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1. Introduction

Let Ω ⊂ Rn be an open and bounded set with C1-smooth boundary ∂Ω with n > 2. We consider the 
following Dirichlet boundary value problem

{
Lαu = λu + f(x, u), in Ω

u = 0, in Rn \ Ω,
(1.1)

where

Lαu := −Δu + α(−Δ)su .
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Here α ∈ R with no a priori restrictions, Δu denotes the classical Laplace operator while (−Δ)su, for fixed 
s ∈ (0, 1) and up to a multiplicative positive constant, is the fractional Laplacian, usually defined as

(−Δ)su(x) := C(n, s) P.V.
ˆ

Rn

u(x) − u(y)
|x− y|n+2s dy ,

where P.V. denotes the Cauchy principal value, that is

P.V.
ˆ

Rn

u(x) − u(y)
|x− y|n+2s dy = lim

ε→0

ˆ

{y∈Rn : |y−x|≥ε}

u(x) − u(y)
|x− y|n+2s dy,

see [29] for more details. Clearly, when α = 0, one recovers the classical Laplacian. Finally, λ ∈ R is a 
variational Dirichlet eigenvalue of Lα (hence (1.1) is a problem at resonance), namely there are nontrivial 
solutions for the problem

{
Lαu = λu, in Ω,

u = 0, in Rn \ Ω,

see Section 2 for the precise setting.
We suppose that f satisfies the following assumptions.

Assumptions on f .

(fbc) f : Ω ×R → R is a bounded and Carathéodory function, namely:
1. f(x, ·) is continuous in R for a.e. x ∈ Ω
2. f(·, t) is measurable in Ω for all t ∈ R.

(F±∞)

lim
u∈Ker(Lα−λ),

‖u‖→∞

ˆ

Ω

F (x, u)dx = ±∞

uniformly in x ∈ Ω.

Remark 1.1. The assumption (F±∞) is the so–called Ahmad-Lazer-Paul condition introduced in [1] and 
often used in resonant problems, for instance see [21]. A sufficient condition implying it is given by

F (x, t) =
tˆ

0

f(x, τ)dτ → ±∞ as |t| → +∞,

as can be quite easily checked, see e.g. [20, Lemma 3.4].

The goal of this paper is to extend to a mixed operator an existence and multiplicity result established 
in [32] for the Laplace operator. We state immediately our first result:

Theorem 1.2. Let f satisfy (fbc) and (F±∞) and suppose that λ ∈ R is a variational Dirichlet eigenvalue of 
Lα. Then, the problem (1.1) admits a weak solution u ∈ X(Ω).
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We immediately clarify that Theorem 1.2: it is somehow easy to get for α > 0 or when

− 1
Cs

< α < 0 ,

where Cs > 0 is the best constant of the continuous embedding H1
0 ⊂ Hs (see e.g. [15]), i.e.

[u]2s :=
¨

R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy ≤ Cs

ˆ

Ω

|∇u|2 dx .

In this perspective, the probably more interesting case is when α < − 1
Cs

is assumed. Indeed, the situation 

becomes suddenly more delicate, mainly because the local–nonlocal operator is not more positive definite, 
indefinite operators. As a consequence, the bilinear form naturally associated to it does not induce a scalar 
product nor a norm, the variational spectrum may exhibit negative eigenvalues and even the maximum 
principles may fail, see e.g. [4]. As a consequence, some inequalities cannot be adapted to our situations, 
since dividing by eigenvalues may reverse the sign, nullifying a verbatim adaptation of [32]. For this reason, 
we need to establish some crucial estimates for eigenspaces, see Lemmas 2.6 and 2.7.

We stress that operators of this latter form (e.g. with α = −1) do not have only a purely theoretical 
mathematical interest, indeed the play a role in applied sciences like combustion theory. We limit ourselves 
to mention that the stationary part in the original model proposed by Sivashinsky [35] to deal with the 
instability of the propagation front of flames can be reduced to operator of the form previously described, 
and this may happen under physically motivated assumptions, see e.g. [26] and the references therein.

We stress that Theorem 1.2 is actually a further generalization of a result by Ahmad, Lazer and Paul [1]
where the authors dealt with a local operator at resonance. Despite well known, we want to recall here that 
the original proof in [1] is by no means of variational flavour, and consists in a delicate construction of the 
solution using a sort of Galerkin method. As a matter of fact, a striking and not foreseeable consequence of 
[1] is an existence result with proof relying on the Saddle Point Theorem by Rabinowitz [32], which is one 
of the cornerstones of variational methods in nonlinear analysis. We will follow this latter approach, which 
has already been used also in the pure nonlocal case in [20]. We notice that, as in [20], it is possible to work 
in a slightly more general case considering weighted Dirichlet eigenvalues, where the weight a is a Lipschitz 
function. However, treating solutions of Lα = λa(x)u doesn’t change the spirit of our result, and for this 
reason we concentrate on eigenvalues without weight.

In the spirit of [32], under assumption (F−∞), we can also prove a multiplicity result under a few extra 
assumptions. The precise statement is the following

Theorem 1.3. Let f satisfy (fbc) and (F−∞) and suppose that λ ∈ R is a variational Dirichlet eigenvalue of 
Lα. We further assume that f(x, 0) = 0 and that f(x, t) is odd in the t variable. Finally, we assume that

there exists r > 0 such that F (x, t) > 0, for 0 < |t| < r and x ∈ Ω. (Fpos)

Then, problem (1.1) admits at least dim(H0
λ) distinct pair of nontrivial weak solutions, where H0

λ denotes 
the eigenspace associated to λ.

Remark 1.4. We remark that, as in [32], we are able to prove the multiplicity result only when (F−∞), 
since only in such a case we are able to prove a decomposition of the space X(Ω) for which the abstract 
multiplicity Theorem A.1 holds. Hence, the multiplicity result when (F+∞) holds is an open problem.

We close the introduction with a quite short overview on the more recent (elliptic) PDEs oriented liter-
ature. Problems driven by operators of mixed type, even with a nonsingular nonlocal operator [16], have 



4 G. Giovannardi et al. / J. Math. Anal. Appl. 527 (2023) 127442
raised a certain interest in the last few years, for example in connection with the study of optimal animal 
foraging strategies (see e.g. [19] and the references therein). From the pure mathematical point of view, 
the superposition of such operators generates a lack of scale invariance which may lead to unexpected 
complications.

At the present stage, and without aim of completeness, the investigations have taken into consideration in-
terior regularity and maximum principles (see e.g. [4,12,14,23,24]), boundary Harnack principle [13], bound-
ary regularity and overdetermined problems [10,36], existence of solutions (see e.g. [7–9,17,18,25,31,34,3,22]) 
and shape optimization problems [5,6].

The paper is organized as follows. In Section 2 we introduce some preliminary definitions and results, 
such as the Hilbert space X(Ω), the notion of weak solution of (1.1) (as critical point of the functional 
Jλ), the variational eigenvalue problem for Lα and the crucial main lemmas. Section 3 is dedicated to the 
proofs of the Theorem 1.2 and Theorem 1.3; we first deal with the geometry of the functional Jλ and the 
Palais-Smale condition, then we verify the hypothesis of the Saddle Point Theorem and [32, Theorem 1.9]. 
In the Appendix we recall the notion of Krasnoselskii genus and we state [32, Theorem 1.9].

2. Assumptions, notation and preliminary results

Let Ω ⊆ Rn be a connected and bounded open set with C1-smooth boundary ∂Ω. We define the space 
of solutions of problem (1.1) as

X(Ω) :=
{
u ∈ H1(Rn) : u ≡ 0 a.e. on Rn \ Ω

}
.

Thanks to the regularity assumption on ∂Ω (see [11, Proposition 9.18]), we can identify the space X(Ω)
with the space H1

0 (Ω) in the following sense:

u ∈ H1
0 (Ω) ⇐⇒ u · 1Ω ∈ X(Ω) , (2.1)

where 1Ω is the indicator function of Ω. From now on, we shall always identify a function u ∈ H1
0 (Ω) with 

û := u · 1Ω ∈ X(Ω).
By the Poincaré inequality and (2.1), we get that the quantity

‖u‖X :=

⎛
⎝ˆ

Ω

|∇u|2 dx

⎞
⎠

1/2

, u ∈ X(Ω) ,

endows X(Ω) with a structure of (real) Hilbert space, which is isometric to H1
0 (Ω). To fix the notation, we 

denote by 〈·, ·〉X the scalar product which induces the norm above on X(Ω). We briefly recall that the space 
X(Ω) is separable and reflexive, C∞

0 (Ω) is dense in X(Ω) and eventually that X(Ω) compactly embeds in 

Lp(Ω) for any p ∈
[
1, 2n

n−2

)
and in

Hs
0(Ω) := {Hs(Rn) : u ≡ 0 a.e. on Rn \ Ω}

by [27, Theorem 16.1].
With the correct functional setting, we are ready to give the suitable notion of weak solution for problem 

(1.1).
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Definition 2.1. A function u ∈ X(Ω) is called a weak solution of (1.1) if
ˆ

Ω

〈∇u,∇ϕ〉 dx + α

¨

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|n+2s dxdy

= λ

ˆ

Ω

uϕdx +
ˆ

Ω

f(x, u)ϕdx

for every ϕ ∈ X(Ω).

As usual, weak solutions of (1.1) can be found as critical points of the functional Jλ : X(Ω) → R defined 
as

Jλ(u) := 1
2

ˆ

Ω

|∇u|2 dx + α

2

¨

R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy − λ

2

ˆ

Ω

|u|2 dx−
ˆ

Ω

F (x, u) dx,

where

F (x, t) :=
tˆ

0

f(x, σ) dσ, t ∈ R.

By assumption (fbc) it is standard to prove (see for instance [2]) that the functional Jλ is Fréchet differen-
tiable and that

J ′
λ(u)(ϕ) =

ˆ

Ω

〈∇u,∇ϕ〉 dx + α

¨

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|n+2s dxdy

− λ

ˆ

Ω

u(x)ϕ(x) dx−
ˆ

Ω

f(x, u(x))ϕ(x) dx for every ϕ ∈ X(Ω) .

Now, we consider the bilinear form Bα : X(Ω) ×X(Ω) → R, defined by

Bα(u, v) :=
ˆ

Ω

〈∇u,∇v〉 dx + α

¨

R2n

(u(x) − u(y))(v(x) − v(y))
|x− y|n+2s dxdy

for any u, v ∈ X(Ω). In spite of the fact that α can be such that Bα is not positive definite, we give the 
following definition.

Definition 2.2. We say that u and v are Bα-orthogonal if

Bα(u, v) = 0.

The terminology adopted above is justified by the fact that, for α > 0 (more precisely if α > − 1
Cs

), the 
bilinear form Bα defines a true scalar product.

We conclude this section dealing with the eigenvalue problem associated to the operator Lα, that is the 
following boundary value problem {

Lαu = λu, in Ω ,

u = 0, in Rn \ Ω ,
(2.2)

where λ ∈ R. According to Definition 2.1, we give the following definition.
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Definition 2.3. A number λ ∈ R is called a variational Dirichlet eigenvalue of Lα if there exists a nontrivial 
weak solution u ∈ X(Ω) of (2.2) or, equivalently, if

ˆ

Ω

〈∇u,∇ϕ〉 dx + α

¨

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|n+2s dxdy = λ

ˆ

Ω

uϕdx

for every ϕ ∈ X(Ω). If such a function u exists, we call it eigenfunction associated to the eigenvalue λ.

Note that the linearity of Lα guarantees a complete description of its eigenvalues, and relative eigenfunc-
tions, according to the following result, see [28, Proposition 2.4]:

Proposition 2.4. Let n > 2. Then the following statements hold true:

(a) Lα admits a divergent and bounded from below sequence of eigenvalues {λk}k∈N , i.e., there exists C > 0
such that

−C < λ1 ≤ λ2 ≤ . . . ≤ λk → +∞ , as k → +∞.

Moreover, for every k ∈ N, λk can be characterized as

λk = min
u∈Pk

‖u‖L2(Ω)=1

⎧⎨
⎩
ˆ

Ω

|∇u|2 dx + α

¨

R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy

⎫⎬
⎭ , (2.3)

where

P1 := X(Ω),

and, for every k ≥ 2,

Pk := {u ∈ X(Ω) : Bα(u, uj) = 0 for every j = 1, . . . , k − 1} ;

(b) for every k ∈ N there exists an eigenfunction uk ∈ X(Ω) corresponding to λk, which realizes the 
minimum in (2.3);

(c) the sequence {uk}k∈N of eigenfunctions constitutes an orthonormal basis of L2(Ω); moreover, the eigen-
functions are Bα-orthogonal.

(d) for every k ∈ N, λk has finite multiplicity.

Remark 2.5. Clearly, if α > − 1
Cs

there is an improvement on the lower bound of λ1, which is thus strictly 

positive. Moreover, in this case, λ1 is also simple.

We denote by Hk the linear subspace of X(Ω) generated by the first k eigenfunctions of Lα, i.e.

Hk = spanR{u1, . . . , uk}.

Notice that Pk+1 = (Hk)⊥Bα , namely the subspace Bα-orthogonal to Hk. Also we set

H0
k = spanR{uj : λj = λk},

i.e. the kernel of Lα − λk, and
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H−
k = spanR{uj : λj < λk}.

By Proposition 2.4 (a) we can infer the existence of a positive integer N0 ∈ N such that λN0 is the first 
(not necessarily simple) positive eigenvalue. Of course, λk > 0 for every k > N0.
We further notice that, again by Proposition 2.4,

λk+1

ˆ

Ω

u2 dx ≤
ˆ

Ω

|∇u|2 dx + α

¨

R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy (2.4)

for every u ∈ span(u1, . . . , uk)⊥ = Pk+1 and

ˆ

Ω

|∇u|2 dx + α

¨

R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy ≤ λk

ˆ

Ω

u2 dx (2.5)

for every u ∈ Hk.
We first need the following preliminary result inspired by Rabinowitz [32], see [28, Lemma 4.1] for a 

proof.

Lemma 2.6. Let k ∈ N be such that

λ1 ≤ λ2 ≤ . . . ≤ λk−1 ≤ λk < λk+1 ≤ . . .

and decompose the space X(Ω) as X(Ω) = Hk ⊕ Pk+1, where Hk := span(u1, . . . , uk). Then, there exists a 
positive constant β such that for any u ∈ Pk+1

Bα(u, u) − λk‖u‖2
L2(Ω) ≥ β‖u‖2

X(Ω), (2.6)

or, equivalently,

inf
u∈Pk+1\{0}

{
1 +

α[u]2s − λk‖u‖2
L2(Ω)

‖u‖2
X(Ω)

}
> 0.

We now prove a sort of counterpart of Lemma 2.6 when we restrict our attention to the finite dimensional 
space Hk. The former and the next lemma will be two of the crucial ingredients to verify that the functional 
Jλ verifies the saddle point geometry.

Lemma 2.7. Let k ∈ N be such that λ = λk < λk+1. Then there exists a positive constant γ > 0, such that

Bα(u, u) − λk‖u‖2
L2(Ω) ≤ −γ‖u−‖2

X(Ω) (2.7)

for each u ∈ Hk, where u = u0 + u−, u0 ∈ H0
k and u− ∈ H−

k .

Proof. If u ≡ 0, then the assertion is trivial. Hence we assume u ∈ Hk � {0}. Thanks to Proposition 2.4
(c), a simple computation yields that

Bα(u, u) − λk‖u‖2
L2(Ω) = Bα(u−, u−) − λk‖u−‖2

L2(Ω),

which is nonpositive by (2.5). Then it suffices to prove that there exists a positive constant γ > 0 such that
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sup
u−∈H−

k \{0}

{
1 +

α[u−]2 − λk‖u−‖2
L2(Ω)

‖u−‖2
X(Ω)

}
= −γ. (2.8)

To this aim, we argue as in [28, Lemma 4.1] assuming by contradiction that there exists a sequence 
{u−

n }n∈N ∈ H−
k \ {0} such that

1 +
α[u−

n ]2 − λk‖u−
n ‖2

L2(Ω)

‖u−
n ‖2

X(Ω)
→ 0, as n → +∞. (2.9)

We then consider the normalized (in X(Ω)) sequence

v−n := u−
n

‖u−
n ‖X(Ω)

∈ H−
k \ {0},

and, since H−
k \{0} is finite dimensional, we can infer the existence of a function v− ∈ H−

k with ‖v−‖X(Ω) = 1
and such that v−n → v−. Therefore, by the compact embedding of X(Ω) in Hs

0(Ω) and in L2(Ω), we find

1 + α[v−n ]2 − λk‖v−n ‖2
L2(Ω) → 1 + α[v−]2 − λk‖v−‖2

L2(Ω), as n → +∞,

but at the same time,

1 + α[v−n ]2 − λk‖v−n ‖2
L2(Ω) → 0, as n → +∞.

Since v− ∈ H−
k \ {0}, we also have that

0 > Bα(v−, v−) − λk‖v−‖2
L2(Ω) = ‖v−‖2

X(Ω) − 1 = 0,

and a contradiction arises. �
The next Lemma is taken verbatim from [20].

Lemma 2.8. Let f satisfy (fbc). Then there exists a positive constant M̃ > 0, depending on Ω, such that
∣∣∣∣∣∣
ˆ

Ω

F (x, u(x))dx

∣∣∣∣∣∣ ≤ M̃ ‖u‖X(Ω) (2.10)

for all u ∈ X(Ω).

Proof. By definition of F we have

∣∣∣∣∣∣
ˆ

Ω

F (x, u(x))dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ˆ

Ω

u(x)ˆ

0

f(x, t) dt dx

∣∣∣∣∣∣∣ ≤ M

ˆ

Ω

|u(x)|dx

By the Hölder and Poincaré inequalities, we obtain

M

ˆ

Ω

|u(x)|dx ≤ M |Ω| 12 ‖u‖L2(Ω) ≤ M̃‖u‖X(Ω).

Hence we get (2.10), with M̃ depending on Ω. �
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3. Proof of Theorem 1.2 and Theorem 1.3

The proof of Theorem 1.2 follows the classical streamlines in minimax theory. In particular, and as already 
mentioned, we will make use of the Saddle Point Theorem by Rabinowitz (see [32,33]), and therefore we 
have to check that its assumptions are satisfied.

3.1. Geometry of the functional Jλ

Lemma 3.1. Let f satisfy (fbc) and (F−∞) and let k ∈ N be such that λk < λk+1. For every K > 0, there 
exists r = r(K) > 0 such that Jλ(u) ≥ K for every u ∈ Pk+1 ⊕H0

k with ‖u‖X(Ω) ≥ r.

Proof. Since u ∈ Pk+1 ⊕H0
k , we can write u = u+ + u0, where u+ ∈ Pk+1 and u0 ∈ H0

k . It now suffices to 
note that,

Jλk
(u) = 1

2Bα(u, u) − λk

2 ‖u‖2
L2(Ω) −

ˆ

Ω

F (x, u) dx

= 1
2Bα(u+, u+) − λk

2 ‖u+‖2
L2(Ω) −

ˆ

Ω

F (x, u) dx

≥ β

2 ‖u
+‖2

X(Ω) −
ˆ

Ω

F (x, u) dx (by Lemma 2.6)

= β

2 ‖u
+‖2

X(Ω) −
ˆ

Ω

F (x, u0) dx−
ˆ

Ω

(
F (x, u) − F (x, u0)

)
dx

= β

2 ‖u
+‖2

X(Ω) −
ˆ

Ω

F (x, u0) dx−
ˆ

Ω

u(x)ˆ

u0(x)

f(x, t)dtdx

≥ β

2 ‖u
+‖2

X(Ω) −
ˆ

Ω

F (x, u0) dx− M̃‖u+‖X(Ω),

(3.1)

and the conclusion now easily follows from (F−∞). �
A similar statement holds when (F+∞) is in force, namely

Lemma 3.2. Let f satisfy (fbc) and let k ∈ N be such that λk < λk+1. For every K > 0, there exists 
r = r(K) > 0 such that Jλ(u) ≥ K for every u ∈ Pk+1 with ‖u‖X(Ω) ≥ r.

Proof. It suffices to note that, being u ∈ Pk+1,

Jλk
(u) = 1

2Bα(u, u) − λk

2 ‖u‖2
L2(Ω) −

ˆ

Ω

F (x, u) dx

≥ β

2 ‖u‖
2
X(Ω) −

ˆ

Ω

F (x, u) dx (by Lemma 2.6)

≥ β

2 ‖u‖
2
X(Ω) − M̃‖u‖X(Ω), (by Lemma 2.8).

(3.2)

The conclusion now easily follows. �
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Remark 3.3. An immediate consequence of Lemma 3.1 or of Lemma 3.2 is that

lim inf
u∈Pk+1

‖u‖X(Ω)→+∞

Jλk
(u)

‖u‖2
X(Ω)

> 0. (3.3)

Proposition 3.4. Let f satisfy (fbc) and let λk < λk+1 for some k ∈ N. If (F+∞) is in force, then we have

lim
u∈Hk

‖u‖X(Ω)→+∞

Jλk
(u) = −∞, (3.4)

while if (F−∞) holds, then

lim
u∈H−

k
‖u‖X(Ω)→+∞

Jλk
(u) = −∞, (3.5)

Proof. Let us start with the case in which (F+∞) holds. Since u ∈ Hk we can write u = u− + u0 with 
u− ∈ H−

k and u0 ∈ H0
k . Then we have

Jλk
(u) =1

2Bα(u, u) − λk

2

ˆ

Ω

|u(x)|2dx−
ˆ

Ω

(F (x, u−(x) + u0(x)) − F (x, u0(x)))dx

−
ˆ

Ω

F (x, u0(x))dx

Notice that, as in proof of Lemma 2.8, we have

∣∣∣∣∣∣
ˆ

Ω

(F (x, u−(x) + u0(x)) − F (x, u0(x)))dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
ˆ

Ω

u−(x)+u0(x)ˆ

u0(x)

f(x, t) dtdx

∣∣∣∣∣∣∣
≤ M

ˆ

Ω

|u−(x)|dx

≤ M̃‖u−‖X(Ω).

Thus, by Lemma 2.7 and the previous inequality, we obtain

Jλk
(u) ≤ −γ

2 ‖u
−‖2

X(Ω) + M̃‖u−‖X(Ω) −
ˆ

Ω

F (x, u0(x))dx. (3.6)

Moreover, by Proposition 2.4(c) and the Cauchy-Schwarz inequality, we have

‖u‖2
X(Ω) = ‖u0‖2

X(Ω) + ‖u−‖2
X(Ω) + 2〈u0, u−〉X(Ω)

≤ ‖u0‖2
X(Ω) + ‖u−‖2

X(Ω) + 2 ‖u0‖X(Ω) ‖u−‖X(Ω).

Thus, since ‖u‖X(Ω) diverges at +∞ we have that at least one of the two norms, either ‖u0‖X(Ω) or ‖u−‖X(Ω), 
goes to infinity, as well. Assume that ‖u0‖X(Ω) → +∞, then ‖u−‖X(Ω) can be finite or infinite. By (F+∞)
and by (3.6) we get Jλ(u) → −∞. Otherwise, suppose that ‖u0‖X(Ω) is finite, then ‖u−‖X(Ω) diverges to 
+∞ and by Lemma 2.8 the last term in (3.6) has a linear growth. Hence Jλk

(u) → −∞. This closes the 
first part.
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The case in which (F−∞) holds is rather simpler. Indeed, keeping the notation u− for functions in H−
k

and reasoning as above, we have that

Jλk
(u−) ≤ −γ

2 ‖u
−‖2

X(Ω) + M̄‖u−‖X(Ω),

this completes the proof. �
3.2. Palais-Smale condition

Let us start recalling the following notion.

Definition 3.5. We say that {uj}j∈N is a Palais-Smale sequence for Jλ at level c ∈ R if Jλ(uj) → c as 
j → ∞ and

J ′
λ(uj) → 0, as j → +∞ (3.7)

holds true.

Proposition 3.6. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1 for some k ∈ N. If {uj}j∈N
is a Palais-Smale sequence for Jλk

, then {uj}j∈N is bounded in X(Ω).

Proof. Let uj = u0
j + u−

j + u+
j where u0

j ∈ H0
k , u−

j ∈ H−
k and u+

j ∈ Pk+1. We will show that all sequence 
u0
j , u

−
j , u

+
j are bounded.

Let us start noticing that by (3.7), we have

ε(1)‖u±
j ‖X(Ω) ≥

∣∣〈J ′
λk

(uj), u±
j 〉

∣∣
=

∣∣∣∣∣∣Bα(uj , u
±
j ) − λk

ˆ

Ω

uj(x)u±
j (x) dx−

ˆ

Ω

f(x, uj(x))u±
j (x)dx

∣∣∣∣∣∣ ,
(3.8)

where ε(1) → 0 as j → ∞. Since f is bounded, similarly to Lemma 2.8 we have
∣∣∣∣∣∣
ˆ

Ω

f(x, uj(x))u±
j (x) dx

∣∣∣∣∣∣ ≤ M̃‖u±
j ‖X(Ω). (3.9)

Thanks to Proposition 2.4 (c), we have

〈J ′
λk

(uj), u±
j 〉 = Bα(u±

j , u
±
j ) − λk

ˆ

Ω

|u±
j (x)|2 dx−

ˆ

Ω

f(x, uj(x))u±
j (x)dx. (3.10)

Since u+
j belongs to Pk+1, by Lemma 2.6 and (3.9) we get

ε(1)‖u+
j ‖X(Ω) ≥ β‖u+

j ‖2
X(Ω) − M̃‖u+

j ‖X(Ω),

so that the sequence {u+
j }j∈N is bounded in X(Ω). Furthermore, again by (3.8), (3.10), Lemma 2.7 and 

(3.9) we get

ε(1)‖u−
j ‖X(Ω) ≥ −〈J ′

λ (uj), u−
j 〉 ≥ γ‖u−‖2

X(Ω) − M̃‖u−‖X(Ω).
k
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Then the sequence {u−
j }j∈N is bounded in X(Ω), as well.

We finally prove that u0
j is bounded in X(Ω). First of all, we recall that u0

j is an eigenfunction associated 
to λk, namely

Bα(u0
j , u

0
j ) = λk

ˆ

Ω

|u0
j (x)|2dx. (3.11)

By the Palais-Smale condition, the equation (3.11) and Proposition 2.4 (c), we gain

c ← Jλk
(uj) =1

2Bα(u+
j , u

+
j ) + 1

2Bα(u−
j , u

−
j ) − λk

2

ˆ

Ω

(
|u+

j (x)|2 + |u−
j (x)|2

)
dx

−
ˆ

Ω

(
F (x, uj(x)) − F (x, u0

j (x))
)
dx−

ˆ

Ω

F (x, u0
j (x))dx.

Thus, we have that
∣∣∣∣∣∣
ˆ

Ω

F (x, u0
j (x))dx

∣∣∣∣∣∣ ≤ |Jλk
(uj)| +

∣∣∣∣12Bα(u+
j , u

+
j ) + 1

2Bα(u−
j , u

−
j )

− λk

2

ˆ

Ω

(
|u+

j (x)|2 + |u−
j (x)|2

)
dx −

ˆ

Ω

(
F (x, uj(x)) − F (x, u0

j (x))
)
dx

∣∣∣∣
(3.12)

By the Poincaré inequality and the bound on u+
j and u−

j we gain

∣∣∣∣∣∣
λk

2

ˆ

Ω

(
|u+

j (x)|2 + |u−
j (x)|2

)
dx

∣∣∣∣∣∣ ≤ C
(
‖u+

j ‖2
X(Ω) + ‖u−

j ‖2
X(Ω)

)
≤ C̃

for some C̃ > 0 and all j ∈ N. Moreover,

∣∣∣∣∣∣
ˆ

Ω

(
F (x, uj(x)) − F (x, u0

j (x))
)∣∣∣∣∣∣ ≤

ˆ

Ω

∣∣∣∣∣∣∣
u0
j (x)+u+

j (x)+u−
j (x)ˆ

u0
j (x)

f(x, t)dt

∣∣∣∣∣∣∣
≤M

ˆ

Ω

(
|u−

j | + |u+
j |
)
dx

≤M̃
(
‖u−

j ‖X(Ω) + ‖u+
j ‖X(Ω)

)
≤ C1

for some C1 and all j ∈ N. Therefore, from (3.12), recalling that u±
j are bounded, we obtain

∣∣∣∣∣∣
ˆ

Ω

F (x, u0
j (x))dx

∣∣∣∣∣∣ ≤ |c| + o(1) +
∣∣∣∣12Bα(u+

j , u
+
j ) + 1

2Bα(u−
j , u

−
j )

∣∣∣∣ + C̃ + C1 ≤ C2,

where C2 > 0 is a constant independent of j and o(1) → 0 as j → ∞. Hence the sequence of integrals ´
Ω F (x, u0

j (x))dx is bounded. Finally, since u0
j belongs to H0

k , by (F±∞) we get that u0
j is bounded in 

X(Ω). �
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We establish the validity of the Palais-Smale condition thanks to the following result.

Proposition 3.7. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1 for some k ∈ N. If {uj}j∈N
is a Palais-Smale sequence for Jλk

, then there exists u∞ in X(Ω) such that uj strongly converges to u∞ in 
X(Ω).

Proof. By Proposition 3.6 uj is bounded and X(Ω) is reflexive, since X(Ω) is an Hilbert space. Then there 
exists u∞ ∈ X(Ω) such that, up to a subsequence, uj weakly converges to u∞ in X(Ω). Since X(Ω) is 
compactly embedded in Hs

0(Ω) (and so in L2(Ω)), then, up to a subsequence, uj → u∞ in Hs
0(Ω) (and so 

in L2(Ω)) and uj → u∞ a.e. in Ω. This implies that

Bα(uj , ϕ) → Bα(u∞, ϕ) (3.13)

for all ϕ ∈ X(Ω), as j → +∞.
Since uj is a Palais-Smale sequence, we have

0 ← 〈J ′
λk

(uj), uj − u∞〉 =Bα(uj , uj) − Bα(uj , u∞)

− λk

ˆ

Ω

uj(x)(uj(x) − u∞(x))dx

−
ˆ

Ω

f(x, uj(x))(uj(x) − u∞(x))dx.

(3.14)

Now, by the Hölder inequality and the bound on f we get
∣∣∣∣∣∣λk

ˆ

Ω

uj(x)(uj(x) − u∞(x))dx +
ˆ

Ω

f(x, uj(x))(uj(x) − u∞(x))dx

∣∣∣∣∣∣
≤

(
λk‖uj‖L2(Ω) + M |Ω| 12

)
‖uj − u∞‖L2(Ω) → 0,

as j → +∞. Therefore, passing to the limit in (3.14) and taking into account (3.13) we get

Bα(uj , uj) → Bα(u∞, u∞).

Since uj → u in Hs
0(Ω), we conclude that ‖uj‖X(Ω) → ‖u∞‖X(Ω). X(Ω) being uniformly convex, we conclude 

that uj → u∞ strongly in X(Ω). �
By combining Propositions 3.6 and 3.7 we have the proof of the following compactness property.

Proposition 3.8. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1 for some k ∈ N. Then Jλk

satisfies the Palais-Smale condition at level c for any c ∈ R, namely every Palais-Smale sequence at level c
admits a strongly convergent subsequence.

We are now ready to conclude with the

Proof of Theorem 1.2. Let us start fixing some notation. Since λ is an eigenvalue, there exists k ∈ N such 
that λ = λk < λk+1. Once k has been found, we fix the decomposition X(Ω) = Hk ⊕ Pk+1, with Hk having 
finite dimension.
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Let us start with the case in which (F+∞) is in force. From (3.3) for any H > 0 there exist R > 0 such 
that, if u ∈ Pk+1 and ‖u‖X(Ω) ≥ R, then

Jλk
(u) > H.

When u ∈ Pk+1 and ‖u‖X(Ω) ≤ R, by (2.4), the Rellich-Kondrachov Theorem, the Hölder inequality and 
(2.4) we have

Jλk
(u) ≥ λk+1 − λk

2

ˆ

Ω

|u(x)|2dx−
ˆ

Ω

F (x, u(x))dx

≥ −M

ˆ

Ω

|u(x)|dx ≥ −M̃‖u(x)‖X(Ω) ≥ −M̃R =: −CR,

where M̃ is a positive constant. Therefore, we obtain

Jλk
(u) ≥ −CR for any u ∈ Pk+1. (3.15)

Furthermore, by (3.4) in Proposition 3.4, there exists T > 0 such that, for any u ∈ Hk with ‖u‖X(Ω) ≥ T , 
we have

Jλk
(u) < −CR. (3.16)

Hence, by (3.15) and (3.16) we conclude that

sup
u∈Hk

‖u‖X(Ω)=T

Jλk
(u) < −CR ≤ inf

u∈Pk+1
Jλk

(u),

so the functional Jλk
satisfies the geometric assumption (I3) and (I4) of [33, Theorem 4.6]. Moreover, by 

Proposition 3.8 Jλk
satisfies the Palais-Smale condition. Then the Saddle Point Theorem ([33, Theorem 

4.6]) provides the existence of a critical point u ∈ X(Ω) for the functional Jλk
with

Jλk
(u) ≤ max

v∈Hk
‖u‖X(Ω)≤T

Jλk
(v).

The case (F−∞) can be treated similarly considering the following decomposition:

X(Ω) = H−
k ⊕

(
H0

k ⊕ Pk+1
)
,

where H−
k is the finite dimensional subspace while Pk+1 ⊕H0

k is the infinite dimensional one. Reasoning as 
above, by using (3.5) in place of (3.4) from Proposition 3.4, we conclude the proof of the theorem. �
Remark 3.9. Assumption (fbc) covers the case f(x, 0) �= 0. This implies that the trivial solution is not 
allowed for this type of nonlinearities, like f(x, t) = e−t2sign(t).

Concerning the multiplicity result stated in Theorem 1.3, its proof is an easy corollary of Theorem A.1
below.
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Proof of Theorem 1.3. We consider first the following decomposition

X(Ω) = H−
k ⊕

(
H0

k ⊕ Pk+1
)
.

As before, we can assume that λ = λk < λk+1 for some k ∈ N. We now consider the sphere of radius r > 0
in the finite dimensional subspace Hk, namely

S :=
{
u ∈ Hk : ‖u‖X(Ω) = r

}
.

By Lemma 2.7 (since u ∈ S ⊂ Hk) and (Fpos), if r > 0 is small enough, being the norms in L∞(Ω) and in 
X(Ω) equivalent, as Hk is finite dimensional, we get

sup
u∈S

Jλk
(u) < 0.

This fact, coupled with the lower bound on Jλk
(u) for u ∈ H0

k ⊕ Pk+1 established in (3.15), allows to apply 
Theorem A.1 with E = X(Ω) and Ẽ = H0

k⊕Pk+1, which yields the desired conclusion, since γ(S) = dim(Hk)
(see [30, Remark 5.62]). �
Appendix A

We recall some basic facts about the Krasnoselskii genus and an abstract result due to Rabinowitz.
Let A ⊂ RN be a closed and symmetric set. The genus γ(A) of A is defined as the least integer n (if it 

exists) such that there is an odd function f ∈ C(A, Rn \ {0}).
Set Σ := {A ⊂ RN : A is closed and symmetric}.

Theorem A.1 (Theorem 1.9, [32]). Let E be a real Banach space and let I ∈ C1(E, R) be even with I(0) = 0
and satisfy the Palais-Smale condition at any level. Suppose further that

1. there exists a closed subspace Ẽ ⊂ E of codimension j and a constant b such that I|Ẽ ≥ b, and
2. there exists A ∈ Σ with γ(A) = m > j and supA I < 0.

Then I possesses at least m − j distinct pairs of nontrivial critical points.
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