is evaluated by repeatedly composing CPH distributions
in a bottom-up fashion, with possible approximation to limit the number of phases
in their representation. In [31], the response time PDF of complex workflows with
GEN durations is evaluated compositionally, by repeatedly applyingMarkov regen-
erative analysis to nested subworkflows (with limited concurrency), and then com-
posing the resulting distributions bottom-up; the approach is extended in [32] to
repetition blocks and unbalanced split/join constructs. Stochastic order is guaran-
teed by the class of approximating distributions and by the method used to simplify
dependencies within the workflow.

In this thesis work, an efficient and accurate compositional technique to eval-
uate a stochastic upper bound on the response time PDF of complex workflows
is illustrated. Specifically, workflows consist of activities with GEN duration and

5

bounded support, composed through sequence, choice/merge, and balanced/un-
balanced split/join constructs, and specified by a structured formalism, defined in
terms of Stochastic Time Petri Nets (STPNs) [33], that permits theworkflow decom-
position into a hierarchy of subworkflowswith positively correlated response times.
In so doing, a formalization for the approximate derivation of conservativemeasures
that estimate the complexity of evaluation of a subworkflow is provided, driving
the workflow decomposition into subworkflows analyzed in isolation; a stochasti-
cally ordered approximant for the response time PDF of subworkflows is defined
by combining shifted truncated Exponential (EXP) terms, each having positive or
negative rate depending on the concavity of the response time CDF; finally, an ex-
tensive experimentation onmanually and randomly generatedmodels with increas-
ing complexity is conducted, to validate the proposed technique and to investigate
which decomposition heuristics work better and under which conditions.

The work conducted on the described compositional method leads to the real-
ization of a Java library called Eulero. The library is designed to implement the main
features of the compositional method. In particular, the library implements pack-
ages to model a workflow, perform analysis heuristics, and approximate probability
distributions. Each of these packages includes a generic interface, which is designed
with the intent of facilitating the extension and the addition of features (e.g., new
analysis heuristics, new approximations). Finally, the library provides a package
that implements a random workflow generator, which can be controlled to gener-
ate benchmarks of models, through which validating new quantitative evaluation
techniques.

The evaluation of the response time of a workflow results to be a useful tool
for a large number of application contexts [2, 3, 4, 5, 6], but it calls attention to the
problem of how to effectively determine the stochastic parameters that character-
ize the workflow activity durations. One solution consists in characterizing them
so as to fit statistics provided by individuals who are experts in the field, or data
collected from software architecture logs in such a way to maximize the likelihood
of an exponomial [34, 35] distribution with respect to the data. In competitive en-
vironments, these values can vary considerably among different parties. In fact,
competitors can have different resource availability or different production capabil-
ities, and these factors can significantly change the completion time of the entire
workflow. However, this additional complexity factor enables a game-theoretical
mechanism through which to decide to whom to delegate the execution of a task,
and simultaneously determine what is the stochastic duration of the delegated task.

An example of the above comes from the area of Software as a Service (SaaS).
In the model of Software as a Service (SaaS), software is supplied over the Inter-
net, exploiting Service-Oriented Architecture (SOA) principles [36]. This enables
delivery of self-contained and well-defined modules implementing different func-

Introduction 6

tionalities, that are independent of the context or state of other services, and that
can be aggregated into composite services. In this scheme, services are granted in
conformity with Service Level Agreements (SLAs) established between customers
and providers [37, 38] so as to characterize required and actual Quality of Service
(QoS) through Service Level Objectives (SLOs) and Service Level Indicators (SLIs),
respectively. In turn, both SLOs and SLIs are then associated with specific thresh-
olds and metrics, such as hard or soft deadlines and service time. While the SLO
represents an individual promise made between provider and customer in the SLA,
the SLI is the actual measurement of the productive uptime, i.e., it measures the
compliance with the SLO.

Actual and effective deployment of the SaaS paradigm requires investigation of
various aspects [37, 38, 39, 40]. In particular, service selection plays a key role to
enable dynamic and flexible business models where different implementations of
the same service can attain different objectives of quality. In cloud market, the ser-
vice selection problem identifies the decision-making strategy through which cloud
services and providers are matched together. In fact, the service selection scheme
drastically impacts the customer experience and the provider revenue, aiming at
properly assigning cloud services to the providers, to fulfill service requests maxi-
mizing both customer satisfaction and provider utility [37, 38, 39, 40]. Whereas the
provider utility ismostly price driven, customer utilitymay involve other interesting
qualities such as reliability in supplied services, or end-to-end (e2e) time, defined
as the time elapsed between the buyer request submission and the workflow com-
pletion [41].

In this picture, service selection plays an important role in many contexts, since
it defines the decision-making strategy through which activities and providers are
matched together. In fact, the service selection scheme drastically impacts the cus-
tomer experience and the provider revenue, aiming at properly assigning activities
to the providers, to fulfill service requests maximizing both customer satisfaction
and provider utility [37, 38, 39, 40]. Whereas the provider utility is mostly price
driven, customer utilitymay involve other interesting quantities as reliability in sup-
plied services, or end-to-end (e2e) time, defined as the time elapsed between the
buyer request submission and the workflow completion [41]. Due to the hetero-
geneity of the quantities of interests involved in the provider-service assignment, in-
terchangeably referred as the service selection, the corresponding decision-making
process is conventionally identified by a bargaining procedure, where cloud ser-
vices are offered to a set of bidders, i.e., the providers, and then sold to the winner
[37, 38, 39, 40]. Mathematical tools of game theory permit modeling of complex in-
teractions among interdependent rational players and their behavior expressed as
choices over strategies [42, 43, 44]. In particular, auction theory focuses on game-
theoretic properties of auction markets, along with the behavior of agents involved.

7

Auction theory provides a market mechanism for selecting services, whose essence
is a game, where players are the bidders, strategies are the bids, and both allocations
and payments are functions of the bids [42, 43, 44].

In this thesis work, a case of a hierarchical infrastructure where the associa-
tion among customers and service providers is intermediated by aggregators is ad-
dressed. Customers demand to resource-constrained aggregators for workflow ex-
ecution, exhibiting soft deadline SLOs over the workflow e2e times, expressed in
terms of Cumulative Distribution Functions (CDFs). In turn, aggregators offer ser-
vice outsourcing to a set of antagonist providers competing for service delivery,
whose bids are represented by CDFs of service completion times. The designed
stochastic framework applies matching theory to associate customers and aggrega-
tors, and a nested Vickrey-Clarke-Groves (VCG) auction to perform service selec-
tion. Experimentation investigates on the maximization of the total welfare, repre-
sented by the optimization of utilities for all of the parties involved in the scheme, i.e.,
aggregators and providers. Results confirm the robustness of the proposed match-
ing approach in terms of the Price of Anarchy (PoA) [45, 46] paid to take decisions
that rely on partial information metrics. The impact of delays on service execution
has been analyzed, as well as the behaviour of both the aggregator and provider
utility, under different assumptions about the competitiveness among providers.

Finally, the described approaches are applied to a concrete application example
from the context of manufacturing districts, showing a Model-Driven Engineering
(MDE) approach. MDE considers models as primary artifacts during all software
development phases [47] and connects themwith the practice of software engineer-
ing, making them living components of the system rather than using them for doc-
umentation and study purposes only. Some of the main parts of MDE are Domain-
Specific Languages (DSLs) and Domain-Specific Modeling Languages (DSMLs),
specialized in formalizing the structure and behavior of applications, and described
using meta-models to map relationships, semantics, and constraints between con-
cepts expressed in a domain [48]. This practice is also common in industrial con-
texts, where smallDSLs are developed for narrowandwell-understooddomains [49].
Another important aspect that led to thewidespread use ofMDE andModel-Driven
Design (MDD) are automated transformations: Model-to-Text (M2T) transforma-
tions are more commonly used to transform a particular model instance into text-
based file formats or software artifacts available as source code (code generation),
while Model-to-Model (M2M) transformations are used to translate a model into
another model. Both techniques are referred to as “correct-by-construction” [48]
given that they do not require any subsequent modification and they avoid man-
ual, and thus error-prone, changes to the considered artifacts. In this thesis work,
a metamodel of a manufacturing district is presented, and some M2M transforma-
tions are designed to map manufacturing district domains to the scientific applica-

Introduction 8

tion domains related to the presented researched methods. The realized mapping
enables to perform compositional analysis and the proposed VCG auction-based
service provider selection method to a real application case, demonstrating how the
discussed topics have not only scientific relevance, but also impact in multiple ap-
plication areas.

The thesis is organized as follows: inChapter 2 a heuristics compositionalmethod
for the evaluation of complex workflows is presented, including a formalism for hi-
erarchical workflow representation; in Chapter 3 it is illustrated the Eulero library,
which is a Java library that implements themodeling capabilities and compositional
method described in Chapter 2, enabling a headless evaluation of complex work-
flows; in Chapter 4 a combined matching and auction theory approach for service
selection is presented; in Chapter 5 the described methods are applied on the spe-
cific case of a textile manufacturing district, following a MDE approach; finally, in
Chapter 6, conclusions are summarized and some directions for future works are
provided.

Chapter 2

A compositional approach for complex
workflow evaluation

In this chapter, a compositional technique for efficient and accurate evaluation of
the response time PDF of complex workflows is illustrated. Workflows are speci-
fied through a hierarchical structured formalism defined in terms of Stochastic Time
Petri Nets (STPNs), which combines activities with GEN duration and bounded
support through sequence, choice/merge, and split/join blocks, with unbalanced
split and join constructs that may break the structure of well-formed nesting. The struc-
tured specification of the workflow is exploited to decompose the model into a hi-
erarchy of subworkflows with positively correlated response times. Subworkflow
are efficiently analyzed in isolation, and results are recombined in order to provide
a stochastic upper bound of the CDF end-to-end response time of the workflow.
Experiments show that the approach is efficient and accurate, and scales on high-
complexity workflows workflows, significantly outperforming simulation with the
same computation time.

The chapter is organized as follows. Section 2.1 presents the structuredworkflow
model and recalls forward transient analysis and numerical analysis. Section 2.2 in-
troduces a method to estimate the complexity of forward transient analysis of an
STPN block based the results of nondeterministic analysis of the underlying TPN.
Section 2.3 illustrates the proposed approach to explore the structure tree and de-
compose the workflow into a hierarchy of analyzable subworkflows. Section 2.4
presents experimental results.

9

A compositional approach for complex workflow evaluation 10

2.1 Workflow modeling
In this section, stochastic workflows through a class of STPNs (Section 2.1.1) that
supports the derivation of a structured representation and guarantees positive cor-
relation among the response times of different subworkflows (Section 2.1.1) are
specified. Then, it is derived the response time PDF of a workflow either by bottom-
up fully numerical analysis, if the workflow consists of independent subworkflows
composed in well-nested structures, or by forward transient analysis, if the work-
flow includes dependencies among subworkflows composed in notwell-nested struc-
tures (Section 2.1.3).

2.1.1 Stochastic Time Petri Nets
In this subsection, syntax and semantics of Stochastic Time Petri Nets (STPNs) are
recalled (Section 2.1.1).

Syntax

An STPN is a tuple ⟨P, T, A−, A+, EFT, LFT, F, W, Z⟩ where: P and T are disjoint
sets of places and transitions, respectively; A− ⊆ P× T and A+ ⊆ T × P are pre-
condition and post-condition relations, respectively; EFT and LFT associate each
transition t ∈ T with an earliest firing time EFT(t) ∈ Q⩾0 and a latest firing time
LFT(t) ∈ Q⩾0 ∪ {∞} such that EFT(t) ⩽ LFT(t); F associates each transition
t ∈ T with a Cumulative Distribution Function (CDF) Ft for its duration τ(t) ∈
[EFT(t), LFT(t)], i.e., Ft(x) = P{τ(t) ⩽ x}, with Ft(x) = 0 for x < EFT(t) and
Ft(x) = 1 for x > LFT(t); W and Z associate each transition t ∈ T with a weight
W(t) ∈ R>0 and a priority Z(t) ∈N, respectively.

As in Petri nets, for a transition t ∈ T, a place p ∈ P is termed an input place
if (p, t) ∈ A− and is termed an output place if (t, p) ∈ A+. As in stochastic Petri
nets, a transition t is termed immediate (IMM) if EFT(t) = LFT(t) = 0 and timed
otherwise; a timed transition t is termed exponential (EXP) if Ft(x) = 1− exp(−λx)
for some rate λ ∈ R>0, and general (GEN) otherwise. For each GEN transition t, it
is assumed that Ft is the integral function of a Probability Density Function (PDF)
ft, i.e., Ft(x) =

∫ x
0 ft(y) dy. Similarly, an IMM transition t ∈ T is associated with the

Dirac impulse function ft(y) = δ(y − y) as generalized PDF, with y = EFT(t) =

LFT(t).

Semantics

The state of an STPN is a pair s = ⟨m, τ⟩, where m : P → N is a marking assigning
a number of tokens to each place and τ : T → R⩾0 associates each transition with
a time-to-fire. A transition is enabled by a marking if each of its input places contains

2.1 Workflow modeling 11

at least one token. A transition is firable in a state if its time-to-fire is equal to zero.
If multiple transitions are firable in a state s = ⟨m, τ⟩, the next transition t to fire
is selected with probability W(t)/ ∑ti∈E W(ti) from the set E of transitions that are
enabled by m and have time-to-fire equal to zero and maximum priority. When
transition t fires, state s is replaced by a new state s′ = ⟨m′, τ′⟩, where: m′ is derived
from m by removing a token from each input place of t, yielding an intermediate
marking mtmp, and adding a token to each output place of t; τ′ is derived from τ

by: i) reducing the time-to-fire of each persistent transition (i.e., enabled by m, mtmp

and m′) by the time elapsed in s; ii) sampling the time-to-fire of each newly-enabled
transition tn (i.e., enabled by m′ but not by mtmp) according to Ftn ; and, iii) removing
the time-to-fire of each disabled transition (i.e., enabled by m but not by m′).

P2A

p30

t2

t12

X2

t5

p13

p28

p24
t8

p2

p10

p3

p5
t7

T

p8

P2B

p26

p17

t13

p20

Y1
t10

p33

p14

p19

p11

p16

p21

p7

p12

P1

p0

p22

p18

p1

t9

t6

p9

Q

p15

p6

t3
p25

X1

p27

t0

t11

p31

t4

SP3

p23

p29

p4

Y2

R2B

t1

p32

R2A

P1
P2A

P2B
P3 S

P

RR2

R1

Y

X

P2

Q

T

R2B

R2A
Y2Y1

X2
X1

Figure 2.1: STPN model of a workflow: blocks are highlighted by boxes, blue for
composite blocks and red for activity blocks; all transitions have uniform PDF over
[0, 1] (firing intervals and PDF types are not shown to reduce the cluttering).

2.1.2 Workflow model
This subsection illustrates a hierarchical representation tomodelworkflows as struc-
ture trees, enabling efficient compositional analysis. An example of the structure
tree is provided in Fig. 2.2. Here, blocks are composed by recursion to provide a
different perspective of the workflow, enabling to catch insights about its complex-
ity, and to perform efficient analysis of its response time. For example, block TOP

contains 5 blocks P, Q, R, S, T. Each of them contains other blocks (e.g. P contains P1,

A compositional approach for complex workflow evaluation 12

TOP

act11

S
act12

T
AND

R

act5

Y
SEQ

act6
 act7
 act8

X1 X2
 Y1
 Y2

R2

X
AND

AND
R1

SEQ

SEQ

act1
 act2

P2A
 P2B

act0

P1

act3

P3

P

P2

act9
 act10

R2A
 R2B

act4

Q

TR

P S
Q

XOR

Figure 2.2: Structure tree of theworkflowof Fig. 2.1: composite blocks are filledwith
blue.

P2, P3), and the recursion is repeated until the leaves of the tree, which represent
the activities of the workflow. Then, each block can be mapped to a specific STPN,
whose form depends on the type of the considered block type (SEQ, AND, XOR,
DAG) and combines the STPN representations of the children of the block (e.g. the
STPN related to block P, consists in implementing an STPN sequence of the STPNs
related to blocks P1, P2 and P3). This formalism enables to hide the complexity of
a flat STPN (as the one of Fig. 2.1), by providing a hierarchical representation that
enables to catch more insights (Fig. 2.2).

STPN blocks

To support efficient analysis of stochastic workflows, a class of STPNs that is suffi-
cient to represent a variety of workflow control patterns [1, 50] is considered, mak-
ing explicit their structure of composition. Specifically, workflows are defined by
recursive composition of blocks, each specified by an STPN with a single initial place

2.1 Workflow modeling 13

and a single final place. The execution of a block starts when a token is added to
the initial place, and it eventually terminates, with probability 1 (w.p.1), when a to-
ken reaches the final place. Blocks compose STPN transitions through nested con-
structs modeling concurrent behaviour (split/join) and sequential behaviour (se-
quence, choice/merge), and through acyclic constructs breaking well-formed nest-
ing by means of unbalanced fork and join operations (simple split, simple join). In
particular, the following types of block are considered:

• An elementary activity is represented by an STPNwith a single transition with
GEN duration connecting the initial and final places (e.g., block S in Figs. 2.1
and 2.2). GEN transitions have exponomial [35] PDFs. An exponomial PDF
is defined as the sum of products of exponential and mononomial terms, i.e.
f (x) = ∑M

m=1 cm ∏Nm
n=0 xαmn

n e−λmnxn , with semi-symbolic representation over
the entire domain or piecewise-defined over multiple subdomains. Note that
exponomial PDFs enable for the representation of defective distributions [51],
which can be used to model failures in the activities of a workflow [52, 53].
In particular, the mass at infinity of the defective distribution determines the
probability of the occurrence of a failure. Moreover, defective distributions
could be exploited in conjunction with loop patterns to implement recovery
mechanisms, to circunvent the occurence of a failure.

• SEQ{Block1, . . . ,Blockn} is a sequence of n blocks Block1, . . ., Blockn (e.g.,
block Y in Figs. 2.1 and 2.2).

• XOR{Block1, . . . ,Blockn, p1, . . . , pn} is an immediate random exclusive choice
made of n initial immediate (IMM) transitions (i.e., with zero time-to-fire)
connected to n alternative blocks Block1,. . . ,Blockn having probabilities p1, . . .
, pn, respectively, which, in turn, are connected to the final join place of the
block (e.g., block R2 in Figs. 2.1 and 2.2; random switch of transitions R2A and
R2B is built by IMM transitions t5 and t6 which embeds the probability pR2A
and pR2B, respectively; then R2A and R2B are merged into the join place p23.).
An XOR block is balanced, i.e., all the alternative paths started at the initial split
are terminated at the final join place.

• AND{Block1, . . . ,Blockn} is a balanced split-join made of an initial IMM par-
allel split transition that forks execution along n concurrent blocks Block1, . . .,
Blockn and a final IMM synchronization transition that terminates the block
(e.g., X in Fig. 2.1; here, transition mathttt4 is the split, and transition mathttt8
is the synchronization). AnANDblock is balanced, i.e., all the concurrent paths
started at the initial split are terminated at the final synchronization.

• DAG{Block1, . . . ,Blockn} is the composition of n blocks Block1, . . . ,Blockn

in a Directed Acyclic Graph (DAG)with a single initial place and a single final

A compositional approach for complex workflow evaluation 14

place, by means of IMM simple split transitions (i.e., with a single input place
andmultiple output places) and IMM simple join transitions (i.e., withmultiple
input places and a single output place) [1]. Since simple split and simple join
operators are not necessarily balanced, a DAG block can break well-formed
nesting of concurrent blocks. A DAG is termedminimal if it cannot be reduced
by SEQ, XOR and AND (e.g., in Fig. 2.1, the top level is a minimal DAG with
initial place p0, final place p33, simple split transitions t0 and t12, and simple
join transitions t11 and t13).

Different priorities are assigned to the transitions of different blocks to exclude races
between IMM transitions; in addition to reducing the number of possible firing se-
quences, this approach avoids the interaction of transitionweightswhen XOR blocks
are concurrently enabled. Note that IMM transitions of different blocks may be en-
abled at the same time, requiring state space analysis to enumerate all the possible
firing sequences. Moreover, if the IMM transitions of an XOR block are concur-
rently enabled with the IMM transitions of other blocks, the probability to execute
each block Blocki becomes lower than pi. To overcome these issues, the IMM tran-
sitions of different blocks and the IMM transitions of each DAG block have different
priorities.

According to this definition, each workflow model specified as a composition of
STPN blocks can be translated into a unique STPN. For example, the model defined
specified as in Fig. 2.2 can be mapped to the STPN illustrated in Fig. 2.1. In particu-
lar, in the latter blue and red boxes respectively show the simple and the composite
activities that are specified in the workflow shown in the former. Conversely, the
composition of blocks does not cover all the expressivity of STPNs. In particular,
given that choices are expressed only by IMM transitions in balanced XOR blocks, a
workflow model cannot represent a race selection where a choice is determined by
the execution times of concurrent activities, e.g., early preemption of a timed activ-
ity by a timeout. As a positive consequence, this restriction also rules out anomalies
where the early completion of some intermediate step can result in a longer work-
flow duration, providing the basis to guarantee positive correlation among the com-
pletion times of different intermediate steps.

Note that due to the hierarchical representation, it would be possible to extend
the block types that can be represented. In fact, maintaining a mapping with an
STPN having single start and end places, which guarantee that the block execu-
tion ends w.p.1, the recursive composition of blocks would remain unaltered. This
would enables the inclusion of block types representing different stochastic behav-
iors such as, inclusive OR, the K-out-N pattern, or even loops and cycles. In particu-
lar, by removing the assumption that every activity ends w.p.1, i.e., by enabling fail-
ures on activities, loops could be used to represent a form of recovery to be launched
when failure occurs. Inclusion of loop patterns in the proposed formalism is pre-

2.1 Workflow modeling 15

liminarily discussed in [32].

Structure tree

Blocks combined as depicted in Section 2.1.2 enable the decomposition of a work-
flowmodel as a structure tree S = ⟨N, E, n0⟩, where N is the set of nodes (i.e., blocks),
E is the set of directed edges connecting each block with its component blocks, and
n0 is the root node (i.e., the overall workflow). Fig. 2.2 shows the structure tree of
the workflow STPN of Fig. 2.1. Specifically, a block is depicted as a box labeled with
the block name andwith either the activity name (for elementary activity blocks) or
the block type (for Seq, AND, XOR, and DAG blocks). Moreover, the box of a DAG
block also contains places and transitions connecting their component blocks.

The representation of workflows as hierarchical graphs with single-entry single-
exit blocks are inspired by program structure trees [54] and process structure trees [55].
Similarly to these works, it is ensured that the structure tree of a workflow is unique
and robust to local changes (i.e., modifying a subworkflow in the STPN affects only
the corresponding subtree in the structure tree) by using maximal blocks (e.g., SEQ
blocks with as many components as possible) and by matching DAG blocks with
lowest priority (i.e., if possible, Seq andANDblocks are used instead of DAGblock).

2.1.3 Stochastic analysis of a workflow block

This subsection describes how to perform the stochastic evaluation of the response
time of a block of a workflow. When a block is well-nested the evaluation can be
solved by performing a fully numerical bottom-up evaluation. For example, to eval-
uate response time of block P in Fig. 2.2, the analytic-numerical response time of P,
P and P (whose is in turn evaluated from the response time of P an P); then results
enables to evaluate the response time of P, exploiting a fully numerical formula. In
case, a block is not well-nested (e.g. block TOP), to cope with unbalanced dependen-
cies, the forward transient analysis is exploited.

Fully numerical analysis

Forworkflows consisting of SEQ,AND, andXOR blocks, the fully analytic-numerical
form of the response time PDF can be derived by bottom-up composition of the re-
sponse time Cumulative Distribution Functions (CDFs) of the blocks, due to the fact
that SEQ, AND, and XOR operators compose independent subworkflows in well-
nested structures. Specifically, given n blocks b1, . . . , bn with response time PDFs
ϕ1(t), . . . , ϕn(t) and response time CDFs Φ1(t), . . . , Φn(t), respectively:

A compositional approach for complex workflow evaluation 16

• the response time CDF Φseq(t) of a SEQ block made of b1, . . . , bn is derived by
performing subsequent convolutions of ϕ1(t), . . . , ϕn(t); ∀ t ∈ [0, tmax]:

Φseq(t) =
∫ t

0 ϕ1(t)⊛ ϕ2(t)⊛ ... ⊛ ϕn(t)dt

ϕi(t)⊛ ϕj(t) =
∫ t

0 ϕi(τ)ϕj(t− τ)dτ

(2.1)

• the response time CDF Φxor(t) of an XOR block made of b1, . . . , bn is derived
as the weighted sum of Φ1(t), . . . , Φn(t) according to p1, . . . , pn, respectively;
∀ t ∈ [0, tmax]:

Φxor(t) = p1 Φ1(t) + . . . + pn Φn(t) (2.2)

• the response time CDF Φand(t) of an AND block made of b1, . . . , bn is the CDF
of the maximum among the response times of b1, . . . , bn, which is derived as
the product of Φ1(t), . . . , Φn(t) ∀ t− ∈ [0, tmax] given that the response times
of b1, . . . , bn are independent random variables:

Φand(t) = Φ1(t) · . . . ·Φn(t) (2.3)

Then, the response time PDF ϕseq, ϕand, and ϕxor of a SEQ, an AND, and an XOR
block, respectively, can be obtained as the derivative of the response time CDF of
the block, e.g., ϕand(t) = d/dt Φand(t).

For instance, the response time PDF of block R in Fig. 2.2 is ϕR(t) = d/dt (ΦR1(t) ·
ΦR2(t)), where: ΦR1(t) = d/dt (ΦX(t) · ΦY(t)) is the response time CDF of AND
block R1; ΦR2(t) = pR2AΦR2A(t) + pR2BΦR2B(t) is the response time CDF of XOR block
R2; ΦX(t) = d/dt (ΦX1(t) ·ΦX2(t)) is the response timeCDFof ANDblock X; ΦY(t) =∫ t

0

∫ τ
0 ϕY1(x) ϕY2(τ−x) dx dτ is the response timeCDFof SEQblock Y; finally, ΦX1(t),

ΦX2(t), ΦY1(t), ΦY1(t), ΦR2A(t), and ΦR2B(t) are the response time CDFs of activity
blocks X1, X2, Y1, Y2, R2A, and R2B, respectively.

Forward transient analysis

Forworkflows includingDAGblocks, dependencies among subworkflows composed
in notwell-nested structures prevent derivation of the response timeCDFbybottom-
up fully numerical analysis, requiring evaluation of themarking process of thework-
flow STPN. Due to concurrent activities with GEN duration, the marking process
typically reaches a limited number of regeneration points, i.e., time instants at which
the Markov property is satisfied and future behaviour depends only on the current
marking. Therefore, evaluation can be efficiently performed by forward transient
analysis based on the method of stochastic state classes [25], which evaluates the
transient probability of each marking without restrictions on the presence of regen-
erations.

2.1 Workflow modeling 17

Specifically, a stochastic state class Σ = ⟨m, D, f ⟩ encodes a marking m, a Differ-
ence Bounds Matrix (DBM) zone D [56], i.e., a joint support for the times-to-fire of
the enabled transitions and for the elapsed time, and a joint PDF f for such val-
ues. For each transition t that can fire first with probability µ, a succession relation
(Σ, t, µ, Σ′) is enumerated from Σ to the stochastic state class Σ′ = ⟨m′, D′, f ′⟩ after
the firing, with new marking m′, joint domain D′ of the elapsed time and reachable
times-to-fire, and their joint PDF f ′. The analysis enumerates the tree of stochastic
state classes reached within a given time limit tmax, using the probability that each
class is the last node reached within time t ∈ [0, tmax] to derive the probabilities of
all markings at time t. Then, the workflow response time CDF can be derived as the
transient probability of the absorbingmarking assigning one token to the final place
of the STPN, and the PDF as the derivative of the CDF. The SIRIO library [57] of the
ORIS tool [58] provides a closed-form implementation of forward transient analysis
provided that each transition has an expolynomial PDF. Specifically, expolynomial
PDFs, also termed exponomials [35], are defined as the sum of products of expo-
nential and polynomial terms, i.e., f (x) = ∑M

m=1 cm ∏Nm
n=0 xαmn

n e−λmnxn , and they may
have a semi-symbolic representation over the entire domain or be piecewise-defined
over multiple sub-domains.

For instance, forward transient analysis of the STPN overall workflow of Fig. 2.1
is not affordable, due to the large number of concurrently enabled GEN transitions,
pointing out the need of a compositional solution for the evaluation of the workflow
response time.

The complexity of forward transient analysis of an STPN can be efficiently esti-
mated by nondeterministic analysis of the underlying TPN, which is sufficient to iden-
tify the set of feasible behaviors of the model while avoiding the complexity of eval-
uation of their measure of probability. Specifically, the continuous set of executions
of the STPN is encoded into a discrete representation termed state class graph [59, 60],
where each vertex is a state class S = ⟨m, D⟩made of amarking m and aDBM zone D
for the times-to-fire of the enabled transitions, and each directed edge (S, t, S′) is a
succession relation from S to the state class S′ = ⟨m′, D′⟩with marking m′ and zone
D′ after the firing of transition t. The state class graph is finite under fairly gen-
eral conditions requiring that the number of reachable markings be finite and the
earliest and latest firing times of transitions be rational values [60]. Notably, the
graph makes explicit the degree of concurrency among GEN timers (i.e., the num-
ber of GEN transitions enabled in each state class) and facilitates the derivation of
the length of specific behaviours (i.e., the number of firings between selected state
classes). Given that the STPN of a workflow has a final absorbing place pfin, all the
paths in the state class graph of the underlying TPN terminate in a state class with
marking pfin and no enabled transition.

For instance, nondeterministic analysis of the TPNunderlying theworkflowSTPN

A compositional approach for complex workflow evaluation 18

of Fig. 2.1 enumerates 19859 state classes in non-negligible time larger than 5s, show-
ing that an efficient compositional approach is needed also to estimate the complex-
ity of forward transient analysis.

2.2 Workflow complexity
In this section, it is characterized how concurrency and sequencing among activities
of a workflow affect the complexity of the forward transient analysis of its STPN
representation (Section 2.2.1); then, it is shown how these complexity measures can
be estimated on the state class graph of the underlying TPN (Section 2.2.2). The
considered measures can be use to determine the complexity of a workflow. In fact,
by defining some threshold values, it is possible to determine if a block is complex or
not, based on the fact that thresholds are exceeded or not, respectively, as illustrated
in Definition 4.

2.2.1 Complexity factors
Evaluation of DAG blocks can be performed by forward transient analysis based on
the method of stochastic state classes [25]. Specifically, after each firing, the anal-
ysis computes a stochastic state class Σ = ⟨m, D, f ⟩ encoding a marking m (i.e., an
assignment of tokens to places), a Difference Bounds Matrix (DBM) zone D [56] rep-
resenting the joint support of the times-to-fire of the enabled transitions and the
elapsed time, and a joint PDF f for such values. The analysis enumerates the tree
of stochastic state classes reached within a time limit tmax, and computes the block
response time PDF as the derivative of the first-passage probability of the marking
assigning one token to the final place of the STPN. The SIRIO library [57] of the
ORIS tool [58] provides a closed-form implementation of the analysis provided that
each transition has an exponomial PDF. Note that regenerative transient analysis [25]
based on the method of stochastic state classes, also available in the SIRIO library, is
not used due to the very limited number of regeneration points (i.e., time instants
at which the Markov condition is satisfied) reached by DAG blocks.

The complexity of forward transient analysis of an STPN can be estimated from
the maximum number of concurrently enabled GEN transitions and the maximum
number of firings of GEN transitions from the start to the end of the model execu-
tion, which can be efficiently derived by nondeterministic analysis of the underlying
TPN. Specifically, nondeterministic analysis is sufficient to identify the set of feasible
behaviors while avoiding the complexity of evaluation of their measure of probabil-
ity, encoding the continuous set of executions of the STPN into a discrete represen-
tation termed state class graph [59, 60], where each vertex is a state class S = ⟨m, D⟩
made of a marking m and a DBM zone D for the times-to-fire of the enabled tran-

2.2 Workflow complexity 19

sitions, and each directed edge (S, t, S′) is a succession relation from S to the state
class S′ = ⟨m′, D′⟩ with marking m′ and zone D′ after the firing of transition t. The
state class graph is finite under fairly general conditions requiring that the number
of reachable markings be finite and the earliest and latest firing times of transitions
be rational values [60]. Notably, the graphmakes explicit the degree of concurrency
among GEN timers (i.e., the number of GEN transitions enabled in each state class)
and facilitates the derivation of the length of specific behaviors (i.e., the number of
firings between selected state classes). Given that the STPN of a workflow has a fi-
nal absorbing place pfin, all the paths in the state class graph of the underlying TPN
terminate in a state class with marking pfin and no enabled transition.

For instance, forward transient analysis of the STPN of the workflow of Fig. 2.1
is not affordable, which can be inferred from the large number of concurrently en-
abled GEN timers in the state class graph and the large number of firings of GEN
transitions from the initial to the final state class. For more complex workflows, also
non-deterministic analysis of the underlying TPNmay become computationally de-
manding, pointing out the need of an efficient compositional solution not only to
evaluate the workflow response time PDF but also to estimate the complexity of its
analysis.

Note that the complexity of forward transient analysis of an STPN depends on
the number of concurrently enabled GEN transitions and the number of firings of
GEN transitions from the start to the end of themodel execution due to the following
reasons. First, complexity depends on the number and length of the firing sequences
before the time limit tmax, and thus on the number of stochastic state classes reached
by tmax, which, in turn, depends on the number of concurrently enabledGEN transi-
tions, the number of firings after which a GEN transition is persistent (i.e., continu-
ously enabled), and the number of exponomial terms of the (monovariate) PDFs of
the GEN transitions [61]. Our approach limits the number of stochastic state classes
by decomposing a workflow into subworkflows analyzed in isolation. Moreover,
the number of DBM zones and the number of exponomial terms of the (multivari-
ate) joint PDFs of stochastic state classes also affect complexity and depend on the
number of concurrently enabled GEN transitions and on the number of firings after
which a GEN transition is persistent [61]: in fact, at each firing, the number of zones
increases polynomially with the number of persistent transitions, and the number
of exponomial terms increases linearly with the polynomial degree of the joint PDF.
Moreover, if the analytical form of the joint PDF contains no EXP factor, the poly-
nomial degree increases linearly with the number of fired or disabled transitions.
Our approach limits these complexity factors by workflow decomposition and by
approximating the numerical form of the response time PDF of subworkflows an-
alyzed in isolation with a piecewise PDF made of EXP terms. The approximation
of the numerical form of the response time PDF of a subworkflow analyzed in iso-

A compositional approach for complex workflow evaluation 20

lation is needed to perform forward transient analysis of a higher-level workflow,
given that the analysis of the workflow STPN requires each transition to have an
exponomial PDF.

2.2.2 Complexity measures
According to the analysis of Section 2.2.1, the complexity of forward transient analy-
sis of the STPN of aworkflow is estimated through themaximumnumber of concur-
rently enabled GEN transitions and the maximum number of firings of GEN transi-
tions from the start to the end of the workflow.

Definition 1 (Concurrency degree of a TPN). The concurrency degree c of a TPN is
the maximum number of concurrent GEN transitions in the state class graph.

Definition 2 (Sequencing degree of a TPN). The sequencing degree q of a TPN is the
maximum number of firings of GEN transitions from the initial to the final state class.

For complex workflows, the number of state classes may be significant and thus
their enumeration may require a non-negligible amount of time. Due to the expo-
nential complexity in the number of state classes, evaluation of q through enumera-
tion of all paths from the initial to the final classwould thus become too expensive for
our aim to perform workflow decomposition and analysis in a very short time (i.e.,
a few tens of seconds for significantly complex models). Moreover, c and q would
not tell howmuch of the complexity depends on the structure and the timings of the
workflow itself rather than on the structure and timings of its subworkflows, which
instead becomes relevant to decide how to decompose the workflow. To cope with
both aspects, c and q are characterized both for the TPN of the workflow and for a
variant that hides the complexity of the subworkflows.

Definition 3 (Unexpanded TPN). The unexpanded TPN of a workflow is the TPN
obtained from the workflow TPN by replacing each composite block with an activity block
with the same duration.

A workflow with structure tree Ω with depth D is considered, i.e., a workflow
where the top-level has depth 1 and the bottom level has depth D. A bottom-up visit
of Ω is performed starting from the second-to-last level, i.e., the levelwith depth D−
1. At each level, for each composite block b, complexity tuple ⟨C, C̄, q, q̄⟩ is derived,
where C and C̄ are upper bounds on the concurrency degree of the TPN and the
unexpanded TPN of block b, respectively, and q and q̄ are the sequencing degree of
the TPN and of the unexpanded TPN of block b, respectively. For each level d ∈
{D− 1, . . . , 1} and each composite block b, the following operations are performed.

2.2 Workflow complexity 21

• A variant of the unexpanded TPN of b is derived by replacing each composite
block having duration [l, u] with an activity block having duration [L, U] ⊇
[l, u]. In particular, the interval [L, U] is computed by the previous iteration of
the procedure, at the next lower level (note that, at the first iteration, i.e., at
level D− 1, each block consists of only activity blocks). Then, a lower bound
L and an upper bound U on the duration of block b itself are derived and used
by the next iteration of the procedure in order to derive a variant of the unex-
panded TPNs of the composite blocks at the next higher level. Specifically:

L =


∑

z∈Kb

Lz if b is SEQ,DAG

max
z∈Kb
{Lz} if b is AND

min
z∈Kb
{Lz} if b is XOR

U =


∑

z∈Kb

Uz if b is SEQ,DAG

max
z∈Kb
{Uz} if b is AND,XOR

(2.4)
where Kb is the set of child blocks of b, and, if z ∈ Kb is a composite block,
then Lz and Uz are the lower and upper bound on the duration of z, respec-
tively, computed by the previous step of the procedure, otherwise (i.e., if z is
an activity block) Lz and Uz are the minimum and maximum duration of z,
respectively. Note that L and U are bounds due to the overapproximation of
duration intervals of the composite blocks of b, and also due to the fact that
dependencies among subworkflows of DAG blocks are not considered.

• Nondeterministic analysis of the considered variant of the unexpanded TPN
of block b is performed in order to compute C and C̄:

C = max
S∈Γ

{
∑

t∈ES

Ct

}
C̄ = max

S∈Γ

{
∑

t∈ES

1

}
(2.5)

where: Γ is the set of state classes enumerated for the simplifiedTPNof block b;
ES is the set of GEN transitions enabled in state class S; andCt is equal to 1 if the
block corresponding to transition t is an activity block, otherwise Ct is equal
to the upper bound on the concurrency degree of the composite block corre-
sponding to t, computed at the next lower level. Note that C and C̄ are upper
bounds due to the fact that behaviours of blocks are considered independently
of each other, e.g., it may be the case that two concurrent blocks cannot both
reach their maximum number of concurrent GEN timers at the same time.

• q and q̄ are efficiently derived as follows (avoiding enumeration of paths from
the initial to the final state class, which would have exponential complexity in

A compositional approach for complex workflow evaluation 22

the number of state classes):

q =


∑

z∈Kb

qz if b is SEQ,AND,DAG

max
z∈Kb
{qz} if b is XOR

q̄ =

 ∑
z∈Kb

1 if b is SEQ,AND,DAG

1 if b is XOR
(2.6)

where Kb is the set of child blocks of b, and, if z ∈ Kb is a composite block,
then qz is the sequencing degree of z computed by the previous step of the
procedure at the next lower level, otherwise (i.e., if z is an activity block) qz is
equal to 1.

The concurrency degree and the sequencing degree are exploited to define the
complexity heuristics based on thresholds Θc and Θq on the concurrency and sequenc-
ing degree, respectively.

Definition 4 (Complexity of a block). A block b with complexity tuple ⟨C, C̄, q, q̄⟩ is
termed easy to analyze if C ⩽ Θc and q ⩽ Θq, and complex to analyze otherwise. The
block is also termed internally easy to analyze if C̄ ⩽ Θc and q̄ ⩽ Θq, and internally
complex to analyze otherwise.

For instance, let assume to consider thresholds Θc = 4 and Θq = 10 for com-
plexity measures of concurrency and sequencing. For the workflow of Fig. 2.2, the
evaluation of complexity yields the tuple ⟨C, C̄, q, q̄⟩ = ⟨7, 3, 13, 5⟩, confirming that
forward transient analysis of the overall workflow is not affordable with respect to
the set thresholds due to the large concurrency degree (C = 7) and sequencing
degree (q = 13) among GEN transitions. On the contrary, since the unexpanded
concurrency and sequencing degrees (respectively, C̄ = 3 and q̄ = 5) do not exceed
the set thresholds, determining that the unexpanded TPN is not complex, then it
is suggested that the workflow complexity depends not on the structure of the top-
level DAG block, but rather on the complexity of block R that it contains, for which
⟨C, C̄, q, q̄⟩ = ⟨4, 2, 5, 2⟩.

2.3 Workflow evaluation
In this section, the compositional solution to evaluate the response time PDF of a
workflow is illustrated (Section 2.3.1). Given some thresholds of the complexity
measures, the method perform a top-down visit of the structure tree of the work-
flow, to estimate the complexity of each block in order to understand which blocks
need to be evaluated in isolation. After such analysis, a bottom-up visit is performed
to recombine the obtained results. In doing so, a stochastic upper bound for mono-
variate PDFs with bounded support is derived (Section 2.3.2), and a proof that the

2.3 Workflow evaluation 23

evaluated response time is a stochastic upper bound of the real response time is
provided (Section 2.3.3).

2.3.1 Evaluation heuristics
The end-to-end response time is evaluated by decomposing a workflow into a hi-
erarchy of subworkflows and by composing the results of their separate analyses,
repeatedly applying numerical analysis (Section 2.1.3) and forward transient analy-
sis (Section 2.1.3) to leverage their different strengths. On the one hand, numerical
analysis combining monovariate PDFs turns out to be efficient in the composition
of independent subworkflows through well-nested operators (i.e., SEQ, XOR, AND
blocks), but it is not feasible for subworkflowswith common dependencies encoded
by not well-nested structures (i.e., DAG blocks). On the other hand, forward tran-
sient analysis manipulating multivariate joint PDFs enables the evaluation of such
dependencies among subworkflows, but it suffers from the concurrency degree and
the sequencing degree among activities with GEN duration, and its efficient im-
plementation requires that subworkflow durations be represented in analytic form,
which may require approximated fitting of numerical results.

The structure tree is exploited to aggregate the subworkflows and to select the
solution techniques according to heuristics that trade approximation for complex-
ity reduction while ensuring that the final result is a stochastic upper bound of the
exact PDF of the workflow response time. As illustrated by Algorithm 1, first a
top-down visit of the structure tree is performed to decompose the workflow into
subworkflows, and a bottom-up visit is performed to compose the results of their
separate analyses. Specifically, at each step of the top-down visit, given the concur-
rency and sequencing thresholds Θc and Θq, respectively, the following operations
are performed to derive a stochastic upper bound ϕ(t) on the response time PDF of
the current block b:

• If b is an activity block, then its exact response time PDF is its duration PDF
(lines 1–2).

• If b is, or can be reduced to, a well-nested composition of independent sub-
workflows, then recursive numerical analysis efficiently evaluates the exact
response time PDF (lines 3–11).

• If b is a DAG block and its complexity measures exceed the thresolds Θc and
Θq, then one of two different heuristics can be recursively applied to reduce
the block complexity until its forward transient analysis becomes affordable
(lines 12–13).

– Algorithm 2 shows the Split Dependencies First (SDF) heuristics: if b is
internally complex to analyze, it is split into the AND of two decoupled

A compositional approach for complex workflow evaluation 24

subworkflows by replicating the common nodes of the two subworkflows
(inner block replication, lines 1–2); if b is complex to analyze, some block is
analyzed in isolation (inner block analysis, lines 3–4); otherwise (i.e., if b is
easy to analyze) forward transient analysis is affordable (line 5).

– Algorithm 3 shows the Replace Block First (RBF) heuristics, a variant of
the SDF heuristics where inner block analysis (lines 1–2) is applied before
inner block replication (lines 3–4).

Algorithm 1: Evaluation of the response time PDF of a block
CompositionalAnalysis(b, Θc, Θq, h)

input : block b, concurrency degree threshold Θc, sequencing degree
threshold Θq, heuristics h

output: response time PDF ϕ(t) of b
1 if b is an activity block then
2 return the duration PDF of b
3 if b is a SEQ block or an XOR block or an AND block then
4 foreach block bi of b do
5 ϕi(t)← CompositionalAnalysis(bi, Θc, Θq, h)
6 if b is a SEQ block then
7 return ϕ(t) = d

dt

∫ t
0 ϕ1(t)⊛ ϕ2(t)⊛ ... ⊛ ϕn(t)dt

8 if b is an XOR block then
9 return ϕ(t) = p1 ϕ1(t) + . . . + pn ϕn(t)

10 if b is an AND block then

11 return ϕ(t) =
d
dt

[∫ t

0
ϕ1(t)dt · . . . ·

∫ t

0
ϕn(t)dt

]
12 if b is a DAG block then
13 return h(b , Θc, Θq)

Algorithm 2: Evaluation of the response time PDF of a DAG block by the
SDF heuristics

SplitDependenciesFirst(b, Θc, Θq)
input :workflow block b
output: response time PDF ϕ(t) of b, concurrency degree threshold Θc,

sequencing degree threshold Θq
1 if b is internally complex to analyze then
2 return InnerBlockReplication(b , Θc, Θq
3)
4 if b is complex to analyze then
5 return InnerBlockAnalysis(b , Θc, Θq)
6 return the PDF of b computed through forward transient analysis

2.3 Workflow evaluation 25

In turn, inner block replication and inner block analysis introduce different ap-
proximations.

• As illustrated by Algorithm 4, performing inner block replication on a DAG
block b consists in replicating somepredecessors of a block v containedwithin b
(line 3) in order to evaluate the response time of v independently of the rest of
the DAG (replicated blocks are identical) by recursively invoking the compo-
sitional analysis algorithm (line 4). The selected block v is the predecessor of
the final block of b that hasmaximumupper bound on the concurrency degree
and, in case of tie, maximum sequencing degree (lines 1–2).

Specifically, let G = (V, E, vI , vF) be theDAG(e.g., the top-levelDAGof Fig. 2.2)
where V is the set of vertices (i.e., the blocks of b) plus a fictitious initial
vertex vI and a fictitious final vertex vF (not shown in Fig. 2.2), both with
zero-duration, and E is the set of edges (i.e., the precedence relations between
blocks). First, themost complex vertex v ∈ V \ {vI , vF} is identified (i.e., block
T in Fig. 2.2). Let K be the set of vertices in V \ {vI , vF} that are predecessors
both of v and of some node u ∈ V not predecessor of v (i.e., K = {R}). The
vertices in K and the edges to/fromvertices in K are replicated (i.e., R′ is added

Algorithm 3: Evaluation of the response time PDF of a DAG block by the
RBF heuristics

ReplaceBlockFirst(b, Θc, Θq)
input :workflow block b, concurrency degree threshold Θc, sequencing

degree threshold Θq
output: response time PDF ϕ(t) of b

1 if b contains at least one composite block and is complex to analyze then
2 return InnerBlockAnalysis(b , Θc, Θq)
3 if b is internally complex to analyze then
4 return InnerBlockReplication(b , Θc, Θq)
5 return the PDF of b computed through forward transient analysis

Algorithm4:Evaluation of the response timePDFof aDAGblock by repli-
cating some of its blocks

InnerBlockReplication(b, Θc, Θq)
input :workflow block b
output: response time PDF ϕ(t) of b

1 order the predecessors of the final block of b by the values of C and q
2 v← predecessor of the final block of b with max value of C (and, in case

of tie, with max value of q)
3 b′ ← b after replicating the predecessors of block v
4 return CompositionalAnalysis(b′, Θc, Θq)

A compositional approach for complex workflow evaluation 26

to V; vI → R′ and R′ → T are added to E; R → T is removed from E). The
DAG is then transformed into an AND of two blocks, one consisting of node v
and its predecessors, and the other one consisting of the remaining nodes. For
instance, as shown in Fig. 2.3a, after replication of the predecessor R of blocks
S and T, the DAG of Fig. 2.2 becomes an AND of two blocks, one made of S
and its predecessors P, Q and R, and the other one made of T and the replicated
block R′. Then, the model becomes well-nested and thus it can be solved by
numerical analysis.

• As illustrated byAlgorithm 5, performing inner block analysis on a DAG block
b consists in: performing compositional analysis of a composite block v con-
tainedwithin b (line 3), which yields a stochastic upper bound PDF ϕ(t) on the
response time PDF of v; deriving a stochastic upper bound PDF ϕ̂(t) on ϕ(t)
by Lemma 1 (line 4); replacing block v with an activity block with duration
ϕ̂(t) (line 5); and, performing compositional analysis of block b (line 6). The
selected block v is the composite block of b that has maximum upper bound
on the concurrency degree and, in case of tie, maximum sequencing degree
(lines 1–2).

For instance, as shown in Fig. 2.3b, compositional evaluation of the example
of Fig. 2.2 through the RBF heuristics consists in analyzing blocks P and R in
isolation and then approximating their response time PDF. Then, the model
can be solved by forward transient analysis.

The SDF heuristics is more accurate than the RBF heuristics if the correlation
between the response times of the replicated nodes and the response time of the
overall workflow is low. Conversely, the RBF heuristics is more accurate than the
SDF heuristics if the correlation between the response times of the nodes replicated

Algorithm 5: Evaluation of the response time PDF of a DAG block by an-
alyzing one of its blocks

InnerBlockAnalysis(b, Θc, Θq)
input :workflow block b
output: response time PDF ϕ(t) of b

1 order the blocks of b by the values of C and q
2 v← block of b with max value of C (and, in case of tie, with max value

of q)
3 ϕ′(t)← CompositionalAnalysis(v, Θc, Θq)
4 ϕ̂(t)← safe upper bound PDF of ϕ′(t)
5 b′ ← b after replacing v with an activity block with PDF ϕ̂(t)
6 return CompositionalAnalysis(b′, Θc, Θq)

2.3 Workflow evaluation 27

act11

S

LEFT

SEQ
RIGHT

SEQ

PR
AND

SEQ

AND

act1
 act2

P2A
 P2B

act0

P1

act3

P3

P

P2

act12

TR'

AND

act5

R'
1

AND

AND
X'

SEQ

act6 act7
 act8

X1' X2'
 Y1'
 Y2'

Y'

R'
2

XOR

act9
 act10

R2A'
 R2B'

R
AND

R2
XOR

act9
 act10

R2A
 R2B

act4

Q

TOP
AND

R1
AND

X Y
AND SEQ

act5
 act6
 act7
 act8

X1 X2
 Y1
 Y2

(a)

act11

S
act12

T
Approximation of P

numerical pdf

P
Approximation of
R numerical pdf

R

TOP

TR

P S
Q

act4

Q

(b)
SDF RBFGT

(c)

Figure 2.3: The workflow of Fig. 2.2 after executing (a) the SDF heuristics or (b)
the RBF heuristics. (c) Stochastic upper bound on the workflow response time PDF
assuming that the response time of each block has uniform PDF over [0, 1] (left) or
that the response times of all the activities of block R only have uniform PDF over
[4, 8] (right). In both cases, the ground truth (GT) curve is obtained by a 5-million-
run simulation.

by the SDF heuristics and the response time of the overall workflow is high. For
instance, if all activity blocks of the model of Fig. 2.2 had uniform response time
PDF over [0, 1], then the correlation between the response times of block R and of
the overall workflow would be low, and thus thus replicating block R (as done by
the SDF heuristics) would yield a more accurate result than analyzing in isolation
blocks Q and R (as done by the RBF heuristics), as shown in Fig. 2.3c. Conversely,
if the response times of all the activities of the subworkflow R were uniformly dis-
tributed over [4, 8], then the correlation between the response times of R and of the
overall workflow would be very high, and thus replicating block R would yield a
less accurate result than analyzing in isolation blocks Q and R, as shown in Fig. 2.3c.

A compositional approach for complex workflow evaluation 28

Note that replicating the shared dependencies of a block of a DAG typically re-
duces the DAG complexity more than analyzing in isolation a block of the DAG.
Therefore, if a DAGwere internally complex, then, after analyzing in isolation all the
non-elementary blocks of the DAG, the RBF heuristics would be forced to replicate
the shared dependencies of a node, thus yielding less accurate results than the SDF
heuristics if replication alone were sufficient to make the DAG analysis affordable.
According to this, the RBF heuristics is expected to outperform the SDF heuristics
only in the specific case that: DAGs are not internally complex; DAGs are in top of the
structure tree (otherwise they would consist of activity blocks only and inner block
analysis could not be applied at all); and, the correlation between the response time
of the overall workflow and the response times of the blocks of a DAG that would
be replicated by the SDF heuristics is very high.

As mentioned in Section 2.1.2, the hierarchical nature of the structure tree en-
ables for the extension of the considered workflow patterns. Adding new types of
blocks to the formalism would reflect on the analysis technique. However, due to
the compositional nature of the technique, in case a block type is added, it is suf-
ficient to include operations that are tailored for that type of block. An example is
provided in [32] to deal with loops. By introducing loops in a workflow, the state
class graphs of the model will present an infinite number of classes, making the for-
ward transient analysis unfeasible. To overcome this problem, loop block analysis
can be performed by exploiting renewal theory, and in particular regenerative tran-
sient analysis, which makes the evaluation feasible by limiting the enumeration of
state classes between of successive regeneration points [25].

2.3.2 Safe approximation of duration distributions
In this subsection, it is provided a definition of stochastic ordering among probability
distributions, which is then demonstrated for the class of approximation provided
in the compositional method to approximate PDFs.

Definition 5 (Stochastic order). Given two random vectors X1 and X2, “X1 is smaller
than X2” (X1 ⩽st X2) if E[f (X1)] ⩽ E[f (X2)] for all monotone nondecreasing functions
f . For scalar X1 and X2 with CDFs F1(x) and F2(x), respectively, this is equivalent to
F1(x) ⩾ F2(x) for all x.

In our compositional analysis, a block may be analyzed in isolation in order to
reduce the complexity of the overall workflow and to make its stochastic analysis af-
fordable. In this case, forward transient analysis of the workflow can be performed
provided that the numerical PDF of the block duration be approximated with an
analytical PDF (required to be exponomial for the analysis in ORIS). To obtain safe
and accurate analytical approximations of the block PDF f (x), the concavity of the

2.3 Workflow evaluation 29

CDF F(x) is analyzed: for each “concave down” or “concave up” piece, our ap-
proximation F̂(x) uses the CDF of a shifted and truncated EXP of the form λ e−λx

with positive or negative rate λ, respectively. In particular, for each “concave down”
(“concave up”) piece, the positive (negative) rate is small (large) enough to guaran-
tee stochastic order (i.e., F̂(x) ⩽ F(x) ∀x) but as small (large) as possible to provide
a close approximation. Figure 2.4 illustrates four cases for the concavity of F(x): con-
cave up, then concave down (Fig. 2.4a); concave down, then concave up (Fig. 2.4b);
concave down (Fig. 2.4c); concave up (Fig. 2.4d). In the majority of cases in our
experiments (Section 2.3), CDFs change concavity at most once, from upward to
downward. The following lemma guarantees stochastic order of F̂(x).

Lemma 1 (Stochastic upper bound PDF). Let X be a random variable with numerical
PDF f (xi) and CDF F(xi) with xi = x0 + δi for i = 1, . . . , N, x0 ∈ R⩾0, δ ∈ R>0. Let
xi1 < xi2 < · · · < xiM denote the inflection points of F, i.e. points where d2F(t)

dt2 = 0; then,
the random variable X̂ with CDF F̂(x) such that

F̂(x) = F(xij−1) + [F(xij)− F(xij−1)]
1− e

−λj(x−xij−1
)

1− e
−λj(xij

−xij−1
)

if x ∈ [xij−1 , xij]
M
j=1 (2.7)

where, for a downward (upward) concavity over [xij−1 , xij], λj ∈ R is the largest positive
(smallest negative) value such that F̂(x) ⩽ F(x) ∀ x ∈ [xij−1 , xij], is stochastically larger
than X, i.e., X̂ ⩾st X.

Proof of Lemma 1. By construction, F̂(x) ⩽ F(x) ∀ x ∈ D ∩ [a, b]. Indeed, for
every sub-support [xij−1 , xij] between two successive inflection points xij−1 and xij ,
F(x) has downward or upward concavity. In the first case, the rate of the trun-
cated exponential of Eq. (2.7) is taken as a positive value resulting in a negative
rate. Hence, approximation F̂(x) has downward concavity too. Moreover, the rate
is chosen as the smallest value for which stochastic ordering with respect to F(x)
is guaranteed ∀ x ∈ D ∩ [xij−1 , xij]. Then, stochastic ordering is guaranteed for all
supports [xij−1 , xij] where F(x) has downward concavity. When F(x) has upward
concavity, the rate of the truncated exponential of Eq. (2.7) is taken as a negative
value resulting in a positive rate. Approximation F̂(x) has upward concavity too
and a rate chosen as the largest value for which stochastic ordering with respect to
F(x) is guaranteed ∀ x ∈ D ∩ [xij−1 , xij]. Then, stochastic ordering is guaranteed for
all supports [xij−1 , xij] where F(x) has upward concavity. Therefore, X̂ ⩾st X.

As depicted in other works [19, 20, 21, 22, 23], the approximation of PDFs could
be performed exploiting CPH distributions, which enables to fit data or analytic-
numerical distributions through a semi-symbolical evaluation of parameters. De-
spite that, CPH distributions are not taken into account for this work. Firstly, to get
an accurate approximation through CPH distributions, a large number of parame-

A compositional approach for complex workflow evaluation 30

ters should be exploited, making complex the process of parameter estimation. Es-
timation should then be ulteriorly complicated to guarantee stochastic ordering of
the approximation with respect to the approximated numerical CDF. In any case,
CPH distributions also present a very complex analytical form of the approxima-
tion, which leads to an explosion of additional complexity when analysis techniques
such as forward transient analysis are performed [27]. For these reasons, despite
CPHdistributions are a common approach for the approximation of data or analytic-
numerical distributions, we opted for the proposed approximant. Finally, note that
the piecewise representation of the approximant combined with the truncated ex-
ponential form of each piece enables to be robust with respect to the form of the
approximated function. In fact, the approximant segments the approximated func-
tion according to its inflection points, among which it is always monotone. Thus,
by choosing to use a positive or negative rates exponential depending on the con-
cavity of the function in a specific piece, it is easy to tight to the curve, ensuring a
good level of accuracy. In addition, the accuracy of the approximant does not de-
pend on the distributions associated with the elementary activities of the workflow.
In fact, since the approximant is exploited to approximate the response time PDF
of a block, which is obtained combining different workflow patterns, its analytic-
numerical form does not belong to the same class of distributions chosen for the
elementary activities.

2.3.3 Approximation safety
Our compositional analysis method is guaranteed to be safe when workflows are
used to guarantee soft deadlines of SLAs. Specifically, our proofs hinge on the idea
of stochastic order (recalled in Section 2.3.2) and on the following lemma on the order
of independent replication of positively correlated random variables [62].

Lemma 2 (Order of independent replicas under positive correlation). LetX = (X1, . . .
, Xn) be a vector of positively correlated random variables, i.e., Cov[f (X), g(X)] ⩾ 0
holds for all monotone nondecreasing functions f , g : Rn → R. Then, X is larger than
X (X ⩾st X), where X is a vector of independent random variables with Xi ∼ Xi for all i.

In our inner block analysis, a node n in the structure tree is replacedwith an activ-
ity block having duration stochastically larger than the response time of node n. The
next lemma proves that, after this approximation, the response time of the obtained
workflow is stochastically larger than the actual response time of the workflow.

Lemma 3 (Stochastic order of inner block analysis). Let S = (N, E, n0) be the structure
tree of a workflow with root node n0 ∈ N, and let T(n) be the response time of the subtree
rooted in n ∈ N. If n is replaced with n′ s.t. T(n) is lower than T(n′) (T(n) ⩽st T(n′)),
yielding the new structure tree S′ = (N′, E′, n′0), then T(n0) ⩽st T(n′0).

2.3 Workflow evaluation 31

(a) (b)

(c) (d)

Figure 2.4: Stochastic upper bound CDF: (a) changing concavity upward to down-
ward, (b) changing concavity downward to upward (c) fixed downward concavity
and (d) fixed upward concavity of the approximated CDF.

Proof of Lemma 3. The duration of the subworkflow associated with any node m
(SEQ, AND, XOR, REPEAT, DAG) is a monotone nondecreasing function of the
durations of the subworkflows associated with its children; respectively, the sum
(SEQ), max (AND), random mixture (XOR), series (REPEAT), max over all paths
from the initial to the final node (DAG). By definition of stochastic order, if a child n
is replaced with n′ s.t. T(n) ⩽st T(n′), then T(m) ⩽st T(m′) for the new node m′.
By recursion, T(n0) ⩽st T(n′0) for the new root n′0.

In our inner block replication, ancestors of a node v are replicated in a DAG block
in order to evaluate the response time of v independently of the rest of the DAG.
The next lemma proves that, also after this approximation, the response time of
the obtained workflow is stochastically larger than the actual response time of the
workflow.

A compositional approach for complex workflow evaluation 32

Lemma 4 (Stochastic order of inner block replication). Given a DAG block G = (V, E,
vI , vF) and a node v ∈ V, let T(v) be the response time of v, let K be the set of vertices in
V \ {vI , vF} that are predecessors both of v and of some node u ∈ V not predecessor of v, let
F be the set of edges in E to/from a node in K, and let G′ = (V′, E′, v′I , v′F) be the DAG s.t.
V′ includes all vertices in V plus a new node k′ with T(k′) ∼ T(k) ∀ k ∈ K, and E′ includes
all edges in E plus an edge to/from each new node k′ for each edge to/from the corresponding
node k ∈ K. Then, T(v′F) ⩾st T(vF).

Proof of Lemma 4. Since DAG edges denote AND-join dependencies, the response
time of a vertex v is T(v) = D(v) + max(T(k1), . . . , T(kn)) where D(v) is the dura-
tion of the block associated with v and T(k1), . . . , T(kn) are the response times of its
predecessors. By visiting the vertices of G in topological order, the response time
T(vF) of the DAG can be evaluated as an expression combining nonnegative block
durations D(v) ∀v ∈ V through monotone nondecreasing operators (i.e., summa-
tion and maximum). The intermediate values of this expression obtained during
the visit are the response times T(·) of the nodes of G, which, by construction, are
positively correlated. In the evaluation of T(v′F) in G′, the random variable T(k) of
each node k ∈ K is replaced with the independent replica T(k′) ∼ T(k). Then, by
Lemma 2, T(v′F) ⩾st T(vF).

2.4 Experimentation
In this section, a quantitative measure to evaluate the analysis accuracy with respect
to a ground truth obtained by simulation is illustrated (Section 2.4.1); accuracy and
complexity of the heuristics are comparedusing sets of artificially andmanually gen-
erated models (Section 2.4.2); the approach scalability is assessed by significantly
increasing the workflow complexity (Section 2.4.3); and, the variation of accuracy
of the heuristics with respect to the stochastic upper bound PDF used in [32] to ap-
proximate the response time PDF of subworkflows is evaluated (Section 2.4.4). The
approach is implemented in the Eulero Java library [63] which supports definition
of stochastic workflows, derivation of their response time PDFs, and random gener-
ation of workflows, exploiting the SIRIO library [57] of the ORIS tool [58] to build
STPN blocks and evaluate accuracy. Experiments are performed on a single core of
an Intel Xeon Gold 5120 CPU (2.20 GHz) with 32 GB of RAM.

2.4.1 Ground truth and accuracy measure
The accuracy of the workflow response time PDF is evaluated with respect to a
ground truth (GT) obtained by a 5-million-run simulation of the workflow STPN
using the Jensen-Shannon (JS) Divergence [64, 65], which quantifies the distance
between two PDFs fa and fb as:

2.4 Experimentation 33

DJS (fa || fb) =
1
2

DKL (fa || Z) +
1
2

DKL (fb || Z) , (2.8)

where Z(t) = 1
2 (fa(t) + fb(t)) ∀ t ∈ Ω is the random variable that averages the

input variables, Ω is a set of equidistant time points covering the support of fa and
fb, and DKL (· || ·) is the Kullback-Leibler divergence (KL) defined as:

DKL (fa || fb) = ∑
t∈Ω

fa (t) · log
(

fb (t)
fa (t)

)
. (2.9)

To select the number of simulation runs needed to evaluate the ground truth,
for each model randomly generated in Section 2.4.2, 1-million-run, 2-million-run,
. . . , 5-million-run simulations are performed, using a time tick nearly three orders
of magnitude lower than the width of the support of the workflow response time.
Then, the JS divergence of theworkflow response time PDFprovided by each experi-
mentwith respect to the one computed by the 5-million-run simulation is evaluated.
Experimental results show that, for each model where both heuristics performmul-
tiple approximations, the JS divergence of the 4-million-run simulation with respect
to the 5-million-run simulation converges to a value that is at least one or two orders
of magnitude lower than the JS divergence of the heuristics from the 5-million-run
simulation, which is sufficient for the context of use and indicates that a 5-million-
run simulation can be considered as the ground truth.

2.4.2 Comparing the SDF and the RBF heuristics
Models analyzed more accurately by the SDF heuristics

A set of models is randomly generated by controlling the following parameters that
characterize the structure tree: the depth D of the structure tree, the number B of
concurrent and alternative blocks in AND and XOR blocks, respectively, and the
number T of sequential blocks in SEQ blocks. Each model is generated by keep-
ing the value of two parameters at 2, and varying the remaining parameters within
{2, 4, 6}, leading to 7 differentmodels. SinceDAGs blocks are the only cases inwhich
approximation of the e2e response time is introduced, to evaluate the impact of ap-
proximation at different depth of the structure tree, each model is implemented in
two variants, one allocatingDAGblocks on the bottom level of the structure tree, and
the other one allocating them on the top level, for a total amount of 14 models. The
type of the remaining blocks was randomly drawn, giving AND and SEQ blocks
higher probability than XOR blocks. DAG blocks were randomly generated too,
assuming that they consisted of a maximum of 7 blocks connected through paths
having maximum length equal to 3. Simple activities have uniform duration PDF
over [0, 1].

A compositional approach for complex workflow evaluation 34

Models were evaluated using the following threshold values Θc and Θq on the
concurrency and the sequencing degree, respectively, of the workflow TPN: for the
SDF heuristics, Θc = 3 for models with DAGs at the bottom level and Θc = 2 oth-
erwise, and Θq = 7; for the RBF heuristics, Θc = 3 and Θq = 7. Models were also
evaluated by simulations (S) of the workflow STPN lasting as long as the analysis
with the SDF heuristics. The workflow response time PDF computed by S is also
averaged using a sliding window of width 3, which is found to be the value that
produces the most accurate results, yielding a PDF referred to as the result of Aver-
aged Simulation (AS).

Table 2.1 reports the values of the JS divergence and computation times obtained
by evaluating models having the DAG blocks at the bottom level (BOTTOM) and at
the top level (TOP) of the structure tree for the mentioned techniques, and Figs. 2.5
and 2.6 plot the workflow response time PDFs. For the BOTTOM set of models, the
heuristics prove to be extremely efficient in terms of computation time as they are
able to evaluate models of increasing complexity in minimal times, never exceeding
3 s. As evident both from the JS values and the PDFs of Figs. 2.5 and 2.6, the two
heuristics produce the same very accurate results, which is due to the model topol-
ogy: given that themodels are well-nested in all the levels except for the bottom one,
and that the bottom-level DAGs do not have composite internal blocks and are not
complex to analyze, both heuristics solve the DAGs by forward transient analysis
and then the rest of the model by numerical analysis, without introducing approxi-
mation. Note that the heuristics achieve better JS values than those obtained by the
simulation, which are three orders of magnitude larger in the majority of the cases.
The averaged simulation, obtained from the simulation using the optimal width of
the sliding window according to the ground truth, improves the accuracy of the
simulation, though remaining in the same order of magnitude. Also note that the JS
divergence tends to smooth out the fluctuations of both types of simulation, which
are instead clearly visible in the response time PDFs of Figs. 2.5 and 2.6, where the
heuristics are significantly better at approximating the ground truth.

In the TOP set of models, the computation times are again lower than 3 s, except
for the D2B2T2 model for the RBF heuristics and the D2B2T4 model for the SDF
heuristics, for which they are is in the order of 5 min and 10 s, respectively, due to
complex DAGs (in terms of concurrency and sequencing degrees) that challenge
forward transient analysis. Nevertheless, the computation times remain at least one
order of magnitude lower than the time needed to achieve the same accuracy by
simulation. The heuristics in fact prove to be very accurate, with JS values lower
than those of simulation by at least one order of magnitude and up to four orders
of magnitude. For the D2B6T2 model, the RBF heuristics achieves a JS value in the
order of 10−1, comparable to that of simulation and averaged simulation, due to the
fact that the workflow decomposition requires to execute inner block analysis three

2.4 Experimentation 35

BOTTOM

D, B, T JS
SDF RBF S AS

2 2 2 0.00001 0.00001 0.02915 0.01800
4 2 2 0.00001 0.00001 0.07012 0.04065
6 2 2 0.00005 0.00005 0.10118 0.04272
2 4 2 0.00001 0.00001 0.05532 0.03476
2 6 2 0.00001 0.00001 0.06945 0.04075
2 2 4 0.00001 0.00001 0.04672 0.02770
2 2 6 0.00000 0.00000 0.07568 0.05331

TOP

D, B, T JS
SDF RBF S AS

2 2 2 0.00188 0.00151 0.17183 0.09817
4 2 2 0.01411 0.01411 0.08571 0.05109
6 2 2 0.00004 0.01365 0.36369 0.24701
2 4 2 0.00008 0.00103 0.22228 0.13425
2 6 2 0.00240 0.19732 0.23625 0.13771
2 2 4 0.00091 0.00091 0.00223 0.00593
2 2 6 0.00054 0.01023 0.09563 0.05805

Table 2.1: Jensen-Shannon divergence (JS) of Split Dependencies First heuris-
tic (SDF), Replace Block First heuristic (RBF), simulation (S), and averaged sim-
ulation (AS) for the BOTTOM and the TOP configuration models of Section 2.4.2,
randomly generated using different values of the depth D of the structure tree, the
number B of concurrent and alternative blocks in AND and XOR blocks, respec-
tively, and the number T of sequential blocks in SEQ blocks. For each model (i.e.,
for each row), the best (i.e., lowest) JS value is highlighted in bold. The last column
shows the computation time of the ground truth (GT).

times, approximating PDFs that exhibit cusp points. The averaged simulation im-
proves the simulation, but the JS values remain in the same order of magnitude.
Finally, the SDF heuristics achieves lower JS values than the RBF heuristics in the
majority of the cases, which is due to the fact that, in these cases, the DAGs are
internally complex and thus the analysis of individual blocks in isolation is not suf-
ficient to reduce complexity andmake forward transient analysis affordable, forcing
the RBF heuristic to perform both separate analysis of individual blocks and repli-
cation of shared dependencies of selected blocks. Overall, the proposed approach
significantly outperforms both simulation and averaged simulation in accuracy and
complexity, notably computing a duration PDF that is a stochastic upper bound on
the actual workflow response time PDF,which instead cannot be guaranteed by sim-
ulation.

A compositional approach for complex workflow evaluation 36

BOTTOM

D, B, T Times
SDF RBF S AS GT

2 2 2 0.69s 0.39s 0.69s 0.69s 5518.22s
4 2 2 1.82s 1.70s 1.83s 1.83s 23268.95s
6 2 2 2.47s 2.26s 2.50s 2.50s 190396.48s
2 4 2 0.36s 0.33s 0.37s 0.37s 3167.33s
2 6 2 0.32s 0.28s 0.32s 0.32s 4573.85s
2 2 4 0.63s 0.43s 0.64s 0.64s 4526.35s
2 2 6 0.21s 0.12s 0.26s 0.26s 2344.53s

TOP

D, B, T Times
SDF RBF S AS GT

2 2 2 0.08s 277.53s 0.09s 0.09s 3618.21s
4 2 2 2.65s 1.59s 2.71s 2.71s 20660.48s
6 2 2 0.32s 1.01s 0.36s 0.36s 195106.73s
2 4 2 0.13s 6.89s 0.13s 0.13s 6513.53s
2 6 2 0.08s 10.44s 0.10s 0.10s 3347.82s
2 2 4 12.44s 8.95s 12.48s 12.48s 3238.71s
2 2 6 0.09s 0.30s 0.09s 0.09s 6040.17s

Table 2.2: Computation times of Split Dependencies First heuristic (SDF), Replace
Block First heuristic (RBF), simulation (S), and averaged simulation (AS) for the
BOTTOM and the TOP configuration models of Section 2.4.2, randomly generated
using different values of the depth D of the structure tree, the number B of concur-
rent and alternative blocks in AND and XOR blocks, respectively, and the number T
of sequential blocks in SEQ blocks. For each model (i.e., for each row), the best
(i.e., lowest) JS value is highlighted in bold. The last column shows the computa-
tion time of the ground truth (GT).

Models analyzed more accurately by the RBF heuristics

The 7 models M1, . . . , M7 are hand-crafted with the aim of demonstrating cases
where the RBF heuristics outperforms the SDF heuristics. With this purpose, the
top-level block of each model is a DAG that is internally simple (i.e., the sequencing
and the concurrency degrees of the workflow unexpanded TPN do not exceed their
respective thresholds θs and θc for the RBF heuristics, respectively); each DAG has
a maximum of 2 shared activities; and, the top-level DAG complexity is obtained by
embedding complex sub-workflows in the activities that are shared predecessors of
multiple nodes. Moreover, to increase the correlation between the response time
of the workflow and the response times of activites that are shared predecessor of
multiple nodes, all the simple activities contained in (composite) shared predeces-
sors of some node have uniformly distributed response time between 4 and 8. In

2.4 Experimentation 37

GT AS SDF RBFS

Figure 2.5: Response time PDFs of Split Dependencies First heuristics (SDF), Re-
place Block First heuristics (RBF), simulation (S), averaged simulation (AS), and
ground truth (GT) for the BOTTOM and TOP models of Section 2.4.2, with differ-
ent values of the depth D of the structure tree, B = 2 concurrent and alternative
blocks in AND and XOR blocks, respectively, and T = 2 of sequential blocks in SEQ
blocks.

particular, M1 has two DAG blocks at the bottom level; M2 is a variant of M1 with
more precedence relations in the top-level DAG; M3 has also two bottom-level DAG
blocks; M4 is a variant of M3 with more composite blocks in the top-level DAG; M5
is a variant of M1 with a middle-level DAG (and no bottom-level DAG); M6 has a
top-level DAG with more precedence relations than the previous models; and, M7
is a variant of M6 with one more composite block in the top-level DAG.

The accuracy of the heuristics, simulation, and averaged simulation are evalu-

A compositional approach for complex workflow evaluation 38

ated with respect to the ground truth, with the same experimental setup of Sec-
tion 2.4.2, except for the simulation time and averaged simulation time, which is
at least equal to that of the RBF heuristics (i.e., the most accurate heuristics for the
benchmark). Results are shown in Table 2.3 and Fig. 2.7. The SDF heuristics per-
forms the analysis in relatively less time than the RBF heuristics, though results are
comparable. As expected, the RBF heuristics yields more accurate results than the
SDF heuristics, with a JS divergence gain of at least a factor of 4, and of nearly two
orders of magnitude in the best cases. Overall, it was not trivial to randomly gener-
ate a benchmark of models for which the RBF heuristics significantly outperforms
the SDF heuristics, confirming that the RBF heuristics is more accurate only under
very restrictive conditions (discussed at the end of Section 2.3.1). Therefore, except
when these conditions occur, the SDF heuristics is preferable with respect to the RBF
heuristics.

Model JS
SDF RBF S AS

1 0.04506 0.01254 0.03382 0.02127
2 0.04526 0.01256 0.05248 0.03376
3 0.03756 0.00665 0.04640 0.04326
4 0.03737 0.00660 0.01350 0.01126
5 0.12228 0.00909 0.05926 0.03398
6 0.03837 0.00820 0.01449 0.01015
7 0.03962 0.00456 0.00434 0.00852

Model Time
SDF RBF S AS GT

1 1.42s 1.28s 1.31s 1.31s 9287.89s
2 0.46s 0.64s 0.66s 0.66s 9549.46s
3 0.20s 0.31s 0.33s 0.33s 5776.45s
4 0.16s 0.85s 0.86s 0.86s 6657.49s
5 0.21s 0.22s 0.22s 0.22s 6692.07s
6 0.13s 0.84s 0.86s 0.86s 6050.73s
7 0.21s 3.08s 3.09s 3.09s 8979.62s

Table 2.3: Jensen-Shannon divergence (JS) and computation times of Split Depen-
dencies First heuristic (SDF), Replace Block First heuristic (RBF), simulation (S)
and averaged simulation (AS) for the models of Section 2.4.2. For each model (i.e.,
for each row), the best (i.e., lowest) JS value is highlighted in bold

2.4.3 Increasing workflow complexity
The evaluation complexity is further stressed by generating workflows with param-
eters D = 4, B = 4, T = 4 and D = 6, B = 4, T = 4, notably obtaining huge

2.4 Experimentation 39

DAG D, B, T SDF RBF S AS
BOTTOM 4, 4, 4 3.04s 15.63s 3.07s 3.07s
TOP 4, 4, 4 1.25s 2.44s 1.28s 1.28s
BOTTOM 6, 4, 4 33.25s 156.94s 42.16s 42.16s
TOP 6, 4, 4 22.92s 5.73s 38.66s 38.66s

Table 2.4: Computation times of Split Dependencies First heuristic (SDF), Replace
Block First heuristic (RBF), simulation (S), and averaged simulation (AS) for the
BOTTOM and TOP models of Section 2.4.3, with structure tree depth D ∈ {4, 6},
B = 4 concurrent and alternative blocks in AND and XOR blocks, respectively, and
T = 4 sequential blocks in SEQ blocks.

models having up to 448 and 7168 simple activities, respectively, for which obtain-
ing a ground truth via stochastic simulation is definitely not viable. The compu-
tation times are shown in Table 2.4 and the analysis results in Fig. 2.8. Although
the computation times increase with respect to the cases described in Section 2.4.2,
the obtained results highlight that extremely complex models can be evaluated in
relatively short times. In particular, for the majority of the models with structure
tree depth D = 4, the computation times of the heuristics do not exceed 4 s. No-
tably, the results obtained by simulation during such amount of time are too noisy
to represent a valid alternative to the proposed analysis heuristics. Though obtain-
ing accurate simulation results is not viable for these complex models, rare event
simulation methods [66, 67, 68, 69] could be applied to evaluate rewards that focus
on selected behaviors.

Formodelswith structure tree depth D = 6, the computation times of the heuris-
tics slightly increase, but always without exceeding 35 s, except for the BOTTOM
D6B4T4 model, for which the RBF heuristics executes in nearly 157 s (which is still
affordable). Despite this, the results achieved by simulation are much worse than
those obtained for the models with depth D = 4, due to the significant increase
in the time needed to complete a simulation run (simulation time is the minimum
time, larger than the analysis time, that is needed to perform an integer number of
runs).

2.4.4 Sensitivity to the stochastic upper bound PDF
A sensitivity analysis with respect to the stochastic upper bound PDF used to ap-
proximate the numerical solutions of inner blocks is performed. To this end, two
randomly generated models are considered. In particular, these models are gen-
erated using parameters D = 4, B = 2, T = 2 and D = 6, B = 2, T = 2, re-
spectively, and DAG blocks at the top level consisting of a maximum of 7 blocks
connected through paths of maximum length equal to 2. Due to the model struc-
ture and parameters, both heuristics apply inner block analysis rather than inner

A compositional approach for complex workflow evaluation 40

block replication, and thus these models are evaluated through the SDF heuristics.
Two experiments are conducted: in the first case, the approximation defined in Sec-
tion 2.3.2 is used (A1); in the second case, a variant with bounded support of the
approximant proposed in [32] is used, approximating numerical PDFs with sup-
port [a, b] with a truncated Exponential PDF with support [δ, b], defined as p (t) :=
λe−λ(t−δ)/(1− e−λ(b−δ)), where δ is the intersection point of the x-axis with the line
that is tangent to the inflection point of the approximated CDF and λ is the rate of
the Exponential, computed to impose the stochastic upper boundwith respect to the
approximated function (A2). The accuracy of the resulting PDFs is evaluated using
JS divergence with respect to a ground truth obtained by 5-million-run simulation.

For bothmodels, the SDF heuristicswith the approximant A1 obtains JS values at
least four times lower thanwith approximant A2 (i.e., 0.01023 for the D4B2T2model
and 0.01680 for the D6B2T2 model, compared to 0.04164 and 0.07939, respectively).
As expected, the PDFs in Fig. 2.9 show that A1 results in a curve that is visually
closer to the ground truth, pointing out that the stochastic upper bound defined in
Section 2.3.2 is more accurate than the alternative.

2.4 Experimentation 41

GT AS SDF RBFS

Figure 2.6: Response time PDFs of Split Dependencies First heuristics (SDF),
Replace Block First heuristics (RBF), simulation (S), averaged simulation (AS),
and ground truth (GT) for the BOTTOM and TOP models of Section 2.4.2 with
depth D = 2 of the structure tree, and different values of the number B of concur-
rent and alternative blocks in AND and XOR blocks, respectively, and the number T
of sequential blocks in SEQ blocks.

A compositional approach for complex workflow evaluation 42

GT AS SDF RBFS

Figure 2.7: Response time PDFs of Split Dependencies First heuristic (SDF), Replace
Block First heuristic (RBF), simulation (S), averaged simulation (AS), and ground
truth (GT) for the models of Section 2.4.2.

2.4 Experimentation 43

AS SDF RBFS

Figure 2.8: Response time PDFs of Split Dependencies First heuristic (SDF), Replace
Block First heuristic (RBF), simulation (S), and averaged simulation (AS) for the
BOTTOM and TOP models of Section 2.4.3, with structure tree depth D ∈ {4, 6},
B = 4 concurrent and alternative blocks in AND and XOR blocks, respectively, and
T = 4 sequential blocks in SEQ blocks.

SDF - A1 SDF - A2GT

Figure 2.9: Response time PDFs of the ground truth (GT) and Split Dependencies
First (SDF) heuristics using the approximant PDF of Section 2.3.2 (A1) and a vari-
ant with bounded support of the one proposed in [32] (A2) for the models of Sec-
tion 2.4.4, with structure tree depth D ∈ {4, 6}, B = 2 concurrent and alternative
blocks in AND and XOR blocks, respectively, T = 2 sequential blocks in SEQ blocks,
and DAG blocks at the top level.

Chapter 3

The Eulero Library

In this chapter, it is presented Eulero, a Java library that implements the composi-
tional approach of Chapter 2 for efficient and accurate evaluation of the response
time PDF of complex workflows, consisting of activities with GEN duration with
bounded support, composed through sequence, choice/merge, and split/join blocks,
with unbalanced split and join constructs that break the structure of well-formed
nesting. The library (Section 3.1) is organized in three packages, supporting work-
flow modeling (Section 3.2), workflow evaluation (Section 3.3), and random gen-
eration of workflow models (Section 3.4). A workflow is modeled as a hierarchy
of sub-workflows using structure trees, providing not only ease of modeling but
also efficiency of analysis by facilitating the identification of sub-workflows that
can be separately analyzed. Eulero uses the SIRIO Library of the ORIS tool [70]
to represent monovariate PDFs, to model sub-workflows as Stochastic Time Petri
Nets (STPNs) [33], and to perform their transient analysis to derive the sub-workflow
response time PDF. The library is designed with the aim of facilitating usability,
maintainability, and extensibility, by exploiting consolidated programming design
patterns [71].

45

The Eulero Library 46

3.1 Library overview
Eulero is a headless Java library providing capabilities of modeling and evaluating
complex workflow of activities. In particular, the library implements the structure
tree representation and the heuristics compositional approach described in Chap-
ter 2. The UML use case diagram of Fig. 3.1a shows the main functionalities of the
Library, which are implemented in the packages of Fig. 3.1b. In particular:

• The package modeling supports modeling of workflows affording various as-
pects of complexity (i.e., bounded generally distributed durations, high con-
currency degree, unbalanced split and join constructs breaking the structure of
well-formed nesting) in terms of structure trees, a hierarchical representation
enabling accurate and efficient evaluation of the response time PDF.

• The package evaluation includes the sub-package heuristics, implementing
compositional methods for the evaluation of the workflow response time PDF,
and the sub-package approximation, supporting the derivation of the analyt-
ical form of stochastically ordered approximants of numerical PDFs.

• The package modelgeneration provides functionalities to randomly generate
models according to the specification of the package modeling.

Eulero uses the SIRIO library for the representation of the analytical form of
monovariate PDFs, for the derivation of their response time PDF of sub-workflows,
and for the estimation of complexity of this evaluation.

(a) (b)

Figure 3.1: Eulero library: (a) UML use case diagram and (b) package diagram.

Many tools for performance analysis of stochastic models include a Graphical
User Interface (GUI) [35, 58, 72], enabling model validation or quick testing. How-
ever, Eulero is designed to perform quantitative evaluation of large-scaled mod-
els, for which an GUI-driven approach could be time-consuming and error-prone.
Programmatically defining and instancing hierarchical models speeds up the mod-
eling process and enables automatic model modifications (e.g., changing activity

3.2 The packageModeling 47

probability distributions or complexity factors of the workflow generator), facili-
tating experimentation and increasing its robustness. Despite that, as part of fu-
ture extension, a GUI could be designed to perform preliminary experiments on
basic models or to validate model specifications. The Eulero library is available at
https://github.com/oris-tool/eulero under the AGPL licence.

3.2 The package Modeling
The package modeling is responsible for the instancing of workflows specified as
structure trees. In this section, a description of the package (Section 3.2.1) and an
application example of the package (Section 3.2.2) are provided.

3.2.1 Package description.
The package modeling is responsible for building stochastic workflows as Java ob-
jects. The related UML class diagram is shown in Fig. 3.2 and a code snippet illus-
trating the programmatic specification of the model of Fig. 2.2 is provided in List-
ing 3.1. Workflowmodeling is implemented through the design pattern Composite
[71], where the abstract class Activity defines a common interface, which is imple-
mented by subtype classes Simple, XOR, DAG, AND, and SEQ. In particular, Activity
defines block types common attributes, such as the minimum min and maximum
max response time of the block, the degrees of concurrency C and simplifiedC cor-
responding to C and C̄ respectively, the degrees of sequencing Q and simplifiedQ
corresponding to q and q̄ respectively, and the abstract methods buildSTPN() and
buildTPN(), which are overridden by sub-typing classes to define the transforma-
tion of the block structure tree into the block STPN and its underlying TPN, respec-
tively. Note that it is precisely through the composite design pattern that we are able
to provide the hierarchical representation of the workflow.

The class Simple enables the instantiation of simple activities whose piece-wise
duration PDF is encoded in the field features as a list of StochasticTransition-
Feature. The latter is a class of the SIRIO library defining the support and analytical
form of a PDF. Each feature is assumed to have unit measure, and therefore it is
weighted by a value that guarantees unit measure over the whole PDF. These values
are encoded by the attribute weights.

The class XOR enables the instantiation of XOR blocks having different alternative
branches. Branches are referenced through the field alternatives and associated
with a probability value encoded in the field probabilities.

The class DAG enables the instantiation of DAG blocks. DAG objects have three ref-
erences to class Activity. The reference activities consists of a list referencing all
the activities nested in a DAG block. The references begin and end refer to the initial

https://github.com/oris-tool/eulero

The Eulero Library 48

Figure 3.2: UML class diagram of the package modeling.

and final fictitious activities, respectively, that are required to define a DAG block
as a SESE block. The structure of a DAG is defined by adding preconditions to its
internal activities through the method addPrecondition(), which updates the list
attributes pre and post of the DAG activities. The DAG class also exposes three static
methods empty(), sequence() and forkjoin(). The method empty() enables the
generation of empty DAGs that can then be built by adding activities and precon-
ditions, evaluating the response time bounds, and referencing the added activities.
The methods sequence() and forkjoin() enable the generation of SEQ and AND
blocks, respectively, which are implemented as derivation classes of DAG. Although
AND and SEQ classes do not extend DAG functionalities, they have been treated as sep-
arate classes in order to handle them as a specific case in the analysis algorithm.

Asmentioned in Sections 2.1.2 and 2.3.1, as soon as the representation formalism
and the solutionmethod are extended to dealwith differentworkflowpatterns, such
as k-out-n or cycle/loops, also the Eulero Library should be updated to enable for the
representation and the analysis of such patterns. This can be achieved by simply
extending the Activity class through a specialization enabling to fully characterize
the new desired pattern. Then, as depicted in Section 3.3, also the solution method
requires to be updated, in order to solve the added pattern.

3.2 The packageModeling 49

3.2.2 Application example

In Listing 3.1, blocks Q, R, S and T are created using the static methods of DAG and
the constructors of XOR and Simple (lines 3 to 52). Then, the top node is created as
a DAG block through the static method empty(), and populated connecting inner
blocks by adding preconditions (lines 54 to 59). In doing so, it is mandatory that
final blocks be preconditions of the node end (line 59), and that all initial nodes have
the node begin as precondition (lines 55 and 56). Since DAGs are built step-by-step
adding preconditions, then min and max are estimated and set using the related setter
methods (lines 60 and 61), and the added activities are also referenced using the
related setter method (line 62).

1 StochasticTransitionFeature feature = StochasticTransitionFeature.
newUniformInstance("0", "1");

2
3 Activity P = DAG.sequence("P",
4 new Simple("P1", feature),
5 DAG.sequence("P2",
6 new Simple("P2A", feature),
7 new Simple("P2B", feature)
8
9),new Simple("P3", feature)
10);
11
12 Activity Q = new Simple("Q", feautre);
13
14 Activity R = DAG.forkJoin("R",
15 DAG.forkJoin("R1",
16 DAG.forkJoin("X",
17 new Simple("X1", feature),
18 new Simple("X2", feature)
19),
20 DAG.sequence("Y",
21 new Simple("Y1", feature),
22 new Simple("Y2", feature)
23)
24),
25 new XOR("R2",
26 List.of(
27 new Simple("R2A", feature),
28 new Simple("R2B", feature)
29),
30 List.of(0.3, 0.7)
31)
32);
33
34 Activity S = new Simple("S", feature);
35 Activity T = new Simple("T", feature);
36
37 DAG top = DAG.empty("TOP");
38 P.addPrecondition(top.begin());
39 Q.addPrecondition(top.begin());
40 R.addPrecondition(top.begin());
41 S.addPrecondition(P, Q, R);
42 T.addPrecondition(R);

The Eulero Library 50

43 top.end().addPrecondition(T, S);
44 top.setMin(top.getMinBound(top.end()));
45 top.setMax(top.getMaxBound(top.end()));
46 top.setActivities(Lists.newArrayList(P, Q, R, S, T));

Listing 3.1: Construction of the workflow structure tree of Fig. 2.2.

The method buildSTPN() is an abstract method responsible for the construction
of the workflow STPN. Construction is realized recursively by exploring the work-
flow structure tree, and adding Place, Transition, Precondition and Postcondi-
tion objects to a PetriNet object depending on the tree topology (the latter 5 classes
belong to the SIRIO library). The method buildSTPN() of DAG, AND, and XORmerely
adds places and immediate transitions, representing fork, join, choice, and merge
structures specifying the nesting of inner blocks, before the method is called re-
cursively by the inner blocks. The method buildSTPN() of SEQ simply chains the
recursive calls made for inner activities belonging to the considered sequence. The
method buildSTPN() of Simple adds a random switch of transitions whose distri-
butions are encoded by the fields features and weights. The buildTPN() method
is the abstract method that enables the construction of the underlying TPN. Simi-
larly to buildSTPN(), it assigns temporal and complexity features to the workflow
activities, so that these information can be exploited during the block complexity
analysis.

3.3 The package Evaluation
The package evaluation implements the compositional technique described in Sec-
tion 2.3 for the evaluation of the response time PDF of stochastic workflows. In
the section, an overview of the analysis heuristics (Section 3.3.1) is recalled before
showing how to use of the package (Section 3.3.2).

3.3.1 A recall on the analysis heuristics
The end-to-end response time PDF of a workflow is evaluated by composing the
results of separate analyses of sub-workflows. In turn, the sub-workflows are iden-
tified by a recursive exploration of the structure tree, which selects the most ap-
propriate action to analyze a block, based on its type or complexity measures and
according to the provided heuristics of analysis. Four actions are considered:

• Numerical analysis combines the numerical response time PDFs of the compo-
nents ofwell-nested blocks, providing the overall response time PDF, as shown
in Section 2.1.3.

• Forward transient analysis is suitable to evaluate not well-nested blocks with
limited complexity, providing the numerical form of their response time PDF.

3.3 The package Evaluation 51

• Inner block analysis can be applied to blocks with high complexity measures. It
selects an internal block, evaluates its numerical response time PDFwith some
action and replaces it with a new activity block, whose probability density
function is evaluated approximating the numerical response time PDF. The
functioning of the action is illustrated in Section 2.3.1.

• Inner block replication can be applied to complex not well-nested blocks. It
identifies two sub-workflows sharing activities, separates them by replicating
shared activities, and recombines them as children of an AND block, guar-
anteeing that the resulting response time PDF is a stochastic upper bound of
the exact one (see Lemma 1). If one or both sub-workflows had become well-
nested, they would subsequently be evaluated through numerical analysis. The
functioning of the action is illustrated in Fig. 2.3a.

Heuristics are defined to explore the structure tree and evaluate the workflow
response time. In Section 2.3.1, two heuristics are defined, which both use numeri-
cal analysis for well-nested blocks and forward transient analysis for simple DAGs, but
differ in the way complex DAGs are evaluated, by favouring either inner block repli-
cation or inner block analysis, as shown in Algorithms 1 to 3. Specifically, considering
a workflow block b:

• If b is an activity block, then its exact response time PDF is its duration PDF
for both heuristics (line 2 and 3).

• If b is, or can be reduced to, a well-nested composition of independent sub-
workflows, then a numerical analysis is recursively applied to get the exact
response time PDF, for both heuristics (lines 4 to 12).

• If b is a DAG block, inner block analysis, inner block replication or forward transient
analysis are applied according to the complexity measures of the block, and
depending on the considered heuristics (see Algorithms 2 and 3).

Pseudocodes of the analysis heuristics are provided in Section 2.3.1.

3.3.2 Package description
The package evaluation implements the recalled compositional evaluationmethod.
The related UML class diagram is provided in Fig. 3.3. The package contains the
inner packages heuristics and approximator, both of which implement the design
pattern Strategy [71].

In the package heuristics, the abstract class AnalysisHeuristicsStrategy im-
plements the methods numericalXOR(), numericalAND(), numericalSEQ(), for nu-
merical analysis operations on well-nested block types XOR, AND, SEQ, respectively,

The Eulero Library 52

and forwardAnalysis(), innerBlockAnalysis(), and innerBlockReplication(),
which implement the remaining actions. Each of these methods makes one or more
recursive calls to the abstract method analyze(), enabling the top-down evaluation
of any structure tree. The order of execution of the actions is specified by overriding
the analyze() method, using the fields CThreshold and QThreshold as the thresh-
olds Θc and Θq for the complexity measures, respectively. The heuristics of Algo-
rithms 2 and 3 are implemented by the classes SDFHeuristics and RBFHeuristics,
respectively. Note that the Strategy Pattern facilitates the addition of new heuristics
strategies by extending the abstract class AnalysisHeuristicsStrategywith a new
concrete class. Moreover, it is trivial to implement new actions as non-abstractmeth-
ods of the class AnalysisHeuristicsStrategy. This enables to perform analysis of
additional workflow pattern, as mentioned in Section 3.2.1.

The package approximation implements different approximation methods for
numericalmonovariate PDFs. The abstract class Approximator provides the abstract
method getApproximationStochasticTransitionFeatures(), which processes a nu-
merical monovariate PDF and returns an approximant piecewise PDF represented
as a list of weights and StochasticTransitionFeature objects. Concrete approxi-
mators define the approximation logic by overriding this method. Again, the Strat-
egypattern enables an easy extension of the package. The class AnalysisHeuristics-
Strategy uses the class Approximator in the method innerBlockAnalysis(): when
this method is called, the most complex inner block of a DAG is picked up and eval-
uated by recursive call of analyze(), then the result is approximated by the selected
Approximator, and finally, the obtained features and weights are passed to the con-
structor of the class Simple to generate the simple activity that replaces the complex
inner block.

3.3.3 Application Example
Listing 3.2 shows how to evaluate the model built in Listing 3.1. Considering val-
ues tC and tQ for complexity thresholds Θc and Θq, respectively, analysis horizon
timeLimit, numerical precision step, and a specific approximator (lines 1 to 5), the
analysis is performed by creating the heuristics (line 6) and calling analyze() (line
8). Fig. 3.4 shows the evaluated response time PDF and CDF.

1 BigInteger tC = BigInteger.valueOf (3);
2 BigInteger tQ = BigInteger.valueOf (7);
3 BigDecimal timeLimit = model.max();
4 BigDecimal step = BigDecimal.valueOf (0.01);
5 Approximator approximator = new EXPMixtureApproximation ();
6 AnalysisHeuristicStrategy strategy = new SDFHeuristics(tC, tQ, approximator);
7 double [] cdf = strategy.analyze(model , timeLimit , step);

Listing 3.2: Evaluation of a workflow structure tree.

3.4 The packageModelGeneration 53

Figure 3.3: UML class diagram of the package evaluation.

(a) (b)

Figure 3.4: PDF (a) and CDF (b) evaluated for the workflow of Fig. 2.2.

The analysis algorithm scales even on more complex models. In fact, analysis
heuristics have been tested for structure trees having depth up to 6, concurrency
and sequencing degree up to 64, and whose corresponding STPNs contain up to
7000 transitions. In all cases, analysis heuristics always took less than 1 s.

3.4 The package ModelGeneration
Many problems can be modeled as workflows, and experimention enabled by tools
such as TGFF [73], Apache Airflow [74] or Luigi [75] results to be an added value.
However, there is often a lack of models on which to conduct experiments, and
when there are, they are often not complex enough to justify the use of composi-

The Eulero Library 54

tional methods. In this section, a generation strategy to randomly build workflows
is presented. The random generation of a workflow can be exploited to test quanti-
tative evaluation methods, stressing different complexity factors, such as the degree
of parallelism and sequencing. In particular, the process of random generation of a
workflow is illustrated (Section 3.4.1) and the Java implementation of the generation
procedure is described through an illustrative example (Section 3.4.2).

3.4.1 Random Generation
Algorithm 6 implements the proposed strategy for random generation of workflow
structure trees. Specifically, given the depth of the structure tree, randomgeneration
of aworkflow is carried out through a recursive procedure, which buildswell-nested
or DAG blocks in different ways, depending on the type of block that is drawn (lines
2 and 12). If a well-nested type (i.e., SEQ, AND, XOR) is selected, the number of its
children is drawn too, and these are generated by the recursive call of the generation
procedure (lines 3 to 5). Then, the block of the drawn type is created, assigning the
created children to it (lines 6 to 11).

Algorithm 6: Random generation of a workflow
GenerateBlock(d, settings)

input : depth level d, generation settings settings
output:workflow b

1 if d > 0 then
2 if type is SEQ or AND or XOR then
3 children← {}
4 foreach i ∈ {2, ..., RandomMaximumChildren()} do
5 children← children ∪ GenerateBlock(d− 1, settings)
6 if type is SEQ then
7 return GenerateSEQBlock(children)
8 if type is AND then
9 return GenerateANDBlock(children)

10 if type is XOR then
11 return GenerateXORBlock(children)
12 if type is DAG then
13 return GenerateDAGBlock(parameters)
14 return GenerateSimpleBlock()

A DAG block consists of a set of nodes sorted according to a topological order
in several consecutive levels, such that every node can have predecessor nodes in
previous levels (see Fig. 3.5). In particular, a node belongs to the i-th level if, for all
paths from the initial fictitious node to the considered one (both not included), the
longest paths contain exactly i nodes. For instance, node E in Fig. 3.5 belongs to level

3.4 The packageModelGeneration 55

Figure 3.5: A DAG block with nodes sorted according to a topological order.

L2 because, among all the paths from the initial node in to node E, the longest paths
contain 2 nodes. Since DAG blocks break the well-formed nesting of concurrent
blocks, yet ensuring that execution ends w.p.1, both conditions must be fulfilled
to generate a not well-nested DAG. The first condition holds when there is at least
one level where i) at least two nodes share at least one predecessor and ii) their
predecessor sets do not coincide (e.g., C and D share A as predecessor, but D also
has B) or coincide but contain at least 2 predecessors (e.g., E and F share all the
predecessors, which aremore then 1; otherwise, theywould have beenwell-nested).
The second condition holds if every node has at least one predecessor and at least
one successor.

Hence, random generation of a DAG (lines 12 and 13 of Algorithm 6) is achieved
by drawing the number of levels, the number of nodes for each level, and randomly
connecting nodes of different levels, ensuring that the two conditions described
above are met. To guarantee not well-formed nesting, it is sufficient to randomly
select two nodes from some level i > 0, and connect both of them to the same pre-
decessor node, and one of them to a different predecessor node, randomly drawn
from the (i− 1)-th level. To guarantee that a block is a SESE, every node of a level
is connected to at least one predecessor and one successor, except for the first-level
nodes, which share the same and only predecessor node (the initial fictitious node
in), and the last-level nodes, which share the same and only successor node (the
final fictitious node fin). Finally, at the lowest level of the workflow structure tree,
a simple block is created (line 14 of Algorithm 6).

The Eulero Library 56

3.4.2 Package description
The package modelgeneration implements the approach of Section 3.4.1 for ran-
dom generation of workflow structure trees. The UML class diagram of the pack-
age is shown in Fig. 3.6. The class RandomGenerator defines the recursive method
generateBlock(), which implements the generation logic based on the depth tree-
Depth of the structure tree and on some setting parameters referenced by list settin-
gs. Each item of the list refers to a certain level of depth of the workflow, and collects
a set of BlockTypeSetting objects, through which generation is driven. In particu-
lar, BlockTypeSetting is an abstract class that specifies a type and a probability of
being drawn. For every item of the list settings, the sum of BlockTypeSetting-
probability fields must be equal to 1. BlockTypeSetting is extended to define
block type related parameters, such as the minimum and maximum number of
children for class WellNestedBlockSetting, or the minimum and maximum num-
ber of levels, nodes per level, connections between nodes and distance between
nodes belonging to not consecutive levels, for class DAGBlockSetting. Note that
XORBlockSet-ting, ANDBlockSetting, and SEQBlockSetting do not add functional-
ities to WellNestedBlockSetting, but are required to generate XOR, AND, and SEQ
blocks in the method generateBlock(), respectively. In addition, it is possible to
constrain the structure of a DAG by varying its generation parameters.

Figure 3.6: UML class diagram of the package modelgeneration.

3.4.3 Application example
Listing 3.3 shows how to use the package modelgenerator to randomly generate
workflow structure trees. For each level of the tree, at least one BlockTypeSetting
object must be created and added to that level setting variable, specifying the occur-

3.4 The packageModelGeneration 57

rence probability of that block type and the related parameters (e.g., lines 4 to 8 and
lines 10 to 12 for levels 1 and 2, respectively). Every level setting is added to a global
setting variable (lines 14 to 16) which is then passed to a RandomGenerator object
(line 19). Finally, the model is created by invoking the method generateBlock() of
the RandomGenerator object.

1 int concurrencyDegree , sequenceFactor;
2 concurrencyDegree = sequenceFactor = 3;
3
4 Set <BlockTypeSetting > level1Settings = new HashSet <>();
5 BlockTypeSetting AND = new ANDBlockSetting (0.5, concurrencyDegree);
6 BlockTypeSetting SEQ = new SEQBlockSetting (0.5, sequenceFactor);
7 level1Settings.add(AND);
8 level1Settings.add(SEQ);
9
10 Set <BlockTypeSetting > level2Settings = new HashSet <>();
11 BlockTypeSetting DAG = new DAGBlockSetting (1.);
12 level2Settings.add(DAG);
13
14 ArrayList <Set <BlockTypeSetting >> settings = new ArrayList <>();
15 settings.add(level1Settings);
16 settings.add(level2Settings);
17
18 StochasticTransitionFeature feature = StochasticTransitionFeature.

newUniformInstance("0", "1");
19 RandomGenerator randomGenerator = new RandomGenerator(feature , settings);
20 Activity model = randomGenerator.generateBlock(settings.size());

Listing 3.3: Random generation of a workflow structure tree.

Chapter 4

A game-theoretical approach for
workflow service selection

This chapter addresses the case of a hierarchical infrastructure where the associa-
tion among customers and service providers is inter-mediated by aggregators. Cus-
tomers demand to resource-constrained aggregators for workflow execution, ex-
hibiting soft deadline SLOs over the workflows e2e times, expressed in terms of
Cumulative Distribution Functions (CDFs). In turn, aggregators offer service out-
sourcing to a set of antagonist providers competing for service delivery, whose bids
are represented byCDFs of service completion times. Thedesigned stochastic frame-
work applies matching theory to associate customers and aggregators, and a nested
Vickrey-Clarke-Groves (VCG) auction to perform service selection.

The chapter is organized as follows. In Section 4.1, the problem statement is
detailed and an overview of the approach is provided. Section 4.2 illustrates the
Vickrey-Clarke-Groves (VCG) auction, with prices offered by bidders expressed
in terms of the earliness of services to be delivered, quantified as CDF of the ser-
vice completion time rather than fixed requirements vector of reference literature.
The section also investigates the theoretical consequences of the considered auction,
mechanism and the impact of cheating strategies on the total welfare, emphasizing
the VCG auction ability in discouraging cheating behaviors. Section 4.3 illustrates
a matching game with externalities (i.e., with dependencies among preferences of
customers) developed to solve the resource-constrained assignment problem be-
tween customers and aggregators, integrating the VCG auction mechanism to per-
form provider selection. In Section 4.4, the variation of total welfare (i.e. the utility
gained by all aggregators and providers) is evaluated in terms of the Price of An-
archy (PoA) [45, 46] paid to take decisions that rely on partial information metrics,
the impact of delays on service execution and the behaviour of both the aggregator
and provider utility, under different assumptions about the competitiveness among
providers, are analyzed.

59

A game-theoretical approach for workflow service selection 60

4.1 Problem statement and approach
In this section, it is illustrated themodel designed the express the interactions among
the entities involved in a system where web services are composed to provide com-
plex functionalities (Section 4.1.1). In particular, the model includes the represen-
tation of customers that require the execution of workflows of services, aggregators
that aggregates web services provided from different set of service providers, which
in turn have different capabilities and so, different time of execution. Then, we pro-
vide a formulation of the problem of how tomatch customers with aggregators who
are served by different service providers, with the aim of maximizing both the re-
ward of aggregators and providers to whom service executions are assigned (Sec-
tion 4.1.2). Finally, an overview of the solution method is provided (Section 4.1.3).

4.1.1 System model
. The system model illustrated in the UML class diagram in Fig. 4.1 is considered.
The model includes three types of participants:

• a set C = {1, ..., C} of customers, each requiring repeated execution of a work-
flow composing services from a common catalog S = {1, ..., S}, to be com-
pleted with a required distribution Fc of the end-to-end completion time;

• a set P = {1, ..., P} of antagonistic providers, with each provider p offering an
implementation for some service, with an offered and an actual distribution of
the completion time;

• a set of aggregators A = {1, ..., A} which intermediate the relation between
customers and providers; to this end, each aggregator a can recourse to a sub-
set of available providers Pa ⊆ P , and it assumes the responsibility to select a
provider for each service in each workflow, to manage SLAs on both the sides
towards customers and providers, and to orchestrate service delivery.

Note that each aggregator a can be selected bymultiple customers under the limit of
amaximum resource capacity La that constrains the total complexity of servedwork-
flows, each service can be delivered bymultiple providers with equivalent function-
ality but different quality, and each provider is available-for and can be selected-by
multiple aggregators. Without loss of generality, the model assumes that each cus-
tomer requires a single workflow and each provider delivers a single service. Multi-
plicity can be accommodated in the framework by introducing multiple virtual cus-
tomers and providers, as also in [76]. Finally, for simplicity but open to relaxation,
each workflow is requested by a single customer.

On the one hand, the SLO in the agreement among an aggregator and the provider
of each service s is expressed as a CDF distribution Fs

Y(·) originated from the auction

4.1 Problem statement and approach 61

Figure 4.1: Participants in the system model.

mechanism presented in Section 4.2, and the SLI of each service is the statistics of
actual completion times tD. According to this, the aggregator will pay the provider
selected for each service S a reward expressed as

Ua,s = (1− Fs
Y(tD)), (4.1)

Note that in so doing, services are assumed to have a uniform cost. This restriction
is made for simplicity, without loss of generality, as the treatment can be easily ex-
tended to encompass costs of services dependent on their type or position in the
topology of the workflow.

On the other hand, each customer expresses its required SLO as a CDF Fc on the
e2e workflow completion time tE, and the SLI supplied by the selected aggregator
is the statistics of actual e2e completion times measured in repeated executions of
the workflow. For the aggregator, the workflow execution subtends an outlay cost
for services orchestration and for providers reward. To cover this cost, here denoted
by Rc, the customer pays the aggregator a reward bc, with bc > Rc, that accounts
for the functional complexity of the supplied workflow, multiplied by a factor that
accounts for the delivered QoS, here expressed in terms of the e2e time provisioned
with respect to the SLO posed by customer c. According to this, the aggregator
utility is expressed as

Uc,a = (1− Fc(tE) + Θ) · (bc − Rc), (4.2)

where tE is the actual e2e workflow time, and Θ > 0 is an additive corrective factor
to induce positive provider rewards, whose value is investigated in Section 4.4.

A game-theoretical approach for workflow service selection 62

4.1.2 Problem formulation

The objective of this paper is the maximization of a measure of system welfare ac-
counting for joint rewards of providers and aggregators. This can be expressed as
optimization problem as:

max
Γ,∆

C

∑
c=1

A

∑
a=1
Uc,aγc,a +

S

∑
s=1

P

∑
p=1
Rs,pδs,p, (4.3)

s.t.
P

∑
p=1

δs,p ⩽ 1, ∀s ∈ S (4.4)

A

∑
a=1

γc,a ⩽ 1, ∀c ∈ C (4.5)

C

∑
c=1

Rcγc,a ⩽ La, ∀a ∈ A (4.6)

where: Γ is the assignment matrix with γa,c equal to 1 when aggregator a is selected
to serve customer c, and 0 otherwise. And, similarly, ∆ is selection matrix with
δs,p equal to 1 when service s is outsourced to provider p and 0 otherwise. Rs,p

is the reward of provider p in completing service s, and is accurately described in
Section Section 4.2. Note that, in the formulation, when the same service belongs to
more than one workflow, service occurrences are handled as different services, and
a number of rows equal to the number of service occurrences is added to ∆.

Constraint of Eq. (4.4) imposes that each service s can be outsourced to one and
only one provider. Similarly, constraint of Eq. (4.5) points out that each customer
is assigned to at most one aggregator. Eq. (4.6) requires that resources allocated on
the aggregator a cannot exceed its maximum resource capacity La.

Eqs. (4.3) and (4.6) formulate an NP-hard problem, as a simplified version can
be reduced to the 0-1 knapsack problem [77]. More in detail, a special case of the for-
mulated problem is considered, where the maximization of the providers reward is
neglected and A = 1. In this case, the objective function is max ∑C

c=1 U 1γc,1, subject
to: ∑C

c=1 Rcγc,1 ⩽ L1. Since γc,1 ∈ {0, 1}, by mapping L1 in the knapsack capacity
parameter, U 1 and Rc in the weight and the volume of the generic item, the for-
mulation of the 0-1 knapsack problem [77] is obtained. To avoid the complexity of
exact solution, this paper proposes a suboptimal scheme consisting of a matching
game with externalities integrated with an auction mechanism to jointly assign cus-
tomers to aggregators and outsource services to providers, and refers to Section 4.4
for experimental evaluation of suboptimality.

4.2 Auction-based service selection 63

4.1.3 Proposed mechanism
Collaborations among participants, illustrated in Fig. 4.2, involve a twofold mech-
anism: on the one hand, association among requested workflows and aggregators
relies on amatching game, presented in Section 4.3, that aims at maximizing a collec-
tive utility function that promotes efficient usage of system resources while match-
ing SLOs requested by customers with those that aggregators can deliver. On the
other hand, for each aggregator, outsourcing to providers of services requested for
the implementation of customersworkflows relies on a stochastic auctionmechanism,
detailed in Section 4.2, which aims at maximizing predictability in the ability to ful-
fill of customers SLOs.

The two mechanisms are combined through the following interaction steps:

1. each customer c requires repeated execution of a workflow c with a SLO speci-
fied as a CDF Fc(·) of the expected end-to-end workflow completion time, and
it expresses a preference to be assigned to aggregators with higher available
capacity, as outlined in Section 4.3;

2. any aggregator a aiming at handling the customer workflow c announces an
auction among its providers Pa to outsource each requested service, as de-
scribed in Section 4.2;

3. each provider p ∈ Pa of a requested service answers with a bid expressing the
CDF Fs(·) of the completion time that it will be able to deliver, and each service
is assigned to the provider proposing the best CDF, as detailed in Section 4.2;

4. upon completion of the auctions, each aggregator is able to safely predict the
end-to-end completion time that it can deliver to each customer, and it can thus
express a preference on which customer it can better serve by maximizing the
fit to the requested SLO;

5. preferences expressed by customers and aggregators are finallymatched through
the game detailed in Section 4.3.

4.2 Auction-based service selection
In this section, it is provided a service selection approach based on the Vickrey-
Clarke-Groves auction (Section 4.2.1). Here, for a specific service of a workflow,
competing providers offer different time of execution. The auctionmechanism select
the best winner and requires it to finish the execution of the service in a time equal
to that of the second best bid. Since providers bids are defined in terms of a PDFs,
to provide an order of preference among the offered PDFs, the dominance measure

A game-theoretical approach for workflow service selection 64

Figure 4.2: An illustration of the proposed framework: a matching game with exter-
nalities integrated with an auction mechanism to jointly assign customers to aggre-
gators and outsource services to providers.

between random variables is exploited. In particular, because this measure is not
transitive for all classes of distributions, a demonstration of transitivity on the class
of uniform distributions is provided. Finally, a proof is provided for the proposed
dominance measure that cheating on the times offered does not produce benefits to
providers (Section 4.2.3).

4.2.1 Vickrey-Clarke-Groves auction

VCG auction is a Nobel-prize winning framework which provides mathematically
tractable solutions to the assignment problem, aiming at simultaneously consider-
ing the perspectives of opposite parts involved in the bargaining process. VCG de-
fines the second price auctionmechanism, in which the auctionwinner is the bidder
offering the best bid. Then, the winner bidder does not pay its bid, but instead pays
the amount bid by the second-best bidder. Considering a generic provider p, if the
associated bid is not the best bid, the provider p does not obtain the service out-
sourcing and does not have to pay anythingprov providers bids correspond to their
own CDFs over the service completion time. In fact, each provider offers the CDF of
the service time Fs(·) as detailed in Section Section 4.1.3 to compete for service deliv-
ery. Then, the auctioneer collects the bids from the antagonist providers and elects
the winner on the basis of the CDFs received. The mechanism subtends an order
among CDFs, for which the Pairwise-comparison dominance relation is considered:

4.2 Auction-based service selection 65

Definition 6. Let X, Y be random variables with pdf fX(t), fY(t), and CDFs FX(t), FY(t),
respectively. X and Y are in relation of Pairwise-comparison dominance, denoted by
X ⪯ Y, when Prob{X ⩽ Y} ⩾ 1

2 , i.e. when∫ ∞

t=0
(1− FY(t)) · fX(t)dt ⩾

1
2

(4.7)

The relation⪯ is not an order, as it is not antisimmetric, i.e. there exist two random
variables X ̸= Y such that∫ ∞

t=0
(1−FY(t)) · fX(t)dt

=
∫ ∞

t=0
(1− FX(t)) · fY(t)dt =

1
2

(4.8)

For example, this occurs for any two random variables X,Y supported over [0, 1]
with pdfs fX(t) = 1 and fY(t) = 6 · x · (1− x). For the purposes of our auction
mechanism, the relation ⪯ should satisfy all the other properties of a total order, i.e.
transitivity, reflexivity, and totality. The satisfaction of reflexivity and totality does not
depends on the stochastic characterization of the considered random variables. On
the contrary, transitivity must be demonstrated for different classes of distributions.
For the aims of this work, in Section 4.2.2 we demonstrate transitivity of the relation
on the class of uniform distributions.

Once the aggregator receives providers CDFs, these are ranked in accordance
with Definition Definition 6. Then, each service in the workflow is assigned to a bid
attaining theminimum, i.e. any bid X⋆ such that X⋆ ⪯ Xi for any other received bid.
Note that multiple bids might attain the same minimum, in this case the tie can be
resolved according to any determinization or even in a randomizedmanner without
affecting all the subsequent treatment. A reasonable principle can be that in case of
parity, the bid with the lower coefficient of variation be preferred so as to promote
predictability, which however can be not sufficient to resolve the tie.

The algorithm behavior can be summarized through the following steps:

1. The aggregator performs service auctioning to outsource service exploitation;

2. Each provider competes to win service delivery by proposing the CDF Fs(·) of
the service completion time as bid;

3. The aggregator receives bids from providers, then selects the provider p⋆ with
the best bid, i.e., the bid X⋆ such that X⋆ ⪯ Xi for any other received bid, on
the basis of Definition 6.

4. The winner bidder provides service to the customer and the auctioneer com-
putes the corresponding utilities considering the actual duration of the service

A game-theoretical approach for workflow service selection 66

and the second best bid, on the basis of the pairwise-comparison dominance
relation. In fact, when the service is completed by the winner p⋆, say at time
tD, the winner receives a reward Rp⋆ equal to the probability that tD is better
(i.e. earlier) than the time that would have been provided by the second best
bid, i.e. Rp⋆(tD) := 1− FY(tD), where FY(t) is the CDF of the second best bid.

5. The aggregator computes the CDF of the actual e2e time tE, i.e., F(tE), on the
basis of the service CDFs received by providers.

For each aggregator a and customer c, the proposed VCG auction is repeated for a
number of times equal to the number of services composing the workflow of c.

4.2.2 Pairwise-comparison dominance transitivity for uniform
distributions

In this subsection, it is firstly provided a lemma showing that two uniform random
variables X and Y are in pairwise-comparison dominance relation when E [X] ⩽
E [Y]. Then, the lemma is exploited to demonstrate transitivity on the pairwise-
comparison dominance relation for uniform random variables.

Lemma 5 (Pairwise-comparison dominance among uniform random variables). Let
X and Y be two random variables with support [a, b] and [c, d] respectively. X (or Y) is
in pairwise-comparison dominance with Y (or X), denoted by X ⪯ Y (or Y ⪯ X), i.e.
Prob{X ⩽ Y} ⩾ 1

2 (or Prob{Y ⩽ X} ⩾ 1
2), if and only if a + b ⩽ c + d (or c + d ⩽

a + b).

Proof of Lemma 5. There are 6 possible orders of the support bounds of the consid-
ered randomvariables: abcd and cdab (disjoint supports), acbd and cadb (overlapping
supports), and acdb and cabd (one support includes the other).

• In the case of abcd, since supports are disjoint and X support precedes Y sup-
port, then Prob{X ⩽ Y} = 1, i.e. X ⪯ Y. Then, a + b < c + d by construction,
and thesis is proved. The case of cdab is analogous but specular.

• In the case of acbd, the vector < X, Y > determines a rectangle on the coordi-
nate plane, representing the joint support of the two random variables. The
bisector x = y cut the rectangle in two parts: one identifies pairs (x, y) for
which x < y (above the bisector) and the other pairs for which y < x (below
the bisector). As shown in Fig. 4.3a, given the order of the support bounds,
the area of the rectangle above the bisector is grater than the area below. In
fact, the area above the bisector contains completely the area below the bisec-
tor (the pink square in the figure, is divided in two equal parts by the bisector,
and above the bisector the area of the joint support contains completely the

4.2 Auction-based service selection 67

half square, which coincides with the area of the support below the bisector).
Hence, X ⪯ Y. Since a < c and b < d, it follows that a + b < c + d, fromwhich
the thesis is proved. The case of cadb is analogous but specular.

• In the case of acdb, the vector < X, Y > determines a rectangle on the co-
ordinate plane, representing the joint support of the two random variables.
The bisector x = y cut the rectangle in two parts: one identifies pairs (x, y)
for which x < y (above the bisector) and the other pairs for which y < x
(below the bisector). As shown in Fig. 4.3b, given the order of the support
bounds, the area of the rectangle above the bisector is grater than the area
below, only if c− a > d− b. In fact, the areas identified by the bisector both
contains the halves of the pink square cut by the bisector; then, since the height
of the support is the same for the considered areas, the remaining part of the
support above the bisector is greater then the part below the bisector, only
if c − a > d − b. In this case, X ⪯ Y. From c − a > d − b, it follows that
a + b < c + d, from which the thesis is proved. The case of cabd is analogous
but specular.

The thesis is then proved for all the orders of support bounds.

(a) (b)

Figure 4.3: Graphical representation of the joint support of two uniform random
variables, when support bounds order are acbd (a) and acdb (b).

Corollary 1. Let X andY be two random variables with support [a, b] and [c, d] respectively.
X (or Y) is in pairwise-comparison dominance with Y (or X), denoted by X ⪯ Y (or

A game-theoretical approach for workflow service selection 68

Y ⪯ X), i.e. Prob{X ⩽ Y} ⩾ 1
2 (or Prob{Y ⩽ X} ⩾ 1

2), if and only if E[X] ⩽ E[Y] (or
E[Y] ⩽ E[X]).

Proof of Corollary 1. The condition of the corollary E[X] ⩽ E[Y] is obtained by the
condition of the Lemma 5, a + b < c + d. In fact a + b < c + d → 2E[X] ⩽ 2E[Y] →
E[X] ⩽ E[Y].

Theorem 1 (Pairwise-comparison dominance transitivity for uniform random vari-
ables). Let X, Y and Z be three uniform random variables with supports [a, b], [c, d] and
[e, r] respectively, so that X ⪯ Y and Y ⪯ Z, then X ⪯ Z.

Proof of Theorem 1. From Corollary 1, the relations X ⪯ Y and Y ⪯ Z imply that
E [X] < E [Y] and E [Y] < E [Z], respectively. Hence, E [X] < E [Y] < E [Z], and
from Corollary 1, X ⪯ Z.

4.2.3 VCG consequences and cheating strategy
In this subsection, the consequences of this mechanism when the assigned service
is repeated for a number of times sufficiently large so as to let emerge a stable statis-
tics of the observed QoS provided by the winning bidder p⋆ are evaluated. In this
perspective, the expected reward for the winner is:

E[Rp⋆] =
∫ ∞

t=0
(1− FY(t)) · fX̃⋆

(t)dt, (4.9)

where FY(t) is the CDF of the second best bid and fX̃⋆
is the actual pdf provided by

the winning bidder, i. e., the QoS impemented. Based on the order relation existing
between X̃⋆ and X⋆, the following cases can occur:

• If theQoSprovided by thewinning bidder actually satisfies the bid, i.e. fX̃⋆
(t) =

fX⋆(t), then E[Rp⋆] ∈ [1
2 , 1], with a value that is as higher as the probability that

the second bid is lower than the best one. Note that by definition the reward
Rp⋆ is the complement to 1 of a CDF and thus belongs to [0, 1]. Moreover, by
design of the auction mechanism, X ⪯ Y, and thus E[Rp⋆] ⩾ 1

2 .

• On the one hand, the minimum reward 1
2 occurs if the second best bid Y is

equivalent to the best bid X⋆, i.e. if X⋆ ⪯ Y ∧ Y ⪯ X⋆ as
∫ ∞

t=0(1 − FY(t)) ·
fY(t) · dt = 1

2 , which implies∫ ∞

t=0
(1−FY(t)) · fX⋆(t)dt

=
∫ ∞

t=0
(1− FX⋆(t)) · fY(t) · dt =

1
2

.
(4.10)

4.2 Auction-based service selection 69

• On the other hand, the maximum expected reward 1 occurs when the second
best bid Y is deterministically later than the best bid X, which occurs when
FY(t) > 0→ FX⋆(t) = 1, i.e. the support of X⋆ is before [78] the support of Y.

• If the actual QoS provided by the winner is better than its bid, i.e. if fX̃⋆
(t) ⪯

fX⋆(t), then the winner improves its advantage with respect to the second best
bid Y, which will result in a higher value of E[Rp⋆], but always under the
maximum limit of 1.

• Conversely, the expected reward E[Rp⋆] falls under 1
2 if the actual QoS fX̃⋆

(t)
degrades up not to dominate the second best bid Y, i.e.∫ ∞

t=0
(1− FY(t)) · fX⋆(t)dt ⩽

∫ ∞

t=0
(1− FY(t)) · fY(t) · dt. (4.11)

• In the limit case that the actual SLI X̃ of the winner is deterministically later
than that of the second best bid Y, i.e. if Y is before X̃, then the reward of the
winner becomes 0. In any case, the reward cannot become negative, being
defined as a probability.

The VCG mechanism rules out the case of a rational provider pursuing a cheat-
ing strategy. In fact, let assume that a provider may attempt to lie about the CDF,
proposing an improved CDF which describes an unrealistic best-case service com-
pletion scenario. Let p⋆ and FY(t) be the winner provider and the CDF of the second
best bid, respectively. Supposing that provider p⋆ completes service delivery with
a deterministic delay ∆, the corresponding revenue is expressed by:

Rp⋆
∆ (t) =

∫ t

x=0

(
1− FY(x)

)
fX̃⋆

(x− ∆)dx

=
∫ t

x=0
fX̃⋆

(x− ∆)dx−
∫ t

x=0
FY(x) fX̃⋆

(x− ∆)dx.
(4.12)

After some algebraic manipulation, the following equation is obtained:

Rp⋆
∆ (t) =

∫ t

x=0

(
1− FY(x)

)
fX̃⋆

(x− ∆)dx

=
∫ t−∆

x=0

(
1− FY(x + ∆)

)
fX̃⋆

(x)dx.
(4.13)

From Eq. (4.14), due to the fact that FY is monotonic increasing, it is evident that
the provider i does not improve the revenue, since the difference between integrand
functions is greater than zero, i.e.,(

1− FY(x)
)
−

(
1− FY(x + ∆)

)
= FY(x + ∆)− FY(x) ⩾ 0. (4.14)

A game-theoretical approach for workflow service selection 70

Differently, when all the winning providers realize a SLI that satisfies the bid, i.e.,
fX̃∗(t) = fX⋆(t), E[Rp] ∈ [1

2 , 1], and the aggregator receives a non-negative reward.
This is a direct consequence of Eq. (4.2), where bc − Rc > 0 and Θ > 0.

By combination of the VCG mechanism with Eq. (4.2), parameter Θ rules the
degree of compliance requested to the aggregator, which in turn determines the
degree of compliance that the aggregator must request to its providers:

Behavioural consequence (C1): The value of Θ represents the critical value of the
strategy proposed. Necessarily, Θ ∈ [1

2 , 1], but an over-pessimistic choice about Θ, i.e.,
Θ = 1

2 , may penalize the aggregator reward, since it may not cover the cost employed by
aggregator to pay providers when service is completed later than the SLO agreed. Conversely,
Θ = 1 represents an over-optimistic case that takes away responsibility in selecting reliable
providers from aggregators. At a second level of analysis, the value assigned to Θ rules
the level of competitiveness imposed by aggregators to providers, controlling race conditions
among providers imposed by aggregators, and consequently the profit margin of aggregators.
When Θ = 1

2 , the aggregator is required to maintain a high level of competitiveness among
its providers for each service so that the second bid CDF be close to the best one, whereas
Θ = 1 implies soft competition conditions.

4.3 Matching-based customers-aggregators
assignment

Matching Theory (MT) represents a powerful technique tomatch together elements
belonging to two opposite sets, considering the satisfaction of each element in being
associated to each element of the opposite set and vice-versa, reaching a valuable
trade-off between the preferences drafted by elements. Moreover, the MT has a nat-
urally distributed nature, since it involves exclusively local utility metrics to build
the individual preferences. Consequently, MT algorithms represent a suitable strat-
egy in distributed scenarios, such as the environment proposed in this paper. In our
case the matching game is formulated between the set of customers C, and that of
aggregators A, in order to establish relations reciprocally advantageous for all the
players belonging to C andA [79], taking into account their preferences. Preference
relations describe the level of interest of each element of a set in being matched with
each element of the opposite set. Note that, on the basis of the workflow required,
each customer c can be supported by a set of aggregatorsAc. Furthermore, defining
with La the amount of resources available on aggregator a, i.e.,

La = La − ∑
c∈C\{c}

Rcγc,a, (4.15)

each customer c can be supported by aggregators belonging to Ac having La ⩾
Rc. As a consequence, the size of preference lists built by customers may change

4.3 Matching-based customers-aggregators assignment 71

over algorithm execution, producing incomplete lists and lying in the class of the
matching games with incomplete preference lists [80]. In the following, the utility
functions involved in the preference lists construction process are defined.

4.3.1 Customers preference list
For each customer c ∈ C, the utility function Hc(a) of c in being matched with the
aggregator a ∈ Ac is given by

Hc(a) = La − Rc. (4.16)

From Eq. (4.16) follows that the most preferred aggregator a⋆ is given by

a⋆c = arg max
a∈Ac

Hc(a). (4.17)

Eq. (4.17) expresses that the most preferred a⋆c is the aggregator having the greatest
number of available resources. In this reference, it is important to note that as the
algorithm execution proceeds, the number of allocated customers on aggregators
grows. Hence, after each algorithm iteration, the unassigned customers need to
re-build their preference lists, to properly catch the actual resource availability of
the aggregators, which decreases with the progress of the algorithm, due to the
presence of customers previously assigned to the same aggregator.

4.3.2 Aggregators preference list
From the other hand, the preference list of each aggregator a is built preferring the
customer c⋆ which maximizes the mean reward of a. In order to select the proper
customer, the auction mechanism presented in Section 4.2 is run for each service
required by customer. Defining the set of customers proposing to the aggregator a as
Ca, the corresponding aggregator preference list Ea(c) is built ranking in descending
order the following metric

Ea(c) = (bc − Rc)
∫ ∞

x=0
fX̃⋆

(x)(1− Fc(x))dx, (4.18)

representing the mean utility where the term Θ is neglected since a constant value.
Therefore, the most preferred c⋆a is given by

c⋆a = arg max
c∈Ca

Ea(c). (4.19)

In this paper a modified version of the Gale-Shapley algorithm (GSA) [81, 79] is
applied.
Summarizing, the algorithm acts as follows

A game-theoretical approach for workflow service selection 72

1. each unassigned customer c ∈ C builds its preferences list on aggregators ac-
cordingly to Eq. (4.16);

2. each aggregator a, receiving a set of proposals Ca ⊆ C, builds its preference
list performing, for each customer, the VCG auction;

3. each aggregator that receives more than one proposal, i.e., |Ca| > 0, selects the
most favorite customer c⋆a in accordance with Eq. (4.19), and accepts to serve
c⋆a among those received, rejecting the others;

4. each unassigned customer c ∈ C deletes from the possible aggregators those
having an available resource capacity lower than Rc;

5. repeat 1)− 4) until all the customers have been matched with one aggregator.

Note that, in our problem, the preferences list of each customer depends on the
assignments of the other players. This corresponds to the case of a game belonging
to the class of matching problems in which the preference lists change based on the
choices performed during the algorithm execution, typically referred as matching
games with externalities [80]. Therefore, due to the existing interdependencies and
relations among the players’ preferences lists, these lists have to be updated after
each algorithm assignment.

The matching algorithm developed is that it terminates in a finite number of it-
erations. In order to perform the termination analysis, the worst case scenario is
considered, and the following assumptions are made: i) there is only one aggre-
gator a; ii) during each iteration only one customer is allocated on the aggregator
a; iii) La = ∞. In reference to steps 1)-5) of the algorithm previously introduced,
considering the working hypothesis i)-iii), the algorithm terminates in a number of
iteration µ equal to the number of customers, i.e., in µ = |C| steps. Removing hy-
pothesis i)-iii), the resulting scenario is not worst case, and the algorithm terminates
in a number of steps µ ⩽ |C|.

Algorithm design has the following implications, in terms of customer fully-
rational perspective, and provider alternation in winning auction:

Behavioural consequence (C2): Selfish customer behaviors are allowed. This is the
practical consequence for not having bounded above the term bc. As a matter of principle,
each Costumer may select an arbitrary large bc > Rc in order to be assigned to its most
preferred aggregator.

Behavioural consequence (C3): The market proposed does not safeguard alternation
in service adjudication among providers. The possibility of having providers with potentially
winning bids linked to aggregators unavailable to host customers is not excluded. This case
stems from the condition in which the available resources on the aggregator, i. e., Eq. (4.15),

4.3 Matching-based customers-aggregators assignment 73

are insufficient to accept the customer requiring the minimum cost. Furthermore, the case
where a provider offers valuable bids, but it is never the best, may occur.

Future work may consider mechanisms to mitigate the non-alternation due to
free competition in provider market. For example, metrics focusing on both bids
age and quality may be introduced to favor alternation among providers. Simi-
larly, to overcome the resource unavailability issue, gentrification-like mechanisms
[82, 83], i.e., the process whereby providers with high-quality bids leaves the ag-
gregatorwith unavailable resources to freely competewith providers linked to other
aggregators, may be investigated.

4.3.3 Stability analysis
As opposed to classical matching problems, for matching games with externalities
there not exists any algorithm that guarantees a stable outcome. This challenging as-
pect is due to the presence of dependencies among the players’ preferences [79]. In
order to discuss the stability of the matching stemmed by the proposed framework,
the following S2ES stability definition is given and represents a modified version of
the one originally proposed in [84].

Definition 7. Let Z be the outcome matching of the algorithm developed. Let Z(c) be the
aggregator matched with the customer c in the matching Z . The outcome matching Z is a
S2ES matching if there not exists a pair of customers (c1, c2) s.t.:

1. Hc1(Z(c2)) ⩾ Hc1(Z(c1)) and

2. Hc2(Z(c1)) ⩾ Hc2(Z(c2)) and

3. EZ(c1)
(c2) ⩾ EZ(c1)

(c1) and

4. EZ(c2)(c1) ⩾ EZ(c2)(c2) and

5. ∃ψ ∈ {c1, c2} s.t. at least one of the conditions 1)− 2) is strictly verified and

6. ∃ϕ ∈ {Z(c1),Z(c2)} s.t. at least one of the conditions 3)− 4) is strictly verified.

Definition 7 means that a swap is allowed if an improvement to at least one cus-
tomer and one aggregator involved is provided, and the rest of players participating
in the swap do not worsen. Aiming at proving the stability of the proposed match-
ing algorithm, the assumption of the existence of a pair of customers (c1, c2), for
which the conditions 1)− 2) of Definition 7 results to be true, is done. Furthermore,
let c1 and c2 be s.t. Z(c1) = a1 and Z(c2) = a2, respectively. This necessarily means
that

Hc1(a2) ⩾ Hc1(a1), (4.20)

A game-theoretical approach for workflow service selection 74

Hc2(a1) ⩾ Hc2(a2). (4.21)

In reference to the satisfaction of condition 5) ofDefinition 7 byEqs. (4.20) and (4.21),
since the proposed assignment policy does not provide any discard strategy, the
amount of available resources on aggregators cannot increases during the assign-
ment process. Therefore, the preference list of eachmatched customer cannot change
after its assignment. Since, after the assignment of the generic customer on the ag-
gregator, the amount of available resources on that aggregator cannot increase, then
at the most Hc1(a1) = Hc1(a2) and Hc2(a2) = Hc2(a1). As a consequence, condition
5) is not verified. Therefore, even if condition 6) is verified, the proposed matching
game reaches a configuration satisfying the S2ES property.

Behavioural consequence (C4): The stability of the game formulated underlines that
the objective pursued by the social welfare-oriented maximization coincides with the objec-
tive of an aggregator that arbitrarily deviates its partner selection to pursue its individual
interests. The result holds under the assumption that the aggregator is modeled as altruistic,
in the sense presented in [85]. Accordingly to [85], an aggregator is altruistic if it keeps its
partner to avoid customer worsening, even if the rational choice is to deviate the match. Dif-
ferently, a rational aggregator [85] obeys to a selfish behavioural model, changing partner if
doing so it increases its reward. The stability discussion of this case can be addressed relaxing
Definition 7, allowing that only one between conditions 5) and 6) is satisfied. Nevertheless,
the theoretical analysis of this behavioural model is out of the scope of the paper in its current
form, which investigates this case from an experimental perspective in Section 4.4.

Algorithm 7:Matching assignment strategy
input : set of customers C, set of aggregators A
output: assignment matrix Γ

1 while ∃a ∈ A with available resources and unmatched customers do
2 compute customers preference list;
3 compute aggregator preference lists invoking the VCG auction;
4 foreach unmatched customer c do
5 propose assignment to the most favorite aggregator;
6 foreach aggregator a receiving proposals do
7 select the most favorite customer c⋆;
8 Γ(c⋆, a) = 1
9 return Γ

4.4 Experimentation
In this section, the applicability and the effectiveness of the proposed framework are
tested with the aim of answering the following research questions:

4.4 Experimentation 75

Algorithm 8: VCG service selection strategy
input : aggregator a, set of provider P, set of customers allocated on

a
output: selection matrix ∆

1 while ∃s unselected do
2 foreach provider p ∈ P do
3 propose the CDF Fs;
4 foreach received CDF do
5 select the best CDF on the basis of the Pairwise-comparison

dominance;
6 select the corresponding provider p⋆;
7 ∆(s, p⋆) = 1
8 return ∆

• Q1. How does the approach perform in terms of system welfare (i.e., wel-
fare of aggregators and providers) in comparison to a strategy assuming full
knowledge about the system?

• Q2. How does the system welfare vary when at least one provider is not able
to satisfy the agreed SLO? How do the aggregator reward and the provider
reward change?

• Q3. How does the aggregator reward vary when the critical value Θ and the
level of competitiveness among the providers change?

4.4.1 Experimental setup
The approach is implemented in Java, using the SIRIO Library [57] of the ORIS
tool [86] to represent and manage CDFs. The implementation exploits also the Eu-
lero library [87] to compute the PDF ftE of the e2e time tE of the workflow of each
customer c (based on the CDF FX̃⋆,s

of the actual completion time of each service s
of the workflow), and consequently, based on Eq. (4.2), to derive the expected re-
ward of aggregator a serving customer c as E[Uc,a] =

∫ ∞
t=0(1− Fc(t) +Θ) · (bc− Rc) ·

ftE(t) dt. Similarly, the expected reward gained by provider p in supplying service s
can be computed through Eq. (4.9) as E[Rp⋆,s] =

∫ ∞
t=0(1− FY(t)) · fX̃⋆,s

(t) dt, where
FY(t) is the CDF of the second best bid (according to the VCG auction) and fX̃⋆,s

is
the PDF of the actual completion time of service s (i.e., the actual pdf of the provider
winning the auction banned to supply service s).

The considered 3 workflow topologies are made of 8 services composed through
the sequence operator (sequential topology), the split-join operator (parallel topol-
ogy), or a well-nested combination thereof (mixed topology). Since transitivity of

A game-theoretical approach for workflow service selection 76

the Pairwise-comparison dominance relation is proved on the class of uniform dis-
tributions, the CDF Fc representing the SLO expressed by each customer c, the CDF
representing the bid expressed by each provider for each service (including the
CDF Fs modeling the SLO agreed for each service s according to the VCG auction),
and the CDF F̃s of the actual completion time of each service s are assumed to be
Uniform CDFs, which also enables to easily control different working scenarios, fa-
cilitating the interpretability of results. The competitiveness among providers is
controlled by choosing different support bounds, and different expected values, as
illustrated in Section 4.2.2.

Each service of each workflow belongs to a different type. For each aggrega-
tor and each service (of each workflow) that the aggregator proposes to supply,
two providers are generated as follows, where not otherwise specified. For the first
provider, a uniformCDF is takenwith support bounds [a, b]. In particular, to reduce
the correlation between aggregator available resources and the performance of its
providers, a is randomly drawn between 0 and 10, favoring lower or higher values
depending on whether the aggregator has few or many resources available, respec-
tively; b is then obtained as a plus a value randomly taken between 0 and 5. For the
second provider, a uniform CDF is taken with support bounds [c, d], where c is ran-
domly drawn between a and a + 2.5, while d is randomly selected to guarantee that
the bid is dominated by the bid of the first provider. Moreover, the SLO Fc expressed
by each customer c is a Uniform CDF having support [e, f] with e evaluated as the
difference between expected value and the variance of the completion time of the
workflow whose activities are distributed as Uniform distributions having support
[2.5, 7.5], and f evaluated to fit that expected value. In turn, E[tE] is obtained from
the PDF ftE . Where not otherwise specified, ftE is computed assuming that the CDF
F̃s of the actual completion time of each service s supplied by each provider p is equal
to the bid expressed by p. Furthermore, to bound the dynamic of the problem and
improve the readability of the results, the cost Rc of the request of each customer c
is set to 1, the price bc offered by each customer c is set to 20, and the capacity La of
each aggregator a is uniformly selected over [5, 20].

The experiments illustrated in the following subsections are performed using a
single core of an Intel Xeon Gold 5120 CPU (2.20 GHz) equipped with 32 GB of
RAM.

4.4.2 Analysis of the Price of Anarchy
A variant of the proposed approach is implemented, where full knowledge about
the system is exploited to build the preference lists of customers, defining the utility
of customer c in being matched with aggregator a as H′c(a) = La(1− Fc(tE)) rather
than as in Eq. (4.16). To measure the performance degradation in adopting local
metrics to build preference lists, the Price of Anarchy (PoA) [46, 45] is computed.

4.4 Experimentation 77

Figure 4.4: Average (over 200 runs) Price of Anarchy (i.e., ratio between the ex-
pected system welfare achieved by the full-knowledge approach and that achieved
by our approach) as the number of aggregators increases.

In particular, the PoA is defined as the ratio between the expected system welfare
achieved by the full-knowledge approach and that achieved by the proposed ap-
proach:

PoA =

C

∑
c=1

A

∑
a=1

E[U ′c,a]γ
′
c,a +

S

∑
s=1

P

∑
p=1

E[R′s,p]δ
′
s,p

C

∑
c=1

A

∑
a=1

E[Uc,a]γc,a +
S

∑
s=1

P

∑
p=1

E[Rs,p]δs,p

(4.22)

where the quantitieswith primedenote those of the full-knowledge approach. Specif-
ically, C = 20 customers, A ∈ {2, 4, 8, 16} aggregators, and 1workflowwith random
topology (among sequential, parallel, andmixed) for each customer are considered,
while the remaining parameters are selected as illustrated in Section 4.4.1. For each
number of aggregators, 200 instances of the problem are generated, deriving the
average PoA, as shown in Fig. 4.4. Results show that the average PoA increases as
the dynamics of the problem grows. This implies that, for a system that includes a
low number of aggregators, the possible matches are reduced and almost equiva-
lent with respect to the chosen matching strategy. This is also corroborated by the
value 1 of the PoA for the case of 2 aggregators. As soon as the problem grows in
complexity, the additional information introduced by the full-knowledge algorithm,
i.e., 1− Fc(tE), is a recessive metrics for our problem compared with La. This fact
means that preference lists defined in Eq. (4.16), based on local and partial informa-
tion about the system, are not able to properly catch the dynamics of the problem,
when the combinatorial space grows in dimension, i.e., when the number of aggre-
gators increases, making the assignment more challenging. However this is a con-
sequence of having reduced correlation among aggregator resources and provider
capabilities. In fact, for configurations built without driving the random generation,
the dynamic of the system is complex to be caught and, despite the two matching
strategies identify different matches, the average utilities converge to same value.

Hence, when it is known that different aggregators are served by differently per-

A game-theoretical approach for workflow service selection 78

(a) (b)

Figure 4.5: Average (over 200 runs) aggregator utility as the value of the slowing fac-
tor σ increases in the cases of: (a) balanced delay (i.e., support bounds are delayed
by factor σ) and (b) unbalanced delay (i.e., support bounds of the actual completion
time of a single service is delayed by σ).

forming providers, the full-knowledge strategy should be preferred. Otherwise, the
proposed matching strategy can be exploited (and even preferred, since ordering
lists with respect to a value, i.e. the available resources, is more efficient than order-
ing lists with respect to a function, i.e., 1− Fc(tE)).

4.4.3 Analysis under unexpected delays
The impact of unexpected delays in service supply on the aggregator utility is evalu-
ated. To this end, A = 1 aggregator and C = 1 customer requesting 1workflowwith
sequential topology are considered, and two different kind of delays are tested: in
the first, all services of theworkflow are subject to a delay (balanced delay); in the sec-
ond, only one of the services is subject to a delay (unbalanced delay). In the nominal
casewithout delay, for each service s supplied by provider p, the CDF F̃s of the actual
completion time is equal to the bid expressed by p. In the case of balanced delay,
each service s supplied by provider p is delayed by increasing the support bounds
(and so the expected value) by a factor σ ∈ {0.1, 0.2, . . . , 1}, e.g., if σ = 0.1, then
the support bounds and the expected service time is increased by 10% with respect
to the nominal case. Conversely, in the case of unbalanced delay, the variation is
applied only to a single service s of the workflow, by increasing the support bounds
and the expected value of a factor of F̃s by σ with σ ∈ {8 · 0.1, 8 · 0.2, . . . , 8 · 1}, where
8 is the number of services of the workflow. The remaining parameters are selected
as illustrated in Section 4.4.1.

For each value of σ, 200 instances of the problem are generated, deriving the av-
erage aggregator utility, as illustrated in Figs. 4.5a and 4.5b for the cases of balanced

4.4 Experimentation 79

(a) (b)

Figure 4.6: (a) Average (over 200 runs) aggregator utility as a function of ∆µ (i.e.,
which rules the earliness of support bounds and expected value of the best bidswith
respect to the second best bids), for different values of the critical parameter Θ of
the proposed approach. (b) Average (over 200 runs) provider utility as a function
of ∆µ.

and unbalanced delay, respectively. As expected, the average aggregator utility de-
creases as the slowing factor σ increases, since the expected actual completion time
of the workflow increases. Note that, as σ increases, the reduction in the average
utility is larger in the balanced case, when an expected delay of 100 · σ % affects
each of the 8 services, rather than in the unbalanced case, when an expected de-
lay of 8 · 100 · σ % affects a single service, given that the expected delay in the e2e
workflow time is larger in the first case. It is possible to show that for both the con-
sidered cases, the workflow completion time is equally delayed, as a consequence
of using uniform distributions to characterize activities of the workflow. Since the
completion time is identically delayed for the tested cases, the average utility of the
aggregator (first addend in Eq. (4.3)) is identical same in both cases. Instead, as
the delay amount increase, the cumulative utility of providers (second addend in
Eq. (4.3)) is more penalized when many aggregators results to be delayed Conse-
quently, the utility of the system tends to decrease more slowly in the unbalanced
delay case than in the balanced case. This suggests that the presence of very reliable
providers succeeds in shielding the presence of an unreliable provider, more than
many equally reliable providers are able to.

4.4.4 Analysis under variable competitiveness
The impact of the competitiveness amongproviders on the aggregator utility and the
provider utility is evaluated. To this end, A = 1 aggregator and C = 1 customer re-
questing one workflowwith mixed topology are considered. Then, different scaling

A game-theoretical approach for workflow service selection 80

factor ∆µ values are considered. In particular, values of ∆µ rules the earliness of the
expected value and thewidth of the support of the uniformCDF of the best bidwith
respect to expected value and the width of the support of the uniform CDF of the
second best bid, identified by the VCG auction banned for each service s. In particu-
lar, the second best bid is a fixed uniform distributionwith expected value µ2nd = 10
and support [7.5, 12.5] and, while the best bid is a uniform distribution having ex-
pected value µ1st =

3µ2nd
2∆µ

and support
[

2µ1st+log2 ∆µ−µ2nd/2
2 , 2µ1st−log2 ∆µ+µ2nd/2

2

]
, with

∆µ ∈ {1, 2, 4, 8, 16}.
The remaining parameters are selected as illustrated in Section 4.4.1, respectively.
For each value of ∆µ, 200 instances of the problem are generated, deriving the

average aggregator utility and the average provider utility, as illustrated in Figs. 4.6a
and 4.6b. As ∆µ increases, the average aggregator utility in Fig. 4.6a increases due
to the fact that (1− Fc(tE)) increases. From a certain value of ∆µ on, (1− Fc(tE))

becomes equal to 1 and thus the average aggregator utility remains almost constant.
To analyze average aggregator utility under different market settings, experiments
are repeated with Θ ∈ {1

2 , 2
3 , 3

4 , 5
6 , 1}. For each value of ∆µ, the greatest value of

the average aggregator utility is obtained with Θ = 1, which in fact represents the
best-case condition where aggregators receive the highest possible payment from
customers according to Eq. (4.2). According to this, as the value of Θ decreases,
also the average aggregator utility decreases.

Similarly, the average provider utility in Fig. 4.6b increases with ∆µ, up to a cer-
tain value after which it remains constant, which comprises a direct consequence of
the VCGmechanism. In fact, according to Eq. (4.9), as the first best bid outperforms
more and more the second best bid, the average provider utility increases, until the
service completion time corresponding to the first best bid is deterministically bet-
ter than that of the second best, in which case the average utility of each provider
tends to 1, i.e., the maximum value achievable. In Fig. 4.6b, given that the workflow
consists of 8 services, the average utility of providers tends to 8.

Chapter 5

Model-Driven Engineering for
manufactures predictive analysis

This chapter illustrates a Model-Driven Engineering (MDE) approach the applica-
tion of the research methods proposed in Chapters 2 and 4 to concrete models com-
ing from the real application contexts of a manufacturing district. In particular, af-
ter the characterization of a meta-model that describes entities of a manufacturing
district and their relationships, the approach shows how to implement Model-to-
Model (M2M) transformations [47] to mapmanufacturing domain-specific models
of production to the environment presented in Fig. 4.1, comprising the production
workflow specification as structure tree, enabling their quantitative evaluation.

The chapter is organized as follows. In Section 5.1, ametamodel of amanufactur-
ing district is provided, with particular attention to the entities that can be mapped
to a workflow and to the competition environment of Chapter 4. Section 5.2 illus-
trates how M2M transformations among models conforming to the different con-
sidered metamodels are accomplished. Then the approach is demonstrated on the
model of a production from the context of a textile manufacturing district. The de-
scribed process shows how MDE can be exploited in different application domains
to provide added value features for planning or taking process design decisions.

81

Model-Driven Engineering for manufactures predictive analysis 82

5.1 A metamodel of a manufacturing district
Amanufacturing district is a complex environment inwhichmany parties cooperate
and compete to produce material goods and products for a specific type of industry
(e.g., garments for the fashion industry, electronic components for high-tech indus-
try). Typically, the considered parties are specialized in solving different types of
processings, which are subject to precedence constraints that determine their order
of execution. The result is a complex puzzle, which is difficult to manage and plan,
and that could benefit from the implementation of efficient and accurate quanti-
tative valuation methods. In this section, a general description of manufacturing
district is provided (Section 5.1.1), and a metamodel of this contexts is illustrated
(Section 5.1.2).

5.1.1 Description of the context
In a manufacturing district, there are three typologies of parties that interact with
each other.

• The customer (e.g. a fashion brand) is the party that requires the production
of some good or product to be used for its business.

• The converter (e.g. a woolen mill) is the party who acquires orders from cus-
tomers, taking charge of production autonomously, or partially involving other
parties.

• The contractor (i.e. a dyeing factory, yarning factory) is a party that has special-
ized manufacturing resources that can be deployed to accomplish processings
of a larger production acquired from a converter.

When a converter acquires an order from a customer, a supply contract that spec-
ifies a product from those available in the converter catalog is concluded. Specifically,
the contract details the required quantities and the expected delivery dates of the
good. A product is realized through a series of processings. A processing is a trans-
formation that takes raw materials or subassemblied products as input and produces
subassemblied products or finished products. Each processing has its own specific
characterization, which determines the type of absorbed production resources and
the time required to complete it.

Product-specific information are encoded by the converter in the Bill of Materials
(BOM), which is a document that specifies the hierarchy of components that consti-
tute a product, comprising the quantities required for every type of raw material or
subassemblied product. The BOM determines the Bill of Processes (BOP), which is
a document that specifies the order of execution among the processings. The BOM
and the BOP become primary characteristics of each type of product available in the

5.1 A metamodel of a manufacturing district 83

catalog of a converter. The processings defined in a BOP can be allocated by the
converter to different contractors. The choice may depend on several criteria, such
as the contractor resources, reliability, or productivity.

Contracts between customers, converters and contractors, specify the expected
completion time to complete the production or to end a specific processing. This
time can be specified as a date or a time slot, and can be characterized as a deter-
ministic growth (e.g., a specific date, a range of days) or as a sample CDF (e.g.
within the day x production completes at 90%, within the day y at 95%, and so on).
Expected times are subject to delays that are induced by internal events (e.g. reallo-
cation of resources to higher priority productions, unexpected machine failures or
stuff absence) or external events (e.g. fashion brand requires an invasive change to
a production, logistical problems or delays in raw material deliveries). The occur-
rence of a delay results in a decrease in the profit of the parties affected by the delay.
In this case, mechanisms can be provided to penalize the utility or reputation of the
delayer, with the intent of to minimize the loss of profit caused by the delay, or to
exclude untrustworthy parties from future assignments.

5.1.2 The proposed metamodel
In Section 5.1.2, it is shown a UMLClass Diagram that specifies a metamodel for the
described context.

Figure 5.1: The proposedUMLClass Diagram of themetamodel of amanufacturing
district.

Model-Driven Engineering for manufactures predictive analysis 84

In the metamodel, the Customer and Converter entities are in a many-to-many as-
sociation through the entity Contract. This entity specifies the Product entities that
are required by a customer. The desired product can be chosen among those that are
collected in the Catalog entity of every converter. The catalog contains the BOMs of
the available types of product, which specify the recipe to realized a single concrete
unit of that product type. The BOM of a product type is characterized as a Com-
posite Pattern [88], where the interface is the entity Product Type, the basic element
is the Raw Material Type entity, and the compositional elements are the Subassembly
Type entities. When customer and converter close a contract that specifies the re-
quired product types, concrete production of that product type can be started by
implementing a Reflection mechanism. The Reflection pattern [89] separates an ab-
stract layer of representation from an operational layer. The abstract layer enables
the specification of relationships, attributes, and features that characterize an entity
in an absolute sense, while the operational layer enables the concretization of those
relationships, attributes, and features, by specifying their concrete values. There-
fore, the Composite pattern encoded in entities Product Type, Subassembly Type and
Raw Material Type will correspond to the Composite pattern implemented by the
entities Product, Subassembly and Raw Material, which define the nominal quantities
that are expressed by the related types. This mechanism enables to handle an order
based on the available stocks in thewarehouse. In fact, the quantity of units required
for a product type to fulfill an order requested by a customer is calculated net of
stocks of that product type, which are encoded in the association entity Availability.
Also the representation of processing exploits the Reflection Pattern. Specifically,
while entity Processing Type characterizes the type of processing in terms of some
quality attribute, the entity Processing represents the processing in terms of its nom-
inal parameters such as the machine allocated for that processing or its operating
period. Each process is assigned to an entity Contractor. The many-to-many rela-
tionship between Converter and Contractor is represented by the entity Order, which
contains the reference to the Processing entities that are assigned by the converter to
the contractor included in the association. The choice among different Contractors
for a specific Processing is delegated to external strategies.

The proposed metamodel is effective in characterizing the context of a manu-
facturing district, from the perspective of the converter. In fact, the metamodel in-
cludes all the entities and relationships that are necessary to characterize the macro-
planning of a product supply chain. Specifically, the metamodel enables to rep-
resent BOMs, involved cooperating/competing parties, required processings and
warehouse stockings. All these information can be used by a Converter to manage
and plan the production of a good, and could be valued by the application of the
scientific methods presented in this thesis work, since they would enable a smart
support for supply chain design choices. This is pursued by applying MDE ap-

5.2 Demonstration on a case of study 85

proaches, in which some transformations that can map instances of this metamodel
to instances of themetamodels described inChapters 3 and 4 are identified, enabling
the application of the presented scientific methods to a concrete case of application.

5.2 Demonstration on a case of study
Model-to-model (M2M) transformations are used to move from one domain to an-
other one much closer to the solution domain [47]. In this section, a description
of the transformations required to map manufacturing district production models
to the scientific application models defined for Chapters 2 and 4 is provided (Sec-
tion 5.2.1); then, an application example is illustrated (Section 5.2.2).

5.2.1 Description of the transformations

In our case study, the transformation aims at providing a model of the competition
environment described bymodel of Fig. 4.1, comprising the structure tree workflow
representation of the BOP of the production. This involves two types of M2M trans-
formations. The first concerns the parties in themodel of Section 5.1.2 and how these
are mapped to the participants in the model of Fig. 4.1. The second determines how
the concrete BOP of a product can be mapped to the structure tree of a workflow
that use each processing of the BOP as a workflow activitiy. Note that since the
Customer of model Fig. 4.1 requires a workflow to be provided, then it is possible
to embed the mapping between BOP and structure tree workflow in the mapping
between the parties of Section 5.1.2 and the participants of Fig. 4.1.

Through the definition of these transformation, it is possible to exploit scientific
methods in a manufacturing district to determine the optimal assignment among
contractors and processings, and to predict the completion time of a production.
Following the classification in [90], this M2M process can be seen as a bidirectional
transformation, where both domains can be used as the source and target domain
of the transformation. Recalling that the MDE approach is aimed at determining
the best contractors for the production processings, and the best matching among
customer and converter, exploiting the structure tree workflow specification of the
production BOP to estimate the completion time of the production, the bidirection-
ality of the transformations can be observed in the steps required to get an optimal
matching between the entity of the manufacturing district:

• Initially, some instances of Customer, Converter and Contractors are provided,
in the manufacturing district domain. At the beginning of the process, any
Contract nor Order entity associates the district parties among them.

Model-Driven Engineering for manufactures predictive analysis 86

• Then, Contractors of themanufacturing district domain are mapped to Provider
of the scientific application domain, Converter to Aggregator and Customer to
Customer. For each of these maps, simple attributes (e.g. name of the parties,
available resources) are directly mapped to the analogous attributes in the tar-
get domain.

• In theContractor-to-Provider transformation, an information is added in the tar-
get domain. In particular, the stochastic service time of the provider is spec-
ified by passing a parameter to the method that implements the transforma-
tion. This can also be easily implemented as a Rest API, that can be called by
contractors that intend to compete in the auction of a certain processing.

• In theCustomer-to-Customer transformation, the desired stochastic service time
is specified as done in the previous step.

• The Customer-to-Customer transformation also embeds the specification of the
structure tree workflow representation of the desired BOP. In particular, cho-
sen the desired product BOM from the Catalog, since every Subassembly Type
of the BOM has a reference to a Processing Type entity, it is possible to build up
the workflow structure tree by simply visiting the Composite of the product
BOM.

• In the auction-game domain, it is now possible to play the algorithm described
in Section 4.2 for every processings constituting the activities of the BOPwork-
flow. This also comprises the evaluation of the workflow through the compo-
sitional method of Algorithm 1.

• After the auction, a transformation to themanufacturingdistrict domain is per-
formed. back. In particular, winning providers are mapped back to Contractor
instances, associating them to the instance of Converter through the entity Or-
der. The entityOrder includes the timing details corresponding to the SLO and
the SLA of the target domain, and the references to the Processing entities for
which the contractor has won the auction.

A schema of the proposed transformations is provided in the UML Class Dia-
gram of Figs. 5.2a and 5.2b, where the main classes of the considered domains are
recalled, and the perfomed mapping are illustrated. In particular, Fig. 5.2a shows
the map the enables a BOP to be transformed into its structure tree workflow of
activities, and Fig. 5.2b shows how the parties of a manufacturing district are trans-
formed into the participants of Fig. 4.1, also showing the bidirectionality of themap-
ping which is encoded in the dependencies from entities Contractor and Provider,
Customer and Customer, Product and Workflow, on one direction, and Aggregator and
Contract, Provider and Order, on the other direction.

5.2 Demonstration on a case of study 87

(a)

(b)

Figure 5.2: The UML Class Diagram that illustrates the proposed M2M transforma-
tions. In particular, (a) demonstrates how a BOM (BOP) is mapped to a workflow;
(b) shows how parties from different domains are mapped from a domain to the
other.

By means of this set of rules, it is easy to switch from one of the considered
domain to the other and to apply the scientific methods presented in Algorithm 1
and Section 4.2 to the concrete context of a manufacturing district. The application
of these methods bring a higher level of knowledge that enables to perform more
reliable business choices based on sound information.

Model-Driven Engineering for manufactures predictive analysis 88

5.2.2 Application of the transformations
To demonstrate the scientific method, the model of a textile manufacturing produc-
tion, having the BOM illustrated in the UML Object diagram of Section 5.2.2, is con-
sidered. The model represents an order in which two fabrics of different colors are
requested and released after a finishing processing. The first fabric (Waved Fabrics
A) is obtained by applying processes of spooling and weaving to a yarn (A); the sec-
ond fabric is obtained from two different yarns (B and C), one of which (C) is before
subjected to the process of washing, in order to eliminate impurities from the early
stages. Part of the Weaved Fabrics B is coloured using the raw material Dye B, pro-
ducing the subassemblied product Colored Fabrics B; the remainingWeaved Fabrics B
and Weaved Fabrics A are subjected to another dyeing process, which consumes the
raw material Dye A to produce the product Colored Fabrics A. Finally, the obtained
fabrics are finished and ready to be delivered. From the illustrated model, it is pos-
sible to evince that the types of processes involved in the production are 5, washing,
spooling, weaving, dyeing and finishing, some of which are performed multiple times,
for a total of 9 concrete processings. Through the transformation rules illustrated in
Fig. 5.2a, the considered model is mapped to the workflow structure tree shown in
Section 5.2.2.

Figure 5.3: The UML Object Diagram of the BOM and BOP of the production de-
scribed in Section 5.2.2.

For the sake of simplicity, in the perspective of the involved parties, only one cus-
tomer and converter are considered, making trivial thematching problem described
in Section 4.3, as only one pair can be formed. For each of the processing, 3 differ-
ent contractors are considered. Each of these contractors participates in the VCG
auction described in Section 4.2 offering a uniform distribution as a bid. Parameters

5.2 Demonstration on a case of study 89

TOP

C

D

A

B

B
Color

B

A
Color

A

D
SEQ

AND
L

SEQ
O

M
Weav

B&C

N
Spool

B

Q
Spool

C

P
Wash

C

C
SEQ

Y
Weav

A

X
Spool

A

SEQ

Z
Finish

Figure 5.4: The structure tree of theworkflow obtained applying the proposedM2M
transformation to the model illustrated in Section 5.2.2.

a of the distributions is randomly drawn in the interval [0, 2], while parameters b
in the interval [3, 5], so that every process is guaranteed to last at least 1 time unit.
Table 5.1 shows the drawn stochastic parameters that characterize the uniform dis-
tribution provided by each contractor for a specific processing, ordered by the first,
the second and the third best bids, showing the winners and the time constraints to
which they are subjected.

After contractors are assigned to activities, the completion time of the workflow
can be evaluated through the compositionalmethod described in Section 2.3. In par-
ticular, given the workflow structure, the comparison conducted between the two
analysis heuristics in Section 2.4.2 leads to exploit heuristic 1 to evaluate the com-
pletion time both during the auction game and after assigning contractors to tasks.
For each analysis, the time horizon is set to the workflow support and the time tick
to 0.1 time unit. The obtained PDF and CDF completion time are shown in Fig. 5.5.
The figures show how different contractors impact on the final results, highlighting
the effectiveness of the game-theoretical matching-based approach. The red lines,

Model-Driven Engineering for manufactures predictive analysis 90

the blue lines and the green lines show the completion times when activities are dis-
tributed according to the bid of the best, the second best and the worst contractors,
respectively. As expected the obtained CDFs are stochastically ordered, confirming
that choosing more efficient contractors determines a faster completion time of a
supply chain workflow. Result are obtained on a single core of an Intel Xeon Gold
5120 CPU (2.20 GHz) equipped with 32 GB of RAM.

Processing Contractor a b Processing Contractor a b

Spooling A
1st 0.92s 3.56s

Spooling B
1st 0.15s 3.45s

2nd 1.04s 3.91s 2nd 1.24s 3.13s
3rd 0.14s 4.89s 3rd 1.00s 4.34s

Washing C
1st 0.56s 4.01s

Spooling C
1st 0.00s 4.13s

2nd 0.35s 4.41s 2nd 0.50s 3.75s
3rd 1.25s 4.52s 3rd 0.58s 4.58s

Weaving A
1st 0.44s 4.20s

Weaving B
1st 1.00s 3.86s

2nd 0.21s 4.91s 2nd 0.03s 4.85s
3rd 1.79s 3.56s 3rd 1.85s 3.88s

Dyeing A
1st 0.00s 3.48s

Dyeing B
1st 1.36s 3.20s

2nd 0.84s 3.93s 2nd 1.45s 3.35s
3rd 1.17s 4.01s 3rd 1.60s 4.87s

Finishing
1st 0.08s 3.89s
2nd 0.99s 4.00s
3rd 0.34s 4.72s

Table 5.1: Parameters of uniform distributions [a, b] bid by contractors for each pro-
cessing. For each processing, the distributions are ordered from the best contractor
(1st) to the worst (3rd), according to the Pairwise-comparison dominance defined
in Definition 6.

5.2 Demonstration on a case of study 91

(a) (b)

Figure 5.5: PDF (a) and CDF (b) evaluated for the workflow of Section 5.2.2 with
different stochastic characterization of the activities.

Chapter 6

Conclusions

This thesiswork develops around the concept ofworkflow,which is explored inmul-
tiple aspects. On one hand, a hierarchical workflow representation formalism was
identified, enabling the development of some compositional heuristicsmethods that
efficiently provide an accurate stochastic upper bound of the response time PDF of a
workflow. The conducted experimentation shows that the proposed compositional
method scales easily on workflows with a high degree of complexity, i.e. workflows
having a high number of concurrent and generally distributed over bounded sup-
port durations. In particular, experiments on a suite of synthetic models of increas-
ing complexity show that the approach achieves sufficient accuracy in a very limited
computation time, notably outperforming simulation having the same computation
time. The conducted research and the intent of implementing a robust experimen-
tation to support it, leads to the realization of a Java library that provides features to
headlessly model and evaluate workflows. The library is designed with the intent
of ensuring easy extendibility, opening to future integrations or extensions of the re-
searched methods. In particular, workflow modeling could be extended with other
constructs, possibly affecting well-formed nesting (e.g. introducing loops) or com-
ing from different formalism (e.g. Business Process Model and Notation (BPMN)
or Business Process Execution Language (BPEL)), provided that positive correla-
tion is guaranteed among the response times of different subworkflows. In turn,
workflow evaluation is open to the definition of other heuristics to differently ex-
plore the structure tree and decompose the workflow, to the exploitation of other
analytical approximations in the class of exponomial functions or piecewise CPHs
over bounded supports [91] to fit numerical PDFs, and to the integration of other
solution techniques to evaluate the response time PDF of a block.

On the other hand, workflows are addressed from the perspective of the defi-
nition of their stochastic parameters, in a context of competition between antago-
nistic parties on different layers of competition. In particular, a two-layer scenario
is considered where customers request repeated execution of complex workflows

93

Conclusions 94

to resource-constrained aggregators under specific SLOs, and aggregators offer ser-
vice outsourcing to providers competing for service delivery. Customer SLOs are
expressed as CDFs of the required e2eworkflow completion time, and provider bids
are expressed asCDFs of the offered service completion time. The proposed stochas-
tic framework solves the assignment problem between customers and aggregators
through a matching game with externalities and incomplete information, during
which aggregators select providers through a VCG auctionmechanism, which char-
acterizes the stochastic parameters of the workflow. Experiments have been per-
formed to investigate the feasibility, the effectiveness and the robustness of the ap-
proach. Results shows that the local and partial information used to build the pref-
erence lists of customers is still able to properly solve the assignment of customers to
aggregators. Moreover, results also show that the approach can be effectively used
to estimate how the aggregator utility is impacted by unexpected delays in service
supply and by the level of competitiveness among providers. It is worth noting that
this kind of experimental evaluation is enabled by the fact that both customer SLOs
and provider bids are expressed in terms of CDFs (of workflow e2e time and indi-
vidual service completion time, respectively), and viceversa is substantially ruled
out when they are expressed as fixed values. The approach is open to various ex-
tensions. In particular, a hierarchical framework with more than two levels could be
designed, investigating the performance of combinations of solution methods other
than the one presented in this paper, e.g., the VCG auction mechanism could be ex-
ploited to solve the assignment problem at each level of the hierarchy. Notably, the
possibility to represent customer SLOs and provider bids through non-Markovian
CDFs (which are supported by the SIRIO and Eulero libraries, used to implement
the proposed approach) facilitates fitting of data (either observed or synthetically
produced) and thus application to a real application scenario.

Finally, this thesis work shows the use of the presented methods on real applica-
tion cases from a manufacturing districts, following an MDE approach. In fact, by
implementing M2M transformations that maps manufacturing district parties and
Bill of Materials to a resource constrained environment and to structure tree work-
flow, respectively, the proposed compositional evaluationmethod and the VCG auc-
tion are used to determine the stochastic parameters and the completion time of a
supply chain of from textile manufacturing district. These applications demonstrate
that the topics covered in the thesis have both a relevant scientific impact, and a cen-
trality for processes belonging to industrial anddigital business sectors, as they solve
salient problems that are shared among different application areas.

Appendix A

Publications

This research activity has led to several publications in international journals and
conferences. These are summarized below.1

Peer reviewed conference papers
1. L. Carnevali, R. Reali, E. Vicario, “Compositional evaluation of stochastic

workflows for response time analysis of composite web services”, Proceedings
of the ACM/SPEC International Conference on Performance Engineering (ICPE21),
pages:177–188, 2021. (Best paper award)
Candidate’s contributions: theoretical analyses, design and implementation
of experimentation.

2. L. Carnevali, M. Paolieri, R. Reali, E.Vicario, “Compositional Safe Approxi-
mation of Response TimeDistribution of ComplexWorkflows”, in International
Conference on Quantitative Evaluation of Systems (QEST21), pages:83–104, 2021.
Candidate’s contributions: theoretical analyses, design and implementation
of experimentation.

3. L. Carnevali, R. Reali, E. Vicario, “Eulero: a tool for quantitative modeling
and evaluation of complex workflows”, in International Conference on Quantita-
tive Evaluation of Systems (QEST22), pages:xx–xx, 2022.
Candidate’s contributions: design and implementation of the library and the
packages.

Workshop papers
1. P. Cappanera, L. Carnevali, L. Paroli, R. Reali, E. Vicario, “Resource alloca-

tion for complex DAG tasks with probabilistic execution times”, in 11th Inter-
1The author’s bibliometric indices are the following: H-index = 2, total number of citations = 5

(source: Google Scholar on Month March, 2023).

95

Publications 96

national Real-Time Scheduling Open Problems Seminar (RTSOPS22), 2022.
Candidate’s contributions: problem formulation, literature analysis, identifi-
cation of open issues.

2. L. Carnevali, M. Paolieri, R. Reali, L. Scommegna, F. Tammaro, and E. Vi-
cario, “Using the ORIS tool and the SIRIO library for model-driven engineer-
ing of quantitative analytics”, in 18th European Performance Engineering Work-
shop (EPEW22), September 2022.
Candidate’s contributions: problem formulation, design and implementation
of the experimentation.

Papers under review
1. L. Carnevali, M. Paolieri, R. Reali, E. Vicario. “Compositional safe approxi-

mation of response time probability density function of complex workflows”,
ACM Transactions on Modeling and Computer Simulation (TOMACS).
Candidate’s contributions: theoretical analyses, design and implementation
of experimentation.

Bibliography

[1] N. Russell, A. H. Ter Hofstede, W. M. Van Der Aalst, and N. Mulyar, “Work-
flow control-flow patterns: A revised view,” BPM Center Report BPM-06-22,
BPMcenter. org, pp. 06–22, 2006.

[2] T. G. de Kok and J. C. Fransoo, “Planning supply chain operations: defini-
tion and comparison of planning concepts,”Handbooks in operations research and
management science, vol. 11, pp. 597–675, 2003.

[3] W.M. Van der Aalst, “The application of petri nets to workflowmanagement,”
Journal of circuits, systems, and computers, vol. 8, no. 01, pp. 21–66, 1998.

[4] P. Bocciarelli, A. D’Ambrogio, A. Giglio, and E. Paglia, “Modeling resources to
simulate business process reliability,” ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), vol. 30, no. 3, pp. 1–25, 2020.

[5] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana, “Business process execution language for web services,” 2002.

[6] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A spec rg
cloud group’s vision on the performance challenges of faas cloud architec-
tures,” in Companion of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering, pp. 21–24, 2018.

[7] A. Rogge-Solti and M. Weske, “Prediction of business process durations us-
ing non-markovian stochastic petri nets,” Information Systems, vol. 54, pp. 1–14,
2015.

[8] G. Canfora, M. Di Penta, R. Esposito, andM. L. Villani, “Qos-aware replanning
of compositeweb services,” inProc. IEEE Int. Conf. onWeb Services, pp. 121–129,
IEEE, 2005.

[9] G. Casale, M. Artač, W.-J. Van Den Heuvel, A. van Hoorn, P. Jakovits, F. Ley-
mann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, et al., “Radon: ratio-
nal decomposition and orchestration for serverless computing,” SICS Software-
Intensive Cyber-Physical Systems, vol. 35, no. 1, pp. 77–87, 2020.

97

BIBLIOGRAPHY 98

[10] A. U. Gias, A. van Hoorn, L. Zhu, G. Casale, T. F. Düllmann, and M. Wurster,
“Performance engineering for microservices and serverless applications: The
radon approach,” in Companion of the ACM/SPEC International Conference on
Performance Engineering, pp. 46–49, 2020.

[11] D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, “Qos assessment of ws-bpel
processes through non-markovian stochastic petri nets,” in 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12, IEEE,
2010.

[12] E. D. Jensen, C. D. Locke, andH. Tokuda, “A time-driven schedulingmodel for
real-time operating systems.,” in Rtss, vol. 85, pp. 112–122, 1985.

[13] J. Rahman and P. Lama, “Predicting the end-to-end tail latency of container-
ized microservices in the cloud,” in 2019 IEEE International Conference on Cloud
Engineering (IC2E), pp. 200–210, IEEE, 2019.

[14] G. Ciardo, R. German, and C. Lindemann, “A characterization of the stochastic
process underlying a stochastic petri net,” IEEE Transactions on Software Engi-
neering, vol. 20, no. 7, pp. 506–515, 1994.

[15] S. Distefano and K. S. Trivedi, “Non-markovian state-space models in de-
pendability evaluation,”Quality and Reliability Engineering International, vol. 29,
no. 2, pp. 225–239, 2013.

[16] R. German and C. Lindemann, “Analysis of stochastic petri nets by themethod
of supplementary variables,” Perf. Eval., vol. 20, no. 1-3, pp. 317–335, 1994.

[17] M. Telek and A. Horváth, “Transient analysis of age-mrspns by the method of
supplementary variables,” Perf. Eval., vol. 45, no. 4, pp. 205–221, 2001.

[18] H.Choi, V.G. Kulkarni, andK. S. Trivedi, “Markov regenerative stochastic petri
nets,” Performance evaluation, vol. 20, no. 1-3, pp. 337–357, 1994.

[19] A. Bobbio, A. Horváth, andM. Telek, “Matching three moments with minimal
acyclic phase type distributions,” Stochastic models, vol. 21, no. 2-3, pp. 303–326,
2005.

[20] P. Reinecke, T. Krauß, andK.Wolter, “Cluster-based fitting of phase-type distri-
butions to empirical data,” Computers & Mathematics with Applications, vol. 64,
no. 12, pp. 3840–3851, 2012.

[21] A. Horváth and M. Telek, “PhFit: A General Phase-Type Fitting Tool,” in Proc.
Int. Conf. on Comput. Perf. Eval., Modelling Tech. and Tools, pp. 82–91, 2002.

BIBLIOGRAPHY 99

[22] P. Reinecke, T. Krauß, and K. Wolter, “Hyperstar: Phase-type fitting made
easy,” in 2012 Ninth International Conference on Quantitative Evaluation of Sys-
tems, pp. 201–202, IEEE, 2012.

[23] P. Reinecke, T. Krauß, and K. Wolter, “Phase-Type Fitting Using HyperStar,” in
Proc. Europ. Perf. Eng. Workshop, pp. 164–175, 2013.

[24] R. Fricks, M. Telek, A. Puliafito, and K. S. Trivedi, “Markov renewal theory ap-
plied to performability evaluation,” tech. rep., North Carolina State University.
Center for Advanced Computing and Communication, 1996.

[25] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario, “Transient analysis of
non-markovian models using stochastic state classes,” Performance Evaluation,
vol. 69, no. 7-8, pp. 315–335, 2012.

[26] R. German, D. Logothetis, and K. S. Trivedi, “Transient analysis of markov
regenerative stochastic petri nets: A comparison of approaches,” in Proceed-
ings 6th InternationalWorkshop on Petri Nets and PerformanceModels, pp. 103–112,
IEEE, 1995.

[27] A. Bobbio and M. Telek, “Markov regenerative spn with non-overlapping ac-
tivity cycles,” in Proc. Int. Comput. Perf. and Depend. Symp., pp. 124–133, 1995.

[28] Y. Zhang, Z. Zheng, and M. R. Lyu, “Wspred: A time-aware personalized qos
prediction framework for web services,” in IEEE Int. Symp. on Software Reliabil-
ity Engineering, pp. 210–219, IEEE, 2011.

[29] Y. Liu, Z. Zheng, and J. Zhang, “Markov model of web services for their per-
formance based on phase-type expansion,” in Proc. DASC-PICOM-CBDCOM-
CYBERSCITECH, pp. 699–704, IEEE, 2019.

[30] F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga, “Time-dependent
analysis of attacks,” in Proc. Int. Conf. on Principles of Security and Trust, pp. 285–
305, Springer, 2014.

[31] L. Carnevali, R. Reali, and E. Vicario, “Compositional evaluation of stochas-
tic workflows for response time analysis of composite web services,” in Pro-
ceedings of the ACM/SPEC International Conference on Performance Engineering,
pp. 177–188, 2021.

[32] L. Carnevali, M. Paolieri, R. Reali, and E. Vicario, “Compositional safe approx-
imation of response time distribution of complex workflows,” in Proceedings of
QEST 2021, vol. 12846 of Lecture Notes in Computer Science, pp. 83–104, Springer,
2021.

BIBLIOGRAPHY 100

[33] E. Vicario, L. Sassoli, and L. Carnevali, “Using stochastic state classes in quanti-
tative evaluation of dense-time reactive systems,” IEEE Transactions on Software
Engineering, vol. 35, no. 5, pp. 703–719, 2009.

[34] R. A. Sahner and K. S. Trivedi, “Performance and reliability analysis using
directed acyclic graphs,” IEEE Transactions on Software Engineering, no. 10,
pp. 1105–1114, 1987.

[35] K. S. Trivedi and R. Sahner, “SHARPE at the Age of Twenty Two,” SIGMET-
RICS Perform. Eval. Rev., vol. 36, pp. 52–57, Mar. 2009.

[36] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar, “Towards
composition as a service - a quality of service driven approach,” in 2009 IEEE
25th International Conference on Data Engineering, pp. 1733–1740, 2009.

[37] F. Sheikholeslami and N. Jafari Navimipour, “Auction-based resource alloca-
tion mechanisms in the cloud environments: A review of the literature and
reflection on future challenges,” Concurrency and Computation: Practice and Ex-
perience, vol. 30, no. 16, p. e4456, 2018.

[38] G. Baranwal and D. P. Vidyarthi, “A truthful and fair multi-attribute combi-
natorial reverse auction for resource procurement in cloud computing,” IEEE
Transactions on Services Computing, vol. 12, no. 6, pp. 851–864, 2019.

[39] S. Sebastio, G. Gnecco, and A. Bemporad, “Optimal distributed task schedul-
ing in volunteer clouds,” Computers & Operations Research, vol. 81, pp. 231–246,
2017.

[40] A. N. Gullhav and B. Nygreen, “A branch and price approach for deployment
of multi-tier software services in clouds,” Computers & Operations Research,
vol. 75, pp. 12–27, 2016.

[41] C.-H. Chen-Ritzo, T. P. Harrison, A. M. Kwasnica, and D. J. Thomas, “Better ,
faster , cheaper : A multi-attribute supply chain auction mechanism,” 2003.

[42] C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, X. Cheng, and B. Jiao, “Effi-
ciency resource allocation for device-to-device underlay communication sys-
tems: A reverse iterative combinatorial auction based approach,” CoRR,
vol. abs/1211.2065, 2012.

[43] J. Huang, Z. Han, M. Chiang, and H. V. Poor, “Auction-based resource alloca-
tion for cooperative communications,” IEEE Journal on Selected Areas in Com-
munications, vol. 26, no. 7, pp. 1226–1237, 2008.

[44] V. Krishna, Auction Theory. Elsevier Science, 2009.

BIBLIOGRAPHY 101

[45] G. Christodoulou, Price of Anarchy. Boston, MA: Springer US, 2008.

[46] S. Singhal and V. Kavitha, “Coalition formation resource sharing games in net-
works,” SIGMETRICS Perform. Eval. Rev., vol. 49, p. 57–58, mar 2022.

[47] A. R. Da Silva, “Model-driven engineering: A survey supported by the unified
conceptual model,” Computer Languages, Systems & Structures, vol. 43, pp. 139–
155, 2015.

[48] D. C. Schmidt, “Model-driven engineering,” Computer-IEEE Computer Society-,
vol. 39, no. 2, p. 25, 2006.

[49] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-
driven engineering,” IEEE software, vol. 31, no. 3, pp. 79–85, 2013.

[50] Z. Zheng, K. S. Trivedi, K. Qiu, and R. Xia, “Semi-markovmodels of composite
web services for their performance, reliability and bottlenecks,” IEEE Transac-
tions on services computing, vol. 10, no. 3, pp. 448–460, 2015.

[51] K. S. Trivedi, Probability and statistics with reliability, queuing, and computer science
applications. John Wiley & Sons, 2001.

[52] V. S. Sharma and K. S. Trivedi, “Reliability and performance of component
based software systemswith restarts, retries, reboots and repairs,” in 2006 17th
International Symposium on Software Reliability Engineering, pp. 299–310, IEEE,
2006.

[53] N. Sato and K. S. Trivedi, “Stochastic modeling of composite web services for
closed-form analysis of their performance and reliability bottlenecks,” in Inter-
national Conference on Service-Oriented Computing, pp. 107–118, Springer, 2007.

[54] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree: Comput-
ing control regions in linear time,” inACMSIGPLAN’94 Conference on Program-
ming Language Design and Implementation (PLDI), pp. 171–185, ACM, 1994.

[55] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure tree,”
Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, 2009.

[56] D. L. Dill, “Timing assumptions and verification of finite-state concurrent sys-
tems,” in AVMFSS’89, vol. 407 of LNCS, pp. 197–212, Springer, 1990.

[57] SIRIO Library. https://github.com/oris-tool/sirio, 2022.

[58] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario, “The ORIS Tool: Quanti-
tative Evaluation of Non-Markovian Systems,” IEEE Transactions on Software
Engineering, vol. 47, pp. 1211–1225, June 2021.

https://github.com/oris-tool/sirio

BIBLIOGRAPHY 102

[59] B. Berthomieu and M. Diaz, “Modeling and Verification of Time Dependent
Systems Using Time Petri Nets,” IEEE Transactions on Software Engineering,
vol. 17, no. 3, pp. 259–273, 1991.

[60] E. Vicario, “Static analysis and dynamic steering of time-dependent systems,”
IEEE Trans. Softw. Eng., vol. 27, pp. 728–748, Aug. 2001.

[61] L. Sassoli and E. Vicario, “Close form derivation of state-density functions over
dbm domains in the analysis of non-markovian models,” in Proc. Int. Conf. on
Quantitative Evaluation of Systems, pp. 59–68, IEEE, 2007.

[62] F. Baccelli and A. M. Makowski, “Multidimensional stochastic ordering and
associated random variables,” Operations Research, vol. 37, no. 3, pp. 478–487,
1989.

[63] L. Carnevali, R. Reali, and E. Vicario, “Eulero: a tool for quantitative modeling
and evaluation of complex workflows,” in Proceedings of QEST 2022.

[64] J. Lin, “Divergencemeasures based on the shannon entropy,” IEEE Transactions
on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[65] F. Nielsen, “On a generalization of the jensen-shannon divergence and the
js-symmetrization of distances relying on abstract means,” arXiv preprint
arXiv:1904.04017, 2019.

[66] G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods. John
Wiley & Sons, 2009.

[67] J. Bucklew, Introduction to rare event simulation. Springer Science & Business
Media, 2013.

[68] M. Villén-Altamirano and J. Villén-Altamirano, “The rare event simulation
method RESTART: efficiency analysis and guidelines for its application,” in
Net. Perf. Eng., pp. 509–547, Springer, 2011.

[69] C. E. Budde, M. Biagi, R. E. Monti, P. R. D’Argenio, and M. Stoelinga, “Rare
event simulation for non-Markovian repairable fault trees,” in TACAS, pp. 463–
482, Springer, 2020.

[70] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario, “The ORIS tool: quantitative
evaluation of non-Markovian systems,” IEEE Transactions on Software Engineer-
ing, vol. 47, no. 6, pp. 1211–1225, 2019.

[71] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 ed., 1994.

BIBLIOGRAPHY 103

[72] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschinis, “30
years of greatspn,” in Principles of Performance and Reliability Modeling and Eval-
uation, pp. 227–254, Springer, 2016.

[73] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the Sixth International Workshop on Hardware/Software Code-
sign.(CODES/CASHE’98), pp. 97–101, IEEE, 1998.

[74] A. S. Foundation, “Apache airflow.”

[75] S. T. SA, “Luigi.”

[76] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, and G. Chen, “Auction-based vm
allocation for deadline-sensitive tasks in distributed edge cloud,” IEEE Trans-
actions on Services Computing, vol. 14, no. 6, pp. 1702–1716, 2021.

[77] V. Vazirani, Approximation Algorithms. Springer Berlin Heidelberg, 2013.

[78] J. F.Allen, “Maintaining knowledge about temporal intervals,”Communications
of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[79] S. Bayat, Y. Li, L. Song, and Z.Han, “Matching theory: Applications inwireless
communications,” IEEE Signal Processing Magazine, vol. 33, pp. 103–122, Nov
2016.

[80] D. Manlove, Algorithmics of matching under preferences, vol. 2. World Scientific,
2013.

[81] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,”
The American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[82] I. Francis A. Pearman, “Gentrification and academic achievement: A review
of recent research,” Review of Educational Research, vol. 89, no. 1, pp. 125–165,
2019.

[83] G. Bridge, “Bourdieu, rational action and the time-space strategy of gentrifica-
tion,” Transactions of the Institute of British Geographers, vol. 26, no. 2, pp. 205–
216, 2001.

[84] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer effects
and stability in matching markets,” vol. 6982, 03 2011.

[85] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
“Bar fault tolerance for cooperative services,” SIGOPS Oper. Syst. Rev., vol. 39,
p. 45–58, oct 2005.

BIBLIOGRAPHY 104

[86] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario, “The oris tool: Quantitative
evaluation of non-markovian systems,” IEEE Transactions on Software Engineer-
ing, vol. 47, no. 6, pp. 1211–1225, 2021.

[87] L. Carnevali, R. Reali, and E. Vicario, “Eulero: A tool for quantitativemodeling
and evaluation of complex workflows,” in International Conference on Quantita-
tive Evaluation of Systems, pp. 255–272, Springer, 2022.

[88] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides,Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

[89] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented software
architecture, patterns for concurrent and networked objects. John Wiley & Sons,
2013.

[90] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, vol. 45, pp. 1–17, USA, 2003.

[91] L. Korenčiak, J. Krčál, and V. Řehák, “Dealing with zero density using piece-
wise phase-type approximation,” in European Workshop on Performance Engi-
neering, pp. 119–134, Springer, 2014.

	Contents
	Introduction
	A compositional approach for complex workflow evaluation
	Workflow modeling
	Workflow complexity
	Workflow evaluation
	Experimentation

	The Eulero Library
	Library overview
	The package Modeling
	The package Evaluation
	The package ModelGeneration

	A game-theoretical approach for workflow service selection
	Problem statement and approach
	Auction-based service selection
	Matching-based customers-aggregators assignment
	Experimentation

	Model-Driven Engineering for manufactures predictive analysis
	A metamodel of a manufacturing district
	Demonstration on a case of study

	Conclusions
	Publications
	Bibliography

