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Let G be the alternating group of degree n. Let ω(G) be the 
maximal size of a subset S of G such that 〈x, y〉 = G whenever 
x, y ∈ S and x �= y and let σ(G) be the minimal size of a family 
of proper subgroups of G whose union is G. We prove that, 
when n varies in the family of composite numbers, σ(G)/ω(G)
tends to 1 as n → ∞. Moreover, we explicitly calculate σ(An)
for n ≥ 21 congruent to 3 modulo 18.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
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1. Introduction

Given a finite group G that can be generated by 2 elements but not by 1 element, 
set ω(G) to be the largest size of a pairwise generating set S ⊆ G, that is, a subset S
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of G with the property that 〈x, y〉 = G for any two distinct elements x, y of S. Also, set 
σ(G) to be the covering number of G, that is the minimal number of proper subgroups 
of G whose union is G. We will reserve the term “covering” of G for any family of proper 
subgroups of G whose union is G. A minimal covering of G is a covering of G of size 
σ(G).

Since any proper subgroup of G contains at most one element of any pairwise gener-
ating set, ω(G) ≤ σ(G) always.

S. Blackburn [1] and L. Stringer [12] proved that if n is odd and n �= 9, 15 then 
σ(Sn) = ω(Sn) and that if n ≡ 2 (mod 4) then σ(An) = ω(An). Stringer also proved 
that ω(S9) < σ(S9). In [1] it is conjectured that, if S is a finite non abelian simple group, 
then σ(S)/ω(S) tends to 1 as the order of S goes to infinity. We remark that, apart from 
the above, the only cases in which the precise value of ω(G) is known are for groups G
of Fitting height at most 2 ([9]) and for certain linear groups (see [2]).

In [4], it was proved that ω(Sn)/σ(Sn) tends to 1 as n → ∞. In this paper, we focus 
on alternating groups and prove the following results.

Theorem 1. Let n vary in the set of composite positive integers. Then

lim
n→∞

σ(An)
ω(An) = 1.

Note that Stringer’s result implies our theorem when n ≡ 2 (mod 4), so we will only 
prove it when n is divisible by 4 or an odd composite integer.

Our second result concerns the precise value of σ(An) when n ≡ 3 (mod 18).

Theorem 2. Let n > 3 be an integer with n ≡ 3 (mod 18) and let q := n/3. Then

σ(An) =
q−2∑
i=1

(
n

i

)
+ 1

6
n!
q!3 .

A minimal covering of An consists of the intransitive maximal subgroups of type (Si ×
Sn−i) ∩ An, for i = 1, . . . , q − 2, and the imprimitive maximal subgroups with 3 blocks, 
which are isomorphic to (Sq � S3) ∩An.

2. Technical lemmas

In this section we will collect some technical results we will need throughout the paper.

Lemma 1 (Lemma 10.3.3 in [12]). Let n be an odd integer which is the product of at least 
three primes (not necessarily distinct) and let p be the smallest prime divisor of n. Then 
if n is sufficiently large we have

|Sn/p � Sp| ≥ 2
√
n−3
|Sn/m � Sm|
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where m is any nontrivial proper divisor of n different from p.

The following lemma is a generalization of [1, Lemma 4] and its proof uses the same 
ideas. We need to apply it for k ≤ 3. If a1, . . . , ak are positive integer which sum to 
n, then an element of Sn of type (a1, . . . , ak) is a product of disjoint cycles of lengths 
a1, . . . , ak.

Lemma 2. Let a1, . . . , ak be positive integers with 
∑k

i=1 ai = n. Let M be a subgroup of 
Sn. The number of conjugates of M in Sn containing a fixed element of type (a1, . . . , ak)
is at most nk.

Proof. Let N be the number of elements of Sn of type (a1, . . . , ak) and let g be an 
element of this type. We want to show that N ≥ n!/nk. Assume that a1, . . . , ak are 
organized so that ki of them equal ai for i = 1, . . . , t, so that k1 + . . . + kt = k and 
a1k1 + . . .+ atkt = n. Since the centralizer of g in Sn is isomorphic to 

∏t
i=1 Cai

� Ski
we 

deduce that

N = n!
ak1
1 k1! · · · akt

t kt!
≥ n!

(a1k1)k1 · · · (atkt)kt
≥ n!

nk
,

being nk = (a1k1 + . . . + atkt)k1+...+kt .
Let us double-count the size of the set X of pairs (h, H) such that H is a subgroup 

of Sn conjugate to M and h ∈ H is of type (a1, . . . , ak). We have |X| = N · a(M)
where a(M) is the number of conjugates of M containing a fixed h ∈ G of this type and 
|X| = |Sn : NSn

(M)| · b(M) ≤ |Sn| where b(M) ≤ |M | is the number of elements of M
of type (a1, . . . , ak). We obtain

n! ≥ |X| = N · a(M) ≥ (n!/nk)a(M).

It follows that a(M) ≤ nk. �
In the following we make frequent use of Stirling’s inequalities, which holds for every 

integer t ≥ 2,
√

2πt · (t/e)t < t! < e
√
t · (t/e)t. (1)

Lemma 3. Let X := {(x, y) ∈ N2 : 2 ≤ x ≤ y − 2}. Then

lim
|(x,y)|→∞
(x,y)∈X

y!x−1

x!y−1 = +∞.

Proof. Set

f(x, y) := y!x−1
.

x!y−1
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Note that f(x, y) < f(x, y + 1) whenever (x, y) ∈ X. This is because the claimed in-
equality is equivalent to x! < (y + 1)x−1 for (x, y) ∈ X, which is a consequence of the 
inequality x! ≤ xx−1, which can be easily proved by induction.

We are left to check that f(x, x + 2) tends to +∞ when x tends to +∞. This can be 
proved directly using calculus techniques and inequalities (1). �
Lemma 4. Let d ≥ 2, k ≥ 5 be integers such that n = dk ≥ 26. Then

|Sd � Sk| = d!kk! ≤ (n/5e)n(5n)5/2e
√
n.

Proof. Set f(x) := (nx)x/2/xn for any real x ≥ 5. The derivative of f is f ′(x) =
(1/(2x))f(x)g(x) where g(x) = x log(nx) − 2n + x, so f ′(5) < 0 being n ≥ 14, and 
f is decreasing in x = 5. Since g′(x) = log(nx) + 2 is positive (being x ≥ 5) and 
the sign of f ′ equals the sign of g, we deduce that in the interval [5, n/5] we have 
f(x) ≤ max{f(5), f(n/5)} and this equals f(5) being n ≥ 25. Therefore, using the 
bound m! ≤ (m/e)me

√
m, if k ≤ n/5 we obtain

d!kk! ≤ (d/e)dkekdk/2(k/e)kek1/2 = f(k) · (n/e)ne
√
k ≤ (n/5e)n(5n)5/2e

√
n.

The case k > n/5 corresponds to d < 5 and can be done case by case. �
Lemma 5. Let n be an even positive integer, r an odd divisor of n such that 3 ≤ r ≤ n/3
and set g(n, r) = (r!)n/r (n/r)! + r · r! · ((n/r)!)r. Then g(n, r) ≤ C

(
(n/3)!

)3 for some 
constant C.

Proof. Let n and r as in the statement and note that since n is even and r is odd we have 
3 ≤ r ≤ n/4. If r = 3 then g(n, r) = 6n/3(n/3)! + 18((n/3)!)3 < 19((n/3)!)3 for large 

enough n. Using Stirling’s inequalities (1), it is easy to prove that (n/4)!4
(n/3)!3 ≤ n · (3/4)n

for large enough n, and this easily implies the result when r = n/4.
Assume therefore that 5 ≤ r ≤ n/5. We apply Lemma 4 and deduce that

g(n, r) ≤ (r + 1)
( n

5e

)n

(5n)5/2e
√
n ≤

( n

5e

)n

(5n)5/2n3/2e.

By another application of (1), we get that there exists a positive constant D such that

g(n, r)
((n/3)!)3 ≤ (3/5)nn5/2 ·D,

which tends to zero as n tends to infinity. �
3. Proof of Theorem 1

Let Γ be an (undirected) graph. Recall that the degree of a vertex of Γ is defined 
as the number of vertices of Γ that are adjacent to it. Also, a set of vertices is called 
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independent if no two of its elements are connected by an edge. We prove Theorem 1 as 
an application of the following result due to P.E. Haxell.

Theorem 3 (Theorem 2 in [7]). Let k be a positive integer, let Γ be a graph of maximum 
degree at most k, and let V (Γ) = V1 ∪ · · · ∪ Vn be a partition of the vertex set of Γ. 
Suppose that |Vi| ≥ 2k for each i. Then Γ has an independent set {v1, . . . , vn} where 
vi ∈ Vi for each i.

We will apply Theorem 3 to prove Theorem 1, first for n odd and composite, then for 
n divisible by 4. This will correspond to two different graphs.

3.1. Case n odd

We first consider the case n is an odd composite number. In this section, p will always 
be the smallest prime divisor of n. For each proper nontrivial divisor m of n, let Pm be 
the set of partitions of the set {1, . . . , n} into m parts each of cardinality n/m. We want 
to find a maximal set of n-cycles in An pairwise generating An and in particular we will 
prove the following.

Proposition 1. If n is a sufficiently large odd composite number and p denotes the smallest 
prime divisor of n, then ω(An) ≥ |Pp|.

Since the imprimitive maximal subgroups of An preserving a partition with p blocks 
cover all the n-cycles in An, and since the elements of An which are not n-cycles are 
covered by the maximal intransitive subgroups of type (Si×Sn−i) ∩An with 1 ≤ i ≤ n/3, 
we deduce from Proposition 1 that

|Pp| ≤ ω(An) ≤ σ(An) ≤ |Pp| +
�n/3�∑
i=1

(
n

i

)
.

This proves Theorem 1 since the sum on the right-hand side is less than 2n, so it is 
asymptotically irrelevant compared to

|Pp| = n!
(n/p)!pp! >

(n/e)nep(n/p)p/2

(n/pe)n(p/e)pe√p
= pn

e
√
p
·
(
e2
√

n/p3
)p

≥ 3n,

where the last inequality holds for sufficiently large n.
We are therefore reduced to prove Proposition 1.
For every Δ ∈ Pm let C(Δ) be the set of n-cycles x ∈ An such that Δ is the set of 

orbits of the element xm. In other words, C(Δ) is the set of n-cycles contained in the 
maximal imprimitive subgroup of An whose block system is Δ. Using the fact that every 
n-cycle belongs to a unique imprimitive maximal subgroup of Sn with m blocks, it is 
easy to see that |C(Δ)| = |Sn/m �Sm|/n using a double counting argument. With a slight 
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abuse of notation, for any maximal subgroup H of An, we call C(H) the set of n-cycles 
contained in H.

We define a graph Γ whose vertex set is V (Γ) and whose edge set is E(Γ) in the 
following way. V (Γ) is the set of n-cycles of An and, for distinct x, y ∈ V (Γ), we say that 
{x, y} ∈ E(Γ) if and only if 〈x, y〉 �= An and the orbits of xp do not coincide with those 
of yp, in other words there is no Δ ∈ Pp such that both x and y belong to C(Δ).

Since the n-cycles are pairwise conjugate in Sn, the graph Γ is vertex-transitive, so 
it is regular, in other words, every vertex has the same valency k. In order to prove 
Proposition 1, it is enough to prove that |C(Δ)| ≥ 2k for all Δ ∈ Pp, since then the 
result will follow from Theorem 3 applied to the partition of the vertex-set of Γ given by 
the C(Δ) with Δ ∈ Pp.

If x is any vertex, then

k ≤
∑

H∈Hx

|C(H)|

where Hx is the set of maximal subgroups of An containing x, except for the maximal 
imprimitive subgroup with p blocks. Clearly, no intransitive subgroup contains x so 
Hx is made of imprimitive and primitive subgroups. Let Himp

x be the set of maximal 
imprimitive subgroups of An containing x whose number of blocks is not p, and let Hprim

x

be the set of maximal primitive subgroups of An containing x. Then

k ≤
∑

H∈Himp
x

|C(H)| +
∑

H∈Hprim
x

|C(H)| .

We bound the first term of the above sum. Let Δm(x) be the partition in Pm whose 
blocks are the orbits of the element xm. Since n has at most 2

√
n positive divisors,

∑
H∈Himp

x

|C(H)| =
∑

m|n,m	=p

|C(Δm(x))| ≤ 2
√
n max

m|n,m	=p
|Sn/m � Sm|/n (2)

where the second summation and the maximum is on all nontrivial proper divisors m of 
n that are different from p.

Note that, if n �= p2, the last term in (2) is at least cn for any given constant c, if 
n is sufficiently large. This can be checked easily using |Sn/m � Sm| = (n/m)!mm! and 
Stirling inequalities (1).

Lemma 1 implies that the last term in (2) is asymptotically irrelevant compared to 
|C(Δ)| for Δ ∈ Pp when n is the product of at least three primes.

We now turn to primitive subgroups. When n > 23 (and n is not a prime) the 
primitive maximal subgroups of An containing n-cycles are permutational isomorphic to 
PΓL(m, s) ∩An, where

n = sm − 1 (3)

s− 1
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for some m ≥ 2 and some prime power s, its action on points (or on hyperplanes) of 
a projective space of dimension m over the field of s = pf elements ([8, Theorem 3]). 
Therefore in particular we have that if H is such a subgroup of An then

|C(H)| < |PΓLm(s)| < 2n−1.

By Lemma 2 there are at most n conjugates of H containing a fixed n-cycle x. Moreover 
we show now that Sn has at most log2(n) conjugacy classes of such maximal primitive 
subgroups, and therefore this number is at most 2 log2(n) for An. First observe that, 
being n odd, if (m, s) is a pair satisfying equation (3) then s is the biggest power of p
dividing n − 1. The possible choices for s are at most the number of primes dividing 
n − 1, that is at most π(n − 1) which is trivially smaller than log2(n). Once that s
is chosen there is at most only one possible value for m such that (m, s) satisfies (3). 
Thus the number of these pairs is bounded from above by log2(n). Now, for a fixed pair 
(m, s) satisfying (3) the group An contains at most two conjugacy classes of primitive 
maximal subgroups isomorphic to PΓLm(s) ∩An (it can be proved that the two actions 
of such a group respectively on the projective points and on the projective hyperplanes 
are equivalent in Sn). Thus the number of conjugacy classes of proper primitive maximal 
subgroups containing an n-cycle is at most 2 log2(n). It follows that

∑
H∈Hprim

x

|C(H)| ≤ n log2(n) · 2n

and so it is easy to see that the last term in (2) is an upper bound also for this sum 
(remember that we are considering n �= p2).

Assume that n is a product of at least three primes, not necessarily distinct. If Δ ∈ Pp, 
then by Lemma 1 we have

|C(Δ)|
k

≥
|Sn/p � Sp|

2
√
nmaxp	=m|n |Sn/m � Sm| ≥

2
√
n−4

√
n

> 2,

which gives the result (here again the maximum is on all nontrivial proper divisors m of 
n that are different from p).

When n = pq for some prime q distinct from p, arguing as above we have k ≤ 2|Sp �Sq|
for large enough n, therefore

|C(Δ)|
k

≥ |Sq � Sp|
2|Sp � Sq|

and we only have to prove that, for large enough n, the right-hand side is larger than 2. 
This follows from Lemma 3.

Assume finally that n = p2. Then the only contribution is given by primitive sub-
groups, in other words
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C(Δ)
k

≥ |Sp � Sp|/n∑
H∈Hprim

x
|C(H)| ≥

p!p+1/n

n log2(n) · 2n .

This is clearly larger than 2 for large enough n.
This concludes the proof of Proposition 1 and therefore also of Theorem 1 in the case 

n odd and composite.

3.2. Case n divisible by 4

We now prove Theorem 1 when n is divisible by 4.
In [11], Maróti proved that σ(G) ∼ 2n−2. We want to prove that ω(G) is also asymp-

totic to 2n−2 in this case, so that ω(G) ∼ σ(G). Since ω(G) ≤ σ(G), it is enough to find 
a lower bound for ω(G) which is asymptotic to 2n−2.

We consider the set

S = {Δ ⊆ {1, . . . , n}, 1 < |Δ| < n/2, |Δ| odd }.

Since the number of subsets of {1, . . . , n} of even size is equal to the number of subsets 
of odd size (this can be seen by expanding the equality 0 = (1 − 1)n with the binomial 
theorem), we have

|S| =
n/4∑
i=2

(
n

2i− 1

)
= 2n−2 − n ∼ 2n−2.

Let V be the set of elements of An of cycle type (a, n −a) for a odd and 1 < a < n/2. 
We have V =

⋃
Δ∈S C(Δ), where C(Δ) is the set of bicycles with orbits Δ and Ω \ Δ.

As in the case n odd, we define a graph Γ with now vertex set V (Γ) = V and whose 
edge set E(Γ) is the family of size 2 subsets {x, y} ⊆ V such that 〈x, y〉 �= An and x and 
y do not belong to the same C(Δ), for all Δ ∈ S.

The sets C(Δ) determine a partition of V (Γ) and by Theorem 3 we are done if we 
can prove that, for all Δ ∈ S,

|C(Δ)| ≥ 2k,

where k is the maximum degree of a vertex in Γ.
In [5, Theorem 1.5] and [6, Theorem 1.1] a careful and detailed description of the 

primitive permutation groups containing a permutation with at most four cycles is given. 
From that analysis it follows that, when n is divisible by 4 and sufficiently large there 
are only two cases in which a product of two disjoint cycles of odd length in Sn can 
be contained in a primitive permutation group H ≤ Sn not containing the alternating 
group An, and in both cases the cycles have lengths 1 and n − 1. By our choice of S, 
|Δ| �= 1, therefore, since by the definition of V the intransitive subgroups of An cannot 



F. Fumagalli et al. / Journal of Combinatorial Theory, Series A 205 (2024) 105870 9
contain subsets of the form {x, y} ∈ E(Γ), the only maximal subgroups of An containing 
such sets are the imprimitive ones.

We now evaluate the maximum degree k of our graph. Namely, for any fixed x ∈ C(Δ)
we bound the number of elements y ∈ V \ C(Δ) such that 〈x, y〉 �= An.

Let Himp
x be the set of maximal imprimitive subgroups of An containing x. The above 

discussion implies that

k ≤
∑

H∈Himp
x

|H|.

Assume that x ∈ C(Δ) with |Δ| = a, so that x is a product of two disjoint cycles of 
lengths a and n −a. Moreover assume that x belongs to an imprimitive maximal subgroup 
W , say W � Sd � Sm, with d, m > 1 and dm = n.

Then there are two possibilities.

• Δ is the union of some of the blocks of W . In this case d | a and W is uniquely 
determined by x, since its blocks are exactly the orbits of the two cycles appearing 
in x raised to the number of blocks involved in each cycle.

• m | a and Δ (and Ω \Δ) intersects each block of W in exactly a/m (resp. (n −a)/m) 
elements. In this case there are exactly m conjugates of W containing x: they can 
be obtained by pairing cyclically each orbit of xm

1 with an orbit of xm
2 , where x1 and 

x2 are respectively the restrictions of x to Δ and to Ω \ Δ.

It follows that
∑

H∈Himp
x

|H| ≤
∑

r|gcd(a,n)

(
|Sr � Sn/r| + r · |Sn/r � Sr|

)
(4)

=
∑

r|gcd(a,n)

(
(r!)n/r (n/r)! + r · r! · ((n/r)!)r

)
.

Since |C(Δ)| = (|Δ| − 1)! (n− |Δ| − 1)! ≥ (2/n)2(n/2)!2, inequality (4) together with 
Lemma 5 gives, for large enough n,

k

|C(Δ)| ≤
∑

H∈Himp
x

|H|
(2/n)2(n/2)!2 ≤ Cn(n/3)!3

(2/n)2(n/2)!2 ≤ c2(2/3)nn3

for some constant c2. The last inequality can be proved easily using Stirling’s inequalities 
(1). This proves that k/|C(Δ)| tends to zero as n → ∞, hence it is smaller than 1/2 for 
sufficiently large n, which is what we wanted to prove.

4. Proof of Theorem 2

The following argument is a slight generalization of [13, Section 3].



10 F. Fumagalli et al. / Journal of Combinatorial Theory, Series A 205 (2024) 105870
Let G be any finite non-cyclic group and let T be a finite group containing G as a 
normal subgroup. Let M be a family of maximal subgroups of G and let Π be a subset 
of G. Let {Mi | i ∈ IT } be a set of pairwise non-T -conjugate maximal subgroups of G
such that every maximal subgroup of G is T -conjugate to some Mi, with i ∈ IT , and let 
Mi := {t−1Mit : t ∈ T} and Πi := Π ∩

⋃
M∈Mi

M , for all i ∈ IT . Let I ⊆ IT . Suppose 
that the following holds.

(1) M =
⋃

i∈I Mi;
(2) xt ∈ Π for all x ∈ Π, t ∈ T ;
(3) Π is contained in 

⋃
M∈M M ;

(4) if A, B ∈ M and A �= B then A ∩B ∩ Π = ∅;
(5) M ∩ Π �= ∅ for all M ∈ M .

Note that this implies in particular that {Πi}i∈I is a partition of Π. Moreover if 
A, B are T -conjugate subgroups then since Π and each Πi (for i ∈ IT ) are unions of 
T -conjugacy classes of elements of T , we have |A ∩Π| = |B ∩Π| and |A ∩Πi| = |B ∩Πi|.

For any maximal subgroup M of G outside M define

d(M) :=
∑
i∈I

|M ∩ Πi|
|Mi ∩ Πi|

.

The proof of the following proposition is essentially the same as the one in [13, Section 
3] but we include it for completeness.

Proposition 2. Assume the above setting. If d(M) ≤ 1 for all maximal subgroups M of 
G outside M then any family of proper subgroups of G whose union contains Π has size 
at least |M |. In other words, M is a minimal covering of Π. Moreover, if d(M) < 1 for 
all maximal subgroups M of G outside M then M is the unique minimal covering of Π.

Proof. Let K be any family of maximal subgroups of G such that 
⋃

K∈K K ⊇ Π and 
suppose K �= M . We want to prove that |M | ≤ |K |. Define

M ′ := M − (M ∩ K ), K ′ := K − (M ∩ K ).

For any i ∈ I, let mi be the number of subgroups from Mi in M ′, and for any j ∈ IT
let kj be the number of subgroups from Mj in K ′.

Observe that since K covers Πi and M partitions Π, the members of K ′ must cover 
the elements of Πi contained in 

⋃
M∈M ′ M . Since M partitions Π, the number of such 

elements is mi|Mi ∩ Πi|. Therefore

mi|Mi ∩ Πi| ≤
∑
j 	∈I

kj |Mj ∩ Πi|.

We claim that if d(M) ≤ 1 for all M ∈ K ′ then |M | ≤ |K |. Indeed, we have
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|M ′| =
∑
i∈I

mi ≤
∑
i∈I

∑
j 	∈I

kj
|Mj ∩ Πi|
|Mi ∩ Πi|

=

=
∑
j 	∈I

kj
∑
i∈I

|Mj ∩ Πi|
|Mi ∩ Πi|

=
∑
j 	∈I

kjd(Mj) ≤
∑
j 	∈I

kj = |K ′|.

This implies

|M | = |M ∩ K | + |M ′| ≤ |M ∩ K | + |K ′| = |K |,

and therefore M is a covering of Π of minimal size. Moreover, if d(M) < 1 for all maximal 
subgroups M of G outside M , then the above argument shows that |M | < |K | whenever 
M �= K , proving that M is the unique covering of Π of minimal size. �

From now on let n ≥ 21 be a positive integer congruent to 3 modulo 18 and let 
q := n/3, G := An, T := Sn. Note that q ≡ 1 (mod 6). We prove Theorem 2 by showing 
(with the use of Proposition 2) the existence of a minimal covering M for An of size

q−2∑
i=1

(
n

i

)
+ 1

6
n!
q!3 .

If n =
∑t

i=1 ai and 1 ≤ a1 ≤ a2 ≤ . . . ≤ at we denote by (a1, . . . , at) the set of 
elements of An whose cycle structure consists of t disjoint cycles each of length ai, for 
i = 1, . . . , t. Note that each (a1, . . . , at) is either empty or an An-conjugacy class or the 
union of two An-conjugacy classes. The latter case occurs if and only if the numbers 
a1, . . . , at are all odd and pairwise distinct.

Let Π−1 = (n) be the set of all n-cycles and for every integer a such that 1 ≤ a ≤ q−2
define

Πa :=
{

(a, n−a−1
2 , n−a+1

2 ) if a ≡ 0 (mod 2)
(a, n−a

2 − 1, n−a
2 + 1) if a ≡ 1 (mod 2).

We define the collection M of Sn-conjugacy classes of maximal subgroups of An as 
follows.

M−1 is the set of maximal imprimitive subgroups of An with 3 blocks. Thus the 
elements of M−1 are subgroups isomorphic to (Sq � S3) ∩An.

For every a such that 1 ≤ a ≤ q − 2 define Ma to be the set of maximal intransitive 
subgroups of An which are the stabilizers of a set of size a.

Finally, let

Π :=
⋃

a=−1,1,...,q−2
Πa and M :=

⋃
a=−1,1,...,q−2

Ma.

In this notation the index set I is {−1, 1, 2, . . . , q − 2}.
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For any Sn-conjugacy class Mj of maximal subgroups of An (j can belong to I or not), 
let mj(i) be the number of subgroups from the Sn-class Mj containing a fixed element 
of Πi. The number mj(i) is well-defined because each Πi is a Sn-conjugacy class. Also, 
as before we denote with ISn

an index set for Sn-conjugacy class representatives of the 
maximal subgroups of An.

Lemma 6. If j ∈ ISn
and Mj ∈ Mj then

|Mj ∩ Πi| = mj(i) · |NSn
(Mj)| · |Πi|

|Sn|
≤ mj(i) · |Mj | · |Πi|

|An|
.

Moreover, if Mj is not primitive then this inequality is actually an equality.

Proof. Consider the bipartite graph with set of vertices Πi ∪ Mj and where there is an 
edge between g ∈ Πi and M ∈ Mj if and only if g ∈ M . Since Πi is a conjugacy class 
of Sn, the family Mj covers Πi if one of its members intersects it. By assumption the 
number of edges of this graph equals both mj(i) · |Πi| and |Sn : NSn

(Mj)| · |Mj ∩ Πi|. 
We are left to prove that

|An : Mj | ≤ |Sn : NSn
(Mj)|.

This follows from the fact that Mj is self-normalized in An, being a maximal subgroup 
(and n ≥ 5), and |Sn : NSn

(Mj)| is the number of Sn-conjugates of Mj , while |An :
Mj | = |An : NAn

(Mj)| is the number of An-conjugates of Mj . �
Lemma 7. Assume m is a positive integer divisible by 3. An element of Sm of cycle type 
(a, b, c), with a, b, c ≥ 1 and a + b + c = m, stabilizes a partition of {1, . . . , m} with 3
blocks if and only if at least one of the following holds:

(1) a = b = c = m/3.
(2) 3 divides gcd(a, b, c);
(3) One of a, b, c equals 2m/3;
(4) One of a, b, c equals m/3 and the other two are even.

Proof. Straightforward. �
We have the following.

(1)
⋃

M∈M M = An. To see this let g ∈ An, and let (a1, . . . , ak), 1 ≤ a1 ≤ . . . ≤ ak, be 
the cycle type of g, with 

∑k
i=1 ai = n. Note that, since g ∈ An and n is odd, k must 

be odd. If a1 < q−1 then g belongs to a member of Ma1 . Now assume that a1 ≥ q−1, 
so that ai ≥ q − 1 for all i = 1, . . . , k. It follows that 3q = n =

∑k
i=1 ai ≥ k(q − 1), 

therefore k ≤ 3 being q > 3 odd. If k = 1 then g belongs to a member of M−1, so now 
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assume that k = 3. Since q − 1 ≤ a1 ≤ a2 ≤ a3, the only possibilities for (a1, a2, a3)
are either (q − 1, q − 1, q + 2) or (q − 1, q, q + 1), therefore g belongs to a member 
of M−1 by Lemma 7 since q ≡ 1 (mod 6) (respectively case (2) and case (4)). Note 
that here is the point where we use the crucial assumption n ≡ 3 (mod 18).

(2) For every g ∈ Π there exists a unique M ∈ M such that g ∈ M . More precisely, if 
g ∈ Π−1 then the unique member of M containing g is the unique member of M−1
whose blocks are the three orbits of g3, and if g ∈ Πa, a ∈ {1, . . . , q − 2}, then the 
unique member of M containing g is the subgroup in Ma sharing an orbit of size a
with g. This is because no element of Π which is not an n-cycle stabilizes a partition 
with 3 blocks, a fact that can be easily proved by using Lemma 7.

From now on let Mj be a Sn-class of maximal subgroups of An not contained in M
(in other words we think of j as an index in ISn

\ I) and let Mj be any element of Mj . 
We deduce from Lemma 6 that, if i ∈ I, then

d(Mj) =
∑
i∈I

|Mj ∩ Πi|
|Mi ∩ Πi|

≤
∑
i∈I

mj(i)|Mj |
mi(i)|Mi|

≤ |Mj |
∑
i∈I

mj(i)
|Mi|

.

Now, if Mj is a Sn-class of maximal intransitive subgroups of An then mj(−1) = 0, 
while mj(i) ≤ 1 for 1 ≤ i ≤ q − 2 and also mj(i) = 0, except for at most 4 values 
of i. This is because, thinking of j as the size of an orbit of the members of Mj, with 
q − 1 ≤ j < n/2, the possible values of i such that 1 ≤ i ≤ q − 2 and mj(i) �= 0 are 
obtained by solving the equations j = (n − i)/2 − 1, j = (n − i)/2 + 1, j = (n − i − 1)/2
and j = (n − i + 1)/2. Note that if Mj is of type (Sq−1 × S2q+1) ∩An then Mj ∩Π = ∅, 
implying that d(Mj) = 0. If this is not the case then |Mj | ≤ q!(2q)!, therefore

d(Mj) ≤
4 · q! · (2q)!

(q − 2)! · (2q + 2)! = 4q(q − 1)
(2q + 2)(2q + 1) < 1.

If Mj is a Sn-class of transitive subgroups of An then mj(i) ≤ n3 by Lemma 2. 
Moreover, if Mj is imprimitive then |Mj | ≤ (n/5e)n(5n)5/2e

√
n by Lemma 4, and if Mj

is primitive then |Mj | ≤ 2n by [10]. Since |Mi| ≥ |(Sq � S3) ∩ An| = 3q!3 > 3(n/3e)n for 
every i ∈ I and |I| < n, we obtain that

d(Mj) ≤ |Mj |
∑
i∈I

mj(i)
|Mi|

<
n4(n/5e)n(5n)5/2e

√
n

3(n/3e)n = 55/2e

3 n7(3/5)n < 1,

as long as n ≥ 65.
Finally when n = 21, 39 or 57, then q is a prime, respectively: 7, 13 and 19. Since 

|I| = q − 1 and mj(i) ≤ n3, we can use the bound

d(Mj) ≤ |Mj |
∑ mj(i)

Mi
≤ (q − 1)n3|Mj |

3 · q!3 ,

i∈I
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which gives the result when n ∈ {39, 57} or when n = 21 and Mj is primitive, by making 
use of the bound |Mj | ≤ 3!q · q!. Here we use the list of primitive subgroups of a given 
(small) degree, available in [3, Table B.2].

Now assume n = 21 and M = Mj is imprimitive, so that M ∼= (S3 � S7) ∩ A21. Then 
the only elements of Π that stabilize a partition with 7 blocks are those of type (21) or 
of type (4, 8, 9). Moreover |M ∩Π−1| = |M |/21 and |M ∩Π4| =

(7
3
)
· 3!4

9 · 3! · 2!3 = 7! · 48, 
while |M−1 ∩ Π−1| = |M−1|/21 and |M4 ∩ Π4| = 3! ·

(17
8
)
· 7! · 8!, hence

d(M) = 3!7 · 7!
7!3 · 3! + 7! · 48

3! ·
(17

8
)
· 7! · 8!

= 315059
171531360 < 1.

Data availability

No data was used for the research described in the article.
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