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Hypothesis:
The Sound of the Individual Metabolic Phenotype?

Acoustic Detection of NMR Experiments

Stefano Cacciatore,1 Edoardo Saccenti,2 and Mario Piccioli3

Abstract

We present here an innovative hypothesis and report preliminary evidence that the sound of NMR signals could
provide an alternative to the current representation of the individual metabolic fingerprint and supply equally
significant information. The NMR spectra of the urine samples provided by four healthy donors were converted into
audio signals that were analyzed in two audio experiments by listeners with both musical and non-musical training.
The listeners were first asked to cluster the audio signals of two donors on the basis of perceived similarity and then
to classify unknown samples after having listened to a set of reference signals. In the clustering experiment, the
probability of obtaining the same results by pure chance was 7.04% and 0.05% for non-musicians and musicians,
respectively. In the classification experiment, musicians scored 84% accuracy which compared favorably with the
100% accuracy attained by sophisticated pattern recognition methods. The results were further validated and
confirmed by analyzing the NMR metabolic profiles belonging to two other different donors. These findings
support our hypothesis that the uniqueness of the metabolic phenotype is preserved even when reproduced as audio
signal and warrants further consideration and testing in larger study samples.

Introduction

The pattern of urine metabolite abundances and
their covariances, unique to each individual, has been

dubbed urinary metabolic phenotype and humans can be
identified by metabolic phenotyping based on the NMR
analysis of urine samples (Assfalg et al., 2008). It has been
also shown that this individual metabolic phenotype is stable
over a time period of at least 2 to 7 years (Bernini et al., 2009;
Yousri et al., 2014), is partly determined by genetics (Bernini
et al., 2009; Nicholson et al., 2011a), not shaped by diet
(Saccenti et al., 2014; Stella et al., 2006), and exists in species
other than Homo sapiens (Saccenti et al., 2014).

The concept of individual metabolic phenotype has at-
tracted a great interest, as it may pave the way towards per-
sonalized therapy and nutrition (McNiven et al., 2011; van
der Greef et al., 2006; Zeisel, 2007) and enhanced pharma-
cometabonomics (Nicholson et al., 2011b). Furthermore,
individual metabolic phenotyping can contribute to a better
understanding of drug efficacy and toxicity (Kaddurah-
Daouk et al., 2008; Wishart, 2008; Xu et al., 2009), aging
(Kristal et al., 2007; Menni et al., 2013), and to earlier di-
agnosis and prognosis (Aimetti et al., 2012; Bernini et al.,

2011b; Cacciatore et al., 2013; Ellis et al., 2007; Jiménez
et al., 2013; Maccaferri et al., 2012).

Although metabolic profiling via NMR has been success-
fully deployed to describe and characterize a large variety of
(pathophysiological) conditions such as cancer (Abate-Shen
et al., 2009; Oakman et al., 2011a; 2011b; Sreekumar et al.,
2009), celiac disease (Bernini et al., 2010; Bertini et al., 2008;
Calabrò et al., 2014), diabetes (Dumas et al., 2007; Vallejo
et al., 2008; Wang et al., 2011), and Alzheimer and cardio-
vascular diseases (Holmes et al., 2008a; Oreši�c et al., 2011;
Sato et al., 2012; Yap et al., 2010), it still remains an elusive
entity. High resolution NMR spectra can be subjected to di-
mension reducing procedures (binning) (Anderson et al.,
2008; 2011), but still the metabolic fingerprint remains a
multivariate or even megavariate entity. Its individuality is
given by the interplay between different concentration levels
and by covariance patterns of different molecules. Disen-
tangling and extracting the constituent building blocks of the
metabolic fingerprint from high-dimensional data requires
the application of multivariate statistical tools and/or ma-
chine learning algorithms (Cacciatore et al., 2014; Jansen
et al., 2005; Saccenti et al., 2013; Trygg et al., 2007;
Weckwerth et al., 2005), the latter often requiring a large
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number of samples in order to build and train predictive
models (Stockwell et al., 2002).

Frequencies composing the Free Induction Decay (FID)
(i.e., the NMR spectrum before Fourier transform) are typi-
cally within the human range of hearing, between about 20–
20000 Hz, thus it is possible to listen to them. This suggests
the intriguing hypothesis that the sound given by the FID
could be considered as an alternative representation of the
information contained in the NMR spectrum, possibly able to
reduce the complexity of the metabolic fingerprint.

The concept of auditory presentation of NMR signals is not
new. Indeed, it has been shown for decades that acoustic
information may efficiently reveal experimental mis-settings
in an NMR experiment (http://www.chemie.uni-erlangen.de/
oc/bauer/music.html) (Bauer, 1996). However, since the late
1970’s, when NMR spectroscopy emerged as a basic meth-
odology for the structural analysis of even complex mole-
cules at the atomic level, analogue-to-digital conversion and
computer-driven fast Fourier transformation (Ernst et al., 1987)
banished the audio detection of NMR signal into oblivion. In-
deed, the acoustic analysis of an NMR signal causes a loss of
information at the atomic or molecular level; the obvious
consequence is that audio detection is useless when one is
interested in a detailed understanding of the structure or in a
quantitative analysis of the systems investigated.

A complex mixture of small molecules, such as a urine
sample, represents a case in which auditory analysis of NMR
signals could be informative because all the information con-
curring to the individual metabolic phenotype characterization
is contained in the audio-detected NMR signal, and therefore,
the hypothesis that acoustic detection provides insight into the
metabolic fingerprint deserves consideration. The FID of a
mono-dimensional (1D) NMR experiment is a convolution of
thousands of audio frequencies, typically lasting about 2–4
seconds, due to long spin–spin relaxation time (T2) of 1H spins
from small metabolites. From an acoustic perspective, this is
analogous to the sound emitted by a bell. On the other hand, for
many NMR applications, such as the study of large biomole-
cules and solid-state experiments, the acquisition time is typ-
ically of the order of 0.1 sec, and therefore the audio signal
would not last enough to allow any direct acoustic analysis.

The pitch of a bell, as well as the perception of a strike
tone, arises from the convolution of hundreds of vibrational
modes, which can be evenly constituted by both harmonic
and anharmonic components (Schneider et al., 2009). As a
consequence, each bell is different from any other, with a
proper univocal acoustic fingerprint that depends on the size,
the shape, and the material used for the construction (Fletcher
et al., 1998; Özakça et al., 2004; Perrin et al., 1995). The
analysis and human perception of complex tone signals, such
as those produced by a bell or by a urine sample subjected to
an NMR experiment, is a psychoacoustic process that it is still
a matter of study (Green, 2005; Terhardt et al., 1982; Zatorre
et al., 2002). However, as a matter of fact, complex tone
signals are, in principle, univocal. People with normal hear-
ing can perceptually segregate a target harmonic complex
tone (HCT) from other sounds, such as when following one
melodic line in a symphony (Deutsch, 1979) or talking with a
person at a cocktail party (Darwin et al., 2003). A factor that
contributes to this ability is the unitary pitch evoked by the
components in an HCT (Wang et al., 2013); the components
are usually fused and heard as a single sound with one pitch.

Here we provide evidence that this behavior holds also for
FIDs of urine samples, where thousands of frequencies are
convoluted and heard as a single sound with a unique pitch.
An auditory test performed by normal hearing volunteers on
the NMR signals of urine samples from healthy donors per-
mits the recognition of individual donors.

Material and Methods

Ethics approval statement

The present study analyzed data from previous material
(Assfalg et al., 2008; Bernini et al., 2009; Saccenti et al.,
2014). As deliberated by the Ethical Committee of the Area
Vasta Toscana–Tuscany Health Centre (Prot. 5409/2014), no
further ethics authorization was required to analyze the data
collected during the original studies. Each volunteer gave
written informed consent for treatment of the personal data.
Data were anonymized and anonymously analyzed.

Sample collection and preparation

The donors were four healthy males, randomly selected
from a cohort of 31 young adults; samples were collected
during previously reported studies in which up to 40 urine
samples were collected on consecutive days (Assfalg et al.,
2008; Bernini et al., 2009; Saccenti et al., 2014). In the first
set of experiments two donors were considered: four urine
samples for each donor, taken from the first data collection,
were used in the clustering test. For the classification test,
eight urine samples from each donor were used: four samples
were taken from the first data collection and four samples
were taken from the samples collected 2 years later. A further
validation experiment has been performed with two other
donors, selected from the same cohort of previously inves-
tigated donors. Eight urine samples from each donor were
used, all belonging to the same data collection.

Urine samples were shaken before use and 630 lL were
centrifuged at 14,000 RCF for 5 min. 540 lL of the super-
natant were added to 60 lL of potassium phosphate buffer
(1.5 M K2HPO4 in 100% 2H2O, pH 7.4). 540 lL of the
mixture were put into 4.25 mm NMR tubes (Assfalg et al.,
2008; Bernini et al., 2009; 2011a).

NMR spectroscopy

All 1H NMR spectra were acquired using a Bruker 600 MHz
spectrometer operating at 600.13 MHz proton Larmor fre-
quency and equipped with a 5 mm CPTCI1H-13C/31P-2H
cryoprobe including a z-axis gradient coil, an automatic
tuning-matching, and an automatic sample changer. Before
measurement, samples were kept inside the NMR probehead for
3–5 min, for temperature equilibration at 300.0 K. For each urine
sample, a 1D NMR spectrum was acquired using a 1D NOESY
sequence with water suppression (Kessler et al., 1986). Experi-
ments were performed using 64 scans, 98304 data points, a
spectral width of 18028 Hz, and a recycle delay of 4 sec.

Free Induction Decay conversion

FID files were converted into a WAVE file, the standard
high-resolution format for digital audio, using the library
seewave (Sueur et al., 2008) present in R software (version
2.14.1). The R code for the conversion is provided in the

148 CACCIATORE ET AL.



Supplementary Information (supplementary material is avail-
able online at www.liebertonline.com/omi). The code, named
‘‘MusicNMR,’’ has been deposited to the R software library.

Audio detection experiments

Volunteer recruitment. Fifty-five healthy volunteers of
both genders with normal hearing, 13–56 years of age, were
enrolled to listen to the FIDs. They were divided into a group
composed of volunteers without any specific experience with
music or sound analysis, and a group composed of profes-
sional musicians or subjects working in the music business
as producers, sound engineers, or music analysts. We use
the shorthand non-musicians and musicians to respectively
signify the two groups. Musical skills and professional ex-
periences of musicians are detailed in Supplementary Table
ST1. The volunteers were instructed to perform the test in a
quiet environment and to make use of high quality monitors
or headphones. Volunteers were not informed about the
physical origin of the audio signals. They were instructed to
discriminate or classify audio signals arising from different
‘‘bells.’’

Statistical methods

Data pre-processing. Prior to statistical analysis of the
Fourier-transformed NMR spectra, the spectral data regions
corresponding to residual water (4.50–5.00 ppm) and urea
(5.50–6.00 ppm) were removed from the subsequent analysis.
Each 1D spectrum in the range between 0.20 and 10.00 ppm
was segmented into 0.02-ppm chemical shift bins, and the
corresponding spectral areas were integrated using AMIX�
software (version 3.8.4; Bruker BioSpin) giving a total of 450
variables. The data were then normalized such that the total
integral of the remainder of each spectrum was a constant.
Then, data were mean-centered and unit-variance scaled.

Statistical analysis. Principal Component Analysis (PCA)
was performed using the standard algorithm as implemented in
the prcomp function in the R library stats. Clustering analysis
was performed with the k-means algorithm (Jain, 2010) using
the function kmeans in R library stats. The Adjusted Random
Index (ARI) (Hubert et al., 1985) was used to compare the
results of the clustering and the similarity between two clas-
sifications. The probability that clustering solutions were given
by purely random guess was modeled by a multinomial dis-
tribution.

Orthogonal signal correction partial least square dis-
criminant analysis (OSC-PLS-DA) (Trygg et al., 2002) was
performed as previously described (Wehrens, 2011). The
OSC-PLS-DA model was constructed using NMR spectral
data as the X-matrix and class information as the Y-matrix.
One orthogonal component was used to remove variation
unrelated to class. An OSC-PLS model was built on the
training set (eight NMR spectra) and applied on the vali-
dation set (eight NMR spectra). The score of the orthogonal
latent component was used to classify the NMR spectra of
the validation set using zero as a threshold. k-Nearest
Neighbor (kNN) classification (Cover et al., 1967) was
performed using the knn function in the R library class. A
predictive model was built on the training set and the vali-
dation set was classified by making use of k = 3 neighbors.
Diagonal discriminant analysis (DDA) (Dudoit et al., 2002)

was performed using the diagDA function in the R library
sfsmisc. A predictive model was built on the training set and the
validation set was classified. Statistical significance was as-
sessed using the non-parametric Wilcoxon test. A p-value < 0.05
was considered significant to assess difference between groups.
Fisher’s exact test (Fisher, 1922) was used to assess the signif-
icance of the data. Calculations were performed in the R soft-
ware environment (version 2.14.1) (Ihaka et al., 1996).

Results

Clustering test

Volunteers were asked to listen to eight audio signals, re-
sulting from the audio conversion of the FIDs of eight urine
samples belonging to the two donors D1 and D2, and to
cluster them into two numerically homogeneous groups on
the basis of perceived similarities. The idea was to investigate
the ability of different subjects to segregate, within each pitch
signal, acoustic elements that allow one to perform a signal
classification. Within this frame, we proposed the test to 20
volunteers, equally divided in two groups, musicians and
non-musicians, as described in the previous section. Example
of FIDs used for the tests are shown in Figure 1, together with
their corresponding NMR spectra.

Results have been scored using the Adjusted Random
Index (ARI) (Hubert et al., 1985). ARI values range from - 1
to 1: perfect agreement is scored 1, while 0 corresponds to a
random partition and negative values indicate less agreement
than expected by chance. The average ARI for the non-
musicians was 0.125, while it was 0.329 for the musicians. To
assess the significance of these results, the ARI score of the
two groups were compared with a null distribution obtained
by calculating the distribution of ARI scores obtained by
sampling random partitions for N = 10 subjects modeled with
a multinomial distribution. The null distribution is given in
Figure 2: as expected, the maximum probability occurs for an
ARI score equal to 0, corresponding to a partition obtained
purely by random guess. The probability to obtain by pure
chance a result similar or better than that obtained by non-
musicians is 7% and it is almost two orders of magnitude
smaller, 0.05%, for the group of musicians (see Fig. 2).

To compare the efficiency of the audio recognition process
with standard chemometrics analysis, the corresponding
eight NMR spectra were analyzed, after Fourier transfor-
mation and pre-processing, using the clustering algorithm
k-means, which is one of the most widely used and best
performing clustering algorithms (Cacciatore et al., 2014;
MacQueen, 1967). The clustering obtained by k-means al-
gorithm achieved an ARI score of 0.16, which is larger than
the score for non-musicians, but interestingly, much smaller
than those obtained by musicians. The similarity of the NMR
profiles can also be analyzed by means of a PCA score plot.
As shown in Figure 3, without any a priori information the
unambiguous separation between the two donors is not
straightforward in the PCA score plot.

Classification test

The clustering test shows the ability of human hearing to
discriminate between the FID’s of different donors. Two
donors were used in the first set of experiments and two other
donors were used for validation, as detailed in the Material
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and Methods Section. To strengthen our hypothesis, we ap-
plied acoustic detection to understand whether the infor-
mation on subject-specificity, which allows discrimination
between two healthy donors, is maintained with time.

A larger cohort of 29 non-musicians and 14 musicians
was asked to listen to eight audio signals arising from the
FID’s of the urine spectra of the two donors (four spectra per

donor) D1 and D2. The experiment was performed about 10
months after the clustering test and only 20% of the volun-
teers performing the classification test were involved also in
the clustering test. The volunteers were instructed to consider
these eight audio tracks as a training set, providing them with
reference acoustic signals to discriminate donors D1 and D2.
Subsequently, they were asked to listen to eight audio signals,

FIG. 1. FIDs (A) and NMR spectra (B) of urine samples belonging to donors D1 and D2 and used as training set for the
classification test. For sake of clarity, in part A only the first 1500 points of FIDs are shown (ca 0.62 ms), while in part B
only the region between 4.5 and 2 ppm is reported for clarity.

FIG. 2. Probability distribution of random partition as a function of the ARI value. Distribution has been calculated for
N = 10 volunteers. Results obtained by non-musician volunteers and musicians are indicated.
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given to them as unknown, arising from urine samples col-
lected from the same donors D1 and D2 two years later, and
to classify them as belonging to donor D1 or D2, on the basis
of perceived similarities with the audio signals of the training
set. In this case, no information was provided to the listeners
on the number of audio signals belonging to each donor. The

overall results are summarized in Figure 4, while individual
performances are given in Supplementary Tables S2 and S3.
The average accuracy attained by the complete cohort was
0.76 – 0.23 (average specificity 0.77 – 0.25, average sensi-
tivity 0.75 – 0.22), strongly supporting the idea that the
uniqueness of the metabolic phenotype is preserved even

FIG. 3. PCA score plot of the spectra of urine samples of the clustering test. Symbols refer to the different donors.

FIG. 4. Results of the classification test obtained by the two groups of non-musicians and musicians listeners. Details
about the individual skills of the subjects of the ‘‘Musicians’’ group are presented in Supplementary Material.
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when reproduced as audio signals and therefore metabolic
fingerprinting can be achieved also by audio-detection of
the FID.

When classification results are analyzed separately for
musicians and non-musicians, the musicians scored an av-
erage accuracy 0.84 – 0.15 (average specificity 0.84 – 0.22,
average sensitivity 0.84 – 0.13), while non-musicians scored
an average accuracy 0.72 – 0.25 (average specificity 0.71 –
0.25, average sensitivity 0.73 – 0.28). A one-tailed Wilcoxon
test assessed a statistically significant difference between the
averaged accuracy of musicians and non-musicians with a p-
value of 0.045.The overall accuracy of the two groups, con-
sidering that each subject was presented with eight tests was
also considered. In total, musicians answered correctly to
84% of the tests against the 72% of non-musicians. This
difference is statistically significant with a p-value of 0.0097
according a one-tailed Fisher’s exact test.

A statistical analysis was also performed where the same
eight NMR urine spectra of each donor were used to train a
pattern recognition algorithm. When different methods (i.e.,
OSC-PLS-DA, kNN, and DDA) were presented with spectra
belonging to different subjects, they were able to assign the
spectra to the correct donor with 100% accuracy, thus
proving that each subject possesses a unique metabolic
phenotype that makes him/her distinguishable from other
subjects. The scores of the OCS-PLS-DA model are shown
in Figure 5.

As a further validation test, we performed a second clas-
sification test using urine samples from two different donors,
again selected from the same cohort used in a previous study
(Assfalg et al., 2008). An average accuracy of 70.4%, with a
p–value < 10 - 4 of obtaining the same results simply by ran-
dom guess, was obtained when analyzing results obtained by
twenty-five listeners (both musician and non-musician vol-
unteers were considered), thus confirming that classification
via acoustic detection can be performed considering any
randomly selected pair of donors among the cohort.

Discussion

Our working hypothesis is that human hearing is able to
perceive (dis)-similarities of the metabolic urine phenotypes
of two healthy subjects on the basis of their sound. The
number of listeners we involved in this study, the number of
donors we considered, the type of tests we performed, are
relatively small (four donors in total: two in the first set of
experiments and two used for validation); studies on a larger
scale are required as a proof of concept. Nevertheless, the
experiments previously described strongly support this view.
If our hypothesis is correct, one can expect that the ability to
correctly classify the audio signals will improve for listeners
with a trained ear and professional skills in sound analysis.
Indeed, the clustering experiment gives an average ARI score
for musicians of 0.329; the probability to obtain by random

FIG. 5. Score plot obtained from the OSC-PLS-DA model built on the training set used for the classification test. Open
markers (,, B) refer to the NMR spectra of the training set. Solid markers (C, -) refer to the spectra used in the
validation set. Symbols signify the two donors D1 and D2.
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guess a similar, or better, result is 0.05 (i.e., about two orders
of magnitude smaller than those obtained by non-musicians).

The classification tests provide different yet complemen-
tary information with respect to the clustering. The classifi-
cation experiment is a supervised pattern recognition test, in
which a training set of audio signals is provided to the lis-
teners to ‘‘learn’’ what the two donors sound like. It is sub-
stantially different from the clustering experiment, which is
an unsupervised pattern recognition test where no reference
was given to the listeners who were asked to group the audio
signals on the basis of some inherent similarity. The audio
classification test mimicked indeed what is typically done in
metabolomics studies when using supervised statistical
analysis (Assfalg et al., 2008; Bernini et al., 2009; Saccenti
et al., 2014).

In the classification test, the ‘‘best’’ group of performers
gives an accuracy for the acoustic analysis of 82%, which is
far from the 100% accuracy provided by a pattern recognition
algorithm (see Fig. 5), but consistent with observations from
metabolomics-based biomedical studies [see, for instance
(Bertini et al., 2008)].

Nonetheless, at the present state of the art, it is undoubtable
that a conventional pattern recognition analysis via the
analysis of the NMR spectra have faster and better perfor-
mances than an acoustic analysis; however the classification
test also fully supports the hypothesis that acoustic detec-
tion of NMR experiment can be used for discriminating be-
tween individual metabolic phenotypes, suggesting that it can
be also used in a case/control setting as typical in clinical
studies.

The acoustic analysis pointed out a number of interesting
aspects involving both music and NMR spectroscopy. For
example, answers reported in Supplementary Tables S2 and
S3 indicate that the classification results were more spread
within non-musicians (standard error = 0.28) than in musi-
cians (standard error = 0.13). This may be due to different

potential musical skills in non-musically trained subjects.
One can infer that professional musicians have a better-
trained ear and speculate that people with a good musical ear
have better chances of becoming professional musicians.
Nonetheless, some of the non-musicians attained an accuracy
of 100% (one of the subjects, for instance, was a music lover
without any specific musical training, but with reportedly
perfect pitch). On the other side, one of the non-musicians
attained an accuracy of 0% and was indeed considered a
clinical case of tone deafness.

It is remarkable that some of the listeners were able to
deconvolute the FID of the NMR spectrum by indicating
several tones present in the spectra. For instance, they re-
ported that they could hear in some FIDs a sharp F#: this can
be associated to the peak of trimethyl-N-oxide (TMAO), a
very common urine metabolite resonating at a frequency of
752 Hz, sounding indeed like a sharp F#5 whose nominal
frequency is 740 Hz. In addition the presence of a flat A# and
of a flat C was also reported: those can be associated with the
resonances of creatinine at 454 Hz and 1066 Hz correspond-
ing respectively to a flat A#4 and to a sharp C6, whose
nominal frequencies are 466 Hz and 1046 Hz, (see Fig. 6 for
an illustration).

TMAO and creatinine are only two of the supposedly
thousands of low molecular weight molecules present in the
urine whose patterns of abundance define the subject-specific
individual phenotype, creating the bell sound characteristic
for each donor. The Human Urine Metabolome database
(www.urinemetabolome.ca) (Bouatra et al., 2013) reports the
identification of 445 urine metabolites, 209 of which identi-
fied using NMR. However, the acoustic fingerprint of the
NMR spectra does not arise from the recognition of a single
frequency or chord, but rather from the convolution of hun-
dreds of resonances occurring in urine. Even in a case such as
the one depicted in Figure 6, where there are three signals
with dominant intensities, the auditive recognition process

FIG. 6. Metabolites associated with the fundamental tone perceived in FID of the NMR spectra.
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takes into account most of the metabolites present in the
sample. The biological origin of the individual metabolic
phenotype is still under scrutiny: we have recently demon-
strated its presence in non-human primates (Saccenti et al.,
2014) and provided evidence that it is shaped by complex
interplay of intrinsic factors, and to a lesser extent, of ex-
trinsic factors (Saccenti et al., 2014).

Conclusions

The acuity of human hearing may successfully compete
with sophisticated algorithms for time-frequency analysis,
computer data treatment, and statistical analysis. Although
we did not attempt an in-depth exploitation of such algo-
rithms, as this is beyond the scope of this article, our results
show that human hearing is able to perform, on such tasks,
comparably with advanced statistical algorithms. We are not
advocating for the use of the human ear in place of machine
learning algorithms to tackle complex classification prob-
lems. However, we provide preliminary evidence here that
the individual metabolic phenotype can potentially be iden-
tified via acoustic detection of the NMR signals.

Although surprising, these results should not be unex-
pected. Human analysis of acoustic signals might be superior
to the performance of mathematical methods for time-
frequency analysis such as Fourier Transformation (Gardner
et al., 2006; Oppenheim et al., 2013). Such human ‘‘hyper-
acuity’’ is particularly relevant in professional musicians but
has been observed also in non-musicians. Our experiments
provide the same qualitative conclusions: excellent accuracy
in auditory analyzes is more pronounced in people with
trained ears but is observed also for non-trained subjects,
suggesting that they are intrinsically determined by mecha-
nisms where the human brain elaborates the acoustic signals.
If the answers by volunteers were randomly generated or
driven by external factors, we would expect a similar score
from musicians and non-musicians. In both tests, musicians
obtained scores higher than those obtained by non-musicians,
strongly supporting the idea that urine samples from different
donors can be recognized by the sound of their FIDs.

We have also shown that the results of the acoustic
analysis operated by a human brain when listening to a
harmonic complex tone signal can be compared with both
supervised and unsupervised statistical analysis. The fact
that acoustic analysis is not affordable on a very large set of
data, such as those typically handled in a large scale meta-
bolomics study, does not diminish our finding that human
hyperacuity may outperform with respect to computer dri-
ven statistical analysis. Given the rapid advancements of
applications in the field of electronic senses and the so-
phistication reached by audio analysis techniques, one can
hypothesize larger and more in-depth application of audio-
detection of NMR experiments, especially concerning ap-
plications to biosciences. So far, data treatment is based on
the analysis of the NMR spectrum, which is the frequency
response of the NMR signal, but our data suggest the idea
that time domain signal could also be used for statistical
analysis approaches.

Finally, a comment is due on our choice to perform this
study by comparing two healthy subjects. Many metabo-
lomics studies are available that address the possibility to
perform early diagnosis for specific pathologies (Asiago

et al., 2010; Broadhurst et al., 2006; Fanos et al., 2014;
Slupsky et al., 2010; Tiziani et al., 2009). However, a crucial
aspect for such studies is the establishment of a proper defi-
nition for the individual metabolic phenotype (metabotype),
which could then be used for early detection of deviations
from the healthy state. Once the efficiency of the acoustic
detection has been analyzed and discussed with respect to
statistical approaches and in the frame of previously pub-
lished evidence for the existence of an individual metabolic
phenotype, one might well consider the possible application
of acoustic detection to other problems investigated by
metabolomics studies. In principle, we expect that this ap-
proach could be potentially equally efficient in monitoring
pathologies, where one can expect the perturbation induced
by a pathophysiological condition to be larger than human
inter-individual variability (Holmes et al., 2008b) and could
be tested using other sets of data taken from available
metabolomics data bases, for instance those available at
MetaboLights (www.ebi.ac.uk/metabolights/) (Haug et al.,
2013) or at Metaboanalyst (http://www.metaboanalyst.ca/
MetaboAnalyst/) (Xia et al., 2012).

Our hypothesis that individual metabolic fingerprinting
can be achieved also by acoustic detection of the free in-
duction decay signal warrants further consideration and
testing in larger study samples.
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