

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

journal homepage: www.elsevier.com/locate/jcta

On the maximal number of elements pairwise generating the finite alternating group $\stackrel{\diamond}{\approx}$

Journal of

Theory

Francesco Fumagalli^{a,*}, Martino Garonzi^b, Pietro Gheri^a

 ^a Dipartimento di Matematica e Informatica 'Ulisse Dini', Viale Morgagni 67/A, 50134 Firenze, Italy
 ^b Departamento de Matemática, Universidade de Brasília, Campus Universitário

⁵ Departamento de Matemática, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil

A R T I C L E I N F O

Article history: Received 30 March 2023 Accepted 25 January 2024 Available online 14 February 2024

Keywords: Alternating group Group generation Covering

ABSTRACT

Let G be the alternating group of degree n. Let $\omega(G)$ be the maximal size of a subset S of G such that $\langle x, y \rangle = G$ whenever $x, y \in S$ and $x \neq y$ and let $\sigma(G)$ be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, $\sigma(G)/\omega(G)$ tends to 1 as $n \to \infty$. Moreover, we explicitly calculate $\sigma(A_n)$ for $n \geq 21$ congruent to 3 modulo 18.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a finite group G that can be generated by 2 elements but not by 1 element, set $\omega(G)$ to be the largest size of a *pairwise generating set* $S \subseteq G$, that is, a subset S

* Corresponding author.

E-mail addresses: francesco.fumagalli@unifi.it (F. Fumagalli), mgaronzi@gmail.com (M. Garonzi), pietro.gheri@unifi.it (P. Gheri).

https://doi.org/10.1016/j.jcta.2024.105870

0097-3165/ \odot 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 $^{^{*}}$ The first author is a member of the Italian INdAM-GNSAGA and PRIN "Group theory and its applications" research group and kindly acknowledges their support. The second author acknowledges the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Universal - Grant number 402934/2021-0.

of G with the property that $\langle x, y \rangle = G$ for any two distinct elements x, y of S. Also, set $\sigma(G)$ to be the *covering number* of G, that is the minimal number of proper subgroups of G whose union is G. We will reserve the term "covering" of G for any family of proper subgroups of G whose union is G. A minimal covering of G is a covering of G of size $\sigma(G)$.

Since any proper subgroup of G contains at most one element of any pairwise generating set, $\omega(G) \leq \sigma(G)$ always.

S. Blackburn [1] and L. Stringer [12] proved that if n is odd and $n \neq 9, 15$ then $\sigma(S_n) = \omega(S_n)$ and that if $n \equiv 2 \pmod{4}$ then $\sigma(A_n) = \omega(A_n)$. Stringer also proved that $\omega(S_9) < \sigma(S_9)$. In [1] it is conjectured that, if S is a finite non abelian simple group, then $\sigma(S)/\omega(S)$ tends to 1 as the order of S goes to infinity. We remark that, apart from the above, the only cases in which the precise value of $\omega(G)$ is known are for groups G of Fitting height at most 2 ([9]) and for certain linear groups (see [2]).

In [4], it was proved that $\omega(S_n)/\sigma(S_n)$ tends to 1 as $n \to \infty$. In this paper, we focus on alternating groups and prove the following results.

Theorem 1. Let n vary in the set of composite positive integers. Then

$$\lim_{n \to \infty} \frac{\sigma(A_n)}{\omega(A_n)} = 1.$$

Note that Stringer's result implies our theorem when $n \equiv 2 \pmod{4}$, so we will only prove it when n is divisible by 4 or an odd composite integer.

Our second result concerns the precise value of $\sigma(A_n)$ when $n \equiv 3 \pmod{18}$.

Theorem 2. Let n > 3 be an integer with $n \equiv 3 \pmod{18}$ and let q := n/3. Then

$$\sigma(A_n) = \sum_{i=1}^{q-2} \binom{n}{i} + \frac{1}{6} \frac{n!}{q!^3}.$$

A minimal covering of A_n consists of the intransitive maximal subgroups of type $(S_i \times S_{n-i}) \cap A_n$, for $i = 1, \ldots, q-2$, and the imprimitive maximal subgroups with 3 blocks, which are isomorphic to $(S_q \wr S_3) \cap A_n$.

2. Technical lemmas

 $\mathbf{2}$

In this section we will collect some technical results we will need throughout the paper.

Lemma 1 (Lemma 10.3.3 in [12]). Let n be an odd integer which is the product of at least three primes (not necessarily distinct) and let p be the smallest prime divisor of n. Then if n is sufficiently large we have

$$\frac{|S_{n/p} \wr S_p|}{|S_{n/m} \wr S_m|} \ge 2^{\sqrt{n}-3}$$

where m is any nontrivial proper divisor of n different from p.

The following lemma is a generalization of [1, Lemma 4] and its proof uses the same ideas. We need to apply it for $k \leq 3$. If a_1, \ldots, a_k are positive integer which sum to n, then an element of S_n of type (a_1, \ldots, a_k) is a product of disjoint cycles of lengths a_1, \ldots, a_k .

Lemma 2. Let a_1, \ldots, a_k be positive integers with $\sum_{i=1}^k a_i = n$. Let M be a subgroup of S_n . The number of conjugates of M in S_n containing a fixed element of type (a_1, \ldots, a_k) is at most n^k .

Proof. Let N be the number of elements of S_n of type (a_1, \ldots, a_k) and let g be an element of this type. We want to show that $N \ge n!/n^k$. Assume that a_1, \ldots, a_k are organized so that k_i of them equal a_i for $i = 1, \ldots, t$, so that $k_1 + \ldots + k_t = k$ and $a_1k_1 + \ldots + a_tk_t = n$. Since the centralizer of g in S_n is isomorphic to $\prod_{i=1}^t C_{a_i} \wr S_{k_i}$ we deduce that

$$N = \frac{n!}{a_1^{k_1} k_1! \cdots a_t^{k_t} k_t!} \ge \frac{n!}{(a_1 k_1)^{k_1} \cdots (a_t k_t)^{k_t}} \ge \frac{n!}{n^k},$$

being $n^k = (a_1k_1 + \ldots + a_tk_t)^{k_1 + \ldots + k_t}$.

Let us double-count the size of the set X of pairs (h, H) such that H is a subgroup of S_n conjugate to M and $h \in H$ is of type (a_1, \ldots, a_k) . We have $|X| = N \cdot a(M)$ where a(M) is the number of conjugates of M containing a fixed $h \in G$ of this type and $|X| = |S_n : N_{S_n}(M)| \cdot b(M) \leq |S_n|$ where $b(M) \leq |M|$ is the number of elements of M of type (a_1, \ldots, a_k) . We obtain

$$n! \ge |X| = N \cdot a(M) \ge (n!/n^k)a(M).$$

It follows that $a(M) \leq n^k$. \Box

In the following we make frequent use of Stirling's inequalities, which holds for every integer $t \geq 2$,

$$\sqrt{2\pi t} \cdot (t/e)^t < t! < e\sqrt{t} \cdot (t/e)^t.$$
(1)

Lemma 3. Let $X := \{(x, y) \in \mathbb{N}^2 : 2 \le x \le y - 2\}$. Then

$$\lim_{\substack{|(x,y)| \to \infty \\ (x,y) \in X}} \frac{y!^{x-1}}{x!^{y-1}} = +\infty.$$

Proof. Set

$$f(x,y) := \frac{y!^{x-1}}{x!^{y-1}}.$$

Note that f(x, y) < f(x, y + 1) whenever $(x, y) \in X$. This is because the claimed inequality is equivalent to $x! < (y + 1)^{x-1}$ for $(x, y) \in X$, which is a consequence of the inequality $x! \le x^{x-1}$, which can be easily proved by induction.

We are left to check that f(x, x + 2) tends to $+\infty$ when x tends to $+\infty$. This can be proved directly using calculus techniques and inequalities (1). \Box

Lemma 4. Let $d \ge 2$, $k \ge 5$ be integers such that $n = dk \ge 26$. Then

$$|S_d \wr S_k| = d!^k k! \le (n/5e)^n (5n)^{5/2} e \sqrt{n}.$$

Proof. Set $f(x) := (nx)^{x/2}/x^n$ for any real $x \ge 5$. The derivative of f is f'(x) = (1/(2x))f(x)g(x) where $g(x) = x\log(nx) - 2n + x$, so f'(5) < 0 being $n \ge 14$, and f is decreasing in x = 5. Since $g'(x) = \log(nx) + 2$ is positive (being $x \ge 5$) and the sign of f' equals the sign of g, we deduce that in the interval [5, n/5] we have $f(x) \le \max\{f(5), f(n/5)\}$ and this equals f(5) being $n \ge 25$. Therefore, using the bound $m! \le (m/e)^m e\sqrt{m}$, if $k \le n/5$ we obtain

$$d!^{k}k! \leq (d/e)^{dk}e^{k}d^{k/2}(k/e)^{k}e^{k^{1/2}} = f(k) \cdot (n/e)^{n}e\sqrt{k} \leq (n/5e)^{n}(5n)^{5/2}e\sqrt{n}.$$

The case k > n/5 corresponds to d < 5 and can be done case by case. \Box

Lemma 5. Let n be an even positive integer, r an odd divisor of n such that $3 \le r \le n/3$ and set $g(n,r) = (r!)^{n/r} (n/r)! + r \cdot r! \cdot ((n/r)!)^r$. Then $g(n,r) \le C((n/3)!)^3$ for some constant C.

Proof. Let *n* and *r* as in the statement and note that since *n* is even and *r* is odd we have $3 \le r \le n/4$. If r = 3 then $g(n,r) = 6^{n/3}(n/3)! + 18((n/3)!)^3 < 19((n/3)!)^3$ for large enough *n*. Using Stirling's inequalities (1), it is easy to prove that $\frac{(n/4)!^4}{(n/3)!^3} \le n \cdot (3/4)^n$ for large enough *n*, and this easily implies the result when r = n/4.

Assume therefore that $5 \le r \le n/5$. We apply Lemma 4 and deduce that

$$g(n,r) \le (r+1) \left(\frac{n}{5e}\right)^n (5n)^{5/2} e \sqrt{n} \le \left(\frac{n}{5e}\right)^n (5n)^{5/2} n^{3/2} e^{-\frac{n}{2}}$$

By another application of (1), we get that there exists a positive constant D such that

$$\frac{g(n,r)}{((n/3)!)^3} \le (3/5)^n n^{5/2} \cdot D_2$$

which tends to zero as n tends to infinity. \Box

3. Proof of Theorem 1

Let Γ be an (undirected) graph. Recall that the degree of a vertex of Γ is defined as the number of vertices of Γ that are adjacent to it. Also, a set of vertices is called independent if no two of its elements are connected by an edge. We prove Theorem 1 as an application of the following result due to P.E. Haxell.

Theorem 3 (Theorem 2 in [7]). Let k be a positive integer, let Γ be a graph of maximum degree at most k, and let $V(\Gamma) = V_1 \cup \cdots \cup V_n$ be a partition of the vertex set of Γ . Suppose that $|V_i| \ge 2k$ for each i. Then Γ has an independent set $\{v_1, \ldots, v_n\}$ where $v_i \in V_i$ for each i.

We will apply Theorem 3 to prove Theorem 1, first for n odd and composite, then for n divisible by 4. This will correspond to two different graphs.

3.1. Case n odd

We first consider the case n is an odd composite number. In this section, p will always be the smallest prime divisor of n. For each proper nontrivial divisor m of n, let \mathcal{P}_m be the set of partitions of the set $\{1, \ldots, n\}$ into m parts each of cardinality n/m. We want to find a maximal set of n-cycles in A_n pairwise generating A_n and in particular we will prove the following.

Proposition 1. If n is a sufficiently large odd composite number and p denotes the smallest prime divisor of n, then $\omega(A_n) \geq |\mathcal{P}_p|$.

Since the imprimitive maximal subgroups of A_n preserving a partition with p blocks cover all the *n*-cycles in A_n , and since the elements of A_n which are not *n*-cycles are covered by the maximal intransitive subgroups of type $(S_i \times S_{n-i}) \cap A_n$ with $1 \le i \le n/3$, we deduce from Proposition 1 that

$$|\mathcal{P}_p| \le \omega(A_n) \le \sigma(A_n) \le |\mathcal{P}_p| + \sum_{i=1}^{\lfloor n/3 \rfloor} {n \choose i}.$$

This proves Theorem 1 since the sum on the right-hand side is less than 2^n , so it is asymptotically irrelevant compared to

$$|\mathcal{P}_p| = \frac{n!}{(n/p)!^p p!} > \frac{(n/e)^n e^p (n/p)^{p/2}}{(n/pe)^n (p/e)^p e \sqrt{p}} = \frac{p^n}{e \sqrt{p}} \cdot \left(e^2 \sqrt{n/p^3}\right)^p \ge 3^n,$$

where the last inequality holds for sufficiently large n.

We are therefore reduced to prove Proposition 1.

For every $\Delta \in \mathcal{P}_m$ let $C(\Delta)$ be the set of *n*-cycles $x \in A_n$ such that Δ is the set of orbits of the element x^m . In other words, $C(\Delta)$ is the set of *n*-cycles contained in the maximal imprimitive subgroup of A_n whose block system is Δ . Using the fact that every *n*-cycle belongs to a unique imprimitive maximal subgroup of S_n with *m* blocks, it is easy to see that $|C(\Delta)| = |S_{n/m} \wr S_m|/n$ using a double counting argument. With a slight

abuse of notation, for any maximal subgroup H of A_n , we call C(H) the set of *n*-cycles contained in H.

We define a graph Γ whose vertex set is $V(\Gamma)$ and whose edge set is $E(\Gamma)$ in the following way. $V(\Gamma)$ is the set of *n*-cycles of A_n and, for distinct $x, y \in V(\Gamma)$, we say that $\{x, y\} \in E(\Gamma)$ if and only if $\langle x, y \rangle \neq A_n$ and the orbits of x^p do not coincide with those of y^p , in other words there is no $\Delta \in \mathcal{P}_p$ such that both x and y belong to $C(\Delta)$.

Since the *n*-cycles are pairwise conjugate in S_n , the graph Γ is vertex-transitive, so it is regular, in other words, every vertex has the same valency k. In order to prove Proposition 1, it is enough to prove that $|C(\Delta)| \geq 2k$ for all $\Delta \in \mathcal{P}_p$, since then the result will follow from Theorem 3 applied to the partition of the vertex-set of Γ given by the $C(\Delta)$ with $\Delta \in \mathcal{P}_p$.

If x is any vertex, then

$$k \leq \sum_{H \in \mathcal{H}_x} |C(H)|$$

where \mathcal{H}_x is the set of maximal subgroups of A_n containing x, except for the maximal imprimitive subgroup with p blocks. Clearly, no intransitive subgroup contains x so \mathcal{H}_x is made of imprimitive and primitive subgroups. Let \mathcal{H}_x^{imp} be the set of maximal imprimitive subgroups of A_n containing x whose number of blocks is not p, and let \mathcal{H}_x^{prim} be the set of maximal primitive subgroups of A_n containing x. Then

$$k \leq \sum_{H \in \mathcal{H}_x^{imp}} |C(H)| + \sum_{H \in \mathcal{H}_x^{prim}} |C(H)|.$$

We bound the first term of the above sum. Let $\Delta_m(x)$ be the partition in \mathcal{P}_m whose blocks are the orbits of the element x^m . Since n has at most $2\sqrt{n}$ positive divisors,

$$\sum_{H \in \mathcal{H}_x^{imp}} |C(H)| = \sum_{m|n, m \neq p} |C(\Delta_m(x))| \le 2\sqrt{n} \max_{m|n, m \neq p} |S_{n/m} \wr S_m|/n \tag{2}$$

where the second summation and the maximum is on all nontrivial proper divisors m of n that are different from p.

Note that, if $n \neq p^2$, the last term in (2) is at least c^n for any given constant c, if n is sufficiently large. This can be checked easily using $|S_{n/m} \wr S_m| = (n/m)!^m m!$ and Stirling inequalities (1).

Lemma 1 implies that the last term in (2) is asymptotically irrelevant compared to $|C(\Delta)|$ for $\Delta \in \mathcal{P}_p$ when n is the product of at least three primes.

We now turn to primitive subgroups. When n > 23 (and n is not a prime) the primitive maximal subgroups of A_n containing *n*-cycles are permutational isomorphic to $P\Gamma L(m, s) \cap A_n$, where

$$n = \frac{s^m - 1}{s - 1} \tag{3}$$

for some $m \ge 2$ and some prime power s, its action on points (or on hyperplanes) of a projective space of dimension m over the field of $s = p^f$ elements ([8, Theorem 3]). Therefore in particular we have that if H is such a subgroup of A_n then

$$|C(H)| < |\Pr \mathcal{L}_m(s)| < 2^{n-1}$$

By Lemma 2 there are at most n conjugates of H containing a fixed n-cycle x. Moreover we show now that S_n has at most $\log_2(n)$ conjugacy classes of such maximal primitive subgroups, and therefore this number is at most $2\log_2(n)$ for A_n . First observe that, being n odd, if (m, s) is a pair satisfying equation (3) then s is the biggest power of pdividing n - 1. The possible choices for s are at most the number of primes dividing n - 1, that is at most $\pi(n - 1)$ which is trivially smaller than $\log_2(n)$. Once that sis chosen there is at most only one possible value for m such that (m, s) satisfies (3). Thus the number of these pairs is bounded from above by $\log_2(n)$. Now, for a fixed pair (m, s) satisfying (3) the group A_n contains at most two conjugacy classes of primitive maximal subgroups isomorphic to $P\Gamma L_m(s) \cap A_n$ (it can be proved that the two actions of such a group respectively on the projective points and on the projective hyperplanes are equivalent in S_n). Thus the number of conjugacy classes of proper primitive maximal subgroups containing an n-cycle is at most $2\log_2(n)$. It follows that

$$\sum_{H \in \mathcal{H}_x^{prim}} |C(H)| \le n \log_2(n) \cdot 2^n$$

and so it is easy to see that the last term in (2) is an upper bound also for this sum (remember that we are considering $n \neq p^2$).

Assume that n is a product of at least three primes, not necessarily distinct. If $\Delta \in \mathcal{P}_p$, then by Lemma 1 we have

$$\frac{|C(\Delta)|}{k} \ge \frac{|S_{n/p} \wr S_p|}{2\sqrt{n} \max_{p \ne m|n} |S_{n/m} \wr S_m|} \ge \frac{2^{\sqrt{n}-4}}{\sqrt{n}} > 2,$$

which gives the result (here again the maximum is on all nontrivial proper divisors m of n that are different from p).

When n = pq for some prime q distinct from p, arguing as above we have $k \leq 2|S_p \setminus S_q|$ for large enough n, therefore

$$\frac{|C(\Delta)|}{k} \ge \frac{|S_q \wr S_p|}{2|S_p \wr S_q|}$$

and we only have to prove that, for large enough n, the right-hand side is larger than 2. This follows from Lemma 3.

Assume finally that $n = p^2$. Then the only contribution is given by primitive subgroups, in other words

$$\frac{C(\Delta)}{k} \geq \frac{|S_p \wr S_p|/n}{\sum_{H \in \mathcal{H}_x^{prim}} |C(H)|} \geq \frac{p!^{p+1}/n}{n \log_2(n) \cdot 2^n}.$$

This is clearly larger than 2 for large enough n.

This concludes the proof of Proposition 1 and therefore also of Theorem 1 in the case n odd and composite.

3.2. Case n divisible by 4

We now prove Theorem 1 when n is divisible by 4.

In [11], Maróti proved that $\sigma(G) \sim 2^{n-2}$. We want to prove that $\omega(G)$ is also asymptotic to 2^{n-2} in this case, so that $\omega(G) \sim \sigma(G)$. Since $\omega(G) \leq \sigma(G)$, it is enough to find a lower bound for $\omega(G)$ which is asymptotic to 2^{n-2} .

We consider the set

$$\mathcal{S} = \{ \Delta \subseteq \{1, \dots, n\}, \ 1 < |\Delta| < n/2, \ |\Delta| \text{ odd } \}.$$

Since the number of subsets of $\{1, ..., n\}$ of even size is equal to the number of subsets of odd size (this can be seen by expanding the equality $0 = (1-1)^n$ with the binomial theorem), we have

$$|\mathcal{S}| = \sum_{i=2}^{n/4} \binom{n}{2i-1} = 2^{n-2} - n \sim 2^{n-2}.$$

Let V be the set of elements of A_n of cycle type (a, n-a) for a odd and 1 < a < n/2. We have $V = \bigcup_{\Delta \in S} C(\Delta)$, where $C(\Delta)$ is the set of bicycles with orbits Δ and $\Omega \setminus \Delta$.

As in the case n odd, we define a graph Γ with now vertex set $V(\Gamma) = V$ and whose edge set $E(\Gamma)$ is the family of size 2 subsets $\{x, y\} \subseteq V$ such that $\langle x, y \rangle \neq A_n$ and x and y do not belong to the same $C(\Delta)$, for all $\Delta \in S$.

The sets $C(\Delta)$ determine a partition of $V(\Gamma)$ and by Theorem 3 we are done if we can prove that, for all $\Delta \in \mathcal{S}$,

$$|C(\Delta)| \ge 2k,$$

where k is the maximum degree of a vertex in Γ .

In [5, Theorem 1.5] and [6, Theorem 1.1] a careful and detailed description of the primitive permutation groups containing a permutation with at most four cycles is given. From that analysis it follows that, when n is divisible by 4 and sufficiently large there are only two cases in which a product of two disjoint cycles of odd length in S_n can be contained in a primitive permutation group $H \leq S_n$ not containing the alternating group A_n , and in both cases the cycles have lengths 1 and n-1. By our choice of S, $|\Delta| \neq 1$, therefore, since by the definition of V the intransitive subgroups of A_n cannot

8

contain subsets of the form $\{x, y\} \in E(\Gamma)$, the only maximal subgroups of A_n containing such sets are the imprimitive ones.

We now evaluate the maximum degree k of our graph. Namely, for any fixed $x \in C(\Delta)$ we bound the number of elements $y \in V \setminus C(\Delta)$ such that $\langle x, y \rangle \neq A_n$.

Let \mathcal{H}_x^{imp} be the set of maximal imprimitive subgroups of A_n containing x. The above discussion implies that

$$k \le \sum_{H \in \mathcal{H}_x^{imp}} |H|.$$

Assume that $x \in C(\Delta)$ with $|\Delta| = a$, so that x is a product of two disjoint cycles of lengths a and n-a. Moreover assume that x belongs to an imprimitive maximal subgroup W, say $W \simeq S_d \wr S_m$, with d, m > 1 and dm = n.

Then there are two possibilities.

- Δ is the union of some of the blocks of W. In this case $d \mid a$ and W is uniquely determined by x, since its blocks are exactly the orbits of the two cycles appearing in x raised to the number of blocks involved in each cycle.
- $m \mid a \text{ and } \Delta \pmod{(\operatorname{and } \Omega \setminus \Delta)}$ intersects each block of W in exactly a/m (resp. (n-a)/m) elements. In this case there are exactly m conjugates of W containing x: they can be obtained by pairing cyclically each orbit of x_1^m with an orbit of x_2^m , where x_1 and x_2 are respectively the restrictions of x to Δ and to $\Omega \setminus \Delta$.

It follows that

$$\sum_{H \in \mathcal{H}_x^{imp}} |H| \leq \sum_{r | \gcd(a,n)} \left(|S_r \wr S_{n/r}| + r \cdot |S_{n/r} \wr S_r| \right)$$

$$= \sum_{r | \gcd(a,n)} \left((r!)^{n/r} (n/r)! + r \cdot r! \cdot ((n/r)!)^r \right).$$
(4)

Since $|C(\Delta)| = (|\Delta| - 1)! (n - |\Delta| - 1)! \ge (2/n)^2 (n/2)!^2$, inequality (4) together with Lemma 5 gives, for large enough n,

$$\frac{k}{|C(\Delta)|} \le \frac{\sum_{H \in \mathcal{H}_x^{imp}} |H|}{(2/n)^2 (n/2)!^2} \le \frac{Cn(n/3)!^3}{(2/n)^2 (n/2)!^2} \le c_2 (2/3)^n n^3$$

for some constant c_2 . The last inequality can be proved easily using Stirling's inequalities (1). This proves that $k/|C(\Delta)|$ tends to zero as $n \to \infty$, hence it is smaller than 1/2 for sufficiently large n, which is what we wanted to prove.

4. Proof of Theorem 2

The following argument is a slight generalization of [13, Section 3].

Let G be any finite non-cyclic group and let T be a finite group containing G as a normal subgroup. Let \mathscr{M} be a family of maximal subgroups of G and let Π be a subset of G. Let $\{M_i \mid i \in I_T\}$ be a set of pairwise non-T-conjugate maximal subgroups of G such that every maximal subgroup of G is T-conjugate to some M_i , with $i \in I_T$, and let $\mathscr{M}_i := \{t^{-1}M_it : t \in T\}$ and $\Pi_i := \Pi \cap \bigcup_{M \in \mathscr{M}_i} M$, for all $i \in I_T$. Let $I \subseteq I_T$. Suppose that the following holds.

- (1) $\mathcal{M} = \bigcup_{i \in I} \mathcal{M}_i;$
- (2) $x^t \in \Pi$ for all $x \in \Pi, t \in T$;
- (3) Π is contained in $\bigcup_{M \in \mathscr{M}} M$;
- (4) if $A, B \in \mathcal{M}$ and $A \neq B$ then $A \cap B \cap \Pi = \emptyset$;
- (5) $M \cap \Pi \neq \emptyset$ for all $M \in \mathcal{M}$.

Note that this implies in particular that $\{\Pi_i\}_{i\in I}$ is a partition of Π . Moreover if A, B are T-conjugate subgroups then since Π and each Π_i (for $i \in I_T$) are unions of T-conjugacy classes of elements of T, we have $|A \cap \Pi| = |B \cap \Pi|$ and $|A \cap \Pi_i| = |B \cap \Pi_i|$.

For any maximal subgroup M of G outside ${\mathscr M}$ define

$$d(M) := \sum_{i \in I} \frac{|M \cap \Pi_i|}{|M_i \cap \Pi_i|}.$$

The proof of the following proposition is essentially the same as the one in [13, Section 3] but we include it for completeness.

Proposition 2. Assume the above setting. If $d(M) \leq 1$ for all maximal subgroups M of G outside \mathscr{M} then any family of proper subgroups of G whose union contains Π has size at least $|\mathscr{M}|$. In other words, \mathscr{M} is a minimal covering of Π . Moreover, if d(M) < 1 for all maximal subgroups M of G outside \mathscr{M} then \mathscr{M} is the unique minimal covering of Π .

Proof. Let \mathscr{K} be any family of maximal subgroups of G such that $\bigcup_{K \in \mathscr{K}} K \supseteq \Pi$ and suppose $\mathscr{K} \neq \mathscr{M}$. We want to prove that $|\mathscr{M}| \leq |\mathscr{K}|$. Define

$$\mathscr{M}' := \mathscr{M} - (\mathscr{M} \cap \mathscr{K}), \qquad \mathscr{K}' := \mathscr{K} - (\mathscr{M} \cap \mathscr{K}).$$

For any $i \in I$, let m_i be the number of subgroups from \mathcal{M}_i in \mathcal{M}' , and for any $j \in I_T$ let k_j be the number of subgroups from \mathcal{M}_j in \mathcal{K}' .

Observe that since \mathscr{K} covers Π_i and \mathscr{M} partitions Π , the members of \mathscr{K}' must cover the elements of Π_i contained in $\bigcup_{M \in \mathscr{M}'} M$. Since \mathscr{M} partitions Π , the number of such elements is $m_i | M_i \cap \Pi_i |$. Therefore

$$m_i|M_i \cap \Pi_i| \le \sum_{j \notin I} k_j |M_j \cap \Pi_i|.$$

We claim that if $d(M) \leq 1$ for all $M \in \mathscr{K}'$ then $|\mathscr{M}| \leq |\mathscr{K}|$. Indeed, we have

$$|\mathscr{M}'| = \sum_{i \in I} m_i \leq \sum_{i \in I} \sum_{j \notin I} k_j \frac{|M_j \cap \Pi_i|}{|M_i \cap \Pi_i|} =$$
$$= \sum_{j \notin I} k_j \sum_{i \in I} \frac{|M_j \cap \Pi_i|}{|M_i \cap \Pi_i|} = \sum_{j \notin I} k_j d(M_j) \leq \sum_{j \notin I} k_j = |\mathscr{K}'|.$$

This implies

$$|\mathcal{M}| = |\mathcal{M} \cap \mathcal{K}| + |\mathcal{M}'| \le |\mathcal{M} \cap \mathcal{K}| + |\mathcal{K}'| = |\mathcal{K}|,$$

and therefore \mathscr{M} is a covering of Π of minimal size. Moreover, if d(M) < 1 for all maximal subgroups M of G outside \mathscr{M} , then the above argument shows that $|\mathscr{M}| < |\mathscr{K}|$ whenever $\mathscr{M} \neq \mathscr{K}$, proving that \mathscr{M} is the unique covering of Π of minimal size. \Box

From now on let $n \ge 21$ be a positive integer congruent to 3 modulo 18 and let $q := n/3, G := A_n, T := S_n$. Note that $q \equiv 1 \pmod{6}$. We prove Theorem 2 by showing (with the use of Proposition 2) the existence of a minimal covering \mathcal{M} for A_n of size

$$\sum_{i=1}^{q-2} \binom{n}{i} + \frac{1}{6} \frac{n!}{q!^3}$$

If $n = \sum_{i=1}^{t} a_i$ and $1 \le a_1 \le a_2 \le \ldots \le a_t$ we denote by (a_1, \ldots, a_t) the set of elements of A_n whose cycle structure consists of t disjoint cycles each of length a_i , for $i = 1, \ldots, t$. Note that each (a_1, \ldots, a_t) is either empty or an A_n -conjugacy class or the union of two A_n -conjugacy classes. The latter case occurs if and only if the numbers a_1, \ldots, a_t are all odd and pairwise distinct.

Let $\Pi_{-1} = (n)$ be the set of all *n*-cycles and for every integer *a* such that $1 \le a \le q-2$ define

$$\Pi_a := \begin{cases} (a, \frac{n-a-1}{2}, \frac{n-a+1}{2}) & \text{if } a \equiv 0 \pmod{2} \\ (a, \frac{n-a}{2} - 1, \frac{n-a}{2} + 1) & \text{if } a \equiv 1 \pmod{2}. \end{cases}$$

We define the collection \mathcal{M} of S_n -conjugacy classes of maximal subgroups of A_n as follows.

 \mathcal{M}_{-1} is the set of maximal imprimitive subgroups of A_n with 3 blocks. Thus the elements of \mathcal{M}_{-1} are subgroups isomorphic to $(S_q \wr S_3) \cap A_n$.

For every a such that $1 \le a \le q - 2$ define \mathcal{M}_a to be the set of maximal intransitive subgroups of A_n which are the stabilizers of a set of size a.

Finally, let

$$\Pi := \bigcup_{a=-1,1,\dots,q-2} \Pi_a \quad \text{and} \quad \mathscr{M} := \bigcup_{a=-1,1,\dots,q-2} \mathscr{M}_a.$$

In this notation the index set I is $\{-1, 1, 2, \dots, q-2\}$.

11

For any S_n -conjugacy class \mathcal{M}_j of maximal subgroups of A_n (j can belong to I or not), let $m_j(i)$ be the number of subgroups from the S_n -class \mathcal{M}_j containing a fixed element of Π_i . The number $m_j(i)$ is well-defined because each Π_i is a S_n -conjugacy class. Also, as before we denote with I_{S_n} an index set for S_n -conjugacy class representatives of the maximal subgroups of A_n .

Lemma 6. If $j \in I_{S_n}$ and $M_j \in \mathcal{M}_j$ then

$$|M_j \cap \Pi_i| = \frac{m_j(i) \cdot |N_{S_n}(M_j)| \cdot |\Pi_i|}{|S_n|} \le \frac{m_j(i) \cdot |M_j| \cdot |\Pi_i|}{|A_n|}.$$

Moreover, if M_j is not primitive then this inequality is actually an equality.

Proof. Consider the bipartite graph with set of vertices $\Pi_i \cup \mathscr{M}_j$ and where there is an edge between $g \in \Pi_i$ and $M \in \mathscr{M}_j$ if and only if $g \in M$. Since Π_i is a conjugacy class of S_n , the family \mathscr{M}_j covers Π_i if one of its members intersects it. By assumption the number of edges of this graph equals both $m_j(i) \cdot |\Pi_i|$ and $|S_n : N_{S_n}(M_j)| \cdot |M_j \cap \Pi_i|$. We are left to prove that

$$|A_n: M_j| \le |S_n: N_{S_n}(M_j)|.$$

This follows from the fact that M_j is self-normalized in A_n , being a maximal subgroup (and $n \ge 5$), and $|S_n : N_{S_n}(M_j)|$ is the number of S_n -conjugates of M_j , while $|A_n : M_j| = |A_n : N_{A_n}(M_j)|$ is the number of A_n -conjugates of M_j . \Box

Lemma 7. Assume m is a positive integer divisible by 3. An element of S_m of cycle type (a,b,c), with $a,b,c \ge 1$ and a+b+c=m, stabilizes a partition of $\{1,\ldots,m\}$ with 3 blocks if and only if at least one of the following holds:

- (1) a = b = c = m/3.
- (2) 3 divides gcd(a, b, c);
- (3) One of a, b, c equals 2m/3;
- (4) One of a, b, c equals m/3 and the other two are even.

Proof. Straightforward. \Box

We have the following.

(1) $\bigcup_{M \in \mathscr{M}} M = A_n$. To see this let $g \in A_n$, and let (a_1, \ldots, a_k) , $1 \le a_1 \le \ldots \le a_k$, be the cycle type of g, with $\sum_{i=1}^k a_i = n$. Note that, since $g \in A_n$ and n is odd, k must be odd. If $a_1 < q-1$ then g belongs to a member of \mathscr{M}_{a_1} . Now assume that $a_1 \ge q-1$, so that $a_i \ge q-1$ for all $i = 1, \ldots, k$. It follows that $3q = n = \sum_{i=1}^k a_i \ge k(q-1)$, therefore $k \le 3$ being q > 3 odd. If k = 1 then g belongs to a member of \mathscr{M}_{-1} , so now assume that k = 3. Since $q - 1 \le a_1 \le a_2 \le a_3$, the only possibilities for (a_1, a_2, a_3) are either (q - 1, q - 1, q + 2) or (q - 1, q, q + 1), therefore g belongs to a member of \mathcal{M}_{-1} by Lemma 7 since $q \equiv 1 \pmod{6}$ (respectively case (2) and case (4)). Note that here is the point where we use the crucial assumption $n \equiv 3 \pmod{18}$.

(2) For every $g \in \Pi$ there exists a unique $M \in \mathscr{M}$ such that $g \in M$. More precisely, if $g \in \Pi_{-1}$ then the unique member of \mathscr{M} containing g is the unique member of \mathscr{M}_{-1} whose blocks are the three orbits of g^3 , and if $g \in \Pi_a$, $a \in \{1, \ldots, q-2\}$, then the unique member of \mathscr{M} containing g is the subgroup in \mathscr{M}_a sharing an orbit of size a with g. This is because no element of Π which is not an *n*-cycle stabilizes a partition with 3 blocks, a fact that can be easily proved by using Lemma 7.

From now on let \mathcal{M}_j be a S_n -class of maximal subgroups of A_n not contained in \mathcal{M} (in other words we think of j as an index in $I_{S_n} \setminus I$) and let \mathcal{M}_j be any element of \mathcal{M}_j . We deduce from Lemma 6 that, if $i \in I$, then

$$d(M_j) = \sum_{i \in I} \frac{|M_j \cap \Pi_i|}{|M_i \cap \Pi_i|} \le \sum_{i \in I} \frac{m_j(i)|M_j|}{m_i(i)|M_i|} \le |M_j| \sum_{i \in I} \frac{m_j(i)}{|M_i|}.$$

Now, if \mathscr{M}_j is a S_n -class of maximal intransitive subgroups of A_n then $m_j(-1) = 0$, while $m_j(i) \leq 1$ for $1 \leq i \leq q-2$ and also $m_j(i) = 0$, except for at most 4 values of *i*. This is because, thinking of *j* as the size of an orbit of the members of \mathscr{M}_j , with $q-1 \leq j < n/2$, the possible values of *i* such that $1 \leq i \leq q-2$ and $m_j(i) \neq 0$ are obtained by solving the equations j = (n-i)/2 - 1, j = (n-i)/2 + 1, j = (n-i-1)/2and j = (n-i+1)/2. Note that if M_j is of type $(S_{q-1} \times S_{2q+1}) \cap A_n$ then $M_j \cap \Pi = \emptyset$, implying that $d(M_j) = 0$. If this is not the case then $|M_j| \leq q!(2q)!$, therefore

$$d(M_j) \le \frac{4 \cdot q! \cdot (2q)!}{(q-2)! \cdot (2q+2)!} = \frac{4q(q-1)}{(2q+2)(2q+1)} < 1.$$

If \mathcal{M}_j is a S_n -class of transitive subgroups of A_n then $m_j(i) \leq n^3$ by Lemma 2. Moreover, if M_j is imprimitive then $|M_j| \leq (n/5e)^n (5n)^{5/2} e \sqrt{n}$ by Lemma 4, and if M_j is primitive then $|M_j| \leq 2^n$ by [10]. Since $|M_i| \geq |(S_q \wr S_3) \cap A_n| = 3q!^3 > 3(n/3e)^n$ for every $i \in I$ and |I| < n, we obtain that

$$d(M_j) \le |M_j| \sum_{i \in I} \frac{m_j(i)}{|M_i|} < \frac{n^4 (n/5e)^n (5n)^{5/2} e \sqrt{n}}{3(n/3e)^n} = \frac{5^{5/2}e}{3} n^7 (3/5)^n < 1,$$

as long as $n \ge 65$.

Finally when n = 21, 39 or 57, then q is a prime, respectively: 7, 13 and 19. Since |I| = q - 1 and $m_j(i) \le n^3$, we can use the bound

$$d(M_j) \le |M_j| \sum_{i \in I} \frac{m_j(i)}{M_i} \le \frac{(q-1)n^3 |M_j|}{3 \cdot q!^3},$$

which gives the result when $n \in \{39, 57\}$ or when n = 21 and M_j is primitive, by making use of the bound $|M_j| \leq 3!^q \cdot q!$. Here we use the list of primitive subgroups of a given (small) degree, available in [3, Table B.2].

Now assume n = 21 and $M = M_j$ is imprimitive, so that $M \cong (S_3 \wr S_7) \cap A_{21}$. Then the only elements of Π that stabilize a partition with 7 blocks are those of type (21) or of type (4, 8, 9). Moreover $|M \cap \Pi_{-1}| = |M|/21$ and $|M \cap \Pi_4| = \binom{7}{3} \cdot \frac{3!^4}{9} \cdot 3! \cdot 2!^3 = 7! \cdot 48$, while $|M_{-1} \cap \Pi_{-1}| = |M_{-1}|/21$ and $|M_4 \cap \Pi_4| = 3! \cdot \binom{17}{8} \cdot 7! \cdot 8!$, hence

$$d(M) = \frac{3!^7 \cdot 7!}{7!^3 \cdot 3!} + \frac{7! \cdot 48}{3! \cdot \binom{17}{8} \cdot 7! \cdot 8!} = \frac{315059}{171531360} < 1.$$

Data availability

No data was used for the research described in the article.

References

- S.R. Blackburn, Sets of permutations that generate the symmetric group pairwise, J. Comb. Theory, Ser. A 113 (7) (2006) 1572–1581.
- [2] J.R. Britnell, A. Evseev, R.M. Guralnick, P.E. Holmes, A. Maróti, Sets of elements that pairwise generate a linear group, J. Comb. Theory, Ser. A 115 (3) (2008) 442–465.
- [3] J.D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996.
- [4] F. Fumagalli, M. Garonzi, A. Maróti, On the maximal number of elements pairwise generating the symmetric group of even degree, Discrete Math. 345 (4) (2022) 112776.
- [5] S. Guest, J. Morris, C.E. Praeger, P. Spiga, Affine transformations of finite vector spaces with large orders or few cycles, J. Pure Appl. Algebra (2) (2015) 308–330.
- [6] S. Guest, J. Morris, C.E. Praeger, P. Spiga, Finite primitive permutation groups containing a permutation having at most four cycles, J. Algebra (2016) 233–251.
- [7] P.E. Haxell, A note on vertex list colouring, Comb. Probab. Comput. 10 (4) (2001) 345–347.
- [8] G.A. Jones, Cyclic regular subgroups of primitive permutation groups, J. Group Theory 5 (4) (2002) 403–407.
- [9] A. Lucchini, A. Maróti, On the clique number of the generating graph of a finite group, Proc. Am. Math. Soc. 137 (10) (2009) 3207–3217.
- [10] A. Maróti, On the orders of primitive groups, J. Algebra 258 (2) (2002) 631-640.
- [11] A. Maróti, Covering the symmetric groups with proper subgroups, J. Comb. Theory, Ser. A 110 (1) (2005) 97–111.
- [12] L. Stringer, Pairwise generating sets for the symmetric and alternating groups, PhD thesis, Royal Holloway, University of London, 2008.
- [13] E. Swartz, On the covering number of symmetric groups having degree divisible by six, Discrete Math. 339 (11) (2016) 2593–2604.