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1. Introduction

Given a finite group G that can be generated by 2 elements but not by 1 element,
set w(@G) to be the largest size of a pairwise generating set S C G, that is, a subset S
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of G with the property that (z,y) = G for any two distinct elements z,y of S. Also, set
(@) to be the covering number of G, that is the minimal number of proper subgroups
of G whose union is G. We will reserve the term “covering” of G for any family of proper
subgroups of G whose union is G. A minimal covering of G is a covering of G of size
o(G).

Since any proper subgroup of G contains at most one element of any pairwise gener-
ating set, w(G) < o(G) always.

S. Blackburn [1] and L. Stringer [12] proved that if n is odd and n # 9,15 then
o(Sn) = w(Sy,) and that if n = 2 (mod 4) then o(A,) = w(A,). Stringer also proved
that w(Sg) < o(Sg). In [1] it is conjectured that, if S is a finite non abelian simple group,
then o(S)/w(S) tends to 1 as the order of S goes to infinity. We remark that, apart from
the above, the only cases in which the precise value of w(G) is known are for groups G
of Fitting height at most 2 ([9]) and for certain linear groups (see [2]).

In [4], it was proved that w(Sy,)/c(Sy,) tends to 1 as n — co. In this paper, we focus
on alternating groups and prove the following results.

Theorem 1. Let n vary in the set of composite positive integers. Then

lim 7(An)

=1.
n—oo w(Ay)

Note that Stringer’s result implies our theorem when n =2 (mod 4), so we will only
prove it when n is divisible by 4 or an odd composite integer.
Our second result concerns the precise value of o(A4,,) when n =3 (mod 18).

Theorem 2. Let n > 3 be an integer with n = 3 (mod 18) and let g :=n/3. Then
2 1 n!
=3 (7) + g

A minimal covering of A, consists of the intransitive mazimal subgroups of type (S; X
Sn—i) VA, fori=1,...,q — 2, and the imprimitive mazimal subgroups with 3 blocks,
which are isomorphic to (Sq1S3) N Ay.

2. Technical lemmas

In this section we will collect some technical results we will need throughout the paper.

Lemma 1 (Lemma 10.3.3 in [12]). Let n be an odd integer which is the product of at least
three primes (not necessarily distinct) and let p be the smallest prime divisor of n. Then
if n is sufficiently large we have

|Sn/p 1 Spl > 9v/n—3
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where m is any nontrivial proper divisor of n different from p.

The following lemma is a generalization of [1, Lemma 4] and its proof uses the same
ideas. We need to apply it for k£ < 3. If aq,...,ar are positive integer which sum to
n, then an element of S, of type (ai,...,ax) is a product of disjoint cycles of lengths
A1y ..., Qf.

Lemma 2. Let aq,...,a, be positive integers with Zle a; = n. Let M be a subgroup of
Spn. The number of conjugates of M in S, containing a fixed element of type (a1, ..., ax)
is at most n*.

Proof. Let N be the number of elements of S,, of type (ai,...,ar) and let g be an
element of this type. We want to show that N > n!/nF. Assume that ay,...,a; are
organized so that k; of them equal a; for ¢+ = 1,...,¢, so that ky + ... + k; = k and
a1k, + ...+ atky = n. Since the centralizer of g in S, is isomorphic to szl Cy; U Sk, we
deduce that

n! n! n!

N = > > —
at k! a7 (k)R (agke)Re T ok

being n¥ = (a1ky + ... + agk)FrHFhe,

Let us double-count the size of the set X of pairs (h, H) such that H is a subgroup
of S, conjugate to M and h € H is of type (ai1,...,ar). We have |X| = N - a(M)
where a(M) is the number of conjugates of M containing a fixed h € G of this type and
|X| = |Sn : Ng, (M)]-b(M) <|S,,| where b(M) < |M| is the number of elements of M
of type (ai,...,ax). We obtain

n! > |X|=N-a(M) > (n!/n*)a(M).
It follows that a(M) < n*. O

In the following we make frequent use of Stirling’s inequalities, which holds for every
integer t > 2,

V2rt - (t/e)t < t! < eVt (t/e)'. (1)

Lemma 3. Let X := {(z,y) € N? : 2 <z <y—2}. Then

. y!w—l
\(m,yl)r|n—>oo zly—1 = Feo
(z,y)eX
Proof. Set
|1z—1
flay) =2

xly—=1°
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Note that f(z,y) < f(z,y + 1) whenever (x,y) € X. This is because the claimed in-
equality is equivalent to 2! < (y + 1)*~! for (z,y) € X, which is a consequence of the
inequality z! < 27!, which can be easily proved by induction.

We are left to check that f(z,x + 2) tends to +0o when z tends to +oo. This can be
proved directly using calculus techniques and inequalities (1). O

Lemma 4. Let d > 2, k > 5 be integers such that n = dk > 26. Then
1S40 S| = d'*k! < (n/5e)™(5n)° %ey/n.

Proof. Set f(z) := (nx)*/?/z" for any real 2 > 5. The derivative of f is f'(z) =
(1/(2x)) f(z)g(x) where g(x) = xlog(nz) — 2n + z, so f'(5) < 0 being n > 14, and
f is decreasing in © = 5. Since ¢'(z) = log(nz) + 2 is positive (being z > 5) and
the sign of f’ equals the sign of g, we deduce that in the interval [5,7n/5] we have
f(z) < max{f(5), f(n/5)} and this equals f(5) being n > 25. Therefore, using the
bound m! < (m/e)™ey/m, if k < n/5 we obtain

dFE! < (d/e)erd 2 (kje)*ekt/? = f(k) - (n/e)"eVEk < (n/5e)™(5n)> 2ev/n.
The case k > n/5 corresponds to d < 5 and can be done case by case. O
Lemma 5. Let n be an even positive integer, r an odd divisor of n such that 3 <r <n/3

and set g(n,r) = (P (n/r)! + - r!- ((n/r)))". Then g(n,r) < C’((n/?))!)3 for some
constant C.

Proof. Let n and r as in the statement and note that since n is even and r is odd we have
3 <r < nf4 If r =3 then g(n,r) = 6™/3(n/3)! + 18((n/3)1)3 < 19((n/3)!) for large
enough n. Using Stirling’s inequalities (1), it is easy to prove that % < n-(3/4)"
for large enough n, and this easily implies the result when r = n/4.

Assume therefore that 5 < r < n/5. We apply Lemma 4 and deduce that

gln,r) < (r+1) (%)n (5n)%%ey/n < (%)n (5n)°/2n3/2e.

By another application of (1), we get that there exists a positive constant D such that

g(n,r)

((n/3)1)?

which tends to zero as n tends to infinity. O

< (3/5)"n*%. D,

3. Proof of Theorem 1

Let T' be an (undirected) graph. Recall that the degree of a vertex of T" is defined
as the number of vertices of I' that are adjacent to it. Also, a set of vertices is called
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independent if no two of its elements are connected by an edge. We prove Theorem 1 as
an application of the following result due to P.E. Haxell.

Theorem 3 (Theorem 2 in [7]). Let k be a positive integer, let T’ be a graph of mazimum
degree at most k, and let V(I') = V1 U--- UV, be a partition of the vertex set of T.
Suppose that |V;| > 2k for each i. Then T' has an independent set {vy,...,v,} where
v; € V; for each 1.

We will apply Theorem 3 to prove Theorem 1, first for n odd and composite, then for
n divisible by 4. This will correspond to two different graphs.

3.1. Casen odd

We first consider the case n is an odd composite number. In this section, p will always
be the smallest prime divisor of n. For each proper nontrivial divisor m of n, let P,, be
the set of partitions of the set {1,...,n} into m parts each of cardinality n/m. We want
to find a maximal set of n-cycles in A,, pairwise generating A,, and in particular we will
prove the following.

Proposition 1. Ifn is a sufficiently large odd composite number and p denotes the smallest
prime divisor of n, then w(A,) > |P,l.

Since the imprimitive maximal subgroups of A,, preserving a partition with p blocks
cover all the n-cycles in A,,, and since the elements of A,, which are not n-cycles are
covered by the maximal intransitive subgroups of type (S; X .S,,—;)NA, with 1 <i < n/3,
we deduce from Proposition 1 that

[n/3]
n
Pl S an) S o4 < Pol+ 3 ()

This proves Theorem 1 since the sum on the right-hand side is less than 2", so it is
asymptotically irrelevant compared to

_ n! (n/e)"ep(n/p)P/2 o oy » §
|Pp| - (n/p)'Pp! > (n/pe)"(p/e)Pe\/p?_ /D ( W) > 3",

where the last inequality holds for sufficiently large n.

We are therefore reduced to prove Proposition 1.

For every A € Py, let C(A) be the set of n-cycles © € A,, such that A is the set of
orbits of the element ™. In other words, C'(A) is the set of n-cycles contained in the
maximal imprimitive subgroup of A,, whose block system is A. Using the fact that every
n-cycle belongs to a unique imprimitive maximal subgroup of S,, with m blocks, it is
easy to see that [C(A)| =[S, /m 1Sm|/n using a double counting argument. With a slight
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abuse of notation, for any maximal subgroup H of 4,,, we call C(H) the set of n-cycles
contained in H.

We define a graph I" whose vertex set is V(I') and whose edge set is E(I') in the
following way. V(I") is the set of n-cycles of A,, and, for distinct z,y € V(I'), we say that
{z,y} € E(T) if and only if (z,y) # A,, and the orbits of 2P do not coincide with those
of y?, in other words there is no A € P, such that both x and y belong to C(A).

Since the n-cycles are pairwise conjugate in S, the graph I' is vertex-transitive, so
it is regular, in other words, every vertex has the same valency k. In order to prove
Proposition 1, it is enough to prove that |C'(A)| > 2k for all A € P,, since then the
result will follow from Theorem 3 applied to the partition of the vertex-set of I' given by
the C'(A) with A € P,,.

If x is any vertex, then

k< Y jom)

HeH,

where H, is the set of maximal subgroups of A, containing z, except for the maximal
imprimitive subgroup with p blocks. Clearly, no intransitive subgroup contains x so
H. is made of imprimitive and primitive subgroups. Let Hi™P be the set of maximal
imprimitive subgroups of A,, containing # whose number of blocks is not p, and let HE™™
be the set of maximal primitive subgroups of A,, containing x. Then

k< Y jom+ Y o).

HeH:’anp HeHgTi?n

We bound the first term of the above sum. Let A,,(x) be the partition in P,, whose
blocks are the orbits of the element ™. Since n has at most 24/n positive divisors,

> 10 = Y IC@u@)I<2VA max [SymiSal/n  (2)

HEML™ m|n,mz#p

where the second summation and the maximum is on all nontrivial proper divisors m of
n that are different from p.

Note that, if n # p?, the last term in (2) is at least ¢" for any given constant ¢, if
n is sufficiently large. This can be checked easily using [Sy, /r, ¢ Sm| = (n/m)!"m! and
Stirling inequalities (1).

Lemma 1 implies that the last term in (2) is asymptotically irrelevant compared to
|C(A)| for A € P, when n is the product of at least three primes.

We now turn to primitive subgroups. When n > 23 (and n is not a prime) the
primitive maximal subgroups of A,, containing n-cycles are permutational isomorphic to
PT'L(m,s) N A,, where

(3)
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for some m > 2 and some prime power s, its action on points (or on hyperplanes) of
a projective space of dimension m over the field of s = pf elements ([8, Theorem 3]).
Therefore in particular we have that if H is such a subgroup of A,, then

IC(H)| < [PTLy(s)] < 2.

By Lemma 2 there are at most n conjugates of H containing a fixed n-cycle x. Moreover
we show now that S,, has at most log,(n) conjugacy classes of such maximal primitive
subgroups, and therefore this number is at most 2log,(n) for A,,. First observe that,
being n odd, if (m, s) is a pair satisfying equation (3) then s is the biggest power of p
dividing n — 1. The possible choices for s are at most the number of primes dividing
n — 1, that is at most 7w(n — 1) which is trivially smaller than logy(n). Once that s
is chosen there is at most only one possible value for m such that (m,s) satisfies (3).
Thus the number of these pairs is bounded from above by log,(n). Now, for a fixed pair
(m, s) satisfying (3) the group A, contains at most two conjugacy classes of primitive
maximal subgroups isomorphic to PI'L,,(s) N A,, (it can be proved that the two actions
of such a group respectively on the projective points and on the projective hyperplanes
are equivalent in S,,). Thus the number of conjugacy classes of proper primitive maximal
subgroups containing an n-cycle is at most 2logy(n). It follows that

ST IC(H)] < nlogy(n) - 2"

Hewgmm

and so it is easy to see that the last term in (2) is an upper bound also for this sum
(remember that we are considering n # p?).

Assume that n is a product of at least three primes, not necessarily distinct. If A € P,
then by Lemma 1 we have

o) | S0/ 1) 2/t
k B 2\/ﬁmaxp;£m\n |Sn/m { Sm‘ N \/ﬁ

> 2,

which gives the result (here again the maximum is on all nontrivial proper divisors m of
n that are different from p).

When n = pq for some prime ¢ distinct from p, arguing as above we have k < 2|5,
for large enough n, therefore

CA)] 15,25,
k28,18,

and we only have to prove that, for large enough n, the right-hand side is larger than 2.
This follows from Lemma 3.

Assume finally that n = p?. Then the only contribution is given by primitive sub-
groups, in other words
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C) . IS8l o
ko 7 Y peyprm |C(H)| — nlogy(n) - 27

This is clearly larger than 2 for large enough n.
This concludes the proof of Proposition 1 and therefore also of Theorem 1 in the case
n odd and composite.

3.2. Case n divisible by 4

We now prove Theorem 1 when n is divisible by 4.

In [11], Maréti proved that o(G) ~ 2"~2. We want to prove that w(G) is also asymp-
totic to 2”72 in this case, so that w(G) ~ o(G). Since w(G) < o(G), it is enough to find
a lower bound for w(G) which is asymptotic to 2772

We consider the set

S={AC{l,....n}, 1<|A| <n/2, |A] odd }.

Since the number of subsets of {1,...,n} of even size is equal to the number of subsets
of odd size (this can be seen by expanding the equality 0 = (1 — 1)" with the binomial
theorem), we have

n/4

_ n _ on—2 n—2
|8|_Z<2¢—1>_2 —n~2V2

=2

Let V be the set of elements of A,, of cycle type (a,n—a) for a odd and 1 < a < n/2.
We have V' = (Jac5 C(A), where C'(A) is the set of bicycles with orbits A and Q\ A.

As in the case n odd, we define a graph I' with now vertex set V(I') = V' and whose
edge set E(T) is the family of size 2 subsets {z,y} C V such that (x,y) # A, and x and
y do not belong to the same C'(A), for all A € S.

The sets C(A) determine a partition of V(I') and by Theorem 3 we are done if we
can prove that, for all A € S,

[C(A)] = 2k,

where k is the maximum degree of a vertex in I.

In [5, Theorem 1.5] and [6, Theorem 1.1] a careful and detailed description of the
primitive permutation groups containing a permutation with at most four cycles is given.
From that analysis it follows that, when n is divisible by 4 and sufficiently large there
are only two cases in which a product of two disjoint cycles of odd length in S, can
be contained in a primitive permutation group H < S, not containing the alternating
group A,, and in both cases the cycles have lengths 1 and n — 1. By our choice of S,
|A| # 1, therefore, since by the definition of V' the intransitive subgroups of A,, cannot
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contain subsets of the form {x,y} € E(T"), the only maximal subgroups of A,, containing
such sets are the imprimitive ones.

We now evaluate the maximum degree k of our graph. Namely, for any fixed 2 € C'(A)
we bound the number of elements y € V' \ C(A) such that (z,y) # A,,.

Let Hi™P be the set of maximal imprimitive subgroups of A,, containing z. The above
discussion implies that

k< > |H|

HeMI™

Assume that © € C(A) with |[A| = a, so that z is a product of two disjoint cycles of
lengths a and n—a. Moreover assume that z belongs to an imprimitive maximal subgroup
W, say W ~ S5;518,,, with d,m > 1 and dm = n.

Then there are two possibilities.

e A is the union of some of the blocks of W. In this case d | @ and W is uniquely
determined by x, since its blocks are exactly the orbits of the two cycles appearing
in x raised to the number of blocks involved in each cycle.

o m|aand A (and 2\ A) intersects each block of W in exactly a/m (resp. (n—a)/m)
elements. In this case there are exactly m conjugates of W containing x: they can
be obtained by pairing cyclically each orbit of z7* with an orbit of x5*, where x; and
xo are respectively the restrictions of = to A and to 2\ A.

It follows that

HeHIm™P r|ged(a,n)
= > (Y (Y7
r|ged(a,n)

Since |C(A)| = (|A] = ) (n — |A] = 1)! > (2/n)%(n/2)!2, inequality (4) together with
Lemma 5 gives, for large enough n,

k - > mepimr [H] < Cn(n/3)13
IC(A)] ™ (2/n)*(n/2)!2 = (2/n)*(n/2)
for some constant co. The last inequality can be proved easily using Stirling’s inequalities

(1). This proves that k/|C(A)| tends to zero as n — oo, hence it is smaller than 1/2 for
sufficiently large n, which is what we wanted to prove.

< 2(2/3)"n?

4. Proof of Theorem 2

The following argument is a slight generalization of [13, Section 3].
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Let G be any finite non-cyclic group and let T be a finite group containing G as a
normal subgroup. Let .# be a family of maximal subgroups of G and let II be a subset
of G. Let {M; | i € Ir} be a set of pairwise non-T-conjugate maximal subgroups of G
such that every maximal subgroup of G is T-conjugate to some M;, with i € I, and let
My = {t7 Mt : t €T} and II; := 11N UMe/ﬂi M, for all ¢ € It. Let I C I7. Suppose
that the following holds. '

(1) A = UiEI M

(2) atellforallz €11, t € T}

(3) IT'is contained in (J,,c , M;

(4) if A,B € .# and A # B then AN BNII = 0

(5) MNII # @ for all M € .

Note that this implies in particular that {II;};c; is a partition of II. Moreover if

A, B are T-conjugate subgroups then since II and each II; (for ¢ € Iy) are unions of

T-conjugacy classes of elements of T', we have |ANII| = |[BNII| and |[ANIL| = |[BNIL).
For any maximal subgroup M of G outside .# define

Z |MﬂH|
M, AL

The proof of the following proposition is essentially the same as the one in [13, Section
3] but we include it for completeness.

Proposition 2. Assume the above setting. If d(M) < 1 for all mazimal subgroups M of
G outside A then any family of proper subgroups of G whose union contains II has size
at least | A |. In other words, # is a minimal covering of II. Moreover, if d(M) < 1 for
all maximal subgroups M of G outside M then A is the unique minimal covering of 11.

Proof. Let % be any family of maximal subgroups of G such that (., K 2 II and
suppose % # 4. We want to prove that |.#| < |%|. Define

M =M~ (MK, H = H— (MK,

For any i € I, let m; be the number of subgroups from .#; in .#’, and for any j € It
let k; be the number of subgroups from .#; in J¢”.

Observe that since £ covers II; and .# partitions II, the members of J#” must cover
the elements of II; contained in (J,,. ,» M. Since .# partitions II, the number of such
elements is m;|M; N IL;|. Therefore

JEI

We claim that if d(M) <1 for all M € J#” then |.#| < |#|. Indeed, we have
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M; N1
)= me < S Y ks

el i€l j¢I

M; N1IL;
= Sn X it — 00 < Sk = 1
jeI el J&I

This implies
|| = | AN+ || < |l 0|+ | A | =]H],

and therefore .# is a covering of IT of minimal size. Moreover, if d(M) < 1 for all maximal
subgroups M of G outside ., then the above argument shows that |.Z| < |#'| whenever
M # A, proving that .# is the unique covering of II of minimal size. O

From now on let n > 21 be a positive integer congruent to 3 modulo 18 and let
q:=n/3,G:=A,, T:=5,. Note that ¢ =1 (mod 6). We prove Theorem 2 by showing
(with the use of Proposition 2) the existence of a minimal covering .# for A, of size

S (1)1

If n = Z§=1ai and 1 < a3 < ag < ... < a; we denote by (a1,...,a;) the set of
elements of A, whose cycle structure consists of ¢ disjoint cycles each of length a;, for
i=1,...,t. Note that each (a1, ...,a;) is either empty or an A,-conjugacy class or the
union of two A,-conjugacy classes. The latter case occurs if and only if the numbers
ai,...,a; are all odd and pairwise distinct.

Let II_; = (n) be the set of all n-cycles and for every integer a such that 1 < a < ¢—2
define

0 - (a,2=g=1 n=gtl) if a=0 (mod 2)
@5t — 1,252 4 1) ifa=1 (mod 2).

We define the collection .# of S,-conjugacy classes of maximal subgroups of A, as
follows.

M1 is the set of maximal imprimitive subgroups of A, with 3 blocks. Thus the
elements of .#Z_; are subgroups isomorphic to (S, 1.S3) N A,,.

For every a such that 1 < a < ¢ — 2 define .#, to be the set of maximal intransitive
subgroups of A,, which are the stabilizers of a set of size a.

Finally, let

II:= U I, and # := U M.

a=—1,1,..., q—2 a=—1,1,..., q—2

In this notation the index set I is {—1,1,2,...,q — 2}.
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For any S,,-conjugacy class .#; of maximal subgroups of A,, (j can belong to I or not),
let m;(i) be the number of subgroups from the S,-class .#; containing a fixed element
of II;. The number m;(¢) is well-defined because each II; is a S,-conjugacy class. Also,
as before we denote with Ig, an index set for S,-conjugacy class representatives of the
maximal subgroups of A,,.

Lemma 6. If j € I, and M; € .#; then

(0) - [Ns, (My)| - || _ my(3) - [ M) - [ILi|

m;
|M; NIL| = —
Moreover, if M; is not primitive then this inequality is actually an equality.

Proof. Consider the bipartite graph with set of vertices II; U .#; and where there is an
edge between g € II; and M € .#; if and only if g € M. Since 1I; is a conjugacy class
of S, the family .#; covers II; if one of its members intersects it. By assumption the
number of edges of this graph equals both m;(¢) - [II;| and |S, : Ng, (M;)| - |M; N IL|.
We are left to prove that

|An : MJ| < |Sn : NSn(MJ)‘

This follows from the fact that M; is self-normalized in A,,, being a maximal subgroup
(and n > 5), and |S,, : Ng, (M;)| is the number of S,-conjugates of M;, while |A, :
M;| = |Ay : Na, (M;)| is the number of A,-conjugates of M;. O

Lemma 7. Assume m is a positive integer divisible by 3. An element of Sy, of cycle type
(a,b,c), with a,b,c > 1 and a + b+ ¢ = m, stabilizes a partition of {1,...,m} with 3
blocks if and only if at least one of the following holds:

(1) a=b=c=m/3.

(2) 3 divides ged(a, b, c);

(3) One of a,b,c equals 2m/3;

(4) One of a,b,c equals m/3 and the other two are even.

Proof. Straightforward. O

We have the following.

(1) Upres M = A, To see this let g € A, and let (ag,...,ax), 1 <ay < ... < ayg, be
the cycle type of g, with Zle a; = n. Note that, since g € A,, and n is odd, k¥ must
be odd. If a1 < g—1 then g belongs to a member of .#,, . Now assume that a; > ¢—1,
so that a; > g — 1 for all i = 1,..., k. It follows that 3¢ =n = Y.F | a; > k(g — 1),
therefore k < 3 being ¢ > 3 odd. If £ = 1 then g belongs to a member of .Z_1, so now
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assume that k = 3. Since ¢ — 1 < a; < as < as, the only possibilities for (a1,as9, as)
are either (¢ —1,¢q—1,¢g+ 2) or (¢ — 1,q,q + 1), therefore g belongs to a member
of #_1 by Lemma 7 since ¢ =1 (mod 6) (respectively case (2) and case (4)). Note
that here is the point where we use the crucial assumption n =3 (mod 18).

(2) For every g € II there exists a unique M € .# such that g € M. More precisely, if
g € I1_; then the unique member of .# containing ¢ is the unique member of .#Z_;
whose blocks are the three orbits of g3, and if g € I, a € {1,...,q — 2}, then the
unique member of .# containing ¢ is the subgroup in .#, sharing an orbit of size a
with g. This is because no element of IT which is not an n-cycle stabilizes a partition
with 3 blocks, a fact that can be easily proved by using Lemma 7.

From now on let .#; be a S,-class of maximal subgroups of A,, not contained in .#

(in other words we think of j as an index in Ig, \ I) and let M; be any element of .#;.
We deduce from Lemma 6 that, if i € I, then

M, AL ey ()]
=2 A Z RGIA —'M'Z |M\

Now, if .#; is a S,-class of maximal intransitive subgroups of A, then m;(—1) = 0,

while m;(i) < 1 for 1 < i < ¢— 2 and also m;(i) = 0, except for at most 4 values
of ¢. This is because, thinking of j as the size of an orbit of the members of .#;, with
g —1 < j < n/2, the possible values of ¢ such that 1 < ¢ < ¢ — 2 and m;(i) # 0 are
obtained by solving the equations j = (n—4)/2—-1,j=(n—1)/2+1,j=(n—i—1)/2
and j = (n—1+1)/2. Note that if M; is of type (Sq—1 X Sag+1) N A, then M; NIl = &,
implying that d(M;) = 0. If this is not the case then |M;| < ¢!(2¢)!, therefore

4-¢!-(29)!  4q(qg—-1)

d(M;) < (q—2)'-(2¢+2)  (2¢+2)(2¢+1)

If #; is a S,-class of transitive subgroups of A,, then m;(i) < n® by Lemma 2.
Moreover, if M; is imprimitive then |M;| < (n/5e)"(5n)°/?e\/n by Lemma 4, and if M,
is primitive then |M;| < 2™ by [10]. Since [M;] > [(S;193) N A,| = 3¢!® > 3(n/3e)™ for
every ¢ € I and |I| < n, we obtain that

TL e)” TL5/2€ n 5/26

i€l

as long as n > 65.
Finally when n = 21,39 or 57, then ¢ is a prime, respectively: 7, 13 and 19. Since
|I| = ¢ — 1 and m;(i) < n3, we can use the bound

m;(1) (g — 1)n3|M;|
< |M; AN J
)< lag 3 i) < (1= DR

icl
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which gives the result when n € {39, 57} or when n = 21 and M; is primitive, by making
use of the bound |M;| < 3! ¢!. Here we use the list of primitive subgroups of a given
(small) degree, available in [3, Table B.2].

Now assume n = 21 and M = M; is imprimitive, so that M = (S51.57) N Ag1. Then
the only elements of II that stabilize a partition with 7 blocks are those of type (21) or
of type (4,8,9). Moreover |M NII_1| = |M|/21 and |M NIL4| = (;) . % 231213 = 7148,
while |[M_y NTI_q| = [M_;]/21 and [ My NIL| = 3! () - 7! - 8!, hence

T Thag 315059
Co73l g ()78l 171531360

U
—

<1
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