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Preface

The development of large-scale data analysis and statistical learning methods for
data science is gaining more and more interest, not only among statisticians, but also
among computer scientists, mathematicians, computational physicists, economists,
and, in general, all experts in different fields of knowledge who are interested in
extracting insight from data.
Cross-fertilization between the different scientific communities is becoming crucial
for progressing and developing new methods and tools in data science.
In this respect, the Statistics & Data Science group of the Italian Statistical Society
has organized an international conference held in Pavia on the 27 and 28 of April
2023, attended by over 70 researchers from different scientific fields.
A collection of the presented papers is available in the present Proceedings showing
a huge variety of approaches, methods, and data-driven problems, always tackled
according to a rigorous and robust scientific paradigm.

The Statistics & Data Science group
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The structural behavior of Santa Maria del
Fiore Dome: an analysis with machine learning
techniques
Il comportamento strutturale della Cupola di Santa Maria
del Fiore: un’analisi con tecniche di machine learning

Stefano Masini and Silvia Bacci and Fabrizio Cipollini and Bruno Bertaccini

Abstract The Brunelleschi’s Dome overlooking the cathedral of Santa Maria del
Fiore in Florence is a symbol of the Italian Renaissance. Because of the presence of
numerous cracks distributed on its entire surface, the Dome is subjected to a con-
tinuous monitoring activity that relies, among others, on electronic sensors, mainly
deformometers, to measure the movements of the cracks, and thermometers, to mea-
sure the masonry temperatures. These instruments are active since more than 30
years and take measures more times a day, thus producing a huge amount of data.
In this contribution, we aim at applying some machine learning techniques (i) to
describe the overall movement of Dome surface through a suitable synthesis of the
measures of the sensors and (ii) to make medium- and long-term predictions about
the evolution of the Dome.
Abstract La Cupola del Brunelleschi sovrastante la cattedrale di Santa Maria del
Fiore a Firenze è un simbolo del Rinascimento italiano. A causa della presenza
di numerose crepe distribuite sull’intera superficie, la Cupola è sottoposta a una
continua attività di monitoraggio che si basa, tra gli altri, su sensori elettronici,
principalmente deformometri per misurare i movimenti delle crepe e termometri
per misurare la temperatura dei muri. Questi strumenti sono attivi da oltre 30 anni
e rilevano le misure più volte al giorno, producendo cosı̀ un’enorme mole di dati.
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In questo contributo, il nostro scopo è l’applicazione di alcune tecniche di ma-
chine learning per (i) descrivere il movimento complessivo della Cupola tramite
un’opportuna sintesi delle misure dei sensori e (ii) fare previsioni a medio e lungo
termini riguardo all’evoluzione della Cupola.

Key words: Artificial Intelligence, Cultural heritage preservation, Dimensionality
reduction techniques, Forecasting, Multivariate time series data, Sensor data

1 Introduction

The cathedral of Santa Maria del Fiore in Florence (IT) with its Dome is one of the
most famous buildings of the Italian Reinassance. The Dome was built by Filippo
Brunelleschi in the period 1420-1436 adopting a special technique (with bricks dis-
posed as an “herringbone pattern”) that allowed setting up the construction site with-
out shoring. The result was impressive: nowadays, the Dome is still of the largest
masonry domes in the world, weighing more than 43,000 tons. Unfortunately, from
the beginning some cracks appeared on the surface of the Dome, thus the building
has always been subject to careful monitoring.

The monitoring system of Brunelleschi’s Dome is made up of a multiplicity of
instruments, such as piezometers, plumb lines, tele-coordinometers, thermometers,
and mechanical and electronic deformometers. In particular, in 1987 were installed
several electronic deformometers devoted to measuring the movements of the single
cracks at least four times a day. Thus, a huge amount of data has been accumulated
since the late of 1980s. The complex nature of relations among variables (mainly,
movements of cracks and seasonal and daily changes of the masonry temperatures)
together with the limits of the computational resources and competencies available
in the scientific community have meant that to date these data have not yet been
subjected to a systematic study. Indeed, the analyses carried out in previous works
usually focused on a single device or a limited set of them [1, 4, 2]; a more recent
work [3] took into account the entire set of electronic deformometers, but limited to
a one-year period.

In this contribution, we aim at applying some machine learning techniques (i) to
describe the overall movement of Dome surface through a suitable synthesis of the
measures of the sensors and (ii) to make medium- and long-term predictions about
the evolution of the Dome.

Section 2 provides some more details on data, Section 3 describes the machine
learning methods used in the analysis, Section 4 illustrates some preliminary results,
and Section 5 concludes with some final remarks.
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2 Data

In the following we focus on data coming from the 57 electronic deformometers.
A deformometer is a sensor installed on the walls across a crack to measure the
changes of its width: at installation the instrument is set on value 0, so that pos-
itive measures denote a dilatation of the masonry structure and, then, a shrink of
the crack, while negative measures refer to a contraction of the walls and, then, a
widening of the crack. Deformometers are allocated on the entire surface of the
Dome, with a major concentration on those sectors where there is a major presence
of cracks. Here we consider the measurements of the complete set of 57 deformome-
ters collected from 1997 to 2017.

Together with the measures of the deformometers, we also take into account the
measures of the 47 masonry thermometers installed upon the Dome, as previous
studies [1, 4, 2, 3] outlined a strong association between temperatures and move-
ments of the cracks.

To account for gaps and outliers present in the data due to blackouts that pe-
riodically put electronic sensors out of action, producing anomalous oscillations,
full scale values, or missing observations, we have to pre-treat data. For this aim,
we followed the approach proposed in [2], based on the estimation of a quadratic-
sinusoidal regression model per each sensor, thus obtaining a complete data matrix.

3 Methods

The first part of the analysis aims at synthesizing the measures of the entire set of
sensors to describe the overall behavior of the Dome (and not of its single cracks).
This typical problem of dimensionality reduction is addressed through the Kernel
Principal Component Analysis (KPCA) [5].

Compared to traditional PCA, which combines observations in a linear way,
KPCA allows us to make a non-linear projection of the observations preserving the
relative distances between data points. In KPCA we use a function (kernel) to map
the data from the original space in a new high-dimensional features space in order
to verify whether, in the new space, the data are linearly separable. The algorithm
requires to set the kernel type (linear, polynomial, gaussian rbf or sigmoid) and the
gamma parameter (which is a space regularization parameter). In order to find their
best combination, we use ScikitLearn’s GridSearchCV with cross-validation func-
tion and, since KPCA is an unsupervised learning algorithm, we use the distance be-
tween the original point and the pre-image calculated on the new high-dimensional
feature space as reconstruction error.

The principal components resulting from the application of the KPCA as well as
the series of masonry temperatures are then used as inputs in a subsequent analysis
aimed at providing predictions of the movements of the Dome at medium- and long-
term. For this aim, we exploit the performance of some recurrent and convolutional
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neural network models [6], typically adopted for the prediction of multivariate time
series data.

The above neural networks are used to make predictions of a certain number of
steps (days) in the future (multiple-step forecasting). The model is trained using a
sliding window of consecutive days (the further the future is, the wider the window),
with the mean squared error as loss function and the mean absolute error as metric.
The best performing model is a network composed of an initial convolutional layer
with 40 (6x6) convolutional filters, followed by a bidirectional layer [8] with 20
Gated Recurrent Units (GRU) [7] and 2 more consecutive hidden layers.

4 Results

The results of the KPCA executed on the entire series of measures are displayed in
Figure 1, where the first two principal components are plotted with points related to
observations differently coloured according to the season.
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Fig. 1 Results of KPCA (best model: {’gamma’: 0.1, ’kernel’: ’poly’}): seasonal clustering of
sensor data

The relation between observed cracks and seasonality emerges clearly from the
figure. Namely, clusters of points relating to winter and summer seasons are well
separated.

In light of these results, we execute again the KPCA on separate sets of obser-
vations, according to the location of the deformometers. We distinguish the defor-
mometers into eight groups, corresponding to the eight slice webs that characterize
the surface of the Dome, easily distinguishable with the naked eye thanks to the
white marble cords. For the sake of clarity, the webs are numbered counterclock-
wise starting from the web that faces the nave (see [2] for the planning of the Dome
and its webs). Figure 2 shows the trend of the first principal components for each
web (top panel: odd webs; bottom panel: even webs), together with the trend of the
daily average masonry temperatures (central panel). Note that the figure refers to a
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one-year time window, but the trend repeats with the same pattern throughout the
entire period of observation (i.e., 1997-2017).
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Fig. 2 First principal component of each web (top panel: odd webs, bottom panel: even webs)
along a one-year window (January 1st, 2014 to January 1st, 2015)

Looking at Figure 2, we observe that movements of all webs follow a sinusoidal
trend according to the temperature, with odd webs that move in the opposite di-
rection with respect to even webs. These results provide evidence for a breathing
mechanism of the entire Dome: when even webs shrink, odd webs widen, and vice-
versa.

Finally, the first principal components obtained for each web through the KPCA
are used in input in a neural network to make predictions. Figure 3 shows the next
100 days prediction results for web 2 with a window size equals to 300 ; results for
other webs are similar.

Fig. 3 Forecasting of web 2
trend (window size: 300 days,
steps forward: 100 days)
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5 Conclusions

The application of the machine learning techniques described in the contribution
allowed us to achieve two important goals. First, we demonstrated the close corre-
lation between the temperature and the behavior of the Dome over time, bringing to
outlining a symmetry in the movements of the webs in even position and those in
odd position. Second, we trained and tested some recurrent neural networks in order
to predict the behavior of each web.

For the future, we will prosecute the work along the following main research
lines. First, further variables will be taken into account, such as humidity, wind,
solar exposition, and seismic measurements. Second, a software will be integrated
in the current monitoring system to build a sort of “alarm system” in real-time.

Acknowledgements Authors thank the “Opera del Duomo Foundation” for having making avail-
able the data
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