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EARLY-WARNING INVERSE SOURCE PROBLEM FOR THE
ELASTO-GRAVITATIONAL EQUATIONS∗

L. BALDASSARI† , M. V. DE HOOP‡ , E. FRANCINI§ , AND S. VESSELLA§

Abstract. Through coupled physics, we study an early-warning inverse source problem for the
constant-coefficient elasto-gravitational equations. It consists of a mixed hyperbolic-elliptic system of
partial differential equations describing elastic wave displacement and gravity perturbations produced
by a source in a homogeneous bounded medium. Within the Cowling approximation, we prove
uniqueness and Lipschitz stability for the inverse problem of recovering the moment tensor and the
location of the source from early-time measurements of the changes of the gravitational field. The
setup studied in this paper is motivated by gravity-based earthquake early warning systems, which
are gaining much attention recently.

Key words. Inverse Problems, Lipschitz stability, elastodynamic systems

MSC codes. 35R30, 35Q86, 35J05, 35L10.

1. Introduction. In this paper we study, through coupled physics, an early-
warning inverse source problem for the elasto-gravitational equations motivated by
seismology. It consists of a mixed hyperbolic-elliptic system of partial differential
equations describing elastic wave displacement and gravity perturbations produced
by a source in a homogeneous bounded medium.

Consider the following Cauchy problem with Neumann boundary condition for
the elastic equation:

(1.1)


ρ0utt − div(C∇u) = f (x, t) ∈ Ω× [0,∞),

(C∇u) · ν = 0 (x, t) ∈ ∂Ω× [0,∞),

u(x, 0) = ut(x, 0) = 0 x ∈ Ω,

where Ω is a bounded domain in R3, u = u(x, t) denotes the displacement, ν is the
outward normal to ∂Ω, ρ0 > 0 denotes the constant density of the medium, and C is
the isotropic stiffness tensor with constant Lamé parameters λ0, µ0 > 0:

Cijkℓ = λ0δijδkℓ + µ0(δikδjℓ + δiℓδjk).

The source term f is defined by

f = −M∇Q(x− P )H(t− T ),

where M is a constant 3 × 3 real valued matrix, P ∈ Ω, Q ∈ C2
0 (Ω), H is the

Heaviside function and T ≥ 0. Here we study uniqueness and stability for the early-
warning inverse source problem that consists in recovering the moment tensor M
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2 L. BALDASSARI, M. V. DE HOOP, E. FRANCINI, AND S. VESSELLA

and the location P of the source from early-time measurements of the changes of the
gravitational field ∇S+ generated according to the following transmission problem for
the Newtonian Poisson’s equation:

(1.2)



∆S− = −ρ0divu (x, t) ∈ Ω× [0,∞),

∆S+ = 0 (x, t) ∈ (R3 \ Ω)× [0,∞),

S− = S+ (x, t) ∈ ∂Ω× [0,∞),

(∇S− + ρ0u) · ν = ∇S+ · ν (x, t) ∈ ∂Ω× [0,∞),

S+ → 0 |x| → ∞,

where u solves (1.1). The early-time measurements of ∇S+ are taken on an open
ball. The coupling between the elastic equation and Poisson’s equation is known in
the literature as the elasto-gravitational coupling.

The setup above is motivated by gravity-based EEW (earthquake early warning)
systems: Ω is meant to model the Earth, while f represents a source approximating an
earthquake source with seismic moment tensor M and location P . In particular, the
formulation that we follow here is based on the so-called non-self-gravitating model,
which geophysicists have first used when they started studying gravity-based EEW a
few years ago.

1.1. Context. EEW systems rapidly detect and estimate the magnitude of on-
going earthquakes in real time to provide advance warnings of impending ground
motion [3]. Conventional EEW systems rely on detecting the P-elastic waves, whose
finite speed of propagation imposes a minimum on the warning time. This is key,
since EEW systems may fail to rapidly estimate the size of large offshore subduc-
tion earthquakes, like the 2011 Tohoku earthquake, due to the slowness of the elastic
waves [16, 17, 18, 24]. Recently discovered PEGS (prompt elasto-gravity signals) have
raised hopes that these limitations may be overcome [19, 22]. PEGS are earthquake-
associated signals created by density-perturbation-induced gravity field, and by the
associated elastic readjustment of the gravitationally perturbed Earth [20]. PEGS
are readily present in the self-gravitating equations governing the earthquake-induced
motion [6], but their observations have only been provided recently, in the occurrence
of large earthquakes, by ground-based seismometers [23, 26]. Since these signals are
transmitted at the speed of light everywhere on Earth, the earliest deformation signals
are not expected to be carried by the fastest P-elastic wave, but by PEGS [11, 10].
This is why gravity-based EEW systems have been gaining a lot of attention in recent
years [15, 4]. Including PEGS in early warning systems is expected to result in faster
detection of large earthquakes, especially when compared to conventional P-elastic
wave-based EEW systems [15, 4].

While the physics of PEGS is understood, their use lacks a mathematical justi-
fication. In other words, we still need to develop the theoretical framework of the
PEGS inverse problem, with uniqueness and stability theorems and proofs. The main
challenge here is that PEGS are present in the self-gravitating equations [6, Section
3.3.2], which differ from the ones studied in this paper by the presence of a non-local
term,

S(x, t) = −ρ0

∫
Ω

div(u(y, t))

|x− y|
dy,

added to the elastic equation:

ρ0utt(x, t)− div(C∇u(x, t)) + ρ0∇S(x, t) = f(x, t), (x, t) ∈ Ω× [0,∞).
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However, as explained in [11, 22, 13], when measurements are not taken with a ground-
based seismometer, it is not completely unrealistic to neglect the effects of the early-
time ground-induced motion due to the non-locality of ρ0∇S. For example, one might
use future generation gravity strainmeters (such as torsion bars, superconducting gra-
diometers, or strainmeters based on atom interferometers) measuring the differential
gravitational acceleration between two test masses, as discussed in [12, 21, 25]. Juhel
et al. [12] argue that the high sensitivity of these instruments makes them ideal for
measuring earthquake-induced gravity perturbations, particularly given their capabil-
ity to partially reject the background noise through differential measurements.

Since our intention in this paper is to focus on the basic aspects of the inverse
problem arising in gravity-based EEW systems, a way to go is to account for the effects
of gravity within the Cowling approximation [5], that is by ignoring self-gravitation
effects. The non-self-gravitating model proposed in this paper is still valuable for
gaining insight into the role of the gravitational perturbations generated by Poisson’s
equation in the inverse problem. It also facilitates the mathematical analysis of the
elastic and gravitational components of the system, making it possible to study the
elastic equation independently from Poisson’s equation.

1.2. Contribution and organization of the paper. In this paper we prove,
under suitable a priori assumptions, uniqueness and Lipschitz stability of the early-
warning inverse source problem. We make use of the following tools:

• Energy estimates for the elastic equation.
• Estimate of propagation of smallness for elliptic equations, see [2].

The main idea is to turn the elasto-gravitational coupling to our advantage, since
the changes of the gravitational field ∇S+ are generated instantaneously by Poisson’s
equation, and thus can be used to solve the inverse problem without having to wait
for the elastic waves to reach the boundary of Ω.

The paper is structured as follows. In paragraph 1.4, we introduce notation that
will be used throughout the work. Section 2 contains the description of the direct
problem. In paragraph 2.1, we prove existence and uniqueness of the weak solutions
to the elasto-gravitational equations. In paragraph 2.2 we give some energy estimates
concerning the solutions to problem (1.1). In section 3, we formulate our inverse
problem rigorously. We then prove the main results of this paper: uniqueness first,
and then Lipschitz stability.

1.3. Notation. We shall denote by Br(x) the open ball in R3 of radius r and
center x. We shall use the abbreviation Br when the center is the origin.

Here and in the next sections we shall assume that the Earth is represented by a
nonempty open bounded convex set Ω in R3 with C2 boundary, i.e., locally it can be
written as the graph of a C2 function on R2.

For any h > 0, let us define the set

Ωh := {x ∈ Ω | dist(x, ∂Ω) > h}.

Given a function u : Ω × [0,∞) → R3, u = u(x, t), we shall denote by ∂jui and
ui,t the derivatives of the i-th component of u with respect to the xj variable and to
the time t, respectively, and similarly for higher order derivatives.

We shall also denote by Mm the space of m × m real valued matrices and by
L(X,Y ) the space of bounded linear operators between Banach spaces X and Y .

For every matrices A,B ∈ Mm and for every L ∈ L(Mm,Mm), we shall use the
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following notation:

(LA)ij = LijkℓAkℓ, A ·B = AijBij , |A| =
√
(A ·A).

Notice that here and in the sequel summation over repeated indexes is implied.

2. The direct problem. We are now ready to present the direct or forward
problem and prove its solvability. We first make some assumptions. We assume that
the Earth is made of inhomogeneous linear elastic material. We denote by C(x) ∈
L(M3,M3) the isotropic stiffness tensor with Lamé parameters λ, µ ∈ C1(Ω)

Cijkℓ(x) = λ(x)δijδkℓ + µ(x)(δikδjℓ + δiℓδjk),

and by ρ ∈ C1(Ω) the reference density. We assume that

λ(x) ≥ λ0 > 0, µ(x) ≥ µ0 > 0, ρ(x) ≥ ρ0 > 0 ∀x ∈ Ω.

Before going further, we need to underline that, while the well-posedness of the direct
problem can be proven with variable coefficients, the uniqueness and stability theo-
rems for the inverse problem in Section 3 will require λ, µ and ρ to be constant. In
such case, we will say that

λ = λ0, µ = µ0, ρ = ρ0 in Ω.

We model the source by a function f with at least H1(Ω,R3) regularity, which ap-
proximates the body force defined in [6, 7] with origin time set to zero:

f = −M∇Q(x− P )H(t),

where M ∈ M3 represents the moment tensor, P is the location of the source,
Q ∈ C2

0 (Ω) and the Heaviside function H corresponds to an idealized time-rise func-
tion. We assume that there is no volume increase, i.e., the source does not model
an earthquake caused by an explosion. Consequently, M is nonzero, symmetric and
with vanishing trace [1, chapter 3]. We can regard f as a source that approximates
an earthquake rupture, that is, slip on a geometrically flat fault; this entails a repre-
sentation by double couples of equivalent forces, see [7, section 2.8] for details. The
approximation is expected to be accurate in the “far field”. Additionally, we assume
that P is not on the boundary of Ω, that is

(2.1) P ∈ Ωd0
,

for some positive constant d0 such that d0 < diam(Ω)/2. Here and in the next sections,
we also assume that

Q = q(| · |),

where

(2.2) supp q ⊂
[
−d0

2
,
d0
2

]
,

∫
R3

q(|x|) = 1.

Since we study our problem for t ≥ 0, in what follows we will ignore the dependence
on time in f. However, it’s worth noting that the main results of this paper extend to
cases where the time dependency of the source is not described by a Heaviside function
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(for example, one might consider a class of time-dependent sources represented by
f = −M∇Q(x− P )g(t), where g is not identically zero for early times).

The direct problem consists in finding the solution pair (u, S), where u solves the
following Cauchy problem with Neumann boundary condition for the elastic equation

(2.3)


ρutt − div(C∇u) = f (x, t) ∈ Ω× [0,∞),

(C∇u) · ν = 0 (x, t) ∈ ∂Ω× [0,∞),

u(x, 0) = ut(x, 0) = 0 x ∈ Ω,

and S, written as

(2.4) S(x, t) =

{
S−(x, t) (x, t) ∈ Ω× [0,∞),

S+(x, t) (x, t) ∈ R3 \ Ω× [0,∞),

is the solution to the following transmission problem for Poisson’s equation

(2.5)



∆S− = −div(ρu) (x, t) ∈ Ω× [0,∞),

∆S+ = 0 (x, t) ∈ (R3 \ Ω)× [0,∞),

S− = S+ (x, t) ∈ ∂Ω× [0,∞),

(∇S− + ρu) · ν = ∇S+ · ν (x, t) ∈ ∂Ω× [0,∞),

S+ → 0 |x| → ∞.

It is evident that we can solve first (2.3), and then (2.5).

2.1. Existence, uniqueness, and regularity of solutions. As anticipated,
we will first show existence, uniqueness, and regularity of solutions to problem (2.3).
The proofs are based on results of [14].

Theorem 2.1. Assume that f ∈ L2(Ω,R3). Then there is a unique weak solution
u to (2.3) such that

u ∈ C([0,∞);H1(Ω,R3)), ut ∈ C([0,∞);L2(Ω,R3)).

If f ∈ H1(Ω,R3), then the solution to (2.3) is such that

u ∈ C([0,∞);H2(Ω,R3)),

and satisfies (2.3) in a pointwise sense. Also

ut ∈ C([0,∞);H1(Ω,R3)), utt ∈ C([0,∞);L2(Ω,R3)).

Proof. To solve (2.3), we apply the Duhamel’s principle. We consider the problem
ρwtt − div(C∇w) = 0 (x, t) ∈ Ω× (s,∞),

(C∇w) · ν = 0 (x, t) ∈ ∂Ω× [s,∞),

w(x, s; s) = 0 x ∈ Ω,

wt(x, s; s) = f(x) x ∈ Ω.

By [14, Theorems 2.1 and 2.2], if f ∈ L2(Ω,R3), there exists a unique solution w such
that

w ∈ C([0,∞);H1(Ω,R3)), wt ∈ C([0,∞);L2(Ω,R3)).
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Additionally, if f ∈ H1(Ω,R3), we have that w ∈ C([0,∞);H2(Ω,R3)). Since, by the
Duhamel’s principle,

u(x, t) :=

∫ t

0

w(x, t; s) ds

solves (2.3), we can easily deduce existence, uniqueness, and regularity results for u
from those of w.

We now consider the standard transmission problem for Poisson’s equation of the
gravitational potential

(2.6)



∆S− = −div(ρu) (x, t) ∈ Ω× [0,∞),

∆S+ = 0 (x, t) ∈ (R3 \ Ω)× [0,∞),

S− = S+ (x, t) ∈ ∂Ω× [0,∞),

(∇S− + ρu) · ν = ∇S+ · ν (x, t) ∈ ∂Ω× [0,∞),

S+ → 0 |x| → ∞.

By the definition of S given in (2.4), problem (2.6) can be written in weak formulation
as
(2.7)

for a.e. t, find S ∈ H1(R3) such that: ∀ϕ ∈ H1(R3),

∫
R3

∇S · ∇ϕ = −
∫
Ω

ρu · ∇ϕ.

The Lax-Milgram theorem [9] implies the existence of a unique S ∈ H1(R3) solving
(2.7).

2.2. Energy estimates. We will use the following energy estimates, whose
proofs are contained in Appendix A. For the sake of simplicity we formulate such
estimates for λ = λ0, µ = µ0 and ρ = ρ0 in Ω, but they hold true also for λ, µ, and
ρ ∈ C1(Ω).

Proposition 2.2. For any τ ≥ 0, the solution u to (2.3) satisfies the inequality

(2.8)

∫
Ω

|u(·, τ)|2 ≤ τ3
eτ/ρ0

ρ0

∫
Ω

|f|2.

Proposition 2.3. Let α > 0, x0 ∈ ∂Ω and τ > 0. Denote by Kα the cone

Kα(x0, τ) := {(x, t) ∈ R4 such that 0 ≤ t ≤ τ − α|x− x0|},

and define
K̃α(x0, τ) := Kα(x0, τ) ∩ (Ω× [0,∞)).

For any γ > 0, and for

α = α0 :=

√
ρ0

2(λ0 + 2µ0)
,

the solution u to (2.3) satisfies the inequality

(2.9)

∫
K̃α0

(x0,τ)

|u|2e−2γt ≤
(

τ

ρ0γ

)2 ∫
K̃α0

(x0,τ)

|f |2e−2γt.

The following corollaries of Proposition 2.3 will be useful later. They show that
at early times there exists a region close to ∂Ω where u = 0 because the elastic
waves have not arrived there yet. Figure 1 illustrates how to construct such region,
exploiting the knowledge of Proposition 2.2 that, for any point of ∂Ω×{0}, u vanishes
inside specified spacetime cones centred at that point.
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Fig. 1. The above illustrations show step-by-step how to construct Ω \ Ωd0/2−τ/α0
× [0, τ ] (cf.

the last picture) such that it is contained in K̃α0 (τ) as is defined in Corollary 2.4. Notice that
u = 0 in the gray areas. By Proposition 2.3, for any point of ∂Ω× {0}, u vanishes inside specified
spacetime cones centred at that point (cf. the second picture).

Corollary 2.4. Define

K̃α0
(τ) :=

⋃
x0∈∂Ω

K̃α0
(x0, τ).

There exists τ0 > 0 such that, for any τ ∈ (0, τ0), u = 0 in K̃α0
(τ).

Proof. Since supp f ⊂ Ωd0/2 by (2.1), it suffices to take τ0 = (α0d0)/2 to have

that, for any τ ∈ (0, τ0), supp f ∩ K̃α0
(x0, τ) = ∅, independently from the choice of

x0 ∈ ∂Ω. Using (2.9), we obtain that u = 0 in K̃α0
(τ).

Corollary 2.5. Let τ0 be the same as in Corollary 2.4. We have u = 0 on
∂Ω× [0, τ0). Also, for any τ ∈ (0, τ0), we have

Ω \ Ω d0
2 − τ

α0

× [0, τ ] ⊆ K̃α0
(τ),

hence u = 0 there.

3. The inverse problem. In this section, we will investigate the following in-
verse problem: given early-time measurements of the changes of the gravitational field
∇S+ generated by the source, can we determine uniquely and in a stable way the
moment tensor M and the location P of the source?

We suppose to have measured ∇S+ on Br0(x̄) contained in R3 \ Ω, for times in
the range t ∈ [0, t0]. To prove uniqueness and stability for the early-warning inverse
problem we need to assume that the Lamé parameters and the density are positive
constants, i.e. λ = λ0, µ = µ0, ρ = ρ0. In addition, to prove the Lipschitz stability
estimate, we need to assume that all the admissible moment tensors M satisfy the
condition

(3.1) m0 ≤ |M | ≤ M0, given m0,M0 > 0.

Before going further, it is noteworthy to point out that the early-warning inverse
problem we propose in this paper can be solved for any t0 > 0, hence the adjective
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“early-warning”. This is an advantage with respect to conventional inverse seismic
problems. In fact, since the elastic waves propagate at finite speed, one has to wait
for them to reach the boundary of Ω (see, for example, Theorem 4.2 in [8]). The
changes of the gravitational field, instead, are generated instantaneously by Poisson’s
equation, and thus can be used to solve the inverse problem without having to impose
a minimum on the time needed to determine uniquely the source.

3.1. Statement of the main results. The main result of this paper is the
Lipschitz stability of the inverse problem:

Theorem 3.1 (Lipschitz stability). Let Br0(x̄) ⊂ R3 \ Ω, t0 > 0. Consider two

sources, f (1) and f (2), such that

f (j) = −M (j)∇(q(|x− P (j)|)), j = 1, 2,

where M (1),M (2) ∈ M3 are nonzero, symmetric, with vanishing trace, satisfy (3.1),
P (1), P (2) ∈ Ωd0 , and q ∈ C2

0 (Ω) satisfies (2.2).

Let (u(1), S(1)) and (u(2), S(2)) be (weak) solutions to (2.3)-(2.5) associated to f (1)

and f (2), respectively, when λ = λ0, µ = µ0 and ρ = ρ0. If

∥∇S(2)(·, t)−∇S(1)(·, t)∥L2(Br0 (x̄))
≤ ε in [0, t0],

then we have ∣∣∣P (2) − P (1)
∣∣∣+ ∣∣∣M (2) −M (1)

∣∣∣ ≤ Cε,

where C is a positive constant depending on M0, m0, r0, d0, Ω, λ0, µ0, ρ0 and t0.

Uniqueness follows from Theorem 3.1 by letting ε → 0. However, for the sake of
the reader’s understanding, in the sequel we first give the proof of uniqueness, since
it clearly presents the role played by the elasto-gravitational coupling effect in solving
the inverse problem. Also, focusing first on uniqueness will make the proof of the
desired Lipschitz stability a bit lighter, since we will reuse some of the calculations.

Our uniqueness result can be summarized as follows:

Theorem 3.2 (uniqueness). Let Br0(x̄) ⊂ R3 \ Ω, t0 > 0. Under the same

hypothesis of Theorem 3.1 for f (1), f (2), (u(1), S(1)), (u(2), S(2)), λ, µ and ρ, if

∇S(1) = ∇S(2) in Br0(x̄)× [0, t0],

then

M (1) = M (2) and P (1) = P (2).

3.2. Proof of Theorem 3.2. Before going through the proof of uniqueness, we
shall need the following technical result:

Lemma 3.3. We have∫
B d0

2

q′(|x|)
|x|

x2
j = −1,

∫
B d0

2

q′(|x|)
|x|

xj =

∫
B d0

2

q′(|x|)
|x|

xjxkxℓ = 0.

Proof. Define

Lk :=

∫
B d0

2

q′(|x|)
|x|

x2
j .
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By symmetry, L := L1 = L2 = L3. We have

3L = L1 + L2 + L3 =

∫
B d0

2

q′(|x|)
|x|

(x2
1 + x2

2 + x2
3) =

∫
B d0

2

q′(|x|)|x|

= 4π

∫ d0
2

0

q′(s)s3 = −12π

∫ d0
2

0

q(s)s2 = −3

∫
B d0

2

q(|x|) = −3,

which implies L = −1.
To prove the other results, it suffices to notice that we integrate an odd function

over a spherically symmetric domain around the origin, hence the integral is zero.

We are now in the position of proving our uniqueness result. We proceed as
follows. First, we apply the unique continuation property to (2.6): since ∇S vanishes
in a ball outside Ω, the objective is to show that it vanishes everywhere outside Ω
and in a neighborhood of ∂Ω. Then, after selecting a specified set of test functions,
we resort to integration by parts to prove the desired uniqueness result. It is worth
noticing that applying the unique continuation property inside Ω is nontrivial, since
∆S = −ρ0divu there and, in principle, the right-hand side may be nonzero. As we will
see, this is precisely where the energy estimates of Subsection 2.2 and the hypothesis
that we are taking early-time measurements of ∇S will come into play.

Proof of Theorem 3.2. Define

u := u(2) − u(1), S := S(2) − S(1), f := f(2) − f(1).

(u, S) solves (in a weak sense) the following system of elasto-gravitational equations:

(3.2)



ρ0utt − div(C∇u) = f (x, t) ∈ Ω× [0,∞),

∆S− = −ρ0divu (x, t) ∈ Ω× [0,∞),

∆S+ = 0 (x, t) ∈ (R3 \ Ω)× [0,∞),

(C∇u) · ν = 0 (x, t) ∈ ∂Ω× [0,∞),

S− = S+ (x, t) ∈ ∂Ω× [0,∞),

(∇S− + ρ0u) · ν = ∇S+ · ν (x, t) ∈ ∂Ω× [0,∞),

u(x, 0) = ut(x, 0) = 0 x ∈ Ω,

S+ → 0 |x| → ∞.

Also, since f ∈ H1(Ω,R3), the regularity results given in Section 2 hold true. In
particular, the estimate of Proposition 2.3 and its corollaries can be applied to u.

Let τ0 be the same as in Corollary 2.4. In what follows, we assume that t0 < τ0.
We can do this, since our intention is to prove the uniqueness result for small times.
We begin by recalling that, from Corollary 2.5, u = 0 in Ω \ Ω d0

2 − t0
α0

× [0, t0], hence

∆S− = −ρ0divu (x, t) ∈ Ω d0
2 − t0

α0

× [0, t0],

∆S− = 0 (x, t) ∈ Ω \ Ω d0
2 − t0

α0

× [0, t0],

∆S+ = 0 (x, t) ∈ (R3 \ Ω)× [0, t0],

S− = S+ (x, t) ∈ ∂Ω× [0, t0],

∇S− · ν = ∇S+ · ν (x, t) ∈ ∂Ω× [0, t0],

S+ → 0 |x| → ∞.
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The continuity of the transmission conditions on ∂Ω assures that S defined in (2.4)
belongs to H2

loc(R3 \Ω d0
2 − t0

α0

) for every t ∈ [0, t0]. We apply the unique continuation

property. Since ∇S = 0 in Br0(x̄)× [0, t0] and S → 0 as |x| → ∞, we have that

(3.3) S(x, t) = 0 in R3 \ Ω d0
2 − t0

α0

for every t ∈ [0, t0].

Now the hypothesis that λ = λ0, µ = µ0 and ρ = ρ0 are constants comes into play.
Denote by ϕ a smooth function such that ∆ϕ = 0 in Ω. Recall that u solves

ρ0utt − div(C∇u) = f (x, t) ∈ Ω× [0, t0],

(C∇u) · ν = 0 (x, t) ∈ ∂Ω× [0, t0],

u(x, 0) = ut(x, 0) = 0 x ∈ Ω.

Multiplying the first equation of the system above by ∇ϕ and integrating over Ω yield

(3.4) ρ0

∫
Ω

utt · ∇ϕ−
∫
Ω

∂j(Cijkl∂kul)∂iϕ =

∫
Ω

f · ∇ϕ.

We notice that∫
Ω

∂j(Cijkl∂kul)∂iϕ =

∫
Ω

[∂j(Cijkl∂kul∂iϕ)− Cijkl∂kul∂
2
jiϕ] = −

∫
Ω

Cijkl∂kul∂
2
jiϕ,

where the last equality follows from the Neumann boundary condition for u. Since
∆ϕ = 0, we have∫

Ω

Cijkl∂kul∂
2
jiϕ = λ0

∫
Ω

∆ϕ divu+ 2µ0

∫
Ω

∂iuj∂
2
ijϕ

= 2µ0

∫
Ω

∂i(uj∂
2
ijϕ)− 2µ0

∫
Ω

uj∂j∆ϕ = 2µ0

∫
∂Ω

uj∂
2
ijϕνi = 0,

where the last equality follows from the fact that u = 0 on ∂Ω× [0, t0]. Thus equation
(3.4) becomes

(3.5) ρ0

∫
Ω

utt · ∇ϕ =

∫
Ω

f · ∇ϕ.

Define

(3.6) z := ρ0

∫
Ω

u · ∇ϕ.

From [9, Section 5.9.2] we have

(3.7) ztt = ρ0

∫
Ω

utt · ∇ϕ.

To prove the uniqueness of both the moment tensor and location of the source, we
first need to verify that z(t) = 0 in [0, t0]. Since u = 0 on ∂Ω× [0, t0], integrating by
parts yields:

(3.8)

z = ρ0

∫
Ω

∂j(ujϕ)− divuϕ = ρ0

∫
∂Ω

ujνjϕ+

∫
Ω

∆Sϕ

=

∫
∂Ω

∂S

∂ν
ϕ− S

∂ϕ

∂ν
.



EARLY-WARNING INVERSE SOURCE PROBLEM 11

Then the fact that z = 0 follows from (3.3). Thus equation (3.5) gives∫
Ω

f · ∇ϕ = 0,

for every ϕ harmonic function in Ω. Since f = f(2) − f(1), the equality above yields:

(3.9)

∫
B d0

2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M (1)(x− P (1)) · ∇ϕ

=

∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

M (2)(x− P (2)) · ∇ϕ.

To prove that M (1) = M (2) and P (1) = P (2), we have to make a specific choice for ϕ.

Step 1: Moment tensor. We first consider ϕ(x) = x1x2. Trivially, such a
function is harmonic in Ω. Also, after a change of variables, we get∫

B d0
2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M
(1)
kl (xl − (P (1))l)∂kϕ

=

∫
B d0

2

q′(|y|)
|y|

(
M

(1)
1l yly2 +M

(1)
2l yly1 + M

(1)
1l yl(P

(1))2 +M
(1)
2l yl(P

(1))1

)
.

Since M (1) is symmetric, Lemma 3.3 gives∫
B d0

2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M
(1)
kl (xl − (P (1))l)∂kϕ=M

(1)
12

∫
B d0

2

q′(|y|)
|y|

(
y21 + y22

)
=−2M

(1)
12 .

Repeating the same calculations for M (2) yields∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

M (2)(x− P (2)) · ∇ϕ = −2M
(2)
12 .

From (3.9), we have M
(1)
12 = M

(2)
12 . By taking ϕ = xixj , with i ̸= j, we finally get

M
(1)
ij = M

(2)
ij , i, j = 1, 2, 3, i ̸= j.

We now repeat the calculations above for ϕ = (x2
1 − x2

2)/2, and exploit the fact that
both M (1) and M (2) have vanishing traces. After a change of variables, we get∫

B d0
2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M
(1)
kl (xl − (P (1))l)∂kϕ

=

∫
B d0

2

q′(|y|)
|y|

(
M

(1)
1l yly1 −M

(1)
2l yly2 + M

(1)
1l yl(P

(1))2 −M
(1)
2l yl(P

(1))1

)
=

∫
B d0

2

q′(|y|)
|y|

(
M

(1)
11 y21 −M

(1)
22 y22

)
= M

(1)
22 −M

(1)
11 .
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Repeating the same calculations for M (2) yields∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

M (2)(x− P (2)) · ∇ϕ = M
(2)
22 −M

(2)
11 .

From (3.9), we have

M
(1)
11 −M

(2)
11 = M

(1)
22 −M

(2)
22 .

By taking ϕ = (x2
1 − x2

3)/2 and ϕ = (x2
2 − x2

3)/2, we get also

M
(1)
11 −M

(2)
11 = M

(1)
33 −M

(2)
33 , M

(1)
22 −M

(2)
22 = M

(1)
33 −M

(2)
33 .

Using the results above, together with trM (1) = trM (2) = 0:(
M

(1)
11 −M

(2)
11

)
+
(
M

(1)
22 −M

(2)
22

)
+
(
M

(1)
33 −M

(2)
33

)
= 0,

we find
M

(1)
11 = M

(2)
11 , M

(1)
22 = M

(2)
22 , M

(1)
33 = M

(2)
33 .

Putting everything together, we finally get M (1) = M (2).

Step 2: Location of the source. Denote now by M the moment tensor. We
begin by noticing that (3.9) can be rewritten as follows:

(3.10)

∫
B d0

2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M(x− P (1)) · ∇ϕ

=

∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

M(x− P (2)) · ∇ϕ.

We now consider ϕ = x3
1 − 3x2

2x1. Again, such a function is harmonic in Ω. Also,
after a change of variable, we get∫

B d0
2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

Mkl(xl − (P (1))l)∂kϕ

=

∫
B d0

2

q′(|y|)
|y|

(
M11y1(3(y1 + (P (1))1)

2 − 3(y2 + (P (1))2)
2) +M12y2(3(y1 + (P (1))1)

2

−3(y2 + (P (1))2)
2) +M13y3(3(y1 + (P (1))1)

2 − 3(y2 + (P (1))2)
2)

+M21y1(−6(y2 + (P (1))2)(y1 + (P (1))1))+M22y2(−6(y2 + (P (1))2)(y1 + (P (1))1))

+M23y3(−6(y2 + (P (1))2)(y1 + (P (1))1))
)
.

Since M12 = M21 and M11 = −M22 −M22, Lemma (3.3) implies that∫
B d0

2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

Mkl(xl − (P (1))l)∂kϕ

=

∫
B d0

2

q′(|y|)
|y|

(
6M11y

2
1(P

(1))1 − 6M12y
2
2(P

(1))2 − 6M21y
2
1(P

(1))2 − 6M22y
2
2(P

(1))1)
)

= 6(2M22 +M33)(P
(1))1 + 12M12(P

(1))2.
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Repeating the same calculations for P (2) yields∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

Mkl(xl − (P (2))l)∂kϕ = 6(2M22+M33)(P
(2))1+12M12(P

(2))2.

From (3.10), we have

(3.11) (2M22 +M33)((P
(2))1 − (P (1))1) + 2M12((P

(2))2 − (P (1))2) = 0.

We now consider ϕ = x3
2 − 3x2

1x2. For such a choice of ϕ, we obtain

(3.12) (2M22 +M33)((P
(2))2 − (P (1))2) + 2M12((P

(1))1 − (P (2))1) = 0.

We multiply (3.11) by 2M22 +M33:

(2M22 +M33)
2((P (1))1 − (P (2))1) + 2M12(2M22 +M33)((P

(1))2 − (P (2))2) = 0

and (3.12) by 2M12:

2M12(2M22 +M33)((P
(2))2 − (P (1))2) + 4M2

12((P
(1))1 − (P (2))1) = 0

After summing both equations, we get

(3.13) ((2M22 +M33)
2 + 4M2

12)((P
(1))1 − (P (2))1) = 0.

We now consider ϕ = x3
1 − 3x2

3x1 and ϕ = x2
3 − 3x3x

2
1. We follow the same procedure

as the one described above. We get

(3.14) ((M22 + 2M33)
2 + 4M2

31)((P
(1))1 − (P (2))1) = 0.

Finally, we consider ϕ = x1x2x3. We get

(3.15) M32((P
(1))1 − (P (2))1) = 0.

Assume now that (P (1))1 ̸= (P (2))1. Then

M32 = M12 = M31 = M22 = M33 = 0.

Since M is symmetric and trM = 0, the assumption (P (1))1 ̸= (P (2))1 gives M = 0,
which is absurd.

Finally, to prove that (P (1))2 = (P (2))2 and (P (1))3 = (P (2))3, it will suffice to
consider also the following harmonic functions:

ϕ = x3
2 − 3x2x

2
3, and ϕ = x3

3 − 3x3x
2
2.

3.3. Proof of Theorem 3.1. The proof of stability is quite technical and longer
than the proof of uniqueness. We proceed as follows. First, we multiply the elastic
equation by a set of harmonic test functions to be specified at a later stage, as we
did for the uniqueness proof. The result is equation (3.5). Now the objective is
to propagate the smallness of the data directly into the right-hand side of (3.5),
which encodes the information on both the moment tensor and location of the source.
In doing so, we exploit the fact that S is harmonic in a neighborhood of ∂Ω (as
we have seen, this is a consequence of Corollary 2.4) and use a theorem from [2].
Then, we retrace some calculations done in the uniqueness proof and choose harmonic
polynomials of degree three as test functions.
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Proof. Define u, S, and f as at the beginning of the uniqueness proof of Theorem
3.2. To prove the desired Lipschitz stability estimate, we first need to propagate the
smallness of the data

∥∇S(·, t)∥L2(Br0
(x̄)) ≤ ε in [0, t0],

into the integral ∣∣∣∣∫
Ω

f · ∇ϕ

∣∣∣∣ ,
since f, by definition, encodes the information on both |M (2)−M (1)| and |P (2)−P (1)|.

Let τ0 be the same as in Corollary 2.4. As in the uniqueness proof of Theorem
3.2, we consider, without loss of generality, t0 < τ0. Moreover, we recall that

z = ρ0

∫
Ω

u · ∇ϕ, ztt =

∫
Ω

f · ∇ϕ,

Throughout the proof, we shall fix t1 ≤ t0
2 . Since

z(0) = ρ0

∫
Ω

u(x, 0) · ∇ϕ = 0, zt(0) = ρ0

∫
Ω

ut(x, 0) · ∇ϕ = 0,

we have

z(t1) =

∫ t1

0

zt(s) ds =

∫ t1

0

∫ s

0

ztt(η) dη ds

=

∫ t1

0

(∫ t1

η

ds

)
ztt(η) dη =

∫ t1

0

(t1 − η) ztt(η) dη =
t21
2

∫
Ω

f · ∇ϕ,

hence

(3.16)

∣∣∣∣∫
Ω

f · ∇ϕ

∣∣∣∣ ≤ 2
|z(t1)|
t21

.

It is now apparent that, in the first part of the proof, our main efforts shall be devoted
to proving that the smallness of the data propagates into |z(t1)|.

From (3.8), we write

|z(t1)| =
∣∣∣∣∫

∂Ω

∂S(·, t1)
∂ν

ϕ− S(·, t1)
∂ϕ

∂ν

∣∣∣∣
≤
∫
∂Ω

∣∣∣∣∂S(·, t1)∂ν

∣∣∣∣ |ϕ|+ ∣∣∣∣∫
∂Ω

S(·, t1)
∂ϕ

∂ν

∣∣∣∣ .
We first notice that∫

∂Ω

∣∣∣∣∂S(·, t1)∂ν

∣∣∣∣ |ϕ| ≤ ∥∇S(·, t1)∥L∞(∂Ω)︸ ︷︷ ︸
ω1

∫
∂Ω

|ϕ|.

Secondly, for x0 ∈ BR0
\ Ω, where BR0

is such that

Br0(x̄) ∪ Ω ⊂ BR0
,
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we have ∣∣∣∣∫
∂Ω

S(·, t1)
∂ϕ(x)

∂ν

∣∣∣∣ ≤ ∣∣∣∣∫
∂Ω

(S(·, t1)− S(x0, t1))
∂ϕ

∂ν

∣∣∣∣
≤ ∥S(·, t1)− S(x0, t1)∥L∞(∂Ω)︸ ︷︷ ︸

ω2

∫
∂Ω

∣∣∣∣∂ϕ∂ν
∣∣∣∣ .

Putting everything together, we obtain

|z(t1)| ≤ ω1

∫
∂Ω

|ϕ|+ ω2

∫
∂Ω

∣∣∣∣∂ϕ∂ν
∣∣∣∣ ≤ |∂Ω| (ω1 + ω2) ∥ϕ∥C1(∂Ω).

We thus begin to quantify the smallness of |z(t1)| by estimating

ω1 := ∥∇S(·, t1)∥L∞(∂Ω).

We shall define d1 such that S(·, t1) is harmonic in B d1
4
(x), for x ∈ ∂Ω. By Corollary

2.5, we set

d1 =
d0
2

− t1
α0

.

By the mean value property of harmonic functions, for any x ∈ ∂Ω, we have

(3.17) |∇S(x, t1)| ≤
1∣∣∣B d1
4
(x)
∣∣∣
∫
B d1

4

(x)

|∇S(·, t1)| ≤
c

d
3
2
1

∥∇S(·, t1)∥L2(BR0
\Ω d1

2

),

where c =
(
48
π

) 1
2 . To estimate ω1, we exploit the following estimate of propagation of

smallness [2, Theorem 5.1]:

(3.18) ∥∇S(·, t1)∥L2(BR0
\Ω d1

2

) ≤ C0∥∇S(·, t1)∥θL2(Br0 (x̄))
∥∇S(·, t1)∥1−θ

L2(B2R0
\Ωd1

)
.

for some θ ∈ (0, 1) and C0 > 0 depending on λ0, µ0, ρ0, r0, d0 and Ω.
We first estimate ∥∇S(·, t1)∥L2(B2R0

\Ωd1
). Notice that

div(∇S(x, t1)) = −ρ0div
(
u(x, t1)χΩd1

(x)
)
.

From [9, Section 5.9.1], we obtain

(3.19)

∥S(·, t1)∥H1(R3) ≤ Cρ0∥div
(
u(·, t1)χΩd1

)
∥H−1(R3)

≤ Cρ0

(∫
Ωd1

|u(·, t1)|2
) 1

2

.

We then use the energy estimate of Proposition 2.2 for u(·, t1). We have

(3.20)

∫
Ω

|u(·, t1)|2 ≤ t31e
t1/ρ0

ρ0

∫
Ω

|f|2.

We now focus on the right-hand side of the inequality above. We write

f(x) =− (M (2) −M (1))q′(|x− P (2)|) (x− P (2))

|x− P (2)|
−M (1)(∇(q(|x− P (2)|))−∇(q(|x− P (1)|))).
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Since |M (1)|, |M (2)| ≤ M0, we get

(3.21)

∫
Ω

|f|2 ≤ 2|M (2) −M (1)|2
∫
Ω

(q′(|x− P (2)|))2

+ 2M2
0

∫
Ω

∣∣∣∇(q(|x− P (2)|))−∇(q(|x− P (1)|))
∣∣∣2 .

Notice that∣∣∣∂j(q(|x− P (2)|))− ∂j(q(|x− P (1)|))
∣∣∣

=

(∫ 1

0

∣∣∣∇∂j(q(|x− (P (1) + (P (2) − P (1))η)|))
∣∣∣ dη) |P (2) − P (1)|,

hence ∫
Ω

∣∣∣∂j(q(|x− P (2)|))− ∂j(q(|x− P (1)|))
∣∣∣2

≤|P (2) − P (1)|2
∫ 1

0

∫
Ω

∣∣∣∇∂j(q(|x− (P (1) + (P (2) − P (1))η)|))
∣∣∣2 .

From (3.21), we have(∫
Ω

|f|2
) 1

2

≤ C1|M (2) −M (1)|+ C2|P (2) − P (1)|,

where

C1 :=

∫
B d0

2

(q′(|x− P (2)|))2
 1

2

,

C2 :=

(
M2

0

∫ 1

0

∫
Ω

∣∣∣∇∂j(q(|x− (P (1) + (P (2) − P (1))η)|))
∣∣∣2) 1

2

.

From (3.20), we obtain(∫
Ω

|u(·, t1)|2
) 1

2

≤

√
t31e

t1/ρ0

ρ0

(
C1|M (2) −M (1)|+ C2|P (2) − P (1)|

)
,

and, from (3.19), we have

∥∇S(·, t1)∥L2(B2R0
\Ωd1

) ≤ C3

(
|M (2) −M (1)|+ |P (2) − P (1)|

)
,

where

C3 := C
√
ρ0t31e

t1/ρ0 max{C1, C2}.

Estimate (3.18) then gives

∥∇S(·, t1)∥L2(BR0
\Ω d1

2

) ≤ C0C3ε
θ
(
|M (2) −M (1)|+ |P (2) − P (1)|

)1−θ

.
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Using (3.17), we finally get

(3.22) ω1 ≤ cC0C3

d
3
2
1

εθ
(
|M (2) −M (1)|+ |P (2) − P (1)|

)1−θ

.

In fact, the same inequality holds for

(3.23) ∥∇S(·, t1)∥L∞(BR0
\Ω) ≤

cC0C3

d
3
2
1

εθ
(
|M (2) −M (1)|+ |P (2) − P (1)|

)1−θ

.

We now estimate

ω2 := ∥S(·, t1)− S(x0, t1)∥L∞(∂Ω), fixed some x0 ∈ BR0 \ Ω.

For any x ∈ ∂Ω, we notice that

S(x, t1)− S(x0, t1) =

∫ s0

0

d

ds
S(γ(s), t1) =

∫ s0

0

∇S(γ(s), t1)γ
′(s),

hence, by (3.23),

|S(x, t1)− S(x0, t1)| ≤ ∥∇S(·, t1)∥L∞(BR0
\Ω)

∣∣∣∣∫ s0

0

γ′(s)

∣∣∣∣
≤ s0

cC0C3

d
3
2
1

εθ
(
|M (2) −M (1)|+ |P (2) − P (1)|

)1−θ

,

where γ is an arc-length parameterized curve such that γ(0) = x0 and γ(s0) = x.
Since Ω is convex, there exists K > 0 depending only on the diameter of Ω and R0

such that
s0 ≤ K, ∀x0 ∈ BR0

\ Ω, ∀x ∈ ∂Ω,

hence

(3.24) ω2 ≤ K
cC0C3

d
3
2
1

εθ
(
|M (2) −M (1)|+ |P (2) − P (1)|

)1−θ

.

Finally, putting (3.16), (3.22) and (3.24) together, we find that

(3.25)

∣∣∣∣∫
Ω

f · ∇ϕ

∣∣∣∣ ≤ ε1∥ϕ∥C1(∂Ω),

where

(3.26) ε1 :=
2C4

t21
εθ(|M (2) −M (1)|+ |P (2) − P (1)|)1−θ,

and

C4 :=
cC0C3

d
3
2
1

|∂Ω|max {1,K} .

We are now able to propagate the smallness of the data directly into |M (2)−M (1)|
and |P (2) − P (1)| by using the definition of f:∫

Ω

f · ∇ϕ =

∫
B d0

2

(P (1))

q′(|x− P (1)|)
|x− P (1)|

M (1)(x− P (1)) · ∇ϕ

−
∫
B d0

2

(P (2))

q′(|x− P (2)|)
|x− P (2)|

M (2)(x− P (2)) · ∇ϕ.
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In what follows, we retrace some calculations done in the uniqueness proof of Theorem
3.2, starting from equation (3.9) up to (3.15).

Step 1: Moment tensor. We begin by recalling that, for ϕ = xixj , i ̸= j, we
have: ∫

Ω

f · ∇ϕ = −2M
(2)
ij + 2M

(1)
ij .

By (3.25), we thus find

(3.27)
∣∣∣M (2)

ij −M
(1)
ij

∣∣∣ ≤ C5
ε1
2
, i, j = 1, 2, 3, i ̸= j,

where C5 refers to a constant greater than ∥ϕ∥∂Ω for any choices of ϕ we will make
throughout the remainder of the proof. By taking ϕ = (x2

1 − x2
2)/2, ϕ = (x2

1 − x2
3)/2,

and ϕ = (x2
2 − x2

3)/2, we also get∣∣∣(M (2)
11 −M

(1)
11 )− (M

(2)
22 −M

(1)
22 )
∣∣∣ ≤ C5ε1,

∣∣∣(M (2)
11 −M

(1)
11 )− (M

(2)
33 −M

(1)
33 )
∣∣∣ ≤ C5ε1,

and ∣∣∣(M (2)
22 −M

(1)
22 )− (M

(2)
33 −M

(1)
33 )
∣∣∣ ≤ C5ε1.

We can write

M
(2)
11 −M

(1)
11 = M

(2)
22 −M

(1)
22 + σ1, M

(2)
22 −M

(1)
22 = M

(2)
33 −M

(1)
33 + σ2,

and

M
(2)
33 −M

(1)
33 = M

(2)
11 −M

(1)
11 + σ3,

where |σi| ≤ C5ε1, i = 1, 2, 3. Using the results above, together with trM (1) =
trM (2) = 0: (

M
(2)
11 −M

(1)
11

)
+
(
M

(2)
22 −M

(1)
22

)
+
(
M

(2)
33 −M

(1)
33

)
= 0,

we find

(3.28) |M (2)
ii −M

(1)
ii | ≤ C5

ε1
3
, i = 1, 2, 3.

Putting (3.27) and (3.28) together, we finally get

(3.29) |M (2) −M (1)| ≤ C6ε1, C6 =
5
√
3

6
C5.

Step 2: Location of the source. We begin by noticing that estimate (3.29)
implies

M (2) = M (1) +Mσ,
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where Mσ ∈ M3 and |Mσ| ≤ C6ε1. Repeating the same calculations done in the
uniqueness proof of Theorem 3.2 yields

6(2M
(1)
22 +M

(1)
33 )(P (1) − P (2))1 + 12M

(1)
12 (P (1) − P (2))2

= 6(2Mσ
22 +Mσ

33)(P
(2))1 + 12Mσ

12(P
(2))2 +

∫
Ω

f · ∇ϕ

for ϕ = x3
1 − 3x2

2x1. Hence∣∣∣(2M (1)
22 +M

(1)
33 )(P (1) − P (2))1 + 2M

(1)
12 (P (1) − P (2))2

∣∣∣ ≤ C7ε1,

where C7 depends on the diameter of Ω. Analogously, by taking ϕ = x3
2 − 3x2

1x2, we
obtain ∣∣∣(2M (1)

22 +M
(1)
33 )(P (1) − P (2))2 + 2M

(1)
12 (P (1) − P (2))1

∣∣∣ ≤ C7ε1.

We can then write the following system:(2M
(1)
22 +M

(1)
33 )(P (1) − P (2))1 + 2M

(1)
12 (P (1) − P (2))2 = σ̃1,

2M
(1)
12 (P (1) − P (2))2 − (2M

(1)
22 +M

(1)
33 )(P (1) − P (2))2 = σ̃2,

where |σ̃1|, |σ̃2| ≤ C7ε1. Hence

(P (1) − P (2))1 =

∣∣∣∣∣σ̃1 2M
(1)
12

σ̃2 2M
(1)
22 +M

(1)
33

∣∣∣∣∣
−
(
(2M

(1)
22 +M

(1)
33 )2 + 4(M

(1)
12 )2

) .
We have ∣∣∣((2M (1)

22 +M
(1)
33 )2 + 4(M

(1)
12 )2

)
(P (1) − P (2))1

∣∣∣ ≤ 5C7M
2
0 ε1.

Repeating the same calculations done above for ϕ = x3
1 − 3x2

3x1, ϕ = x3
3 − 3x3x

2
1 and

ϕ = x1x2x3 yields∣∣∣((M (1)
22 + 2M

(1)
33 )2 + 4(M

(1)
13 )2

)
(P (1) − P (2))1

∣∣∣ ≤ 5C7M
2
0 ε1,

and ∣∣∣(M (1)
32 )2(P (1) − P (2))1

∣∣∣ ≤ C7M
2
0 ε1.

By putting everything together and using trM (1) = 0, we obtain:

(3.30)



∣∣∣((M (1)
11 −M

(1)
22 )2 + 4(M

(1)
12 )2

)
(P (1) − P (2))1

∣∣∣ ≤ C8ε1,∣∣∣((M (1)
33 −M

(1)
11 )2 + 4(M

(1)
13 )2

)
(P (1) − P (2))1

∣∣∣ ≤ C8ε1,∣∣∣M (1)
32 (P (1) − P (2))1

∣∣∣ ≤ C8ε1.
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where C8 = 5C7M
2
0 . We set λ > 0 such that

(3.31)


(M

(1)
11 −M

(1)
22 )2 + 4(M

(1)
12 )2 ≤ λ2,

(M
(1)
33 −M

(1)
11 )2 + 4(M

(1)
13 )2 ≤ λ2,

(M
(1)
32 )2 ≤ λ2.

We first want to show that

(3.32) |M (1)
ij | ≤ λ, i, j = 1, 2, 3.

System (3.31) gives

|M (1)
12 | ≤ λ

2
, |M (1)

13 | ≤ λ

2
, |M (1)

32 | ≤ λ,

and
|M (1)

11 −M
(1)
22 | ≤ λ, |M (1)

33 −M
(1)
11 | ≤ λ,

that is
M

(1)
22 = −λ̃1 +M

(1)
11 , M

(1)
33 = −λ̃2 +M

(1)
11 ,

with |λ̃1|, |λ̃2| ≤ λ. Using trM (1) = 0, the equations above yield

3M
(1)
11 − λ̃1 − λ̃2 = 0,

hence |M (1)
11 | ≤ 2

3λ. Since the same calculations can be done for M
(1)
22 and M

(1)
33 , we

proved (3.32), hence
|M |2 ≤ 9λ2.

We recall now that (3.1) implies |M |2 ≥ m2
0, hence

λ ≥ m0

3
.

This means that if we set
λ =

m0

6

in (3.31), at least one of the coefficients of the system must be greater than m0

6 . By
(3.30), we have ∣∣∣(P (1) − P (2))1

∣∣∣ ≤ 6C8

m0
ε1.

By repeating the same calculations for (P (1) − P (2))2, we finally obtain∣∣∣P (1) − P (2)
∣∣∣ ≤ 6C8

m0
ε1.

Putting everything together yields∣∣∣P (1) − P (2)
∣∣∣+ ∣∣∣M (1) −M (2)

∣∣∣ ≤ C9

m0
ε1, C9 = m0C6 +

6C8

m0
.

We now recall from (3.26) that

ε1 =
2C4

t21
εθ(|M (2) −M (1)|+ |P (2) − P (1)|)1−θ,
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hence

(3.33)
∣∣∣P (1) − P (2)

∣∣∣+ ∣∣∣M (1) −M (2)
∣∣∣ ≤ C10

m0
εθ(|M (2) −M (1)|+ |P (2) − P (1)|)1−θ,

where

C10 =
2C4

t21
C9.

From (3.33), we finally get the desired Lipschitz stability estimate∣∣∣P (1) − P (2)
∣∣∣+ ∣∣∣M (1) −M (2)

∣∣∣ ≤ (C10

m0

) 1
θ

ε.

4. Concluding remarks. In this paper we have studied an early-warning in-
verse source problem for the elasto-gravitational equations that is motivated by seis-
mology. The problem involves a mixed hyperbolic-elliptic system of partial differential
equations describing elastic wave displacement and gravity perturbations produced by
a source in a homogeneous bounded medium. Within the Cowling approximation, we
have shown how to turn the so-called elasto-gravitational coupling to our advantage:
the changes of the gravitational field are generated instantaneously by Poisson’s equa-
tion and thus can be used to solve the early-warning inverse problem without having
to impose a minimum on the time needed to determine the source.

This paper is the first step towards developing the theoretical framework of
the PEGS inverse problem. Proving uniqueness and stability theorems for the self-
gravitating elastic equations will be the object of future research.

Appendix A. Energy estimates.

A.1. Proof of proposition 2.2.

Proof. We begin by multiplying both sides of the first equation of the system
(2.3) by ut. We get

ρ0utt · ut − div(C∇u) · ut = f · ut,

hence
ρ0
2
∂t|ut|2 +

1

2
∂t(C∇u · ∇u)− div(C∇u · ut) = f · ut.

We integrate the equation above over Ω× [0, s]. Since C∇u · ν = 0 on ∂Ω, we obtain

1

2

∫
Ω

(
ρ0|ut(x, s)|2 + C∇u(x, s) · ∇u(x, s)

)
dx =

∫ s

0

∫
Ω

f(x) · ut(x, t) dxdt,

hence ∫
Ω

|ut(x, s)|2 dx ≤ 1

ρ0

(∫ s

0

∫
Ω

|f(x)|2 dxdt+

∫ s

0

∫
Ω

|ut(x, t)|2 dxdt

)
.

By Grönwall’s inequality, we find

(A.1)

∫
Ω

|ut(x, s)|2 dx ≤ 1

ρ0

(∫ s

0

∫
Ω

|f(x)|2 dxdt
)
es/ρ0 .

Since u(x, 0) = 0, we have

|u(x, τ)| ≤
∫ τ

0

|ut(x, s)|ds ≤
√
τ

(∫ τ

0

|ut(x, s)|2 ds
) 1

2

,
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hence, by (A.1), we get∫
Ω

|u(x, τ)|2 dx ≤ τ

∫ τ

0

∫
Ω

|ut(x, s)|2 dxds

≤ τ

∫ τ

0

1

ρ0

(∫ s

0

∫
Ω

|f(x)|2 dxdt
)
es/ρ0 ds

≤ τeτ/ρ0

ρ0

∫ τ

0

(∫ s

0

∫
Ω

|f(x)|2 dxdt
)

ds

hence ∫
Ω

|u(x, τ)|2 dx ≤ τ3eτ/ρ0

ρ0

∫
Ω

|f(x)|2 dx.

A.2. Proof of proposition 2.3.

Proof. Define v := u e−γt, γ > 0. It is easy to check that

ut = (vt + γv)eγt,

utt = (vtt + 2γvt + γ2v)eγt,

hence, if u solves (2.3), we have that v solves

ρ0
(
vtt + 2γvt + γ2v

)
− div(C∇v) = f e−γt.

After multiplying both sides of the above equation by vt, we obtain:

ρ0
2

(
∂t|vt|2 + 4γ|vt|2 + γ2∂t|v|2

)
− ∂j(Cijkl∂kvl)vi,t = f · vt e

−γt.

We integrate the equation above over

K̃α(x0, τ) := Kα(x0, τ) ∩ (Ω× [0,∞)),

where
Kα(x0, τ) := {(x, t) ∈ R4 such that 0 ≤ t ≤ τ − α|x− x0|}.

We write

(A.2)

∫
K̃α(x0,τ)

∂t

(
ρ0
2
|vt|2 + ρ0

γ2

2
|v|2

)
− ∂j(Cijkl∂kvl)vi,t

+

∫
K̃α(x0,τ)

2ρ0γ|vt|2 =

∫
K̃α(x0,τ)

f · vt e
−γt.

We want to prove that, if we set

I1(α) :=

∫
K̃α(x0,τ)

∂t

(
ρ0
2
|vt|2 + ρ0

γ2

2
|v|2

)
− ∂j(Cijkl∂kvl)vi,t,

then I1(α) ≥ 0 for a precise choice of the parameter α. We first observe that∫
K̃α(x0,τ)

∂j(Cijkl∂kvl)vi,t =

∫
K̃α(x0,τ)

∂j(Cijkl∂kvlvi,t)− Cijkl∂kvl∂jvi,t

=

∫
K̃α(x0,τ)

∂j(Cijkl∂kvlvi,t)−
1

2
∂t(Cijkl∂kvl∂jvi).
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Let us set

Γ1 := (Ω× {0}) ∩Kα(x0, τ), Γ2 := (Ω× (0,∞)) ∩ ∂Kα(x0, τ),

Γ3 := (∂Ω× (0,∞)) ∩Kα(x0, τ).

Notice that
∂K̃α(x0, τ) = Γ1 ∪ Γ2 ∪ Γ3.

Thanks to the regularity provided by Theorem 2.1, we employ the divergence theorem
and obtain∫

∂K̃α(x0,τ)

(
ρ0
2
|vt|2 + ρ0

γ2

2
|v|2 + 1

2
Cijkl∂kvl∂jvi

)
(N · et)− (Cijkl∂kvlvi,t) (N · ej),

where N is the outward normal vector to ∂K̃α(x0, τ). It is defined as follows:
• on Γ1: N = (0, 0, 0,−1).

• on Γ2: N = 1√
1+α2

(
α(x−x0)
|x−x0| , 1

)
.

• on Γ3: N = (ν, 0), where ν is the outward normal vector to ∂Ω.
Since v = vt = 0 on Γ1 and (C∇v) · ν = 0 on Γ3, we can write

I1(α)=
1

2
√
1 + α2

∫
Γ2

ρ0|vt|2 + ρ0γ
2|v|2 + Cijkl∂kvl∂jvi − 2α (Cijkl∂kvlvi,t)

(x− x0)j
|x− x0|︸ ︷︷ ︸

I2(α)

.

We now define

ξ := vt, A :=
∇v+ (∇v)⊤

2
, η :=

(x− x0)

|x− x0|
.

Since
ρ0γ

2

2
√
1 + α2

∫
Γ2

|v|2 ≥ 0,

we have

I2(α) ≥ ρ0|ξ|2 + λ0(trA)2 + 2µ0|A|2 − 2α(λ(trA)ξ · η + 2µ0Aξ · η).

Since |η| = 1 and ρ0, λ0 and µ0 > 0, we have, for every ϵ > 0,

I2(α) ≥ |ξ|2(ρ0 − ϵα(λ0 + 2µ0)) +
(
1− α

ϵ

)
(λ0(trA)2 + 2µ0|A|2).

Finally, for α = α0 and ϵ = α0, we obtain

I2(α0) ≥ |ξ|2(ρ0 − α2
0(λ0 + 2µ0)) ≥ 0,

which implies that
I1(α0) ≥ 0.

This means that, by (A.2), we have

(A.3) 2ρ0γ

∫
K̃α0

(x0,τ)

|vt|2 ≤ I1(α0) + 2ρ0γ

∫
K̃α0

(x0,τ)

|vt|2 =

∫
K̃α0

(x0,τ)

f · vt e
−γt.
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By the Cauchy-Schwarz inequality, we get

∫
K̃α0 (x0,τ)

f · vt e
−γt ≤

(∫
K̃α0 (x0,τ)

|f|2e−2γt

) 1
2
(∫

K̃α0 (x0,τ)

|vt|2
) 1

2

,

hence (A.3) becomes:

(A.4) (2ρ0γ)
2

∫
K̃α0 (x0,τ)

|vt|2 ≤
∫
K̃α0 (x0,τ)

|f|2e−2γt.

Observe that, since v(x, 0) = 0 and using again the Cauchy-Schwarz inequality, we
have

|v(x, t)|2 ≤ t

∫ t

0

|vs(x, s)|2 ds ≤ τ

∫ t

0

|vs(x, s)|2 ds

since t ≤ τ . Hence∫
K̃α0

(x0,τ)

|v(x, t)|2 dxdt ≤ τ

∫
Bτ/α0

(x0)∩Ω

(∫ τ−α0|x−x0|

0

(∫ t

0

|vs(x, s)|2 ds
)

dt

)
dx.

Since t ≤ τ − α0|x− x0|, we write
(A.5)∫
K̃α0

(x0,τ)

|v(x, t)|2 dxdt ≤ τ

∫
Bτ/α0

(x0)∩Ω

(τ − α0|x− x0|)

(∫ τ−α0|x−x0|

0

|vs(x, s)|2 ds

)
dx

≤ τ2
∫
K̃α0

(x0,τ)

|vs(x, s)|2 dxds.

Finally, putting together (A.4) and (A.5), since v = u e−γt, we obtain (2.9).
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