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Abstract: Integration of a desossiribonucleic acid (DNA) copy of the viral ribonucleic acid (RNA)
into host genomes is a fundamental step in the replication cycle of all retroviruses. The highly
conserved virus-encoded Integrase enzyme (IN; EC 2.7.7.49) catalyzes such a process by means of
two consecutive reactions named 3′-processing (3-P) and strand transfer (ST). The Authors report
and discuss the major discoveries and advances which mainly contributed to the development of
Human Immunodeficiency Virus (HIV) -IN targeted inhibitors for therapeutic applications. All the
knowledge accumulated over the years continues to serve as a valuable resource for the design and
development of effective antiretroviral drugs.

Keywords: integrase (IN) enzyme; allosteric IN inhibitors (ALLINIs); multimeric INIs (MINIs);
IN-strand transfer inhibitors (INSTIs); strand transfer inhibitors; dual inhibitors; 3′-processing

1. Introduction

The International Committee on Taxonomy of Viruses (ICTV) classifies the ribonu-
cleic acid (RNA) containing viruses into groups III-VI based on genome pairing and
sign [1–3]; additional taxonomic features are considered to discriminate each virus among
the others [1–3]. A wide variety of RNA-based viruses, such as coronaviruses, influenzae,
and HIVs, are well-known etiologic agents of recurrent infectious diseases in living or-
ganisms [3,4]. In addition to the structural differences among DNA- and RNA-containing
viruses, their replication cycle makes them particularly interesting from the evolutionary
viewpoint. For the purposes of this review, it is worth mentioning RNA viruses account for
higher mutation rates, and that makes them very quick in adaptation to changing environ-
ments when compared to their DNA counterparts [5,6]. Such an aspect plays a crucial role
when uncontrolled diffusion of viruses among human/animal/plant populations occurs,
as it may easily turn into outbreaks or pandemics [6,7].

All RNA viruses rely on their own “replicase complex” to replicate, which includes
highly conserved enzymes associated with ancillary structural proteins. The RNA-dependent
RNA polymerase (RdRp) is the most common enzyme packed within the replicase complex,
although some viral strains may also contain RNA-helicases, NTPases as well as Integrases
(IN) [4]. All such enzymes do catalyze key stages of the viral replication cycle, and for
the purposes of this review, we focus on the integration of the viral double-stranded DNA
molecule, transcribed from its RNA counterpart, within the host cell genome [5]. Reverse
transcription (i.e., RNA to DNA) is a necessary step included in the replicative process of
pathologically relevant retroviruses such as the human immunodeficiency virus 1 (HIV-1),
murine leukemia virus (MLV), and avian sarcoma leukosis virus (ASLV). Figure 1A,B reports
the most important replicative steps for such viruses.

Int. J. Mol. Sci. 2023, 24, 12187. https://doi.org/10.3390/ijms241512187 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241512187
https://doi.org/10.3390/ijms241512187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1141-6146
https://orcid.org/0000-0003-4262-0323
https://doi.org/10.3390/ijms241512187
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241512187?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 12187 2 of 22Int. J. Mol. Sci. 2023, 24, 12187 2 of 22 
 

 

 
Figure 1. Replication cycle of retroviruses: (A) main steps for retrovirus entry within a eukaryotic 
cell and (B) for exit from it [5]. Figure was adapted with permission from Ref. [5]. 

In this context, the viral Integrase (IN; EC 2.7.7.49) enzyme plays a fundamental role 
as it efficiently mediates the integration of the newly transcribed DNA genome into the 
infected host cell. In this review article, the authors report fundamental knowledge on the 
IN enzymes and, unless otherwise stated, specifically refer to the HIV-1 expressed 
isoform, which is the best characterized so far and thus generally considered as a reference 
among the scientific community. A selection of the main scientific contributions dealing 
with the IN enzyme catalytic mechanism, structural aspects, and its role in the 
management of viral RNA-promoted infection diseases will be discussed. The final 
section will be dedicated to the most innovative and promising patents covering the last 
10 years. 

2. Structure of the IN Enzyme 
IN is a member of the tyrosine recombinase family, composed of the highly 

conserved structural domains referred to as the N-terminal domain (NTD), C-terminal 
domain (CTD), and catalytic core domain (CCD), which are schematically depicted in 
Figure 2. All three IN domains have been characterized in detail by NMR and X-ray 
crystallographic experiments [8–14]. 

A representative feature of the NTD-IN is the highly conserved HHCC motif useful for 
binding to the viral DNA and cleaving its strands. The domain is formed by three compact 
α-helices stabilized through coordination with a Zn (II) ion [13,14]. The length of NTDs is 
variable among retroviruses, such as in ε- and γ-retroviral spumaviral INs, which extends 
up to ~40 amino acid residues when compared to the HIV-1 expressed isoform [15]. 

The CCD domain contains the IN active site with the highly conserved DDE motif, 
which is responsible for coordinating two Mg (II) ions [16] (Figure 2). Interestingly, X-ray 
crystal studies on the CCD-IN section revealed a protein folding typically contained in 
Nucleotidyl Transferases (NTs) [12] (Figure 3). 

The large spatial separation between the enzyme active site, located at the CCD 
domain, from both the NTD and CTD sections is indicative of a high-level of multimeric 

Figure 1. Replication cycle of retroviruses: (A) main steps for retrovirus entry within a eukaryotic
cell and (B) for exit from it [5]. Figure was adapted with permission from Ref. [5].

In this context, the viral Integrase (IN; EC 2.7.7.49) enzyme plays a fundamental role
as it efficiently mediates the integration of the newly transcribed DNA genome into the
infected host cell. In this review article, the authors report fundamental knowledge on the
IN enzymes and, unless otherwise stated, specifically refer to the HIV-1 expressed isoform,
which is the best characterized so far and thus generally considered as a reference among
the scientific community. A selection of the main scientific contributions dealing with the
IN enzyme catalytic mechanism, structural aspects, and its role in the management of viral
RNA-promoted infection diseases will be discussed. The final section will be dedicated to
the most innovative and promising patents covering the last 10 years.

2. Structure of the IN Enzyme

IN is a member of the tyrosine recombinase family, composed of the highly con-
served structural domains referred to as the N-terminal domain (NTD), C-terminal domain
(CTD), and catalytic core domain (CCD), which are schematically depicted in Figure 2. All
three IN domains have been characterized in detail by NMR and X-ray crystallographic
experiments [8–14].

A representative feature of the NTD-IN is the highly conserved HHCC motif useful for
binding to the viral DNA and cleaving its strands. The domain is formed by three compact
α-helices stabilized through coordination with a Zn (II) ion [13,14]. The length of NTDs is
variable among retroviruses, such as in ε- and γ-retroviral spumaviral INs, which extends
up to ~40 amino acid residues when compared to the HIV-1 expressed isoform [15].
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organization for the entire IN enzyme [12]. X-Ray crystallographic experiments on the 
CCD-IN section partially confirmed such a hypothesis since most of the structures were 
solved as dimers [12]. The necessary multimeric functional organization of IN turns out 
to be particularly challenging to clarify. Although high aggregation states have been 
reported [17,18], the tetrameric assembly of the HIV-1 IN has received the strongest 
experimental support [19,20]. Studies on variegated retroviral genera predicted specific 
functional multimeric aggregations for their INs [21–24]. Overall, it is sufficient to 
summarize that any functional IN multimeric aggregation relies fundamentally on the 
dimerization of the CCD domains, which in turn are interconnected to each other at the 
NTD-CCD level, as shown in Figure 3. 

 

 
Figure 2. A schematic diagram of the three domains in HIV1-IN (top); structural representation of 
the NTD, CTD, and CCD (middle); HIV-1 IN catalytic core containing the DDE motif (bottom). 

Among the three IN domains, CTD is the least conserved. Nevertheless, important 
features such as β-folding of Src homology 3 (SH3) are highly conserved [8,9]. In addition, 
there is a closely related organization typically recovered within the Tudor family 
domains, which are known to be involved in chromatin binding processes [8,9]. 

During viral genome integration, both CTD and NTD are critically involved in 
docking and blocking the viral DNA (v-DNA)-substrate [25,26]. The high degree of 
flexibility of the linkers connecting the CDD to the outer domains (i.e., NTD and CTD) 
appears to vary widely in length among retroviruses and turns out to be particularly 
important for ensuring correct docking of the v-DNA [16,27]. 

Figure 2. A schematic diagram of the three domains in HIV1-IN (top); structural representation of
the NTD, CTD, and CCD (middle); HIV-1 IN catalytic core containing the DDE motif (bottom).

The CCD domain contains the IN active site with the highly conserved DDE motif,
which is responsible for coordinating two Mg (II) ions [16] (Figure 2). Interestingly, X-ray
crystal studies on the CCD-IN section revealed a protein folding typically contained in
Nucleotidyl Transferases (NTs) [12] (Figure 3).
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Figure 3. Tetrameric organization of HIV1-INs based on CCD dimerization and details of the key 
contacts at the CCD-NTD interface (PDB ID 1K6Y). 
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as part of the viral pre-integration complex (PIC). PICs are rather complex units highly 
variable among viral strains, which are formed by the assembly of enzymatic and struc-
tural proteins. In acute viral infections, a single copy per cell usually is recovered, and that 
contributes to making PICs very difficult to identify and characterize [28–37]. 

The complete integration of the viral genome within the cellular host occurs through 
a finely regulated mechanism based on the activity of PICs once they have access to the 
cell nucleus. The IN enzyme inserts v-DNA into cell chromosomes, and the process is sub-
sequently completed by the host cell�s DNA repair machinery [29–37]. The minimal sub-
structure within the PIC that catalyzes viral genome integration in vitro is referred to as 
the Intasome (INT), which is highly specific for each retrovirus and its mutant strains [28–
30]. To date, X-ray crystallography and cryogenic single-particle electron microscopy 
(cryo-EM) experiments made it possible to decipher the level of complexity of various 
INTs and turned very useful for the design of molecular scaffolds potentially useful for 
biomedical purposes [28]. 

3. Reactions Catalyzed by the IN Enzyme 
Two main reactions are associated with the IN enzyme within the PICs, namely the 

3′-OH processing (3-P) and the strand transfer (ST) [38–41], and are schematically repro-
duced in Figure 4. 

The first stage of the mechanisms takes place at the cytoplasmic level, with the IN 
being part of the PIC. The enzyme first recognizes and binds the v-DNA at specific recog-
nition sites and then cleaves the v-DNA strains creating a 3′-OH group that is available for 
nucleophilic attack. Next, the PIC translocates into the cell nucleus, and the IN binds to 
the host DNA at definite attachment sites and makes use of the newly generated 3′-OHs 
on the v-DNA to attack the host DNA strand at the phosphodiester bond between the 3′-
OH and the 5′-phosphate. This results in an effective connection of the v-DNA into the 
host genome. 

Since the 3′-processing step takes place at the cytoplasmic level, it is reasonable to 
expect that PICs will be surrounded by elevated local concentrations of linear v-DNAs. 
Such a situation may potentially represent a problem for retrovirus replication as self-
integrating end-products could be generated. Such an effect is routinely observed in la-
boratory experiments, and it has been widely reported in in vivo cellular models of infec-
tion [42–44]. Interestingly, several retroviruses have developed very efficient strategies to 
avoid self-integration of their genomes, thus making their replication cycles more effi-
cient. One example is the expression of the highly conserved cellular protein called the 
Barrier-to-Autointegration Factor (BAF). BAF is a small DNA-binding protein capable of 
bridging and condensing separate DNA molecules [45,46]. In vitro experiments on murine 

Figure 3. Tetrameric organization of HIV1-INs based on CCD dimerization and details of the key
contacts at the CCD-NTD interface (PDB ID 1K6Y).

The large spatial separation between the enzyme active site, located at the CCD do-
main, from both the NTD and CTD sections is indicative of a high-level of multimeric
organization for the entire IN enzyme [12]. X-Ray crystallographic experiments on the
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CCD-IN section partially confirmed such a hypothesis since most of the structures were
solved as dimers [12]. The necessary multimeric functional organization of IN turns out
to be particularly challenging to clarify. Although high aggregation states have been
reported [17,18], the tetrameric assembly of the HIV-1 IN has received the strongest experi-
mental support [19,20]. Studies on variegated retroviral genera predicted specific functional
multimeric aggregations for their INs [21–24]. Overall, it is sufficient to summarize that
any functional IN multimeric aggregation relies fundamentally on the dimerization of the
CCD domains, which in turn are interconnected to each other at the NTD-CCD level, as
shown in Figure 3.

Among the three IN domains, CTD is the least conserved. Nevertheless, important
features such as β-folding of Src homology 3 (SH3) are highly conserved [8,9]. In addition,
there is a closely related organization typically recovered within the Tudor family domains,
which are known to be involved in chromatin binding processes [8,9].

During viral genome integration, both CTD and NTD are critically involved in docking
and blocking the viral DNA (v-DNA)-substrate [25,26]. The high degree of flexibility of
the linkers connecting the CDD to the outer domains (i.e., NTD and CTD) appears to vary
widely in length among retroviruses and turns out to be particularly important for ensuring
correct docking of the v-DNA [16,27].

Once host cells are infected, the pool of INs is mainly localized at the cytoplasm level
as part of the viral pre-integration complex (PIC). PICs are rather complex units highly
variable among viral strains, which are formed by the assembly of enzymatic and structural
proteins. In acute viral infections, a single copy per cell usually is recovered, and that
contributes to making PICs very difficult to identify and characterize [28–37].

The complete integration of the viral genome within the cellular host occurs through
a finely regulated mechanism based on the activity of PICs once they have access to the
cell nucleus. The IN enzyme inserts v-DNA into cell chromosomes, and the process is
subsequently completed by the host cell’s DNA repair machinery [29–37]. The minimal sub-
structure within the PIC that catalyzes viral genome integration in vitro is referred to as the
Intasome (INT), which is highly specific for each retrovirus and its mutant strains [28–30].
To date, X-ray crystallography and cryogenic single-particle electron microscopy (cryo-EM)
experiments made it possible to decipher the level of complexity of various INTs and
turned very useful for the design of molecular scaffolds potentially useful for biomedical
purposes [28].

3. Reactions Catalyzed by the IN Enzyme

Two main reactions are associated with the IN enzyme within the PICs, namely
the 3′-OH processing (3-P) and the strand transfer (ST) [38–41], and are schematically
reproduced in Figure 4.

The first stage of the mechanisms takes place at the cytoplasmic level, with the IN being
part of the PIC. The enzyme first recognizes and binds the v-DNA at specific recognition
sites and then cleaves the v-DNA strains creating a 3′-OH group that is available for
nucleophilic attack. Next, the PIC translocates into the cell nucleus, and the IN binds to the
host DNA at definite attachment sites and makes use of the newly generated 3′-OHs on the
v-DNA to attack the host DNA strand at the phosphodiester bond between the 3′-OH and
the 5′-phosphate. This results in an effective connection of the v-DNA into the host genome.

Since the 3′-processing step takes place at the cytoplasmic level, it is reasonable to ex-
pect that PICs will be surrounded by elevated local concentrations of linear v-DNAs. Such
a situation may potentially represent a problem for retrovirus replication as self-integrating
end-products could be generated. Such an effect is routinely observed in laboratory ex-
periments, and it has been widely reported in in vivo cellular models of infection [42–44].
Interestingly, several retroviruses have developed very efficient strategies to avoid self-
integration of their genomes, thus making their replication cycles more efficient. One
example is the expression of the highly conserved cellular protein called the Barrier-to-
Autointegration Factor (BAF). BAF is a small DNA-binding protein capable of bridging
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and condensing separate DNA molecules [45,46]. In vitro experiments on murine leukemia
virus (MLV), PICs clearly showed the effects of BAF on self-integration events [47]. Al-
though BAF showed an excellent ability to inhibit the self-integration genome in vitro, it is
yet to be determined whether it acts effectively during MLV-promoted infections in in vivo
models [47].
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Once the ST process is complete, the new genome contains only two newly formed 
junctions which ensure the physical integrity of the v-DNA in the host. Therefore, a series 
of DNA repairing activities do take place with the final aim of fixing a pair of single-
stranded gaps and two short 5′ overhangs v-DNA remaining sections (Figure 5). 

Figure 4. Integrase mechanisms.

Alternative processes to prevent self-integration have been identified. It was reported
that self-integration during HIV-1 infection is suppressed by the SET complex, an endo-
plasmic reticulum-associated complex containing three distinct DNase enzymes [44,48].
Overall, different retroviral species have evolved unique ways to protect themselves from
suicidal genome integration events.

The occurrence of aberrant STs (i.e., half-site integration process) seems particularly
relevant to functional PICs in vitro, whereas such events are scarcely reported when natu-
rally occurring infections take place [49–56]. In addition to the 3-P and ST IN-associated
activities, the reversal reaction of genome integration, referred to as “disintegration”, is
known to be catalyzed by IN in vitro, but it has never been reported in vivo [57–66].

Once the ST process is complete, the new genome contains only two newly formed
junctions which ensure the physical integrity of the v-DNA in the host. Therefore, a series of
DNA repairing activities do take place with the final aim of fixing a pair of single-stranded
gaps and two short 5′ overhangs v-DNA remaining sections (Figure 5).
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Figure 5. Before DNA repair enzymes are engaged, the dismantling of the highly thermodynami-
cally stable strand transfer complex (STC) is necessary. This event is critical to ensure successful 
viral replication, although it has still been marginally considered being only one scientific study 
reported to date [67]. Specifically, the authors demonstrated that the proteasome-mediated degra-
dation of HIV-1 IN involves the von Hippel–Lindau protein 1, resulting in exposure of DNA to the 
activities of a DNA polymerase, a 5′ lamella endonuclease, and an enzyme ligase (Figure 5). A pu-
tative role of IN in post-integration DNA repair has been hypothesized [57,68,69], but evidence for 
its efficacy in infection models is still lacking. 

4. IN-Strand Transfer Inhibitors (INSTIs) 
To date, the combination antiretroviral therapy (cART) accounts for the association 

of four distinct classes of drugs: (i) nucleoside reverse transcriptase (RT) inhibitors 
(NRTIs) (ii) non-nucleoside RT inhibitors (NNRTIs); (iii) protease (PR) inhibitors (PIs), (iv) 
and the last introduced, the IN-strand transfer inhibitors (INSTIs). 

A real breakthrough in cART therapy was achieved with the introduction of INSTIs 
into the clinic, as these drugs are the only ones capable of targeting a specific process that 
is exclusive and essential for retroviruses (i.e., viral genome integration) [70]. 

HIVs directed cART within the timeframe 1990s-early 2000s was represented exclu-
sively by NNRTIs, NRTIs, and PIs. Multidrug and cross-drug resistances, mainly at-
tributed to specific mutations on target proteins, led to a drastic reduction of cART clinical 
efficacy. The discovery of HIV-IN and the development of appropriate and reliable in vitro 
small molecule screening assays appeared when the loss of cART efficacy was seriously 
compromised, thus with a tangible risk of a pandemic at a global scale. The chemical struc-
tures of currently used INSTIs are depicted in Figure 6. 

Despite the classification in two generations, all clinically used INSTIs are structurally 
related to the experimental compounds 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-
yl)propenone 6 (5-CITEP) as do share the key diketoacid (DKA) moiety (Figure 7) [71–73]. 

Compound 6 is an α,γ-DKA with the carboxylic acid function replaced by the acidic 
bioisosteric tetrazole ring. The ligand showed IC50 experimental values of 0.65 µM for the 
ST and 35 µM for the 3-P, respectively [71]. It was the prototypic IN inhibitor successfully 

Figure 5. Before DNA repair enzymes are engaged, the dismantling of the highly thermodynamically
stable strand transfer complex (STC) is necessary. This event is critical to ensure successful viral
replication, although it has still been marginally considered being only one scientific study reported
to date [67]. Specifically, the authors demonstrated that the proteasome-mediated degradation of
HIV-1 IN involves the von Hippel–Lindau protein 1, resulting in exposure of DNA to the activities of
a DNA polymerase, a 5′ lamella endonuclease, and an enzyme ligase (Figure 5). A putative role of
IN in post-integration DNA repair has been hypothesized [57,68,69], but evidence for its efficacy in
infection models is still lacking.

4. IN-Strand Transfer Inhibitors (INSTIs)

To date, the combination antiretroviral therapy (cART) accounts for the association of
four distinct classes of drugs: (i) nucleoside reverse transcriptase (RT) inhibitors (NRTIs)
(ii) non-nucleoside RT inhibitors (NNRTIs); (iii) protease (PR) inhibitors (PIs), (iv) and the
last introduced, the IN-strand transfer inhibitors (INSTIs).

A real breakthrough in cART therapy was achieved with the introduction of INSTIs
into the clinic, as these drugs are the only ones capable of targeting a specific process that is
exclusive and essential for retroviruses (i.e., viral genome integration) [70].

HIVs directed cART within the timeframe 1990s-early 2000s was represented exclu-
sively by NNRTIs, NRTIs, and PIs. Multidrug and cross-drug resistances, mainly attributed
to specific mutations on target proteins, led to a drastic reduction of cART clinical efficacy.
The discovery of HIV-IN and the development of appropriate and reliable in vitro small
molecule screening assays appeared when the loss of cART efficacy was seriously compro-
mised, thus with a tangible risk of a pandemic at a global scale. The chemical structures of
currently used INSTIs are depicted in Figure 6.
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tegravir 3, Dolutegravir 4, and Bictegravir 5. 

 

 
Figure 7. Chemical structure of the experimental INSTI 5-CITEP (6) and electron density maps of 
the IN CCD active site region in complex with it [72]. 

Parallel research in this field enabled Merck to discover L-708,906 [74] and L-731,988 
[75] (i.e., compounds 8 and 9 in Figure 8), with the latter being particularly potent in in-
hibiting HIV1-IN in vitro with remarkable selectivity for the ST process over 3-P (IC50 of 
80 nM and 6 µM, respectively) [74,75]. Remarkable results on infected cells have been ob-
tained for the series of DKA compounds containing the 8-hydroxy-[1,6]-naphthyridine-7-
carboxamide moiety, and among them, the derivative L-870,810 (7) was found to be a 

Figure 6. Chemical structures of clinically relevant INSTIs Raltegravir 1, Elvitegravir 2, Cabotegravir 3,
Dolutegravir 4, and Bictegravir 5.

Despite the classification in two generations, all clinically used INSTIs are structurally
related to the experimental compounds 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-
yl)propenone 6 (5-CITEP) as do share the key diketoacid (DKA) moiety (Figure 7) [71–73].
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Figure 7. Chemical structure of the experimental INSTI 5-CITEP (6) and electron density maps of the
IN CCD active site region in complex with it [72].

Compound 6 is an α,γ-DKA with the carboxylic acid function replaced by the acidic
bioisosteric tetrazole ring. The ligand showed IC50 experimental values of 0.65 µM for the
ST and 35 µM for the 3-P, respectively [71]. It was the prototypic IN inhibitor successfully
crystallized in adduct with the CCD domain [72]. Electron density maps accounted for its
positioning among CCD residues D64, D116, and E152. Additional contacts of compound 6
with CCD residues responsible for docking the host DNA were also retrieved.
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Parallel research in this field enabled Merck to discover L-708,906 [74] and L-731,988 [75]
(i.e., compounds 8 and 9 in Figure 8), with the latter being particularly potent in inhibiting
HIV1-IN in vitro with remarkable selectivity for the ST process over 3-P (IC50 of 80 nM and
6 µM, respectively) [74,75]. Remarkable results on infected cells have been obtained for
the series of DKA compounds containing the 8-hydroxy-[1,6]-naphthyridine-7-carboxamide
moiety, and among them, the derivative L-870,810 (7) was found to be a potent inhibitor
of IN at the ST level (IC50 of 8 nM) and was endowed with effective antiviral features on
cell-based assays (i.e., EC95 =15 nM) [76]. Compound 7 was the first INSTI to show anti-
HIV activity in experimental animal models and was, therefore, the subject of clinical trials,
which, however, failed due to liver and kidney toxicity in dogs [77,78]. Better results were
obtained with the DKA derivative (Z)-1-[5-[5-(4-fluorobenzyl)furan-2-yl]-3-hydroxy-3-(1H-
1,2,4-triazol-3-yl)propenone S-1360 (11), jointly developed by GlaxoSmithKline (London, UK)
and Shionogi (Osaka, Japan). Compound 11 showed an IC50 in vitro value of 20 nM for
the ST associated with highly effective suppression of HIV replication in in vivo infected
models [79]. Preclinical assays on compound 11 were satisfactory, and in humans, it was
demonstrated to be subjected to rapid metabolism and clearance through a non-CYP450-
mediated pathway [80]. The joint venture between GlaxoSmithKline and Shionogi was also
successful in developing the 4-hydroxy-2-oxo-1,2-dihydro-1,5-naphthyridine GSK364735 [81]
(i.e., compound 10 in Figure 8), which was revealed a remarkable INSTI and very effective in
suppressing viral replication in cellular assays [81]. Unfortunately, long-term safety studies
on monkeys reported severe hepatotoxicity for this compound that was discontinued from
clinical development [82].
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The intimate mechanisms of IN for both 3-P and ST catalyzed reactions were evaluated
in detail through all compounds above-mentioned, which turned out to be of great value in
the field of research, although they failed to enter the clinical armamentarium.

The compounds in Figures 7 and 8 strongly contributed to elucidate that: (i) stable,
functional PICs are most likely assembled using two Mg (II) ions during the v-DNA
integration process; (ii) of the two metal ions, one appears to be coordinated by residues D64
and D116, while the second is involved in coordination by residues D116 and E152 [83,84];
(iii) DKA-containing molecules characterized by a γ-ketone, an enolizable α-ketone, and a
carboxylic acid moiety result in effective inhibition of the IN enzyme. Acidic bioisosteric
functional groups, such as tetrazole and triazole, or basic ones (i.e., pyridines) can be
considered instead [83–85], thus suggesting that the potent antiviral ability of DKAs or their
surrogates is well maintained as long as the chelating properties towards divalent metal
ions are not disrupted [83–85]. Large series of mono-DKAs, dimeric DKAs, and triketoacids
(TKAs) have been largely explored for their role in chelating divalent metal ions and
proved to be potentially useful for IN inhibition by interfering with their supramolecular
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organization [86]. Overall, moderate IN inhibition potencies, much lower than those of
DKAs, have been reported from both dimeric DKAs and TKAs [87].

5. First-Generation INSTIs

The first INSTI for the treatment of HIV-1 infections was approved by the US FDA in
2007 [88–91]. Raltegravir was the unexpected and relevant result of a wide R&D program
intended to find HCV polymerase inhibitors based on small molecules containing the
DKA moiety. Raltegravir proved to be potent, reversible, and selective INSTI with an
IC50 value of 0.085 µM [92], highly effective in clinical trials when administered orally
at a dosage of 400 mg twice/day with associated good tolerability and safety profiles
and were devoid of any significant drug interactions [88,90,93–95]. Viral strains carrying
mutations in the IN-CCD domain have appeared rapidly due to the wide use of Raltegravir
since its approval. The most common mutations are E138A/K, Y143C/R, T66A, G140A,
Q148/H/K/R, N155H, and Q95K [92], three signature resistant-associated mutations
N155H ± E92Q, Q148H/K/R ± G140S/A and Y143C/R ± T97A accounted for a 10-fold
reduced susceptibility to Raltegravir [90], while E138A, G140A and Q148K were identified
as responsible for reduced drug susceptibility up to several hundred-folds [90].

FDA approval for the management of HIV-sustained infections was also obtained
for Elvitegravir. This compound was initially developed by the Central Pharmaceutical
Research Institute of Japan Tobacco, Inc. (Osaka, Japan) and later licensed to Gilead
Sciences (Foster City CA, USA) for clinical development. Elvitegravir makes use of the
4-quinolone-3-carboxylic acid and is chemically derived from quinolone-type antibiotics. It
showed very potent IN inhibitory activity for ST with an IC50 value of 7.2 nM, and even
more interesting are the results obtained on acute HIV-1 infection assay, which showed
Elvitegravir being active with an EC50 of 0.9 nM [96,97]. Unfortunately, cross-resistance
events due to mutations towards Raltegravir and Elvitegravir were reported, thus reducing
the chances of drug switching when cART therapeutic protocols are considered. United
States and UE have licensed Elvitegravir as single table formulations named STRIBILD
containing the pharmacokinetic enhancer cobicistat (COBI) able to inhibit the CYP3A4
enzyme, tenofovir disoproxil fumarate (TDF) and the NRTIs emtricitabine (FTC) [98].
Furthermore, a significant reduction in bone and renal side effects compared to STRIBILD
was shown with the approval of the lower-dose single-tablet regimen Genvoya [99].

6. Second-Generation INSTIs

This section reports INSTIs compounds clinically licensed for therapeutic use, whereas
experimental compounds currently undergoing clinical trials at different stages are not
discussed as their chemical characteristics and preliminarily disclosed biomedical data
largely overlap with known art. Second-generation INSTIs are characterized by chemical
structures able to completely occupy the IN active-site regions.

Shionogi and Glaxo Smith Kline jointly discovered and developed Dolutegravir [100,101],
which was marketed from the former as a 50 mg tablet under the brand name Tivicay R®. The
genetic cross-resistance observed for the first-generation INSTIs Raltegravir and Elvitegravir
found an effective replacement with the introduction of Dolutegravir. The optimization of
a series of carbamoyl pyridone analogs which do retain a two-metal chelation ability within
the IN catalytic active site, is directly linked to the chemical strategy underlying the effect of
Dolutegravir [101]. Tricyclic carbamoyl pyridine is explained, through important structure-
activity relationships (SARs), as an essential group that shares its oxygen-derived lone pairs
to coordinate the two divalent metal ions within the IN active site [101]. This implies that the
metal coordination of Dolutegravir doesn’t directly involve the carbonyl at the 5-positioned
carboxamide moiety. As a result of such enhanced structural flexibility, this drug shows better
embedment within the enzyme active site, and that improved its response to IN structural
changes due to mutations typically triggered by exposure to first-generation INSTIs [102].
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Shionogi-ViiV Healthcare and GSK developed Cabotegravir which is structurally
related to Dolutegravir [103]. This drug was licensed by the US FDA in the fall of 2021 as a
prophylaxis agent [104]. Cabotegravir showed an improved pharmacokinetic profile [105],
a superior genetic barrier to resistance when compared to Dolutegravir, and, most im-
portantly, a half-life of about 30 h [105,106]. Parenteral administration of Cabotegravir in
nanosuspensions (i.e., Apretude®) allows single administration at low dosages once per
month [107].

A genetic barrier to resistances superior to both first-generation INSTIs and Do-
lutegravir was reported by the potent INSTI Bictegravir (i.e., IC50 of 7.5 nM), which
was approved in 2018 [108,109]. Bictegravir showed synergistic antiviral effects in vitro
when combined with the N/NRTIs tenofovir alafenamide (TAF), emtricitabine (FTC), or
PI Darunavir [109]. The single tablet Biktarvy ® combining Bictegravir with FTC and
TAF [110] was developed through the contribution of Gilead Sciences.

7. IN Inhibition: New Perspectives
7.1. Allosteric IN Inhibitors (ALLINIs)

Despite the great advantages brought to cART therapy from the introduction of INSTIs,
clinical reports account for a multitude of drug resistance events. The interactions occurring
between IN and cellular co-factors necessary for the PICs/INTs to be functionally active
may be intentionally altered by the use of allosteric inhibitors (ALLINIs). All compounds
classified as ALLINIs bind to IN regions distinct from the catalytic site and determine
inhibition/disruption of the enzymatic activities [111–113].

ALLINIs do promote the formation of stable and high-order multimeric IN associations
devoid of any catalytic properties. There remains scarce related knowledge regarding the
mechanisms underlying ALLINIs’ mode of action, and detailed structural information for
these aberrant IN multimerization complexes does appear very general. The important
aspects to consider are the following: (i) for certain chemical classes of ALLINIs, any
specific aberrant enzymatic multimerization is consistently observed; (ii) the functional
dynamic flexibility between IN subunits is strongly affected by this unnatural, although
thermodynamically very effective, structural organization [114].

The following are the most important ALLINIs.

7.2. Lens Epithelium-Derived Growth Factor/p75 (LEDGF/p75)

LEDGF/p75 is among the first discovered essential cellular components able to en-
hance the interaction of the host DNA with functionally active PICs. It binds through
coordination with residues Asp366, Val 408, Ile365, and Phe406 to a specific site located at
the IN-protein C-terminus, referred to as the integrase binding domain (IBD) [115–117].

Specifically, targeting the LEDGF/p75 interaction site affects the IN multimerization
status, and thus, it allosterically affects its activity [117,118]. In addition, LEDGINs are also
responsible for inducing altered catalytic activity of the enzyme with poor discrimination
between ST and 3-P [119]. Since LEDGINs and INSTIs act through different mechanisms
of action on ST catalytic activity, no cross-resistance events take place [120]. Notably, the
road for cART therapy, including LEDGIN/INSTIs, has been opened by reporting that
both act in an additive or synergistic way. The structures of the most promising LEDGIN
compounds are shown in Figure 9.
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Multimerization-selective INIs (MINIs) represent a distinct class of ALLINIs, as do
result ineffective in the early steps of viral replication while do act only during the virion
maturation steps by inducing aberrant IN multimerization. KF115 and KF116, which
were obtained by the introduction of the quinolone of BI-1001 into the biaryl pyridine
moiety instead, are the most advanced experimental compounds to date and era reported
in Figure 10 [121,122].
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8. Dual Acting Inhibitors

The development of dual-acting inhibitors, thus single molecules able to simultane-
ously modulate different and/or multiple targets with additive or synergistic therapeutic
fashion, represent new advancements in the field of IN modulators for the management of
retrovirus-promoted infections [123].

The application of these inhibitors in the clinic is expected to induce much more
efficient therapeutic outcomes, possibly associated with increased patient compliance and
fewer side effects. This strategy is adopted to target primarily key enzymes of the viral
replication cycle. The most promising chemical classes are reported below.

8.1. IN-RT RNase H Inhibitors

The most immediate approach is represented by dual-acting inhibitors, which target
both the IN and the RT-RNase-H enzymes since both share a common structural site
composed of a central five-stranded mixed β-sheet next to α-helices [124–126]. Moreover,
the potential action of chelating two magnesium metal ions in their active sites by the two
enzymes is carried out through the presence of key acid amino acids (i.e., D443, E478, D498,
and D549 for the RNase H domain and D64, D116, and E152 for HIV-1 IN) [126]. It is
possible that DNA aptamers may possess inhibitory activity for IN, in analogy to DKAs,
due to this close structural similarity [127].

8.2. INI-LEDGF/p75-IN Interaction Disruptors

Figure 11 reports experimental compounds possessing INI activity and disruption of
the LEDGF/p75-IN interaction.
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It was reported, by means of in silico studies, that the putative mechanisms of com-
pound 24 bind the IN enzyme by coordination of the two metal cofactors, thus similarly to
known INSTIs bearing the DKA moiety. Enzymatic experimental assays on compound 24,
its derivatives as well as their metal complexes proved inhibition of the IN-associated ST
catalytic activity is in agreement with previous data with EC50 values spanning between
nano- to micromolar range. The interaction between IN and LEDGF/p75 was disrupted
by both the metal complexes and their free ligand counterparts when administered at low
micromolar ranges. Overall, the Mg (II) complexes were far more attractive since data on
infected cells showed quite interesting antiviral features [128]. Merge of the CHIBA series
with CHIs scaffold afforded derivatives of the general structure 25 in Figure 11. Such an ap-
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proach aims to create a molecular entity that combines the experimentally reported activity
of compound 24 to affect either the IN ST process and the IN-LEDGF/p75 interaction [129]
with CHIBAs compounds 27, 28, and 29 to inhibit the association of LEDGF/p75 to IN [130].
Dual action for the LEDGF/IN association as well as 3-P IN activity, also appears to be
associated with compound 26. Very interestingly, this compound prevents new virions from
infecting host cells by acting on late stages of viral replication (i.e., post-integration) [131].
X-ray crystallization experiments assessed the binding mode of compound 26 within the
IN and clearly showed it binds to the α1 and α3 helices of the first IN monomer subunit
and to the α4 and α5 helices of the second monomer [131].

9. Integrase Inhibitor: Current Knowledge about Therapies

In this section, we report a selection of the most promising patents claiming IN
inhibitors are able to reduce the progression of the viral infection and/or to reduce trans-
mission of the virus.

The first invention claims the use of tetracyclic heterocyclic compounds of the type
reported in Figure 12 [132].
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Either the tetracyclic and the tricyclic derivatives in Figures 12 and 13 are claimed
as useful inhibitors of HIVs by targeting their IN enzymes [132,133] and thus useful for
the management of HIV infections and/or reduction of the severity of symptoms of HIV
infection in cell-based systems [132,133].

The tricyclic compounds of general scaffold 41 can be modified, as reported in
Figure 14, to afford the series 42, which maintained the same therapeutics indications
and efficacy against HIV-promoted viral infections [134].
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The 5-oxopyrrolidines 45 in Figure 17 and bearing the N-indol heteroarylcarboxamide
scaffold and their structural tautomers are interesting [137]. Such novel compounds are
reported as antiviral agents and specifically claimed as novel INIs for the management of
HIV-promoted infections [137].
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10. New Strategies against Retrovirus Resistance

After 15 years of cART, there is rising evidence of retroviruses drug resistance which
poses a growing threat at a global scale. It is, therefore, imperative that new and effective
strategies are needed to improve the therapeutic effectiveness of cART regimens. Such
strategies include the discovery of drugs with greater efficacy and higher genetic barriers
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to resistance than those that are currently used, patient-centered care delivery models,
and reliable drug supply chains in conjunction with frameworks for resistance monitoring
and prevention [139]. In this context, extended-release treatments play a key role. Long-
acting (LA) extended-release injectable formulations or implants represent one of the most
important approaches to improving the treatment and prevention of chronic retroviral
infection and are critical to the success of these novel delivery mechanisms. These injectable
formulations of antiretrovirals (ARVs) represent a viable alternative to improve adherence
and effectiveness to retrovirus-associated disease treatment and also for increasing the
success of the therapy by combining two or more entities. This approach represents a
potentially effective strategy for ultra-LA drug delivery with multiple possible therapeutic
applications. LA-ARV formulations, currently in clinical trials, are formulated as nanosus-
pensions for injections and could open up the way to treat the disease in a different and
better way [140,141].

Since the very high replication cycles easily lead to resistance, continuous research
efforts are needed to find alternative and efficient therapeutic approaches for the man-
agement of retrovirus infections. Experimental approaches of relevance, although still
in early stages, include: (i) inhibition of viral DNA integration into the host genome is
accomplished by preventing PIC transport into the nucleus. This is put into practice by
integrase-mediated nuclear import inhibitors, which bind to the host cell’s nuclear import
protein [142]; (ii) IN-mediated chromatin remodeling inhibitors (ICRIs). In this case, inhibi-
tion of v-DNA integration into the host genome by preventing the opening of the chromatin
structure is targeted by the host cell’s chromatin remodeling factors [143].

11. Conclusions

The development INSTIs for experimental uses and the introduction into the cART of
appropriate derivatives represented a major advancement in the field of retroviruses. These
drugs specifically target the viral IN enzyme, which is responsible for integrating the viral
DNA into the host cell’s genome during the replication process. INSTIs demonstrated high
potency in suppressing viral replication and reducing HIV viral load in infected individuals.
In addition, when INSTIs are used in combination with other antiretroviral drugs (i.e.,
cART), they can effectively control the viral load, allowing patients to lead longer and
healthier lives. Compared to some older classes of antiretroviral drugs, INSTIs showed
a lower propensity for the development of drug resistance and thus remained effective
for a more extended period, reducing the risk of treatment failures. Some INSTIs are
available as once-daily dosing, making them more convenient for patients and improving
treatment adherence. In addition, INSTIs are often recommended as part of the first-line
treatment for HIV-affected patients. Recently have also been used to prevent mother-to-
child transmission of HIV during pregnancy and childbirth. Administering these drugs
to the mother and newborn resulted in a significant reduction of the risks associated with
vertical transmission of the virus.
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