

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems \hat{X}

Gianmarco Giovannardi ^a*,*∗, Dimitri Mugnai ^b, Eugenio Vecchi ^c

^a *Dipartimento di Matematica Informatica, "U. Dini", Università degli Studi di Firenze, Viale Morgani*

^b Dipartimento di Ecologia e Biologia (DEB), Università della Tuscia, Largo dell'Università, 01100
Viterbo, Italu

c Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy

A R T I C L E I N F O A B S T R A C T

Article history: Received 5 February 2023 Available online 29 May 2023 Submitted by H. Frankowska

Keywords: Operators of mixed order Variational methods Saddle point theorem Fountain theorem

We prove the existence and multiplicity of weak solutions for a mixed local-nonlocal problem at resonance. In particular, we consider a not necessarily positive operator which appears in models describing the propagation of flames. A careful adaptation of well known variational methods is required to deal with the possible existence of negative eigenvalues.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded set with C^1 -smooth boundary $\partial\Omega$ with $n > 2$. We consider the following Dirichlet boundary value problem

$$
\begin{cases}\n\mathcal{L}_{\alpha}u = \lambda u + f(x, u), & \text{in } \Omega \\
u = 0, & \text{in } \mathbb{R}^n \setminus \Omega,\n\end{cases}
$$
\n(1.1)

where

$$
\mathcal{L}_{\alpha}u := -\Delta u + \alpha(-\Delta)^{s}u.
$$

Corresponding author.

<https://doi.org/10.1016/j.jmaa.2023.127442>

0022-247X/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license [\(http://](http://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).

[✩] G. Giovannardi is supported by INdAM-GNAMPA Project "Analisi geometrica in strutture subriemanniane" (grant no. CUP_E55F22000270001). D. Mugnai is supported by the FFABR "Fondo per il finanziamento delle attività base di ricerca" 2017 and by the INdAM-GNAMPA Project "PDE ellittiche a diffusione mista" (grant no. CUP_E55F22000270001). E. Vecchi is supported by INdAM-GNAMPA Project "PDE ellittiche a diffusione mista" (grant no. CUP_E55F22000270001).

E-mail addresses: gianmarco.giovannardi@unifi.it (G. Giovannardi), dimitri.mugnai@unitus.it (D. Mugnai), eugenio.vecchi2@unibo.it (E. Vecchi).

Here $\alpha \in \mathbb{R}$ with no a priori restrictions, Δu denotes the classical Laplace operator while $(-\Delta)^s u$, for fixed $s \in (0,1)$ and up to a multiplicative positive constant, is the fractional Laplacian, usually defined as

$$
(-\Delta)^s u(x) := C(n, s) \text{ P.V.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy,
$$

where P.V. denotes the Cauchy principal value, that is

$$
\text{P.V.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy = \lim_{\varepsilon \to 0} \int_{\{y \in \mathbb{R}^n : |y - x| \ge \varepsilon\}} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy,
$$

see [\[29](#page-15-0)] for more details. Clearly, when $\alpha = 0$, one recovers the classical Laplacian. Finally, $\lambda \in \mathbb{R}$ is a variational Dirichlet eigenvalue of \mathcal{L}_{α} (hence [\(1.1](#page-0-0)) is a problem at resonance), namely there are nontrivial solutions for the problem

$$
\begin{cases} \mathcal{L}_{\alpha}u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{in } \mathbb{R}^n \setminus \Omega, \end{cases}
$$

see Section [2](#page-3-0) for the precise setting.

We suppose that *f* satisfies the following assumptions.

Assumptions on *f*.

 (f_{bc}) $f: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ *is a bounded and Carathéodory function, namely:* 1. $f(x, \cdot)$ *is continuous in* R *for a.e.* $x \in \Omega$ 2. $f(\cdot, t)$ *is measurable in* Ω *for all* $t \in \mathbb{R}$. $(F_{\pm\infty})$

$$
\lim_{\substack{u \in Ker(\mathcal{L}_{\alpha}-\lambda), \\ \|u\| \to \infty}} \int_{\Omega} F(x, u) dx = \pm \infty
$$

uniformly in $x \in \Omega$ *.*

Remark 1.1. The assumption $(F_{\pm\infty})$ is the so–called Ahmad-Lazer-Paul condition introduced in [\[1](#page-14-0)] and often used in resonant problems, for instance see [\[21](#page-15-0)]. A sufficient condition implying it is given by

$$
F(x,t) = \int_{0}^{t} f(x,\tau)d\tau \to \pm \infty \quad \text{as } |t| \to +\infty,
$$

as can be quite easily checked, see e.g. [[20,](#page-15-0) Lemma 3.4].

The goal of this paper is to extend to a mixed operator an existence and multiplicity result established in [\[32\]](#page-15-0) for the Laplace operator. We state immediately our first result:

Theorem 1.2. Let f satisfy (f_{bc}) and $(F_{\pm\infty})$ and suppose that $\lambda \in \mathbb{R}$ is a variational Dirichlet eigenvalue of \mathcal{L}_{α} *. Then, the problem* [\(1.1](#page-0-0)) *admits a weak solution* $u \in \mathbb{X}(\Omega)$ *.*

We immediately clarify that Theorem [1.2](#page-1-0): it is somehow *easy* to get for $\alpha > 0$ or when

$$
-\frac{1}{C_s}<\alpha<0\,,
$$

where $C_s > 0$ is the best constant of the continuous embedding $H_0^1 \subset H^s$ (see e.g. [[15\]](#page-15-0)), i.e.

$$
[u]_s^2 := \iint\limits_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy \le C_s \int\limits_{\Omega} |\nabla u|^2 dx.
$$

In this perspective, the probably more interesting case is when $\alpha < -\frac{1}{C_s}$ is assumed. Indeed, the situation becomes suddenly more delicate, mainly because the local–nonlocal operator is not more positive definite, *indefinite operators*. As a consequence, the bilinear form naturally associated to it does not induce a scalar product nor a norm, the variational spectrum may exhibit negative eigenvalues and even the maximum principles may fail, see e.g. [\[4](#page-14-0)]. As a consequence, some inequalities cannot be adapted to our situations, since dividing by eigenvalues may reverse the sign, nullifying a verbatim adaptation of [\[32](#page-15-0)]. For this reason, we need to establish some crucial estimates for eigenspaces, see Lemmas [2.6](#page-6-0) and [2.7.](#page-6-0)

We stress that operators of this latter form (e.g. with $\alpha = -1$) do not have only a purely theoretical mathematical interest, indeed the play a role in applied sciences like combustion theory. We limit ourselves to mention that the stationary part in the original model proposed by Sivashinsky [[35\]](#page-15-0) to deal with the instability of the propagation front of flames can be reduced to operator of the form previously described, and this may happen under physically motivated assumptions, see e.g. [\[26](#page-15-0)] and the references therein.

We stress that Theorem [1.2](#page-1-0) is actually a further generalization of a result by Ahmad, Lazer and Paul [\[1](#page-14-0)] where the authors dealt with a local operator at resonance. Despite well known, we want to recall here that the original proof in [[1\]](#page-14-0) is by no means of variational flavour, and consists in a delicate construction of the solution using a sort of Galerkin method. As a matter of fact, a striking and not foreseeable consequence of [[1\]](#page-14-0) is an existence result with proof relying on the Saddle Point Theorem by Rabinowitz [\[32](#page-15-0)], which is one of the cornerstones of variational methods in nonlinear analysis. We will follow this latter approach, which has already been used also in the pure nonlocal case in [\[20\]](#page-15-0). We notice that, as in [[20\]](#page-15-0), it is possible to work in a slightly more general case considering weighted Dirichlet eigenvalues, where the weight *a* is a Lipschitz function. However, treating solutions of $\mathcal{L}_{\alpha} = \lambda a(x)u$ doesn't change the spirit of our result, and for this reason we concentrate on eigenvalues without weight.

In the spirit of [\[32](#page-15-0)], under assumption $(F_∞)$, we can also prove a multiplicity result under a few extra assumptions. The precise statement is the following

Theorem 1.3. Let f satisfy (f_{bc}) and $(F_{-\infty})$ and suppose that $\lambda \in \mathbb{R}$ is a variational Dirichlet eigenvalue of \mathcal{L}_{α} . We further assume that $f(x,0)=0$ and that $f(x,t)$ is odd in the t variable. Finally, we assume that

there exists
$$
r > 0
$$
 such that $F(x,t) > 0$, for $0 < |t| < r$ and $x \in \Omega$. (F_{pos})

Then, problem [\(1.1\)](#page-0-0) admits at least $\dim(H_{\lambda}^0)$ distinct pair of nontrivial weak solutions, where H_{λ}^0 denotes *the eigenspace associated to* λ *.*

Remark 1.4. We remark that, as in [[32\]](#page-15-0), we are able to prove the multiplicity result only when $(F_{-\infty})$, since only in such a case we are able to prove a decomposition of the space $\mathbb{X}(\Omega)$ for which the abstract multiplicity Theorem [A.1](#page-14-0) holds. Hence, the multiplicity result when $(F_{+\infty})$ holds is an open problem.

We close the introduction with a quite short overview on the more recent (elliptic) PDEs oriented literature. Problems driven by operators of mixed type, even with a nonsingular nonlocal operator [\[16\]](#page-15-0), have raised a certain interest in the last few years, for example in connection with the study of optimal animal foraging strategies (see e.g. [\[19](#page-15-0)] and the references therein). From the pure mathematical point of view, the superposition of such operators generates a lack of scale invariance which may lead to unexpected complications.

At the present stage, and without aim of completeness, the investigations have taken into consideration in-terior regularity and maximum principles (see e.g. [[4](#page-14-0)[,12,14,23](#page-15-0),[24\]](#page-15-0)), boundary Harnack principle [\[13](#page-15-0)], boundary regularity and overdetermined problems [[10,36](#page-15-0)], existence of solutions (see e.g. [\[7–9](#page-14-0)[,17](#page-15-0),[18,25,31,34](#page-15-0),[3,](#page-14-0)[22\]](#page-15-0)) and shape optimization problems [[5,6](#page-14-0)].

The paper is organized as follows. In Section 2 we introduce some preliminary definitions and results, such as the Hilbert space $\mathbb{X}(\Omega)$, the notion of weak solution of [\(1.1](#page-0-0)) (as critical point of the functional \mathcal{J}_{λ} , the variational eigenvalue problem for \mathcal{L}_{α} and the crucial main lemmas. Section [3](#page-8-0) is dedicated to the proofs of the Theorem [1.2](#page-1-0) and Theorem [1.3](#page-2-0); we first deal with the geometry of the functional \mathcal{J}_{λ} and the Palais-Smale condition, then we verify the hypothesis of the Saddle Point Theorem and [[32,](#page-15-0) Theorem 1.9]. In the Appendix we recall the notion of Krasnoselskii genus and we state [\[32](#page-15-0), Theorem 1.9].

2. Assumptions, notation and preliminary results

Let $\Omega \subseteq \mathbb{R}^n$ be a connected and bounded open set with C^1 -smooth boundary $\partial \Omega$. We define the space of solutions of problem [\(1.1](#page-0-0)) as

$$
\mathbb{X}(\Omega) := \left\{ u \in H^1(\mathbb{R}^n) : u \equiv 0 \text{ a.e. on } \mathbb{R}^n \setminus \Omega \right\}.
$$

Thanks to the regularity assumption on $\partial\Omega$ (see [\[11,](#page-15-0) Proposition 9.18]), we can identify the space $\mathbb{X}(\Omega)$ with the space $H_0^1(\Omega)$ in the following sense:

$$
u \in H_0^1(\Omega) \iff u \cdot \mathbf{1}_{\Omega} \in \mathbb{X}(\Omega), \tag{2.1}
$$

where $\mathbf{1}_{\Omega}$ is the indicator function of Ω . From now on, we shall always identify a function $u \in H_0^1(\Omega)$ with $\hat{u} := u \cdot \mathbf{1}_{\Omega} \in \mathbb{X}(\Omega).$

By the Poincaré inequality and (2.1) , we get that the quantity

$$
||u||_{\mathbb{X}} := \left(\int_{\Omega} |\nabla u|^2 dx\right)^{1/2}, \quad u \in \mathbb{X}(\Omega),
$$

endows $\mathbb{X}(\Omega)$ with a structure of (real) Hilbert space, which is isometric to $H_0^1(\Omega)$. To fix the notation, we denote by $\langle \cdot, \cdot \rangle_{\mathbb{X}}$ the scalar product which induces the norm above on $\mathbb{X}(\Omega)$. We briefly recall that the space $\mathbb{X}(\Omega)$ is separable and reflexive, $C_0^{\infty}(\Omega)$ is dense in $\mathbb{X}(\Omega)$ and eventually that $\mathbb{X}(\Omega)$ compactly embeds in $L^p(\Omega)$ for any $p \in \left[1, \frac{2n}{n-2}\right]$ and in

$$
H_0^s(\Omega):=\{H^s(\mathbb{R}^n):\,u\equiv 0\,\,\hbox{a.e. on}\,\,\mathbb{R}^n\setminus\Omega\}
$$

by [[27,](#page-15-0) Theorem 16.1].

With the correct functional setting, we are ready to give the suitable notion of weak solution for problem $(1.1).$ $(1.1).$

Definition 2.1. A function $u \in \mathbb{X}(\Omega)$ is called a weak solution of [\(1.1](#page-0-0)) if

$$
\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy
$$

$$
= \lambda \int_{\Omega} u\varphi dx + \int_{\Omega} f(x, u)\varphi dx
$$

for every $\varphi \in \mathbb{X}(\Omega)$.

As usual, weak solutions of ([1.1](#page-0-0)) can be found as critical points of the functional $\mathcal{J}_{\lambda} : \mathbb{X}(\Omega) \to \mathbb{R}$ defined as

$$
\mathcal{J}_{\lambda}(u) := \frac{1}{2} \int\limits_{\Omega} |\nabla u|^2 \, dx + \frac{\alpha}{2} \iint\limits_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dxdy - \frac{\lambda}{2} \int\limits_{\Omega} |u|^2 \, dx - \int\limits_{\Omega} F(x, u) \, dx,
$$

where

$$
F(x,t) := \int_{0}^{t} f(x,\sigma) d\sigma, \quad t \in \mathbb{R}.
$$

By assumption (f_{bc}) it is standard to prove (see for instance [\[2](#page-14-0)]) that the functional \mathcal{J}_{λ} is Fréchet differentiable and that

$$
\mathcal{J}'_{\lambda}(u)(\varphi) = \int_{\Omega} \langle \nabla u, \nabla \varphi \rangle dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy
$$

$$
- \lambda \int_{\Omega} u(x)\varphi(x) dx - \int_{\Omega} f(x, u(x))\varphi(x) dx \quad \text{for every } \varphi \in \mathbb{X}(\Omega).
$$

Now, we consider the bilinear form $\mathcal{B}_{\alpha} : \mathbb{X}(\Omega) \times \mathbb{X}(\Omega) \to \mathbb{R}$, defined by

$$
\mathcal{B}_{\alpha}(u,v) := \int_{\Omega} \langle \nabla u, \nabla v \rangle dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} dx dy
$$

for any $u, v \in \mathbb{X}(\Omega)$. In spite of the fact that α can be such that \mathcal{B}_{α} is not positive definite, we give the following definition.

Definition 2.2. We say that *u* and *v* are \mathcal{B}_{α} -orthogonal if

$$
\mathcal{B}_{\alpha}(u,v)=0.
$$

The terminology adopted above is justified by the fact that, for $\alpha > 0$ (more precisely if $\alpha > -\frac{1}{C_s}$), the bilinear form \mathcal{B}_{α} defines a true scalar product.

We conclude this section dealing with the eigenvalue problem associated to the operator \mathcal{L}_{α} , that is the following boundary value problem

$$
\begin{cases}\n\mathcal{L}_{\alpha}u = \lambda u, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^n \setminus \Omega,\n\end{cases}
$$
\n(2.2)

where $\lambda \in \mathbb{R}$. According to Definition 2.1, we give the following definition.

Definition 2.3. A number $\lambda \in \mathbb{R}$ is called a variational Dirichlet eigenvalue of \mathcal{L}_{α} if there exists a nontrivial weak solution $u \in \mathbb{X}(\Omega)$ of [\(2.2\)](#page-4-0) or, equivalently, if

$$
\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n+2s}} dx dy = \lambda \int_{\Omega} u \varphi dx
$$

for every $\varphi \in \mathbb{X}(\Omega)$. If such a function *u* exists, we call it eigenfunction associated to the eigenvalue λ .

Note that the linearity of \mathcal{L}_{α} guarantees a complete description of its eigenvalues, and relative eigenfunctions, according to the following result, see [[28,](#page-15-0) Proposition 2.4]:

Proposition 2.4. *Let* $n > 2$ *. Then the following statements hold true:*

(a) \mathcal{L}_{α} admits a divergent and bounded from below sequence of eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$, i.e., there exists $C>0$ *such that*

$$
-C<\lambda_1\leq \lambda_2\leq \ldots\leq \lambda_k\to +\infty\,,\quad as\ k\to +\infty.
$$

Moreover, for every $k \in \mathbb{N}$ *,* λ_k *can be characterized as*

$$
\lambda_k = \min_{\substack{u \in \mathbb{P}_k \\ \|u\|_{L^2(\Omega)} = 1}} \left\{ \int_{\Omega} |\nabla u|^2 \, dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} \, dxdy \right\},\tag{2.3}
$$

where

$$
\mathbb{P}_1 := \mathbb{X}(\Omega),
$$

and, for every $k \geq 2$ *,*

$$
\mathbb{P}_k := \{ u \in \mathbb{X}(\Omega) : \mathcal{B}_\alpha(u, u_j) = 0 \text{ for every } j = 1, \dots, k - 1 \};
$$

- (b) *for every* $k \in \mathbb{N}$ *there exists* an *eigenfunction* $u_k \in \mathbb{X}(\Omega)$ *corresponding* to λ_k *, which realizes the minimum in* (2.3)*;*
- (c) the sequence ${u_k}_{k\in\mathbb{N}}$ of eigenfunctions constitutes an orthonormal basis of $L^2(\Omega)$; moreover, the eigen*functions are* B*α-orthogonal.*
- (d) *for every* $k \in \mathbb{N}$, λ_k *has finite multiplicity.*

Remark 2.5. Clearly, if $\alpha > -\frac{1}{C_s}$ there is an improvement on the lower bound of λ_1 , which is thus strictly positive. Moreover, in this case, λ_1 is also simple.

We denote by H_k the linear subspace of $\mathbb{X}(\Omega)$ generated by the first *k* eigenfunctions of \mathcal{L}_{α} , i.e.

$$
H_k = \mathrm{span}_{\mathbb{R}}\{u_1,\ldots,u_k\}.
$$

Notice that $\mathbb{P}_{k+1} = (H_k)^{\perp_{\mathcal{B}_{\alpha}}}$, namely the subspace \mathcal{B}_{α} -orthogonal to H_k . Also we set

$$
H_k^0 = \operatorname{span}_{\mathbb{R}} \{ u_j \; : \; \lambda_j = \lambda_k \},
$$

i.e. the kernel of $\mathcal{L}_{\alpha} - \lambda_k$, and

$$
H_k^- = \operatorname{span}_{\mathbb{R}} \{ u_j \; : \; \lambda_j < \lambda_k \}.
$$

By Proposition [2.4](#page-5-0) (a) we can infer the existence of a positive integer $N_0 \in \mathbb{N}$ such that λ_{N_0} is the first (not necessarily simple) positive eigenvalue. Of course, $\lambda_k > 0$ for every $k > N_0$. We further notice that, again by Proposition [2.4,](#page-5-0)

$$
\lambda_{k+1} \int_{\Omega} u^2 dx \le \int_{\Omega} |\nabla u|^2 dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy \tag{2.4}
$$

for every $u \in \text{span}(u_1, \ldots, u_k)^\perp = \mathbb{P}_{k+1}$ and

$$
\int_{\Omega} |\nabla u|^2 dx + \alpha \iint_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy \le \lambda_k \int_{\Omega} u^2 dx \tag{2.5}
$$

for every $u \in H_k$.

We first need the following preliminary result inspired by Rabinowitz [\[32](#page-15-0)], see [\[28](#page-15-0), Lemma 4.1] for a proof.

Lemma 2.6. *Let* $k \in \mathbb{N}$ *be such that*

$$
\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{k-1} \leq \lambda_k < \lambda_{k+1} \leq \ldots
$$

and decompose the space $\mathbb{X}(\Omega)$ as $\mathbb{X}(\Omega) = H_k \oplus \mathbb{P}_{k+1}$, where $H_k := span(u_1, \ldots, u_k)$. Then, there exists a *positive constant* β *such that for any* $u \in \mathbb{P}_{k+1}$

$$
\mathcal{B}_{\alpha}(u, u) - \lambda_k \|u\|_{L^2(\Omega)}^2 \ge \beta \|u\|_{\mathbb{X}(\Omega)}^2,
$$
\n(2.6)

or, equivalently,

$$
\inf_{u \in \mathbb{P}_{k+1} \setminus \{0\}} \left\{ 1 + \frac{\alpha[u]_s^2 - \lambda_k \|u\|_{L^2(\Omega)}^2}{\|u\|_{\mathbb{X}(\Omega)}^2} \right\} > 0.
$$

We now prove a *sort of counterpart* of Lemma 2.6 when we restrict our attention to the finite dimensional space H_k . The former and the next lemma will be two of the crucial ingredients to verify that the functional \mathcal{J}_{λ} verifies the saddle point geometry.

Lemma 2.7. Let $k \in \mathbb{N}$ be such that $\lambda = \lambda_k < \lambda_{k+1}$. Then there exists a positive constant $\gamma > 0$, such that

$$
\mathcal{B}_{\alpha}(u, u) - \lambda_k \|u\|_{L^2(\Omega)}^2 \le -\gamma \|u^-\|_{\mathbb{X}(\Omega)}^2 \tag{2.7}
$$

for each $u \in H_k$ *, where* $u = u^0 + u^-, u^0 \in H_k^0$ *and* $u^- \in H_k^-$ *.*

Proof. If $u \equiv 0$, then the assertion is trivial. Hence we assume $u \in H_k \setminus \{0\}$. Thanks to Proposition [2.4](#page-5-0) (c), a simple computation yields that

$$
\mathcal{B}_{\alpha}(u, u) - \lambda_k \|u\|_{L^2(\Omega)}^2 = \mathcal{B}_{\alpha}(u^-, u^-) - \lambda_k \|u^-\|_{L^2(\Omega)}^2,
$$

which is nonpositive by (2.5). Then it suffices to prove that there exists a positive constant $\gamma > 0$ such that

$$
\sup_{u^- \in H_k^- \setminus \{0\}} \left\{ 1 + \frac{\alpha [u^-]^2 - \lambda_k \|u^-\|_{L^2(\Omega)}^2}{\|u^-\|_{X(\Omega)}^2} \right\} = -\gamma. \tag{2.8}
$$

To this aim, we argue as in [\[28](#page-15-0), Lemma 4.1] assuming by contradiction that there exists a sequence ${u_n^-}_{n \in \mathbb{N}} \in H_k^- \setminus {0}$ such that

$$
1 + \frac{\alpha [u_n^-]^2 - \lambda_k \|u_n^-\|_{L^2(\Omega)}^2}{\|u_n^-\|_{\mathbb{X}(\Omega)}^2} \to 0, \quad \text{as } n \to +\infty.
$$
 (2.9)

We then consider the normalized (in $\mathbb{X}(\Omega)$) sequence

$$
v_n^- := \frac{u_n^-}{\|u_n^-\|_{\mathbb{X}(\Omega)}} \in H_k^- \setminus \{0\},\
$$

and, since $H_k^- \setminus \{0\}$ is finite dimensional, we can infer the existence of a function $v^- \in H_k^-$ with $||v^-||_{\mathbb{X}(\Omega)} = 1$ and such that $v_n^- \to v^-$. Therefore, by the compact embedding of $\mathbb{X}(\Omega)$ in $H_0^s(\Omega)$ and in $L^2(\Omega)$, we find

$$
1 + \alpha [v_n^-]^2 - \lambda_k \|v_n^-\|_{L^2(\Omega)}^2 \to 1 + \alpha [v^-]^2 - \lambda_k \|v^-\|_{L^2(\Omega)}^2, \quad \text{as } n \to +\infty,
$$

but at the same time,

$$
1 + \alpha [v_n^-]^2 - \lambda_k ||v_n^-||^2_{L^2(\Omega)} \to 0
$$
, as $n \to +\infty$.

Since $v^- \in H_k^- \setminus \{0\}$, we also have that

$$
0 > \mathcal{B}_{\alpha}(v^-, v^-) - \lambda_k \|v^-\|_{L^2(\Omega)}^2 = \|v^-\|_{\mathbb{X}(\Omega)}^2 - 1 = 0,
$$

and a contradiction arises. \Box

The next Lemma is taken verbatim from [[20\]](#page-15-0).

Lemma 2.8. Let f satisfy (f_{bc}) . Then there exists a positive constant $\tilde{M} > 0$, depending on Ω , such that

$$
\left| \int_{\Omega} F(x, u(x)) dx \right| \leq \tilde{M} \|u\|_{\mathbb{X}(\Omega)}
$$
\n(2.10)

for all $u \in \mathbb{X}(\Omega)$ *.*

Proof. By definition of *F* we have

$$
\left| \int_{\Omega} F(x, u(x)) dx \right| = \left| \int_{\Omega} \int_{0}^{u(x)} f(x, t) dt dx \right| \leq M \int_{\Omega} |u(x)| dx
$$

By the Hölder and Poincaré inequalities, we obtain

$$
M\int_{\Omega}|u(x)|dx \leq M|\Omega|^{\frac{1}{2}}\|u\|_{L^{2}(\Omega)} \leq \tilde{M}\|u\|_{\mathbb{X}(\Omega)}.
$$

Hence we get (2.10), with \tilde{M} depending on Ω . \Box

3. Proof of Theorem [1.2](#page-1-0) and Theorem [1.3](#page-2-0)

The proof of Theorem [1.2](#page-1-0) follows the classical streamlines in minimax theory. In particular, and as already mentioned, we will make use of the Saddle Point Theorem by Rabinowitz (see [\[32,33\]](#page-15-0)), and therefore we have to check that its assumptions are satisfied.

3.1. Geometry of the functional J*^λ*

Lemma 3.1. Let f satisfy (f_{bc}) and $(F_{-\infty})$ and let $k \in \mathbb{N}$ be such that $\lambda_k < \lambda_{k+1}$. For every $K > 0$, there $\text{exists } r = r(K) > 0 \text{ such that } \mathcal{J}_{\lambda}(u) \geq K \text{ for every } u \in \mathbb{P}_{k+1} \oplus H_k^0 \text{ with } ||u||_{\mathbb{X}(\Omega)} \geq r.$

Proof. Since $u \in \mathbb{P}_{k+1} \oplus H_k^0$, we can write $u = u^+ + u^0$, where $u^+ \in \mathbb{P}_{k+1}$ and $u^0 \in H_k^0$. It now suffices to note that,

$$
\mathcal{J}_{\lambda_{k}}(u) = \frac{1}{2} \mathcal{B}_{\alpha}(u, u) - \frac{\lambda_{k}}{2} ||u||_{L^{2}(\Omega)}^{2} - \int_{\Omega} F(x, u) dx
$$

\n
$$
= \frac{1}{2} \mathcal{B}_{\alpha}(u^{+}, u^{+}) - \frac{\lambda_{k}}{2} ||u^{+}||_{L^{2}(\Omega)}^{2} - \int_{\Omega} F(x, u) dx
$$

\n
$$
\geq \frac{\beta}{2} ||u^{+}||_{\mathbb{X}(\Omega)}^{2} - \int_{\Omega} F(x, u) dx \quad \text{(by Lemma 2.6)}
$$

\n
$$
= \frac{\beta}{2} ||u^{+}||_{\mathbb{X}(\Omega)}^{2} - \int_{\Omega} F(x, u^{0}) dx - \int_{\Omega} (F(x, u) - F(x, u^{0})) dx
$$

\n
$$
= \frac{\beta}{2} ||u^{+}||_{\mathbb{X}(\Omega)}^{2} - \int_{\Omega} F(x, u^{0}) dx - \int_{\Omega} \int_{u^{0}(x)}^{u(x)} f(x, t) dt dx
$$

\n
$$
\geq \frac{\beta}{2} ||u^{+}||_{\mathbb{X}(\Omega)}^{2} - \int_{\Omega} F(x, u^{0}) dx - \tilde{M} ||u^{+}||_{\mathbb{X}(\Omega)},
$$
\n(3.1)

and the conclusion now easily follows from $(F_{-\infty})$. \Box

A similar statement holds when $(F_{+\infty})$ is in force, namely

Lemma 3.2. Let f satisfy (f_{bc}) and let $k \in \mathbb{N}$ be such that $\lambda_k < \lambda_{k+1}$. For every $K > 0$, there exists $r = r(K) > 0$ *such that* $\mathcal{J}_{\lambda}(u) \geq K$ *for every* $u \in \mathbb{P}_{k+1}$ *with* $||u||_{\mathbb{X}(\Omega)} \geq r$ *.*

Proof. It suffices to note that, being $u \in \mathbb{P}_{k+1}$,

$$
\mathcal{J}_{\lambda_k}(u) = \frac{1}{2} \mathcal{B}_{\alpha}(u, u) - \frac{\lambda_k}{2} ||u||_{L^2(\Omega)}^2 - \int_{\Omega} F(x, u) dx
$$

\n
$$
\geq \frac{\beta}{2} ||u||_{\mathbb{X}(\Omega)}^2 - \int_{\Omega} F(x, u) dx \quad \text{(by Lemma 2.6)}
$$

\n
$$
\geq \frac{\beta}{2} ||u||_{\mathbb{X}(\Omega)}^2 - \tilde{M} ||u||_{\mathbb{X}(\Omega)}, \quad \text{(by Lemma 2.8)}.
$$
\n(3.2)

The conclusion now easily follows. \Box

Remark 3.3. An immediate consequence of Lemma [3.1](#page-8-0) or of Lemma [3.2](#page-8-0) is that

$$
\liminf_{\substack{u \in \mathbb{P}_{k+1} \\ \|u\|_{\mathbb{X}(\Omega)} \to +\infty}} \frac{\mathcal{J}_{\lambda_k}(u)}{\|u\|_{\mathbb{X}(\Omega)}^2} > 0. \tag{3.3}
$$

Proposition 3.4. Let f satisfy (f_{bc}) and let $\lambda_k < \lambda_{k+1}$ for some $k \in \mathbb{N}$. If $(F_{+\infty})$ is in force, then we have

$$
\lim_{\substack{u \in H_k \\ \|u\|_{\mathbb{X}(\Omega)} \to +\infty}} J_{\lambda_k}(u) = -\infty,
$$
\n(3.4)

while if $(F_{-\infty})$ *holds, then*

$$
\lim_{\substack{u \in H_k^- \\ \|u\|_{\mathbb{X}(\Omega)} \to +\infty}} J_{\lambda_k}(u) = -\infty,
$$
\n(3.5)

Proof. Let us start with the case in which $(F_{+\infty})$ holds. Since $u \in H_k$ we can write $u = u^- + u^0$ with *u*[−] ∈ *H*^{$⊤$}_{*k*} and *u*⁰ ∈ *H*^{0}_{*k*}. Then we have

$$
\mathcal{J}_{\lambda_k}(u) = \frac{1}{2} \mathcal{B}_{\alpha}(u, u) - \frac{\lambda_k}{2} \int_{\Omega} |u(x)|^2 dx - \int_{\Omega} (F(x, u^-(x) + u^0(x)) - F(x, u^0(x))) dx
$$

$$
- \int_{\Omega} F(x, u^0(x)) dx
$$

Notice that, as in proof of Lemma [2.8,](#page-7-0) we have

$$
\left| \int_{\Omega} (F(x, u^-(x) + u^0(x)) - F(x, u^0(x))) dx \right| \leq \left| \int_{\Omega} \int_{u^0(x)}^{u^-(x) + u^0(x)} f(x, t) dt dx \right|
$$

$$
\leq M \int_{\Omega} |u^-(x)| dx
$$

$$
\leq \tilde{M} \|u^-\|_{\mathbb{X}(\Omega)}.
$$

Thus, by Lemma [2.7](#page-6-0) and the previous inequality, we obtain

$$
\mathcal{J}_{\lambda_k}(u) \le -\frac{\gamma}{2} \|u^-\|_{\mathbb{X}(\Omega)}^2 + \tilde{M}\|u^-\|_{\mathbb{X}(\Omega)} - \int_{\Omega} F(x, u^0(x))dx. \tag{3.6}
$$

Moreover, by Proposition $2.4(c)$ $2.4(c)$ and the Cauchy-Schwarz inequality, we have

$$
||u||_{\mathbb{X}(\Omega)}^{2} = ||u^{0}||_{\mathbb{X}(\Omega)}^{2} + ||u^{-}||_{\mathbb{X}(\Omega)}^{2} + 2\langle u^{0}, u^{-} \rangle_{\mathbb{X}(\Omega)} \leq ||u^{0}||_{\mathbb{X}(\Omega)}^{2} + ||u^{-}||_{\mathbb{X}(\Omega)}^{2} + 2 ||u^{0}||_{\mathbb{X}(\Omega)} ||u^{-}||_{\mathbb{X}(\Omega)}.
$$

Thus, since $||u||_{\mathbb{X}(\Omega)}$ diverges at + ∞ we have that at least one of the two norms, either $||u^0||_{\mathbb{X}(\Omega)}$ or $||u^-||_{\mathbb{X}(\Omega)}$, goes to infinity, as well. Assume that $||u^0||_{\mathbb{X}(\Omega)} \to +\infty$, then $||u^-||_{\mathbb{X}(\Omega)}$ can be finite or infinite. By $(F_{+\infty})$ and by (3.6) we get $\mathcal{J}_{\lambda}(u) \to -\infty$. Otherwise, suppose that $||u^0||_{\mathbb{X}(\Omega)}$ is finite, then $||u^-||_{\mathbb{X}(\Omega)}$ diverges to $+\infty$ and by Lemma [2.8](#page-7-0) the last term in (3.6) has a linear growth. Hence $\mathcal{J}_{\lambda_k}(u) \to -\infty$. This closes the first part.

The case in which $(F_{-\infty})$ holds is rather simpler. Indeed, keeping the notation u^- for functions in $H_k^$ and reasoning as above, we have that

$$
\mathcal{J}_{\lambda_k}(u^-) \leq -\frac{\gamma}{2} \|u^-\|_{\mathbb{X}(\Omega)}^2 + \bar{M}\|u^-\|_{\mathbb{X}(\Omega)},
$$

this completes the proof. \Box

3.2. Palais-Smale condition

Let us start recalling the following notion.

Definition 3.5. We say that $\{u_j\}_{j\in\mathbb{N}}$ is a Palais-Smale sequence for \mathcal{J}_λ at level $c \in \mathbb{R}$ if $\mathcal{J}_\lambda(u_j) \to c$ as $j \to \infty$ and

$$
\mathcal{J}'_{\lambda}(u_j) \to 0, \quad \text{as } j \to +\infty \tag{3.7}
$$

holds true.

Proposition 3.6. Let f satisfy (f_{bc}) and $(F_{\pm\infty})$. Suppose further that $\lambda_k < \lambda_{k+1}$ for some $k \in \mathbb{N}$. If $\{u_j\}_{j \in \mathbb{N}}$ *is a Palais-Smale sequence for* \mathcal{J}_{λ_k} , *then* $\{u_j\}_{j\in\mathbb{N}}$ *is bounded in* $\mathbb{X}(\Omega)$ *.*

Proof. Let $u_j = u_j^0 + u_j^- + u_j^+$ where $u_j^0 \in H_k^0$, $u_j^- \in H_k^-$ and $u_j^+ \in \mathbb{P}_{k+1}$. We will show that all sequence u_j^0, u_j^-, u_j^+ are bounded.

Let us start noticing that by (3.7) , we have

$$
\varepsilon(1) \|u_j^{\pm}\|_{\mathbb{X}(\Omega)} \geq \left| \langle \mathcal{J}_{\lambda_k}'(u_j), u_j^{\pm} \rangle \right|
$$

= $\left| \mathcal{B}_{\alpha}(u_j, u_j^{\pm}) - \lambda_k \int_{\Omega} u_j(x) u_j^{\pm}(x) dx - \int_{\Omega} f(x, u_j(x)) u_j^{\pm}(x) dx \right|,$ (3.8)

where $\varepsilon(1) \to 0$ as $j \to \infty$. Since f is bounded, similarly to Lemma [2.8](#page-7-0) we have

$$
\left| \int_{\Omega} f(x, u_j(x)) u_j^{\pm}(x) \, dx \right| \leq \tilde{M} \| u_j^{\pm} \|_{\mathbb{X}(\Omega)}.
$$
\n(3.9)

Thanks to Proposition [2.4](#page-5-0) (c), we have

$$
\langle \mathcal{J}_{\lambda_k}'(u_j), u_j^{\pm} \rangle = \mathcal{B}_{\alpha}(u_j^{\pm}, u_j^{\pm}) - \lambda_k \int_{\Omega} |u_j^{\pm}(x)|^2 dx - \int_{\Omega} f(x, u_j(x)) u_j^{\pm}(x) dx.
$$
 (3.10)

Since u_j^+ belongs to \mathbb{P}_{k+1} , by Lemma [2.6](#page-6-0) and (3.9) we get

$$
\varepsilon(1) \|u_j^+\|_{\mathbb{X}(\Omega)} \ge \beta \|u_j^+\|_{\mathbb{X}(\Omega)}^2 - \tilde{M}\|u_j^+\|_{\mathbb{X}(\Omega)},
$$

so that the sequence $\{u_j^+\}_{j\in\mathbb{N}}$ is bounded in $\mathbb{X}(\Omega)$. Furthermore, again by (3.8), (3.10), Lemma [2.7](#page-6-0) and (3.9) we get

$$
\varepsilon(1) \|u_j^-\|_{\mathbb{X}(\Omega)} \geq -\langle \mathcal{J}_{\lambda_k}'(u_j), u_j^-\rangle \geq \gamma \|u^-\|_{\mathbb{X}(\Omega)}^2 - \tilde{M} \|u^-\|_{\mathbb{X}(\Omega)}.
$$

Then the sequence $\{u_j^-\}_{j\in\mathbb{N}}$ is bounded in $\mathbb{X}(\Omega)$, as well.

We finally prove that u_j^0 is bounded in $\mathbb{X}(\Omega)$. First of all, we recall that u_j^0 is an eigenfunction associated to λ_k , namely

$$
\mathcal{B}_{\alpha}(u_j^0, u_j^0) = \lambda_k \int_{\Omega} |u_j^0(x)|^2 dx.
$$
\n(3.11)

By the Palais-Smale condition, the equation (3.11) and Proposition [2.4](#page-5-0) (c), we gain

$$
c \leftarrow J_{\lambda_k}(u_j) = \frac{1}{2} \mathcal{B}_{\alpha}(u_j^+, u_j^+) + \frac{1}{2} \mathcal{B}_{\alpha}(u_j^-, u_j^-) - \frac{\lambda_k}{2} \int_{\Omega} (|u_j^+(x)|^2 + |u_j^-(x)|^2) dx
$$

$$
- \int_{\Omega} (F(x, u_j(x)) - F(x, u_j^0(x))) dx - \int_{\Omega} F(x, u_j^0(x)) dx.
$$

Thus, we have that

$$
\left| \int_{\Omega} F(x, u_j^0(x)) dx \right| \leq |J_{\lambda_k}(u_j)| + \left| \frac{1}{2} \mathcal{B}_{\alpha}(u_j^+, u_j^+) + \frac{1}{2} \mathcal{B}_{\alpha}(u_j^-, u_j^-) - \frac{\lambda_k}{2} \int_{\Omega} \left(|u_j^+(x)|^2 + |u_j^-(x)|^2 \right) dx - \int_{\Omega} \left(F(x, u_j(x)) - F(x, u_j^0(x)) \right) dx \right| \tag{3.12}
$$

By the Poincaré inequality and the bound on u_j^+ and u_j^- we gain

$$
\left| \frac{\lambda_k}{2} \int_{\Omega} \left(|u_j^+(x)|^2 + |u_j^-(x)|^2 \right) dx \right| \le C \left(\|u_j^+\|_{\mathbb{X}(\Omega)}^2 + \|u_j^-\|_{\mathbb{X}(\Omega)}^2 \right) \le \tilde{C}
$$

for some $\tilde{C} > 0$ and all $j \in \mathbb{N}$. Moreover,

$$
\left| \int_{\Omega} \left(F(x, u_j(x)) - F(x, u_j^0(x)) \right) \right| \leq \int_{\Omega} \left| \int_{u_j^0(x) + u_j^+(x) + u_j^-(x)}^{u_j^0(x) + u_j^+(x) + u_j^-(x)} f(x, t) dt \right|
$$

$$
\leq M \int_{\Omega} \left(|u_j^-| + |u_j^+| \right) dx
$$

$$
\leq \tilde{M} \left(\|u_j^-|_{\mathbb{X}(\Omega)} + \|u_j^+|_{\mathbb{X}(\Omega)} \right) \leq C_1
$$

for some C_1 and all $j \in \mathbb{N}$. Therefore, from (3.12) , recalling that u_j^{\pm} are bounded, we obtain

$$
\left| \int_{\Omega} F(x, u_j^0(x)) dx \right| \leq |c| + o(1) + \left| \frac{1}{2} \mathcal{B}_{\alpha}(u_j^+, u_j^+) + \frac{1}{2} \mathcal{B}_{\alpha}(u_j^-, u_j^-) \right| + \tilde{C} + C_1 \leq C_2,
$$

where $C_2 > 0$ is a constant independent of *j* and $o(1) \rightarrow 0$ as $j \rightarrow \infty$. Hence the sequence of integrals $\int_{\Omega} F(x, u_j^0(x))dx$ is bounded. Finally, since u_j^0 belongs to H_k^0 , by $(F_{\pm \infty})$ we get that u_j^0 is bounded in $\mathbb{X}(\Omega)$. \Box

We establish the validity of the Palais-Smale condition thanks to the following result.

Proposition 3.7. Let f satisfy (f_{bc}) and $(F_{\pm \infty})$. Suppose further that $\lambda_k < \lambda_{k+1}$ for some $k \in \mathbb{N}$. If $\{u_i\}_{i\in \mathbb{N}}$ is a Palais-Smale sequence for \mathcal{J}_{λ_k} , then there exists u_{∞} in $\mathbb{X}(\Omega)$ such that u_j strongly converges to u_{∞} in $\mathbb{X}(\Omega)$.

Proof. By Proposition [3.6](#page-10-0) u_j is bounded and $\mathbb{X}(\Omega)$ is reflexive, since $\mathbb{X}(\Omega)$ is an Hilbert space. Then there exists $u_{\infty} \in \mathbb{X}(\Omega)$ such that, up to a subsequence, u_j weakly converges to u_{∞} in $\mathbb{X}(\Omega)$. Since $\mathbb{X}(\Omega)$ is compactly embedded in $H_0^s(\Omega)$ (and so in $L^2(\Omega)$), then, up to a subsequence, $u_j \to u_\infty$ in $H_0^s(\Omega)$ (and so in $L^2(\Omega)$ and $u_j \to u_\infty$ a.e. in Ω . This implies that

$$
\mathcal{B}_{\alpha}(u_{j}, \varphi) \to \mathcal{B}_{\alpha}(u_{\infty}, \varphi) \tag{3.13}
$$

for all $\varphi \in \mathbb{X}(\Omega)$, as $j \to +\infty$.

Since u_i is a Palais-Smale sequence, we have

$$
0 \leftarrow \langle \mathcal{J}_{\lambda_k}'(u_j), u_j - u_\infty \rangle = \mathcal{B}_\alpha(u_j, u_j) - \mathcal{B}_\alpha(u_j, u_\infty)
$$

$$
- \lambda_k \int_{\Omega} u_j(x)(u_j(x) - u_\infty(x))dx
$$

$$
- \int_{\Omega} f(x, u_j(x))(u_j(x) - u_\infty(x))dx.
$$
\n(3.14)

Now, by the Hölder inequality and the bound on *f* we get

$$
\left| \lambda_k \int_{\Omega} u_j(x) (u_j(x) - u_\infty(x)) dx + \int_{\Omega} f(x, u_j(x)) (u_j(x) - u_\infty(x)) dx \right|
$$

$$
\leq \left(\lambda_k \| u_j \|_{L^2(\Omega)} + M |\Omega|^{\frac{1}{2}} \right) \| u_j - u_\infty \|_{L^2(\Omega)} \to 0,
$$

as $j \to +\infty$. Therefore, passing to the limit in (3.14) and taking into account (3.13) we get

$$
\mathcal{B}_{\alpha}(u_j, u_j) \to \mathcal{B}_{\alpha}(u_{\infty}, u_{\infty}).
$$

Since $u_j \to u$ in $H_0^s(\Omega)$, we conclude that $||u_j||_{\mathbb{X}(\Omega)} \to ||u_\infty||_{\mathbb{X}(\Omega)}$. $\mathbb{X}(\Omega)$ being uniformly convex, we conclude that $u_j \to u_\infty$ strongly in $\mathbb{X}(\Omega)$. \Box

By combining Propositions [3.6](#page-10-0) and 3.7 we have the proof of the following compactness property.

Proposition 3.8. Let f satisfy (f_{bc}) and $(F_{\pm\infty})$. Suppose further that $\lambda_k < \lambda_{k+1}$ for some $k \in \mathbb{N}$. Then \mathcal{J}_{λ_k} satisfies the Palais-Smale condition at level c for any $c \in \mathbb{R}$, namely every Palais-Smale sequence at level c *admits a strongly convergent subsequence.*

We are now ready to conclude with the

Proof of Theorem [1.2.](#page-1-0) Let us start fixing some notation. Since λ is an eigenvalue, there exists $k \in \mathbb{N}$ such that $\lambda = \lambda_k < \lambda_{k+1}$. Once *k* has been found, we fix the decomposition $\mathbb{X}(\Omega) = H_k \oplus \mathbb{P}_{k+1}$, with H_k having finite dimension.

Let us start with the case in which $(F_{+\infty})$ is in force. From [\(3.3](#page-9-0)) for any $H > 0$ there exist $R > 0$ such that, if $u \in \mathbb{P}_{k+1}$ and $||u||_{\mathbb{X}(\Omega)} \geq R$, then

$$
J_{\lambda_k}(u) > H.
$$

When $u \in \mathbb{P}_{k+1}$ and $||u||_{\mathbb{X}(\Omega)} \leq R$, by ([2.4](#page-6-0)), the Rellich-Kondrachov Theorem, the Hölder inequality and [\(2.4\)](#page-6-0) we have

$$
J_{\lambda_k}(u) \ge \frac{\lambda_{k+1} - \lambda_k}{2} \int_{\Omega} |u(x)|^2 dx - \int_{\Omega} F(x, u(x)) dx
$$

$$
\ge -M \int_{\Omega} |u(x)| dx \ge -\tilde{M} ||u(x)||_{\mathbb{X}(\Omega)} \ge -\tilde{M}R =:-C_R,
$$

where \tilde{M} is a positive constant. Therefore, we obtain

$$
J_{\lambda_k}(u) \ge -C_R \quad \text{for any} \quad u \in \mathbb{P}_{k+1}.\tag{3.15}
$$

Furthermore, by ([3.4\)](#page-9-0) in Proposition [3.4,](#page-9-0) there exists $T > 0$ such that, for any $u \in H_k$ with $||u||_{\mathbb{X}(\Omega)} \geq T$, we have

$$
J_{\lambda_k}(u) < -C_R. \tag{3.16}
$$

Hence, by (3.15) and (3.16) we conclude that

$$
\sup_{\substack{u \in H_k \\ \|u\|_{\mathbb{X}(\Omega)} = T}} J_{\lambda_k}(u) < -C_R \le \inf_{u \in \mathbb{P}_{k+1}} J_{\lambda_k}(u),
$$

so the functional J_{λ_k} satisfies the geometric assumption (I_3) and (I_4) of [\[33](#page-15-0), Theorem 4.6]. Moreover, by Proposition [3.8](#page-12-0) J_{λ_k} satisfies the Palais-Smale condition. Then the Saddle Point Theorem ([[33,](#page-15-0) Theorem 4.6]) provides the existence of a critical point $u \in \mathbb{X}(\Omega)$ for the functional J_{λ_k} with

$$
\mathcal{J}_{\lambda_k}(u) \leq \max_{\substack{v \in H_k \\ \|u\|_{\mathbb{X}(\Omega)} \leq T}} \mathcal{J}_{\lambda_k}(v).
$$

The case $(F_{-\infty})$ can be treated similarly considering the following decomposition:

$$
\mathbb{X}(\Omega) = H_k^- \oplus \left(H_k^0 \oplus \mathbb{P}_{k+1}\right),\,
$$

where H_k^- is the finite dimensional subspace while $\mathbb{P}_{k+1} \oplus H_k^0$ is the infinite dimensional one. Reasoning as above, by using [\(3.5](#page-9-0)) in place of ([3.4](#page-9-0)) from Proposition [3.4,](#page-9-0) we conclude the proof of the theorem. \Box

Remark 3.9. Assumption (f_{bc}) covers the case $f(x, 0) \neq 0$. This implies that the trivial solution is not allowed for this type of nonlinearities, like $f(x,t) = e^{-t^2}$ sign(*t*).

Concerning the multiplicity result stated in Theorem [1.3,](#page-2-0) its proof is an easy corollary of Theorem [A.1](#page-14-0) below.

Proof of Theorem [1.3.](#page-2-0) We consider first the following decomposition

$$
\mathbb{X}(\Omega)=H_k^-\oplus \left(H_k^0\oplus \mathbb{P}_{k+1}\right).
$$

As before, we can assume that $\lambda = \lambda_k < \lambda_{k+1}$ for some $k \in \mathbb{N}$. We now consider the sphere of radius $r > 0$ in the finite dimensional subspace H_k , namely

$$
S := \left\{ u \in H_k : ||u||_{\mathbb{X}(\Omega)} = r \right\}
$$

.

By Lemma [2.7](#page-6-0) (since $u \in S \subset H_k$) and (F_{pos}) , if $r > 0$ is small enough, being the norms in $L^{\infty}(\Omega)$ and in $\mathbb{X}(\Omega)$ equivalent, as H_k is finite dimensional, we get

$$
\sup_{u \in S} J_{\lambda_k}(u) < 0.
$$

This fact, coupled with the lower bound on $J_{\lambda_k}(u)$ for $u \in H_k^0 \oplus \mathbb{P}_{k+1}$ established in ([3.15](#page-13-0)), allows to apply Theorem A.1 with $E = \mathbb{X}(\Omega)$ and $\tilde{E} = H_k^0 \oplus \mathbb{P}_{k+1}$, which yields the desired conclusion, since $\gamma(S) = \dim(H_k)$ (see [[30,](#page-15-0) Remark 5.62]). \Box

Appendix A

We recall some basic facts about the Krasnoselskii genus and an abstract result due to Rabinowitz.

Let $A \subset \mathbb{R}^N$ be a closed and symmetric set. The genus $\gamma(A)$ of *A* is defined as the least integer *n* (if it exists) such that there is an odd function $f \in C(A, \mathbb{R}^n \setminus \{0\})$.

Set $\Sigma := \{A \subset \mathbb{R}^N : A \text{ is closed and symmetric}\}.$

Theorem A.1 (Theorem 1.9, [\[32\]](#page-15-0)). Let E be a real Banach space and let $I \in C^1(E, \mathbb{R})$ be even with $I(0) = 0$ *and satisfy the Palais-Smale condition at any level. Suppose further that*

- 1. there exists a closed subspace $\tilde{E} \subset E$ of codimension j and a constant b such that $I_{\vert \tilde{E}} \geq b$, and
- 2. *there exists* $A \in \Sigma$ *with* $\gamma(A) = m > j$ *and* $\sup_A I < 0$ *.*

Then I possesses at least $m - j$ distinct pairs of nontrivial critical points.

References

- [1] S. Ahmad, A.C. Lazer, J.L. Paul, Elementary critical point theory and [perturbations](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib90E8A73A2CD73B06BC1FF2800747C614s1) of elliptic boundary value problems at [resonance,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib90E8A73A2CD73B06BC1FF2800747C614s1) Indiana Univ. Math. J. 25 (10) (1976) 933–944.
- [2] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced [Mathematics,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib05F3A924809004F52ED9D47A8CCDAAA6s1) vol. 34, Cambridge University Press, [Cambridge,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib05F3A924809004F52ED9D47A8CCDAAA6s1) 1993.
- [3] R. Arora, V. Radulescu, Combined effects in mixed local-nonlocal stationary problems, preprint, [https://arxiv.org/abs/](https://arxiv.org/abs/2111.06701) [2111.06701.](https://arxiv.org/abs/2111.06701)
- [4] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic [operators:](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib70014BA559FC6CA7C6653C3D04F9CA06s1) regularity and maximum principles, [Commun.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib70014BA559FC6CA7C6653C3D04F9CA06s1) Partial Differ. Equ. 47 (3) (2022) 585–629.
- [5] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. (2023), <https://doi.org/10.1007/s11854-023-0272-5>.
- [6] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A [Hong-Krahn-Szegö](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibBF4E894FD0432B09BDF35A6D6D26F371s1) inequality for mixed local and nonlocal operators, Math. Eng. 5 (1) [\(2023\)](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibBF4E894FD0432B09BDF35A6D6D26F371s1) 014, 25 pp.
- [7] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, preprint, [https://arxiv.org/abs/2209.07502.](https://arxiv.org/abs/2209.07502)
- [8] S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach to mixed local and nonlocal operators, Commun. Contemp. Math. (2023), [https://doi.org/10.1142/S0219199722500572.](https://doi.org/10.1142/S0219199722500572)
- [9] S. Biagi, D. Mugnai, E. Vecchi, Necessary condition in a [Brezis-Oswald-type](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib7EC7EB340E78608DF6583764E773A577s1) problem for mixed local and nonlocal operators, Appl. Math. Lett. 132 (2022) [108177.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib7EC7EB340E78608DF6583764E773A577s1)
- [10] A. Biswas, M. Modasiya, A. Sen, Boundary regularity of mixed [local-nonlocal](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibF487FD6B97316473D34EBD8495C805D7s1) operators and its application, Ann. Mat. Pura Appl. 202 (2023) [679–710.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibF487FD6B97316473D34EBD8495C805D7s1)
- [11] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Universitext,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib379C684FFBF25E1C9289531BFD4DEE56s1) Springer, New York, 2011.
- [12] X. Cabré, S. Dipierro, E. Valdinoci, The Bernstein technique for [integro-differential](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib41A22E9B94B32358BAAB3A9B07A3A64Ds1) equations, Arch. Ration. Mech. Anal. 243 (2022) [1597–1652.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib41A22E9B94B32358BAAB3A9B07A3A64Ds1)
- [13] Z.-Q. Chen, P. Kim, R. Song, Z. [Vondraček,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib0247E88D3C126E7AAB2EF1B01E02C950s1) Boundary Harnack principle for Δ + Δ*α/*2, Trans. Am. Math. Soc. 364 (8) (2012) [4169–4205.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib0247E88D3C126E7AAB2EF1B01E02C950s1)
- [14] C. De Filippis, G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann. (2022), [https://](https://doi.org/10.1007/s00208-022-02512-7) doi.org/10.1007/s00208-022-02512-7.
- [15] E. Di Nezza, G. Palatucci, E. Valdinoci, [Hitchhiker's](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibE1EBBBFCB51244DB0CC08F3EBAFF2B42s1) guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012) [521–573.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibE1EBBBFCB51244DB0CC08F3EBAFF2B42s1)
- [16] L.M. Del Pezzo, R. Ferreira, J.D. Rossi, Eigenvalues for a combination between local and nonlocal [p-Laplacians,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibBEEC584B22CFE9F3B28377701FDC6E5Bs1) Fract. Calc. Appl. Anal. 22 (5) (2019) [1414–1436.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibBEEC584B22CFE9F3B28377701FDC6E5Bs1)
- [17] S. Dipierro, E. Proietti Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann [conditions,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib0396089C18F4BD07F1AF0EA10F8CB257s1) Asymptot. Anal. 128 (4) (2022) [571–594.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib0396089C18F4BD07F1AF0EA10F8CB257s1)
- [18] S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2022), [https://doi.org/10.4171/AIHPC/57.](https://doi.org/10.4171/AIHPC/57)
- [19] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed [local/nonlocal](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib58D6A88F13E2DB7F5059C41047876F00s1) dispersal: an evolution equation and a new Neumann condition arising from the [superposition](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib58D6A88F13E2DB7F5059C41047876F00s1) of Brownian and Lévy processes, Physica A 575 (2021) 126052.
- [20] A. Fiscella, R. Servadei, E. Valdinoci, A resonance problem for non-local elliptic [operators,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibCE185FB6CA29B0C5D693E0E610386674s1) Z. Anal. Anwend. 32 (4) (2013) [411–431.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibCE185FB6CA29B0C5D693E0E610386674s1)
- [21] A. Fonda, M. Garrione, Nonlinear resonance: a comparison between Landesman-Lazer and [Ahmad-Lazer-Paul](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib5EEABE7E43C5BBA2881953D878BCA709s1) conditions, Adv. [Nonlinear](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib5EEABE7E43C5BBA2881953D878BCA709s1) Stud. 11 (2011) 391–404.
- [22] P. Garain, On a class of mixed local and nonlocal semilinear elliptic equation with singular [nonlinearity,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibD3FC49CBC86028899432CCCB2EE52079s1) J. Geom. Anal. 33 [\(2023\)](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibD3FC49CBC86028899432CCCB2EE52079s1) 212.
- [23] P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal [quasilinear](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib847F224235B5EA7CC2D3D1B1855E31BFs1) elliptic equations, Trans. Am. Math. Soc. 375 (8) (2022) [5393–5423.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib847F224235B5EA7CC2D3D1B1855E31BFs1)
- [24] P. Garain, E. Lindgren, Higher Hölder regularity for mixed local and nonlocal [degenerate](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibD7945DBA9523BB80C31B4E6EAB836698s1) elliptic equations, Calc. Var. 62 [\(2023\)](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibD7945DBA9523BB80C31B4E6EAB836698s1) 67.
- [25] P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev [inequalities](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib2044CEC0005E8DAC32E816BC138F1B43s1) with extremal and associated quasilinear singular elliptic problems, [Nonlinear](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib2044CEC0005E8DAC32E816BC138F1B43s1) Anal. 223 (2022) 113022.
- [26] H. Ibdah, Strong solutions to a modified [Michelson-Sivashinsky](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib89B4008D7D4AFCED65FAE6B159E150EDs1) equation, Commun. Math. Sci. 19 (4) (2021) 10711100.
- [27] J.-L. Lions, E. Magenes, [Non-Homogeneous](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib86AA71C6832F46E2D79134FE3D5080B7s1) Boundary Value Problems and Applications. Vol. I, Springer-Verlag, 1972.
- [28] A. Maione, D. Mugnai, E. Vecchi, Variational methods for nonpositive mixed local–nonlocal operators, Fract. Calc. Appl. Anal. 26 (2023) 943–961, <https://doi.org/10.1007/s13540-023-00147-2>.
- [29] G. Molica Bisci, V. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, [Encyclopedia](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibC3E1258372CDBB3AD6733B0931D5D5BFs1) of Mathematics and Its [Applications,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibC3E1258372CDBB3AD6733B0931D5D5BFs1) vol. 162, Cambridge University Press, Cambridge, 2016, xvi+383 pp.
- [30] D. Motreanu, V.V. Motreanu, N.S. [Papageorgiou,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib6FE606670CE12A586E3B629364667347s1) Topological and Variational Methods with Applications to Nonlinear Boundary Value [Problems,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib6FE606670CE12A586E3B629364667347s1) Springer, 2012.
- [31] D. Mugnai, E. Proietti Lippi, On mixed local-nonlocal operators with (*α, β*)-Neumann conditions, Rend. Circ. Mat. Palermo (2) (2022), [https://doi.org/10.1007/s12215-022-00755-6.](https://doi.org/10.1007/s12215-022-00755-6)
- [32] P.H. Rabinowitz, Some minimax theorems and [applications](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibC649FF02BBF052BDB6A6FAE05FF74991s1) to nonlinear partial differential equations, in: Nonlinear Analysis (Collection of Papers in Honor of Erich H. Rothe), 1978, [pp. 161–177.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibC649FF02BBF052BDB6A6FAE05FF74991s1)
- [33] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with [Applications](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib6E597C7F35B6642287BF8739068AA667s1) to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Conference Board of the Mathematical [Sciences/American](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib6E597C7F35B6642287BF8739068AA667s1) Mathematical Society, Washington, [DC/Providence,](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib6E597C7F35B6642287BF8739068AA667s1) RI, 1986.
- [34] A.M. Salort, E. Vecchi, On the mixed [local–nonlocal](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib919E114F1D21D9CFE79F1BED56D06CDAs1) Hénon equation, Differ. Integral Equ. 35 (11–12) (2022).
- [35] G.I. Sivashinsky, Nonlinear analysis of [hydrodynamic](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib4EF35D8C0890CC742A3CCDEC15DD0B87s1) instability in laminar ames- I. Derivation of basic equations, in: P. Pelcé (Ed.), Dynamics of Curved Fronts, Academic Press, San Diego, 1988, [pp. 459–488.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bib4EF35D8C0890CC742A3CCDEC15DD0B87s1)
- [36] X. Su, E. Valdinoci, Y. Wei, J. Zhang, [Regularity](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibF20536D19F9F24053DA29CAD8392FCFDs1) results for solutions of mixed local and nonlocal elliptic equations, Math. Z. 302 (2022) [1855–1878.](http://refhub.elsevier.com/S0022-247X(23)00445-6/bibF20536D19F9F24053DA29CAD8392FCFDs1)