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ABSTRACT

A characteristic feature of quasars is the observed non-linear relationship between their monochromatic luminosities at rest-frame
2500 Å and 2 keV. This relationship is evident across all redshifts and luminosities and, due to its non-linearity, can be implemented
to estimate quasar distances and construct a Hubble Diagram for quasars. Historically, a significant challenge in the cosmological
application of this relation has been its high observed dispersion. Recent studies have demonstrated that this dispersion can be re-
duced by excluding biased objects from the sample. Nevertheless, the dispersion remains considerable (δ ∼ 0.20 dex), especially
when compared to the Phillips relation for supernovae Ia. Given the absence of a comprehensive physical model for the relation, it
remains unclear how much of the remaining dispersion is tied to the physical mechanism behind the relation itself and how much
can be attributed to other factors, not addressed by the sample selection and by the choice of X-ray and UV indicators. Potential
contributing factors include (i) the scatter produced by using X-ray photometric results instead of spectroscopic ones, (ii) the intrinsic
variability of quasars, and (iii) the inclination of the accretion disc relative to our line of sight. In this study, we thoroughly examine
these three factors and quantify their individual contributions to the observed dispersion. Based on our findings, we argue that the
characteristic dispersion of the X-ray–UV luminosity relationship (which is attributable to the physical mechanism behind it) is likely
below 0.06 dex. This result reinforces the validity of using quasars as standard candles and offers valuable insights for developing
physical models of the X-ray/UV relation. Achieving such a low dispersion on large observed data sets is hardly feasible, due to
the complexity of removing all the empirical contributions to the scatter. Nevertheless, we argue that high-redshift subsamples can
show a significantly lower dispersion than the average subsample. This aspect is particularly significant for cosmological applications,
indicating that targeted observations of select high-redshift objects can enhance the cosmological power of quasars in constraining the
shape of the Hubble Diagram at high redshift.
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1. Introduction
Quasars, the most luminous and persistent sources in the Uni-
verse, are now observed up to redshift z ' 7.5 (Mortlock et al.
2011; Bañados et al. 2018; Wang et al. 2021). Their spectral
energy distribution (SED) spans from the radio to the X-ray
band, with the most intense emission observed at optical–
UV wavelengths (e.g. Sanders et al. 1989; Richards et al. 2006;
Elvis et al. 2012). The bulk of this emission is interpreted to orig-
inate in an optically thick accretion disc surrounding the central
supermassive black hole (SMBH; Shakura & Sunyaev 1973).

A consistent feature of quasars is the presence of the non-
linear relation between their X-ray and UV luminosities, often
represented as log(LX) = γ log(LUV) + β, with a slope γ ' 0.6
(e.g. Steffen et al. 2006; Lusso et al. 2010; Young et al. 2010).
This relation has been known for decades (e.g. Tananbaum et al.
1979), and it has been observed to hold over a wide range of red-
shifts and luminosities. Its presence suggests a strong interaction
between the UV-emitting accretion disc and the X-ray corona,
but the exact mechanism behind it remains elusive.

The LX−LUV relation has far-reaching implications, not only
for quasar physics, but also for cosmology. The non-linearity and
consistency of the relation allow us to determine cosmological
distances and therefore use quasars as standard candles. Such
a possibility has been acknowledged since the discovery of the
relation, but it had not been successfully implemented due to the
high observed dispersion (∼0.40 dex), which made any applica-
tion for cosmological purposes challenging.

Recent studies have shown that most of this 0.40 dex dis-
persion arises from observational effects that can for the most
part be removed by filtering out biased objects (Risaliti & Lusso
2015; Lusso & Risaliti 2016; Lusso et al. 2020). By removing
quasars affected by dust reddening, gas absorption, or that might
suffer from Eddington bias, the dispersion reduces significantly,
down to δ ∼ 0.20 dex, making quasars an actually useful cos-
mological tool. The development in terms of the dispersion
reduction has enabled the extension of the Hubble Diagram
to higher redshift values than those achievable with super-
novae Ia (SN Ia). The extended Hubble diagram of quasars and
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supernovae abides by the predictions of a flat ΛCDM cos-
mology up to redshift z ∼ 1.5, but a 4σ tension shows up
at higher redshifts (Risaliti & Lusso 2019; Lusso et al. 2020).
This tension has been confirmed when investigated in a
cosmology-independent way (e.g. Bargiacchi et al. 2021, 2022;
Giambagli et al. 2023), and it has recently been retrieved also
with a UV spectroscopically validated sample of ∼1800 objects
(Signorini et al. 2023a).

At the same time, the remaining, rather high, dispersion of
the relation between luminosities is still one of the biggest issues
for both the implementation of quasars as standard candles and
our understanding of the physical process behind it.

This observed dispersion has two components: the first is
accounted for by the uncertainties on the luminosity estimates,
while the latter is an intrinsic dispersion δ that we need to intro-
duce because the uncertainties alone are not enough to explain
the observed scatter of the points around the best-fit relation.
This δ parameter is usually a free parameter in our fits of
the LX−LUV relation (Risaliti & Lusso 2019; Lusso et al. 2020;
Signorini et al. 2023a), which we include with no preconception
about its origin or physical meaning. In this framework, it simply
represents the amount of scatter we need to consider to explain
the total observed scatter, on top of the uncertainties on lumi-
nosities. In other words, the total scatter of the points around the
best-fit relation is given by the quadratic sum of the uncertain-
ties on the luminosity measurements with the intrinsic dispersion
parameter δ.

In principle, this intrinsic dispersion has different compo-
nents. One is the “characteristic” dispersion of the relation, that is,
the dispersion due to the physical mechanism behind the relation.
This characteristic dispersion cannot be removed, although its
value might be different for objects with different physical proper-
ties. As we still lack a universally accepted physical explanation
for the LX−LUV relation, we cannot currently give a theoretical
estimate of this quantity. There are then additional factors that are
not tied to the physics of the relation, but at the same time cannot be
removed with the sample selection. These factors can be physical
or geometrical, like quasar variability and orientation with respect
to the line of sight, or observational, like the choice of different UV
and X-ray proxies, or the use of spectroscopic over photometric
estimates of UV and X-ray fluxes. How much of the ∼0.20 dex
dispersion is due to the characteristic dispersion of the relation
δchar, rather than to the residual additional factors δres (either phys-
ical or observational), and how much of these contributions can
be reduced or removed, are still open questions.

Recent studies have started to address these questions. For
example, Sacchi et al. (2022) reported a reduced intrinsic dis-
persion of 0.09 dex for a subset of 30 quasars at redshift 3.0 <
z < 3.3. This subset, despite its specific selection criteria1 shows
UV and X-ray properties consistent with the broader quasar pop-
ulation. Furthermore, Signorini et al. (2023a) have demonstrated
that, with the right selection of UV and X-ray proxies, it is pos-
sible to reduce the intrinsic dispersion for a much larger sample
from ∼0.20 dex down to ∼0.16 dex.

These findings suggest that the characteristic dispersion of
the LX−LUV relation is low and that much of the intrinsic disper-
sion is linked to residual factors (physical and observational). In
this paper our aim is to investigate in detail these factors. We seek
to quantify their contribution to the total observed dispersion
and estimate the true characteristic dispersion of the LX−LUV
relation.

1 This interval contains 15 sources for which high-quality XMM-
Newton pointed observations were obtained (Nardini et al. 2019;
Sacchi et al. 2022).

In this work, we address three main contributors to the resid-
ual dispersion: X-ray variability, the inclination of the accretion
disc relative to our line of sight, and potential biases in X-ray flux
estimates via photometry. We consider the total dispersion, δ,
as a combination of the characteristic dispersion of the LX−LUV
relation, δchar, and the dispersion introduced by additional issues,
δres. With no universally accepted model explaining the LX−LUV
relation yet, our approach focuses on determining δres to better
constrain and understand δchar. Through this approach, we aim
to provide valuable insights into this relationship and support
the implementation of quasars in cosmology.

The paper is structured as follows: in Sect. 2 we describe
the parent sample and the observational biases that have already
been removed with its selection; in Sect. 3 we investigate the
contribution of the variability to the observed dispersion. In
Sect. 4 we consider the contribution of inclination, providing an
estimate through the use of a mock sample of quasars, while
in Sect. 5 we focus on the possible contribution of using X-ray
photometric data instead of spectroscopic ones. In Sect. 6 we
compare our findings with the observational results about the
dispersion, and in Sect. 8 we draw our conclusions.

2. Sample selection

For this work, we considered the objects selected in Lusso et al.
(2020, hereafter L20). This sample is made up of ∼2400 quasars,
all of which have available UV and X-ray data in public cata-
logues. As discussed in L20, these objects have been selected
in order to remove biased sources, and this process allowed us
to reduce the observed dispersion from ∼0.40 dex to ∼0.20 dex.
Here we briefly discuss these removable sources of bias; more
details are given in Sect. 5 of L20.

BAL and radio-loud quasars. The UV fluxes of broad
absorption line (BAL) quasars can be heavily affected by gas
(and dust) absorption and, as a consequence, these objects will
deviate from the LX−LUV relation. Radio-loud quasars, instead,
possibly show a jet-related X-ray component that adds to the one
emitted by the corona, so they are supposed to deviate from the
LX−LUV relation too. Quasars flagged as either BAL or radio-
loud are therefore excluded from the sample.

Dust extinction. In principle, dust extinction could affect to
some extent most of the observed quasars. Since dust redden-
ing has a stronger impact on the UV band than on the X-rays,
its contribution can significantly alter the LX−LUV relation. To
minimise this effect, the sample was selected as described in
Lusso & Risaliti (2016): for each quasar the slopes Γ1 and Γ2 of
the log(ν) − log(νLν) power-law continuum in the 0.3−1 µm and
in the 1450−3000 Å range were computed. Then, it was consid-
ered the point in the Γ1−Γ2 plane that corresponds to the SED of
Richards et al. (2006) with zero extinction, which is at Γ1 = 0.82
and Γ2 = 0.40. The objects whose values of Γ1−Γ2 fell into the
circle centred in 0.82−0.40 (E(B − V) = 0.0), with a radius
of 1.1 (which corresponds to E(B − V) ' 0.1) were selected,
while those which fell outside this range were removed from the
sample.

Eddington bias. If the intrinsic X-ray flux of a quasar is close
to the flux limit of a given observation, it will be detected only if
a fluctuation towards higher fluxes takes place, while it will not
be detected otherwise. This effect clearly introduces a potential
bias in our sample. To avoid it, only sources that would remain
above the flux limit even in case of a negative flux fluctuation
were selected.
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X-ray absorption. In the X-ray band, photoelectric absorp-
tion can take place due to the presence of gas in the quasar’s rest
frame. This gas absorption modifies the X-ray spectral shape;
particularly, the effect in spectra of moderate quality is to lower
the observed photon index Γ of the X-ray continuum power law.
The distribution of Γ usually peaks around 1.9–2.0 for unob-
scured, luminous quasars (e.g. Young et al. 2009), and Γ exceeds
1.7 for almost all the sources with high-quality spectra. There-
fore, to minimise this effect, only quasars with Γ > 1.7 were
selected. Furthermore, objects with Γ > 2.8 are excluded too, to
avoid soft-excess contribution at z . 1 (e.g. Sobolewska & Done
2007; Gliozzi & Williams 2020).

3. Variability

Quasars exhibit non-periodic and stochastic variability
across all observed wavelengths (Vanden Berk et al. 2004;
Markowitz & Edelson 2004), occurring on timescales ranging
from hours (Ponti et al. 2012) to years (de Vries et al. 2005;
Vagnetti et al. 2011). Despite significant efforts, the underlying
mechanisms driving this variability are still not completely
understood. Notably, an observed anti-correlation between
luminosity and variability has been established (Hook et al.
1994; Kelly et al. 2009; Lanzuisi et al. 2014; Paolillo et al. 2017),
attributed to the influence of black-hole mass and accretion rate
on the variability pattern (Prokhorenko et al. 2024).

The timescales of quasar variability are wavelength-
dependent, with X-ray emission displaying considerably faster
variability compared to the optical band. In the context of the
LX−LUV relation this means that, because of the nature of vari-
ability, the same UV state corresponds to a range of X-ray states.
Therefore, even if the characteristic dispersion of the LX−LUV
relation were null, this would introduce a scatter in the observed
relation. Given that X-ray variability exhibits the largest ampli-
tude on comparable timescales, it contributes most significantly
to the observed dispersion. In this section, we give an estimate
of this contribution for the objects in the L20 sample.

To do so, we looked for the objects in the L20 sample
that have more than one serendipitous observation in the XMM-
Newton source catalogue 4XMM–DR9 (Webb et al. 2020). We
found 289 objects with multiple observations; the vast majority
(80%) has only two observations, so we considered the longest
and the second longest observation for each object. Our goal
was to compare the monochromatic 2 keV luminosities obtained
from two observations that happened at random different times;
we expected them to follow a one-to-one relation, with a scat-
ter that would give us an estimate of the variability contribution
to the dispersion in the LX−LUV relation. So we fit the rela-
tion between the second longest (LX,2) and the longest (LX,1)
observations with a line: log(LX,2) = α log(LX,1) + ζ, with the
slope α and the normalisation ζ as free parameters. We per-
form the comparison using logarithmic values of the luminosities
because of the stochastic nature of variability, which is known to
follow a log-normal flux distribution (e.g. Vaughan et al. 2003;
Uttley et al. 2005). We have indeed tested that for the object
with the largest number of observations (31), this is actually
the case. The fit was performed with a Bayesian approach
of likelihood maximisation; we used the emcee code, which
is an implementation of Goodman and Weare’s Affine Invari-
ant Markov chain Monte Carlo (MCMC) Ensemble sampler
(Foreman-Mackey et al. 2013). In building the likelihood, we
need to consider that we have uncertainties of similar magnitude
on both axes; to account for this, we adapted the BCES method
(Akritas & Bershady 1996), where the tangent ellipse is used to
measure the distance of each point form the best-fit line.

Fig. 1. Comparison of the 2-keV luminosities for objects with multiple
X-ray observations. The best fit is consistent with the bisector line (solid
line). The dispersion parameter due to variability is δvar = 0.08 dex.
When distinguishing between the high- and low-luminosity subsam-
ples, we see that δvar is higher for lower luminosities. The difference
between high and low luminosity is not visually discernible, as the total
dispersion for the two subsample is nearly the same. However, while in
the high-luminosity sample the observational uncertainties on the fluxes
can almost completely explain the overall scatter, in the low-luminosity
subsample a significant contribution associated to variability is required
to explain the scatter we observe. Luminosities are derived from pho-
tometric fluxes, assuming a standard flat ΛCDM model. We note that,
as we are comparing luminosities for the same object, the results do not
depend on the chosen cosmological model.

The results are shown in Fig. 1. We obtained, as expected, a
slope α = 1.00 ± 0.02, and an intercept value of ζ = −0.005 ±
0.015. We also derived the total dispersion of the relation as

δtot =

√√√ N∑
i

log(LX,2)2
i − (α log(LX,1)i + ζ)2, (1)

which turns out to be 0.17 dex. If the uncertainties on the x-
and y-axis completely explained this dispersion, no intrinsic
scatter due to variability would be present. However, we com-
puted the average observational uncertainty on both log(LX,1)
and log(LX,2) and we obtained 0.15 dex. Given this result, we
can compute the intrinsic dispersion due to variability simply as

δvar =

√
δ2

tot − δ
2
err, and get δvar = 0.08 dex. This value can there-

fore be considered as the average contribution of X-ray vari-
ability to the dispersion in the LX−LUV relation. Although the
number of objects for which we have multiple observations is
only ∼12% of the total L20 sample, these objects are fully rep-
resentative (given that the observations we are considering are
serendipitous) and they span the same luminosity range as the
whole sample. So we can consider the result from this analysis
to be applicable to the whole quasar catalogue.

We note that a similar analysis on objects with multiple
observations was performed in Lusso & Risaliti (2016), with a
smaller sample of 159 objects, and they found the variability
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contribution to be δvar = 0.12 dex. Considering that the analy-
sis described in this section was performed with a sample which
is nearly doubled in statistics, and that the selection procedure
has been improved from Lusso & Risaliti (2016), we believe our
estimate of δvar = 0.08 to be more accurate.

We also tested the dependence of variability on luminosity
for our sample, by dividing it into two subsamples, above and
below the value of log(LX) = 26.9. The objects in the sub-
samples are 145 and 144, respectively, and for each of them
we derived the total dispersion and the average uncertainty as
described above. For the high-luminosity sample, we obtain
a total dispersion of δtot,H.L. = 0.185 and an average uncer-
tainty of δerr,H.L. = 0.184. By quadratic subtraction we obtain
that the amount of scatter due to variability is only δvar,H.L. =
0.02 dex. Then, for the high-luminosity sample, the uncertain-
ties on the flux estimates alone explain almost all the scatter
we observe. For the low-luminosity sample, instead, we obtain a
total dispersion of δtot,L.L. = 0.171 and an average uncertainty of
δerr,L.L. = 0.131. Therefore, the amount of scatter due to variabil-

ity is δvar,L.L. =
√
δ2

tot,L.L. − δ
2
err,L.L. = 0.11 dex. Hence, for the

low-luminosity sample, the observational uncertainties are not
enough to explain the observed scatter around the best fit, and
the contribution due to variability is not negligible.

These results are all shown in Fig. 1. We note that, visu-
ally, there is no detectable difference between the high- and the
low-luminosity subsets. This is because the observed total dis-
persion is very similar for the two samples. However, in the for-
mer case the total dispersion is almost totally consistent with the
one expected from the observational uncertainties. In the latter
case, we need an additional contribution due to the variability to
explain the observed total dispersion.

This difference between low- and high-luminosity objects is
not only consistent with results in the literature, but it can, at least
partially, also explain the results of Sacchi et al. (2022), where a
dispersion as low as 0.09 dex is observed for a sample of objects
at redshift 3.0 < z < 3.3. Together with having spectroscopic
data and mostly pointed X-ray observations, these objects have
an average luminosity of log(LX/erg s−1 Hz−1) ∼ 27.7, which
is in the high luminosity regime. Therefore, the contribution of
variability to their total dispersion must be very little.

4. Inclination

The second factor contributing to the observed dispersion we
are considering is the inclination of the quasar accretion disc
relative to the line of sight. The optical–UV intrinsic emission
from quasars is typically attributed to a disc-like component. The
angle at which a quasar is viewed then crucially influences its
observed flux. Specifically, unless the quasar is perfectly face-
on, the observed flux, fobs, is derived from the intrinsic UV
flux ( fint) as fobs = fint cos θ, where θ is the angle between the
observer’s line of sight and the axis of the quasar’s disc. Notably,
while the inclination affects the observed UV flux, it has no
effect on the X-ray flux. This distinction arises because X-ray
coronal emission is believed to be isotropic. The exact location
and geometry of the corona are still largely unknown, although
polarisation results are now providing new perspectives on the
topic (e.g. Gianolli et al. 2023). We note here that we assume
the X-ray emission to be isotropic throughout this work.

This inclination effect, by changing the UV flux, changes
the slope of the relation, differently for each different inclina-
tion angle. Overall this results in an increase in the observed
dispersion for the global quasar sample. Moreover, this effect is

𝜃

observer

inclination 
angle

𝜓𝑡𝑜𝑟𝑢𝑠
obscurer

 angle

Fig. 2. Schematic representation of a quasar observed at a certain angle
θ, measured from the axis of the accretion disc. If we assume the pres-
ence of an obscurer with a certain angular width ψtorus, measured from
the disc surface, only the objects with an inclination angle between zero
(face-on) and θmax = π/2 − ψtorus will be observed and/or selected.

asymmetric, impacting quasars differently based on their relative
brightness with respect to the detection limit. Bright quasars, sur-
passing by far the detection threshold, will still be detected even
with a diminished observed flux fobs at large inclination angles.
However, for quasars nearing the flux limit, there is a range of
cos θ values where they become undetectable.

In an ideal scenario, if we had accurate knowledge of the
inclination angle θ for every quasar observed, we could correct
the observed flux to counterbalance inclination effects. Unfor-
tunately, we do not have consistent estimators for the inclina-
tion of quasars. Some works suggest that the intensity of the
[O iii] line is an indicator of the inclination angle of a quasar
(e.g. Bisogni et al. 2017). Yet, this result is valid in a statistical
sense, but cannot be reliably used for an object-by-object correc-
tion. Furthermore, this line escapes the SDSS spectral range for
redshifts above ∼0.7.

Given that we lack observational methods to measure inclina-
tions directly, we will tackle this challenge using mock samples
of quasars. While we might not be able to eliminate this source
of dispersion, we can estimate its contribution. This is essential
for accurately determining the intrinsic dispersion of the LX−LUV
relation. In this section, we discuss how to build a mock sample of
quasars to correctly represent the effect of inclination, and derive
an estimate for its contribution to the total dispersion.

4.1. Correction to a luminosity function

The first step to build our mock sample is to determine from
which luminosity distribution we should extract our objects.
Numerous studies have established the observed UV luminosity
function for quasars and its redshift evolution (e.g. Boyle et al.
2000; Croom et al. 2009; Ross et al. 2013). However, within a
particular luminosity range, the quasars we observe are only
those that, once inclined, have a flux above the survey flux limit.
Consequently, the observed luminosity function for quasars is
biased, and a priori we do not know how much the shape of the
luminosity function changes because of that. Here we therefore
attempt to deduce the intrinsic luminosity function of quasars
from the observed one, and then use it as the starting point for
our mock sample.

We designate θ as the inclination angle, signifying that a
face-on quasar has θ = 0 whilst an edge-on quasar has θ = π/2,
as shown in Fig. 2. We postulate that quasars are randomly
inclined in the sky. For a given intrinsic luminosity L, the
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Fig. 3. Effect of inclination on the luminosity function shape, and how this effect depends on the slope values of the luminosity function. Left:
observed luminosity function n(L), in blue dashed, as per the Ross et al. (2013) parametrisation: the luminosity function is a broken power law
with indexes α = −1.34 and β = −3.56, and log(φ∗) = −6.15. A Pure Luminosity Evolution is assumed. In this figure we show, as an example,
the results for z = 1. In solid red, the intrinsic luminosity function m(L), which is corrected for inclination effects. Right: same as the left panel,
but with an observed luminosity function assumed to have indexes α = −0.8 and β = −4.5. The comparison between the two panels shows that
a greater difference between α and β accentuates the knee distortion and the variance between m(L) and n(L) at higher luminosities. For a better
comparison, the red solid line of the left panel is also plotted in the right panel, in grey.

observed luminosity is L = L cos θ, where L = L for face-
on quasars and L → 0 for those seen at increasingly large
inclinations. Assuming the true quasar luminosity distribution
in the Universe is a continuous function m(L), and given that
quasars are randomly inclined, a specific observed luminosity
bin would contain objects with particular combinations of intrin-
sic luminosity and inclination angle. Hence, the observed distri-
bution n(L) can be expressed in terms of the intrinsic distribution
m(L):

n(L)dL =

∫ π/2

0
m

( L
cos θ

)
sin θ dθdL. (2)

Detailed calculations in Appendix A allow us to derive
the true luminosity function m(L) from the observed one,
n(L):

m(L) = n(L) − n′(L)L. (3)

The result of this correction is therefore the distribution of
intrinsic quasar luminosities, which would be the observed dis-
tribution if all the objects were face-on. To properly compare
with the observed n(L), we multiply m(L) by the average cos θ,
which is 0.5. In Fig. 3, we show, as an example, the juxtaposi-
tion the observed n(L) with the derived intrinsic luminosity func-
tion m(L), assuming the quasar luminosity function shape from
Ross et al. (2013),

dn
dL

=
φ∗(

L
L∗

)−α
+

(
L
L∗

)−β , (4)

with parameters α and β again following the results from
Ross et al. (2013): α = −1.34 and β = −3.56, and log(φ∗) =
−6.15. As in the Ross et al. (2013) parametrisation, we assume
the quasar luminosity function to follow a Pure Luminosity Evo-
lution (PLE). In Fig. 3, as an example, we show the results
assuming a redshift value of z = 1. Notably, at both low and
high luminosities, the shape of the intrinsic luminosity function
aligns with the observed one. The main differences are found

around the change in the slope, commonly called the “knee”.
Altering the α and β values impacts the relative shapes: a greater
difference between α and β accentuates the knee distortion and
the variance between m(L) and n(L) at higher luminosities. The
right panel of Fig. 3 showcases the results for α = −0.8 and
β = −4.5.

4.2. Mock sample

Now that we know how to derive an inclination-corrected lumi-
nosity function, we can use it to build our mock sample of
quasars to determine the effect of inclination on the LX−LUV
observed dispersion. We do so, at first, allowing the inclination
angle to vary between 0 and π/2. This assumption is not truly
realistic, as we know that objects with an inclination angle above
a certain threshold are not going to be observed due to the pres-
ence of an obscuring torus (or, when they are, the selection pro-
cedure removes them from the sample). However, we perform
this analysis to obtain an unbiased indication on the required
torus opening angle.

We start building a sample of 100 000 objects, and we con-
sider the quasar luminosity function obtained by Ross et al.
(2013) for the SDSS as the starting point. Such a luminos-
ity function assumes a redshift dependence. Therefore, we first
assign a random redshift to the objects in the mock sample,
extracting them from the redshift distribution of L20. Then, for
each object, we derive the luminosity function corresponding to
that redshift from Ross et al. (2013), we correct it for the incli-
nation effect described in the previous subsection and we use
it to extract a luminosity value for that object. The luminos-
ity function described in Ross et al. (2013) is derived for the
i-magnitude, but we are interested in the monochromatic lumi-
nosity at 2500 Å. Therefore, for each object, we derive it by
assuming an SED with fν ∼ ν−α, with α = 0.5. We tested all
of the following also assuming α = 1 and we always obtained
consistent results. Given the 2500 Å luminosities, we assume the
LX−LUV relation with γ = 0.6 and derive the corresponding
log(LX) for each object. The values of log(LX) are then shifted
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by a random quantity extracted from a Gaussian with mean zero
and standard deviation equal to 0.08; this mimics the contribu-
tion to the dispersion due to the variability, which, as we found
out in Sect. 3, is δvar = 0.08. Then, for each object, we assign a
random value of the inclination angle θ, from 0 to π/2, as we are
here assuming no absorbing torus. The angle is extracted from a
distribution which is uniform in cos θ. Given θ, the inclined UV
luminosity is derived as Lobs = L cos θ, while the X-ray luminos-
ity is left untouched. We now have a mock sample of inclined
objects and we have to consider the presence of an observa-
tional threshold. We consider as a threshold the i-magnitude flux
limit of the first SDSS release (Richards et al. 2002), mi = 19.1,
from which we derived the corresponding monochromatic flux
at 2500 Å2. So for each object, given its redshift, we derived its
2500 Å flux by assuming a standard flat ΛCDM cosmology and
then removed the object from the mock sample if it fell below the
threshold. We now fit the relation between log(LX) and log(LUV),
where LUV has the inclination-affected values. The fit is done
with a Bayesian approach of likelihood maximisation, assuming
the function log(LX) = γ log LUV + β, where γ and β are two
free parameters, and where we take the presence of a disper-
sion δ into account by modifying the likelihood function accord-
ingly. As before, we performed the fit using the emcee code. The
mock sample and the results of the fit are shown in the top left
panel of Fig. 4. We retrieve a slope coefficient γfit = 0.58± 0.02,
consistent with the assumed value of γ = 0.6. This reassures us
that the inclination effect is not significantly affecting the slope
of the relation. The total dispersion is δtot = 0.13 dex. Given that
we assumed a dispersion of δvar = 0.08 dex due to the variability,
to obtain the contribution of the inclination we have to quadrat-

ically subtract the two, so that δinc =

√
δ2

tot − δ
2
var. The result

is δinc = 0.10 dex. On the top right panel of Fig. 4 we show,
in green, the histogram of the fit residuals (which we obtain
by simply subtracting the best-fit model from the mock data).
In dot-dashed orange, we show the same histogram for the L20
sample. It is clear that the point distribution of our mock sample
is not representative of the observed scenario, as it is (slightly)
off-centred and significantly skewed, with a skewness parameter
of s = 1.18, while the L20 distribution is much more symmet-
ric, with a skewness parameter of sL20 = 0.20. In the top right
panel, we also show the distribution of the residuals for the silver
and the golden samples of Sacchi et al. (2022), which is further
discussed in Sect. 6.

To enhance the accuracy of our mock sample, we now intro-
duce in our model an obscurer characterized by a maximum
angle ψtorus, measured from the accretion disc as shown in the
scheme in Fig. 2. We assume this torus to be a homogeneous
dust distribution that extends from the plane of the accretion
disc to ψtorus. Therefore, if a quasar has an inclination angle that
exceeds θmax = π/2− ψtorus, the torus absorbs its emission, mak-
ing it undetectable3. This results in an accessible angle range of
[0, θmax), instead of the initial [0, π/2) range. We find that by

2 The selection function for any observed sample is going to be much
more complicated than a simple flux threshold. However, here we want
to recreate a simpler scenario of a uniform sample with a given flux
limit. We tested that the final results in terms of the inclination contri-
bution to the dispersion do not depend on the exact choice of the flux
limit.
3 We basically assumed an infinite optical depth for the torus. This
is not truly representative of the real scenario, but does not affect the
consistency between our mock sample and the observed sample, as in
the observed sample even mildly obscured objects are removed.

increasing ψtorus, the histogram of the residuals becomes more
and more symmetric. After some tests, we deduced that a θmax
of ∼65◦ (which corresponds to an obscurer angle of ψtorus = 25◦)
is the maximum value that achieves a distribution of the resid-
uals similar to the L20 sample, as visualized in the lower right
panel of Fig. 4. This new histogram has a skewness parameter
of s = 0.19, consistent with what we find for the L20 sample,
which has sL20 = 0.20. We note that the histogram of the resid-
uals for L20 is wider because that sample has an overall disper-
sion of δ = 0.21 dex, while our mock sample has δ = 0.10 dex.
The lower left panel of Fig. 4 displays the new fit. Due to the
narrower angle range, objects disperse less around the best fit,
resulting in a total dispersion of δtot = 0.10 dex. By consider-
ing this dispersion and subtracting the variability contribution
quadratically, we obtain δinc = 0.06 dex. Given the match in the
shape of the distribution of the residuals with the actual observed
sample, we believe this to be a more reliable estimate of the
inclination-related dispersion.

The concept of a toroidal absorber to describe the emis-
sion of quasars is not novel and it is a fundamental part of the
AGN unified model (see for example Bianchi et al. 2012 for a
review). At the same time, it is noteworthy that our mock sample
necessitated an obscuring torus based solely on the comparison
with the histogram of the residuals from the L20 sample, as this
comes out as a somewhat indirect way to assess the minimum
required angular width of the torus for an average population of
quasars. In summary, our mock quasar sample analysis allows
us to estimate the inclination contribution to the observed dis-
persion, approximating it at δinc = 0.06 dex.

We note that, in order to retrieve the intrinsic luminosity dis-
tribution, we could not start from the luminosity distribution of
L20, as the latter is not only affected by inclination but also by
additional filtering criteria that make the selection function very
complex. As the latter effects cannot be corrected, we adopted
instead the luminosity function of Ross et al. (2013) to build our
mock sample. At the same time, it is important to note that the
selection of L20 does not depend on the UV luminosity itself,
so it should not alter the contribution of inclination to the total
observed dispersion. To verify this assumption, we performed
two additional tests. First, we estimated the dispersion contri-
bution in small redshift bins (∆z ∼ 0.2), in the redshift range
of the L20 sample (which goes from z ∼ 0 to z ∼ 5). At
all redshifts, the resulting contribution of the inclination to the
final dispersion is δinc ∼ 0.06 dex, confirming the absence of
a luminosity trend in this contribution. As an additional test,
we build another mock sample starting from the L20 luminos-
ity distribution, and correcting that distribution for the inclina-
tion factor. We also assumed the L20 redshift distribution to
derive the redshift, and performed all the steps described above.
The results are shown in the appendix, and again a contribution
of the inclination to the total dispersion of δinc ∼ 0.06 dex is
confirmed.

The results presented here demonstrate that the dispersion
due to the inclination does not depend on luminosity or redshift
and that, overall, we can safely consider its contribution to be
δinc ∼ 0.06 dex. Differences in the exact shape of the starting
luminosity distribution for the mock sample do not seem to affect
the estimate.

We finally note that, in this analysis, we assumed the same
torus opening angle for all the objects in the sample. In prin-
ciple, there might be a redshift dependence of the obscuration
level of quasars, which would imply a different contribution of
inclination at different redshifts. This evolution of the torus prop-
erties has been theorized to explain the observed trend of the
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Fig. 4. LX−LUV relation and its spread for the two mock samples we considered, with and without the assumption of an obscuring torus. The
residuals of the relation are also shown, in comparison with the results of the L20 and the Sacchi et al. (2022) samples. Upper left panel: mock
sample of 100 000 quasars assuming an intrinsic relation with zero intrinsic dispersion, a contribution from variability to the observed dispersion
of 0.08 dex, and an inclination angle between 0 and 90◦. For each object, a redshift is assigned using the L20 sample redshift distribution; given the
redshift, the corresponding luminosity function from Ross et al. (2013) is derived, and a luminosity is extracted. The red solid line is the starting
sample, with a slope γ = 0.6 and a zero dispersion. The blue points show the sample after the dispersion due to variability is added and the objects
are assigned a random inclination. The total dispersion of the sample is δtot = 0.13 dex, the inclination effect accounts for δinc = 0.10 dex. Upper
right panel: histogram of the fit residuals, in filled green. This distribution is skewed, with a skewness parameter of s = 1.18. In dot-dashed orange,
the histogram of the residuals for the L20 sample is shown for comparison. We see that the L20 distribution, which is the observed one, is instead
much more symmetric, with a skewness parameter of sL20 = 0.20. The residuals corresponding to the “silver sample” and the “golden sample”
of Sacchi et al. (2022) (details in Sect. 6) are plotted in dashed silver and in solid gold, respectively. The red solid vertical line corresponds to
zero, while the dashed black vertical line corresponds to the peak of the mock sample distribution, equal to −0.05. All the histograms are shown
in logarithmic units to enhance the readability. Lower left panel: same as the upper left panel, but assuming the presence of an obscurer with an
angle width of ψtorus = 25◦, which means that the inclination angle for the objects in the mock sample can go from 0 to 65◦. The total dispersion is
reduced to δtot = 0.10 dex, and the inclination effect accounts for δinc = 0.06 dex. Lower right panel: same as the upper right panel, but assuming
the presence of an obscurer with an angle width of ψtorus = 25◦. Here we see that the residuals distribution is symmetric, with a skewness parameter
of s = 0.19 consistent with the L20 results.

obscured fraction of AGN, whereby high-redshift objects are
more likely to be obscured than local ones (e.g. Liu et al. 2017;
Iwasawa et al. 2020; Peca et al. 2023; Signorini et al. 2023b).
However, recent results reveal no significant trend of the opening
angle with cosmic time (e.g. Prince et al. 2022; Rałowski et al.
2024), and point towards a model where the increasing obscura-
tion fraction is attributable to the evolution of the host-galaxy
ISM properties (e.g. Gilli et al. 2022). Therefore, for the pur-
pose of this work, the assumption of no redshift evolution of

the inclination is reasonable, but further studies on this topic are
necessary.

5. X-ray analysis

Finally, another potential source of observational dispersion
might arise from the use of photometric data to calculate the 2-
keV monochromatic luminosities of our objects, instead of spec-
troscopic data. In this section we show that this is not the case,
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Fig. 5. Comparison of the 2-keV monochromatic flux estimate derived
from photometric data (see L20) and the one derived from spectro-
scopic data for the subsample of objects with only one observation in the
4XMM-DR9 catalogue. The solid red line represents the bisector, while
the black dashed line is the best fit, with a slope of η = 1.06 ± 0.02.
The total scatter around the best fit is equal to the average uncertainties,
δerr = δtot = 0.14 dex. The intrinsic dispersion of the relation is there-
fore zero. Overall, we can say that there is no significant contribution to
the observed dispersion that comes from using photometric X-ray data
instead of spectroscopic data.

and we can safely use photometric X-ray data. In Signorini et al.
(2023a), we tested whether there is any offset between the photo-
metric and spectroscopic flux determination. To do that, we per-
formed the X-ray spectral analysis on a sample of 231 objects,
which are all the quasars in the L20 catalogue with XMM-
Newton observations and a redshift higher than 1.9. The find-
ings indicate that employing photometrically derived fluxes (or
luminosities) instead of spectroscopically derived ones does not
introduce any significant offset. However, it is possible that pho-
tometrically derived fluxes exhibit a greater scatter around the
true value compared to spectroscopically derived ones. If this
were the case, our prevalent use of photometric data would not
introduce any bias in determining the relation parameters, but it
would still increase the observed dispersion.

To investigate this further, we used the X-ray spectroscop-
ically analysed sample from Signorini et al. (2023a), and we
tested the equation:

log( f2 keV, spec) = η log( f2 keV, phot) + ε. (5)

We employed the same fitting procedure described in Sect. 3.
From the 231 sources, we removed the 38 that have multiple
observations. Indeed, these objects have a photometric flux esti-
mate that has been obtained by averaging multiple observations
(Lusso & Risaliti 2016; L20), while the spectroscopic analysis
has been performed on the longest observation only.

From the regression analysis, we obtained a slope close to
unity (η = 1.06±0.02), as previously discussed in Signorini et al.
(2023a). The fact that this value is different from one could imply a
different final slope of the LX−LUV relation. However, we checked
that this is not the case, with results shown in Appendix C.

The results are illustrated in Fig. 5. We found both δtot and
δerr to be equal to 0.14 dex, indicating that the intrinsic disper-
sion δphot is consistent with zero. The outcome of this analy-
sis is clear: when comparing the spectroscopic and photomet-

ric 2 keV flux estimates for a subsample of objects where the
same observations were used to derive both estimates, there is
no additional dispersion beyond that arising from observational
uncertainties. Consequently, utilising photometric data instead
of spectroscopic ones does not introduce any offset or bias, nor
does it contribute to the total observed dispersion. This finding
supports the validity and reliability of employing photometri-
cally derived fluxes (or luminosities) in our astrophysical analy-
ses, which is particularly relevant considering that deriving spec-
troscopic X-ray monochromatic flux estimates for thousands of
objects is very time-consuming.

Another potential issue with X-ray observations is their off-
axis nature. The majority of X-ray data for the L20 sample is
derived from serendipitous observations, exhibiting a mean off-
axis angle for the XMM-Newton sources – which constitute most
of the sample – of φoff ∼ 6.4′. The different distance of the
targets from the detector aimpoint might introduce additional
dispersion. This was tested on a subset of 1778 objects, corre-
sponding to those with serendipitous XMM-Newton observations
in the L20 sample. We examined the LX−LUV relation across
six off-axis angle bins: 0−2′, 2′−4′, 4′−6′, 6′−8′, 8′−10′, and
10′−12′. In each bin, we observed a dispersion of δ ∼ 0.24 dex,
with no significant trend with respect to the off-axis angle. This
suggests that the off-axis angle does not substantially contribute
to the dispersion. However, it is important to note that when the
observed dispersion is large, minor effects become hard to dis-
cern. Assuming that objects at an off-axis angle of ∼10′ have
an additional dispersion factor of δoff ∼ 0.04 dex, this difference
would be lost in a comparison with a sample having a smaller
off-axis angle, since

√
0.242 − 0.042 ∼ 0.24.

One approach to further investigate this might involve
analysing a subsample with a range of off-axis values but a
lower observed dispersion, such as the golden sample from
Sacchi et al. (2022). However, in the golden sample, objects with
a smaller off-axis angle (the pointed objects from Nardini et al.
2019) also exhibit significantly higher average luminosity com-
pared to those at a greater off-axis angle. Given this, along with
the small overall statistics for this sample, we cannot confidently
distinguish the effect of lower variability due to higher average
luminosity from the potential reduction of the dispersion due to
pointed observations. Future targeted observations on selected
subsamples might provide clearer insights into the actual impact
of off-axis observations (Lusso 2019). We also note that on-axis
objects show a significantly lower uncertainty on flux measure-
ments (∼2%) compared to off-axis objects with similar luminosi-
ties (∼5%). Lower uncertainties mean a lower total dispersion,
which makes it possible to characterise smaller contributions
to the observed dispersion. Therefore, pointed observations are
always ideal. For now, we can conclude that if this effect exists,
it is likely a minimal contribution, with δoff ≤ 0.04 dex.

6. Comparison with observational results

We have determined that the contribution from X-ray variabil-
ity to the dispersion is approximately δvar ∼ 0.08 dex. It is
also evident that low-luminosity objects exhibit a greater con-
tribution than their high-luminosity counterparts. Furthermore,
our findings indicate that the use of X-ray photometric data
does not introduce any additional dispersion to the relation.
Through the construction of mock samples, we have determined
that the inclination of the quasar’s accretion disc relative to our
line of sight contributes to the total observed dispersion with
δinc ∼ 0.06 dex. Therefore, the sources of dispersion we have
assessed collectively contribute with a residual dispersion of
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δres =
√

0.062 + 0.082 = 0.10 dex. We can now compare these
results with the most recent estimates of the observed dispersion.

Firstly, we consider the results of Signorini et al. (2023a). In
that study, using UV spectroscopic data and the best UV and
X-ray proxies for the correlation, which were found to be the
MgII line flux and the monochromatic 1 keV flux, respectively, a
dispersion of δobs = 0.16 dex was found. When compared to our
current estimate of the residual dispersion δres = 0.10 dex, it is
evident that the characteristic dispersion of the correlation must

be less than δchar ≤

√
δ2

obs − δ
2
res = 0.12 dex.

The work of Sacchi et al. (2022) offers additional clues. They
presented a sample of 130 quasars, a subsample of the L20
one, with high-quality data and a one-by-one UV and X-ray
spectral analysis. This sample, which we call here the “sil-
ver sample”, showed a dispersion of δsilver = 0.12 dex. Within
this sample, they also highlighted a subsample of 30 objects
at redshift z ∼ 3, referred to as the “golden sample”, with an
even lower observed dispersion, δgolden = 0.09 dex. We dis-
play the residuals with respect to the LX−LUV relation for these
two samples in the right panels of Fig. 4, alongside the resid-
uals for the mock samples and for the whole L20 sample dis-
cussed previously. Considering the silver sample, up to 0.10 dex
of its dispersion can be attributed to variability and inclination.
Hence, the intrinsic dispersion for the relation is estimated to
be δchar ≤

√
0.122 − 0.102 ∼ 0.07 dex. For the golden sample,

its dispersion is already smaller than the total of 0.10 dex which
we found to be attributable to variability and inclination. This
can be explained in terms of the sample high average luminos-
ity, log(LX/erg s−1 Hz−1) ∼ 27.7. Consequently, the overall vari-
ability contribution to the dispersion is minimal, approximately
δvar,H.L. ∼ 0.02 dex, as detailed in Sect. 3. The intrinsic disper-
sion of the LX−LUV relation for the golden sample can there-
fore be estimated as δchar ≤

√
0.092 − 0.062 − 0.022 ∼ 0.06 dex.

Remarkably, the estimates for both subsamples are similar.
To sum up, when examining the entire quasar sample, data-

quality constraints limit us to a dispersion no lower than 0.21 dex
for the L20 data set and 0.16 dex for the Signorini et al. (2023a)
one (utilising UV spectroscopic data along with the optimal
proxies for UV and X-ray emission). Of this total dispersion,
0.10 dex is attributable to the combined impact of variability
and inclination. In cases of high-quality data, the dispersion can
drop to 0.12 dex when the variability contribution is still signifi-
cant, and to 0.09 dex when high luminosities reduce the variabil-
ity contribution, as demonstrated in Sacchi et al. (2022). From
these analyses, we deduce that the characteristic dispersion of
the LX−LUV relation must be equal to or lower than δint ∼ 0.06.

7. Comment on the possible theoretical models

As previously mentioned, we still lack a universally accepted
physical model to explain the LX−LUV relation, and why it
is so tight. However, several models have been suggested
in the past years. For instance, Lusso & Risaliti (2017) pro-
posed a “toy model” for the relation based on a geometrically
thin, optically thick accretion disc with a uniform, magnetized
X-ray corona, as suggested by Svensson & Zdziarski (1994) and
Merloni & Fabian (2002). By assuming that the corona is powered
by the disc at a certain transition radius (where the gas pressure
equals the radiation pressure), the authors find that both the UV
and X-ray luminosities depend on the black hole mass MBH and
accretion rate ṀBH. Assuming then the BLR radius–luminosity
relation as RBLR ∝ L0.5

bol, the black hole mass can be written
as a function of the accretion rate and the broad-line FWHM,

which finally leads to LX ∝ L4/7
UVν

4/7
FWHM. The expected slope value

γ = 4/7 ∼ 0.57 is very close to the observed one. At the same
time, we would expect from this model a relation between the
UV luminosity and the line FWHM, which was not confirmed by
Signorini et al. (2023a) when considering the relation in fluxes.

Kubota & Done (2018) proposed a model for the optical–UV
and X-ray emission based on an outer standard disc, an inner
optically thick disc where warm Comptonisation produces the
soft X-ray excess, and a hot optically thin corona. In this model,
the X-ray luminosity is a fixed fraction of the bolometric lumi-
nosity, and the LX−LUV relation emerges naturally as log(LX) =
3/4 log(LUV)−2 log(ṁ)+b, where the differences in the accretion
rate ṀBH are what causes the observed dispersion of the relation.
However, the theoretical slope of γ = 0.75 is not consistent with
the observed values of γ ∼ 0.6, and the model predicts a larger
dispersion at higher luminosities, which we do not observe. In
conclusion, there has not yet been a model whose predictions in
terms of slope and dispersion of the relation match the observed
values, and further studies are still needed to understand the exact
coupling between the accretion disc and the corona.

8. Conclusions

In this paper, we have investigated the factors that might con-
tribute to the residual dispersion of the LX−LUV relation in
quasars but cannot be removed by selecting unbiased samples.
We identified three possible dispersion sources:

Variability: quasar emission is known to be variable both
in the UV and in the X-ray bands, which inevitably causes an
increase in the observed dispersion. Given the shorter timescales,
X-ray variability is the one that is going to predominantly affect
our results. To test the contribution of variability, we selected the
289 objects in the L20 sample that have multiple X-ray obser-
vations in the XMM-Newton 4XMM-DR9 catalogue. We found
that the average scatter between different estimates of the 2-
keV monochromatic luminosity, once measure uncertainties are
accounted for, is δvar ∼ 0.08 dex, which we can therefore con-
sider as the variability contribution. We also found, consistently
with literature results, that variability decreases with increasing
luminosity, with the high-luminosity subsample having a contri-
bution of only δvar,H.L. = 0.02 dex from variability to the total
observed dispersion.

Inclination: the inclination of the accretion disc is believed to
affect the observed UV luminosity, but not the X-ray one. There-
fore, the different quasar inclinations introduce a scatter in the
LX−LUV relation. Unfortunately, we do not have observational
methods to measure inclination and correct the UV luminosi-
ties accordingly. Therefore, we relied on mock-sample estimates
to derive the inclination contribution to the observed dispersion.
We discussed how to recover the intrinsic luminosity distribution
given an observed one, correcting for the inclination effect. Start-
ing from the Ross et al. (2013) luminosity function, we then built
a mock sample of quasars for which we found the inclination con-
tribution to the dispersion to be δinc ∼ 0.06 dex, once we account
for the presence of an obscuring torus at large inclinations.

X-ray photometry: in a previous work of this series
(Signorini et al. 2023a), we have shown that using photometric
estimates of the 2-keV monochromatic luminosities instead of
spectroscopic ones does not introduce any systematic offset.
However, it might still introduce an additional dispersion. In this
work we tested this effect for a sample of 193 objects at redshift
z > 1.9, and we found that photometric estimates do not introduce
additional scatter compared to spectroscopic ones. Even though
the observed scatter is larger with photometric measurements,
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this is entirely accounted for by the larger uncertainties in
the photometric data with respect to spectroscopic ones. This
allows us to use photometric data when spectroscopic ones are
not available, confident that we are not introducing additional
dispersion.

Comparing our results with recent observational estimates of
the dispersion from Sacchi et al. (2022), we conclude that the
characteristic dispersion of the LX−LUV relation is exceedingly
low, δchar ≤ 0.06. This finding reinforces the hypothesis that the
physical mechanism governing the LX−LUV relation is remark-
ably consistent across a broad range of redshifts and luminosities.
This outcome gives additional credibility to using quasars as stan-
dard candles in cosmological studies, and it particularly highlights
the significant tension existing with the flat ΛCDM cosmological
model. The findings on variability confirm the results presented
in Sacchi et al. (2022): subsamples with higher luminosities tend
to exhibit the lowest observed dispersion values.

Although we can account for the dispersion of the LX−LUV
relation down to ≤0.06 dex, the observed value for the adopted
sample of quasars is still much higher. Obtaining such a small
dispersion observationally would give significant additional cos-
mological power to quasars. On the one hand, we could try to
reduce the variability contribution by obtaining multiple X-ray
observations within weeks/months (which is roughly the vari-
ability timescale for the UV band), and average the X-ray fluxes.
Unfortunately, given that the L20 sample (and any foreseeable
cosmological sample) contains thousands of objects, this is not
viable in the short run. Using simultaneous X-ray and UV obser-
vations has not proven to be helpful, because of the lag between
the changes in one band and the consequential changes in the
other (e.g. Vagnetti et al. 2011; Lusso & Risaliti 2016).

High-luminosity objects show a smaller variability ampli-
tude than low-luminosity ones. Therefore, at the moment, the
only way possible to reduce the variability contribution to the
overall dispersion is to look at high-luminosity subsamples, as
the golden sample presented in Sacchi et al. (2022). Regarding
the inclination contribution to the dispersion, we have no way to
remove it until a reliable means to estimate the inclination angle
for each individual object is found. It might be argued that the
brightest objects at any redshift are predominantly seen (nearly)
face-on, since a high inclination angle would imply an intrinsic
luminosity far exceeding the Eddington limit. Yet, there is no
definitive method to determine the specific luminosity threshold
at which an object can be classified as face-on. In terms of X-ray
observations, a possible reduction of the dispersion might come
from having more pointed observations instead of serendipitous
ones, but further analysis is needed with this respect.

Overall, the best path in the short-term to obtain small dis-
persion values in the LX−LUV relation and to increase the cosmo-
logical power of quasars is to obtain pointed observations of the
most luminous quasars at the highest possible redshift. This can
enhance our understanding of the high-redshift Hubble diagram
and of the associated cosmological tensions.

In the more distant future, the combination of the X-ray
data from Athena (or other proposed X-ray facilities) with the
optical/UV data that are starting to be collected by Euclid
(Laureijs et al. 2011) and LSST (Ivezić et al. 2019), will provide
additional statistics, helping us characterise the LX−LUV relation
both physically and for its cosmological implementation.
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Appendix A: Correction of the Luminosity Function
for inclination effects

In this Appendix we report how we derive the intrinsic luminos-
ity function m(L) from the observed one, n(L). We recall that
the observed luminosity function consists of objects where the
inclination effect has modified each object’s observed luminos-
ity, while we are interested in recovering the intrinsic luminosity
distribution. We start from the relation between n(L) and m(L):

n(L)dL =

∫ π/2

0
m

( L
cos θ

)
sin θ dθdL. (A.1)

We substitute cos θ = x and dx = − sin θ dθ:

n(L) =

∫ 1

0
m(L/x)dx. (A.2)

We can now write that L/x = L and −(L/x2) dx = dL so that

n(L) =

∫ ∞

L
m(L)

L
L2 dL. (A.3)

We derive with respect to L:

∂

∂L
n(L) =

∂

∂L

∫ ∞

L
m(L)

L
L2 dL =

∫ ∞

L

m(L)
L2 dL −

m(L)
L

, (A.4)

and then derive again:

∂2

∂L2 n(L) = −
m(L)

L2 −
Lm′(L) − m(L)

L2 = −
m′(L)

L
, (A.5)

from which:

m(L) =

∫ ∞

L
n′′(L)LdL, (A.6)

and finally get:

m(L) = n(L) − n′(L)L. (A.7)

Appendix B: L20 luminosity distribution

We provide here the fit of the LX−LUV relation and the his-
tograms of the residuals for the mock samples derived by start-
ing from L20 luminosity distribution. In Fig. B.1 we show the
results obtained without the torus assumption in the upper panel,
and with the assumption of a torus with an angular width of
ψtorus = 25◦ in the lower panels. The histograms scale is set to
logarithmic to better visualise the different shapes. In the upper
left panel we see that without the torus assumption, we obtain
a large dispersion due to the inclination, δinc = 0.19 dex, and
a slope of the relation equal to γ = 0.46 ± 0.01, not consistent
with the value of γ = 0.6 assumed for the mock sample. In the
upper right panel we also see that, as in the case discussed in
the text where we started from the Ross et al. (2013) luminos-
ity function, without the torus we obtain a highly skewed his-
togram of the residuals, with a skewness parameter of s = 1.74.
The peak of the histogram is also shifted from zero, as it is
found at −0.1.

In the lower panels, we show the results obtained assuming
a ψtorus = 25◦ torus. In the lower left panel, we see that the best
fit slope is now γ = 0.60 ± 0.01, perfectly consistent with the
assumed value of γ = 0.6. We note that, with this assumption, the
dispersion due to inclination is estimated to be δinc = 0.06 dex,
which is the same value we obtain starting from Ross et al.
(2013) luminosity distribution. In the lower right panel, we now
see that the histogram of the residuals is symmetric, with a
skewness parameter of s = 0.20 and a peak corresponding
to −0.06.

To sum up, starting with the L20 luminosity distribution
instead of the Ross et al. (2013) luminosity function, we obtain
the same results in terms of both the need for a ψtorus ∼

25◦ torus, and the estimate of the contribution of inclination
to the total dispersion, with δinc = 0.06. This result shows
us that our estimate for the inclination contribution does not
strongly depend on the exact shape of the starting luminosity
distribution.
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Fig. B.1. Upper left panel: mock sample of 100,000 quasars assuming a LX−LUV relation with zero intrinsic dispersion, a contribution from
variability to the observed dispersion of 0.08 dex, and an inclination angle between 0 and π/2. For each object, a redshift is assigned using the
redshift distribution of the L20 sample. To derive the luminosity, we correct the L20 luminosity distribution for the inclination effect. The red
solid line represents the starting sample, with a slope γ = 0.6 and a zero dispersion. The blue points show the sample after the dispersion due to
variability is added and the objects are assigned a random inclination. The total dispersion of the sample is δtot = 0.21 dex, and the inclination
effect accounts for δinc = 0.19 dex. Upper right panel: histogram of the fit residuals, in filled green. This distribution has a skewness parameter of
s = 1.74, and the peak is shifted from zero, at −0.16. In dot-dashed orange, the histogram of the residuals for the L20 sample is shown. We see
that the L20 distribution, which is the observed one, is instead much more symmetric, with a skewness parameter of sL20 = 0.20. The histograms
of the residuals for the silver sample and the golden sample of Sacchi et al. (2022) (details in Section 6) are also shown. The red solid vertical
line corresponds to zero, while the dashed black vertical line corresponds to the peak of the mock sample distribution, equal to −0.16. Lower
left panel: same as the upper Left panel, but assuming the presence of an obscurer with an angular width of ψtorus = 25◦, which means that the
inclination angle for the objects in the mock sample can go from 0 to 65◦. The total dispersion is reduced to δtot = 0.10 dex, and the inclination
effect accounts for δinc = 0.06 dex. Lower right panel: same as the upper right panel, but assuming the presence of an obscurer with an angular
width of ψtorus = 25◦. Here we see that the residuals distribution is symmetric, with a skewness parameter of s = 0.20, which perfectly matches the
L20 value of sL20 = 0.20. We also note that the residuals distribution is now slightly wider than the one for the Sacchi et al. (2022) sample.
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Appendix C: Additional material

When comparing, in Section 5, photometric and spectroscopic
flux estimates, we obtain a slope of η = 1.06±0.02. In principle,
this could imply a different slope of the LX−LUV relation, when
using the two different proxies. We tested the LX−LUV relation,

assuming a standard ΛCDM model to derive luminosities, with
spectroscopic and photometric X-ray luminosities, to test if this
was the case. The results are shown in Figure C.1. The slope that
we obtain is α = 0.59 ± 0.04 for the spectroscopic luminosity
and α = 0.58 ± 0.03 for the photometric one, so they are fully
consistent.

Fig. C.1. In this figure we compare the results of the LX−LUV relation when using photometric or spectroscopic luminosity measurements for
the X-ray luminosity. Left panel: fit of the LX−LUV relation using the photometric X-ray luminosities, for the sample of 193 objects described in
Section 5. A standard ΛCDM model is used to estimate luminosities from fluxes. We obtain a slope α = 0.58 ± 0.03. Right panel: same as the left
panel, but using the spectroscopic estimate of the 2 keV luminosity. The obtained slope is α = 0.59 ± 0.04, fully consistent with the photometric
one.
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