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HIGHER DIMENSIONAL HOLONOMY MAP FOR RULED

SUBMANIFOLDS IN GRADED MANIFOLDS

GIANMARCO GIOVANNARDI

Abstract. The deformability condition for submanifolds of fixed degree im-
mersed in a graded manifold can be expressed as a system of first order PDEs.
In the particular but important case of ruled submanifolds, we introduce a
natural choice of coordinates, which allows to deeply simplify the formal ex-
pression of the system, and to reduce it to a system of ODEs along a character-
istic direction. We introduce a notion of higher dimensional holonomy map in
analogy with the one-dimensional case [29], and we provide a characterization
for singularities as well as a deformability criterion.
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1. Introduction

The goal of this work is to study the deformability of a some particular kind of
submanifolds immersed in an equiregular graded manifold (N,H1, . . . ,Hs), that is
a smooth manifold endowed with a filtration of sub-bundles of the tangent bundle
H1 ⊂ H2 ⊂ · · · ⊂ Hs = TN satisfying [Hi,Hj ] ⊂ Hi+j , i, j > 1.

Given p ∈ N , a vector v ∈ TpN has degree i if v ∈ Hi
p but v /∈ Hi−1

p . When

we consider an immersed submanifold Φ : M̄ → N and we set M = Φ(M̄), the
interaction between the tangent space Tp̄M = (dΦ)p̄(Tp̄M̄), where (dΦ)p̄ denotes
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the differential of Φ at p̄, and the filtration H1
p ⊂ H2

p ⊂ · · · ⊂ Hs
p is embodied by

the induced tangent flag

(1.1) Tp̄M ∩H1
p ⊂ · · · ⊂ Tp̄M ∩Hs

p,

where p = Φ(p̄), p̄ ∈ M̄ . The smooth submanifold M equipped with the induced
filtration pointwise described by (1.1) inherits a graded structure, that is no more
equiregular. M. Gromov in [25] consider the homogeneous dimension of the tangent
flag (1.1) to define the pointwise degree by

degM (p̄) =

s
∑

j=1

j(m̃j − m̃j−1),

where m̃0 = 0 and m̃j = dim(Tp̄M ∩ Hj
p). In an alternative definition provided in

[35], the authors write the m-tangent vector to M = Φ(M̄) as linear combination of
simple m-vectors Xj1 ∧· · ·∧Xjm where (X1, . . . , Xn) is an adapted basis of TN , see
[5] or (2.3). Then the pointwise degree is the maximum of the degree of the simple
m-vectors whose degree is in turn given by the sum of the degrees of the single
vectors appearing in the wedge product. The degree deg(M) of a submanifold M
is the maximum of the pointwise degree among all points in M̄ .

In [35] V. Magnani and D. Vittone introduced a notion of area for submani-
folds immersed in Carnot groups that later was generalized by [14] for immersed
submanifolds in graded structures. Given a Riemannian metric g in the ambient
space N , the area functional Ad(M) in [14] is obtained by a limit process involv-
ing the Riemannian areas of M associated to a sequence of dilated metrics gr of
the original one g. The density of this area is given by the projection of the m-
vector e1 ∧ . . . ∧ em tangent to M onto the space of m-vectors of degree equal to
d = deg(M), see equation (2.8). The central issue is that the area functional de-
pends on the degree deg(M) of the immersed submanifold M . Thus, if we wish to
compute the first variation formula for this area functional we need to deform the
original submanifold by variations Γ(p̄, τ) that preserve the original degree deg(M).
This constraint on the degree gives rise to a first order system of PDEs that defines
the admissibility for vector fields on M .

The simplest example of immersion is given by a curve γ : I ⊂ R → N , with
γ′(t) 6= 0 at every t ∈ I. The pointwise degree of γ(I) at γ(t) is the degree of
its tangent vector γ′(t) at every t ∈ I. In this particular case the admissibility
system is a system of ODEs along the curve γ. This restriction on vector fields
produces the phenomenon of singular curves, that do not admit enough compactly
supported variations in the sub-bundles determined by the original degree of γ.
This issue has been addressed by L. Hsu in [29] and R. Bryant and L. Hsu in [10].
These two works are based on the Griffiths formalism [23] that studies variational
problems using the geometric theory of exterior differential system [8, 9] and the
method of moving frames developed by E. Cartan [11]. In Carnot manifolds (N,H),
that are a particular case of graded manifolds where the flag of sub-bundles is
produced by a bracket generating distribution H, the usual approach to face this
problem is by means of the critical points of the endpoint map [38]. The presence
of singular curves is strongly connected with the existence of abnormal geodesics,
firstly established by R. Montgomery in [36, 37]. In the literature many papers
concerning this topic have been published, just to name a few we cite [2, 1, 33, 31,
39, 3, 44]. The paper [33] by E. Le Donne, G.P. Leonardi, R. Monti and D. Vittone
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is specially remarkable because of the new algebraic characterization of abnormal
sub-Riemannian extremals in stratified nilpotent Lie groups.

More precisely, L. Hsu [29] defines the singular curves as the ones along which the
holonomy map fails to be surjective. This holonomy map studies the controllability
along the curve restricted to [a, b] ⊂ I of a system of ODEs embodying the constraint
on sub-bundles determined by the degree. In [13, Section 5] the authors revisited
this construction and defined an admissible vector field as a solution of this system.
A powerful characterization of singular curves in terms of solutions of ODEs is
given by [29, Theorem 6]. On the other hand, when a curve γ is regular restricted
to [a, b], [29, Theorem 3] ensures that for any compactly supported admissible
vector field V on [a, b] there exists a variation, preserving the original degree of γ,
whose variational vector field is V . Then, only for regular curves this deformability
theorem allows us to compute the first variation formula for the length functional
deducing the geodesic equations ([13, Section 7]), whereas for singular curves the
situation is more complicated.

The deformability problem of a higher dimensional immersion Φ : M̄ → N
has been first studied in [14]. The admissibility system of first order linear PDEs
expressing this condition in coordinates is not easy to study. Nonetheless, [14,
Proposition 5.5] shows that only the transversal part V ⊥ of the vector field V =
V ⊤ + V ⊥ affects the admissibility system. Therefore, in the present work we con-
sider an adapted tangent basis E1, . . . , Em for the flag (1.1) and then we add
transversal vector fields Vm+1, . . . , Vn of increasing degrees so that a sorting of
{E1, . . . , Em, Vm+1, . . . , Vn} is a local adapted basis for N . Then we consider the
metric g that makes E1, . . . , Em, Vm+1, . . . , Vn an orthonormal basis. Hence we
obtain that the admissibility system is equivalent to

(1.2) Ej(fi) = −
n
∑

r=m+k+1

bijr fr −
m+k
∑

h=m+1

aijh gh,

for i = m + k + 1, . . . , n and deg(Vi) > deg(Ej). In equation (1.2) the integer k,

defined in (3.2), separates the horizontal control of the systems VH =
∑m+k

h=m+1 ghVh

from the vertical component VV =
∑n

r=m+k+1 frVr.
The presence of isolated submanifolds and a mild deformability theorem under

the strong regularity assumption are showed in [14]. However, the definition of
singularity for immersed submanifolds, analogous to the one provided by [29] in the
case of curves, is missing. Therefore the natural questions that arise are:

• is it possible to define a generalization of the holonomy map for submani-
folds of dimension grater than one?

• Under what condition does the surjection of these holonomy map still imply
a deformability theorem in the style of [29, Theorem 3]?

In the present paper we answer the first question in the cases of ruled m-
dimensional submanifolds whose (m − 1) tangent vector fields E2, . . . , Em have
degree s and the first vector field E1 has degree equal to ι0, where 1 6 ι0 6 s− 1.
The resulting degree is deg(M) = (m−1)s+ ι0. Therefore the ruled submanifold is
foliated by curves of degree ι0 out of the characteristic set M̄0, whose points have
degree strictly less than deg(M). Then, under an exponential change of coordinates
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x = (x1, x̂), the admissibility system (1.2) becomes

(1.3)
∂F (x)

∂x1
= −B(x)F (x) −A(x)G(x),

where ∂x1 is the partial derivative in the direction E1, G are the horizontal co-

ordinates VH =
∑m+k

h=m+1 ghVh, F are the vertical components given by VV =
∑n

r=m+k+1 frVr and A,B are matrices defined at the end of Section 4. Therefore,
this system of ODEs is easy to solve in the direction ∂x1 perpendicular to the (m−1)
foliation generated by E2, . . . , Em. We consider a bounded open set Σ0 ⊂ {x1 = 0}
in the foliation, then we build the ε-cylinder Ωε = {(x1, x̂) : x̂ ∈ Σ0, 0 < x1 < ε}
over Σ0. We consider the horizontal controls G in the space of continuous functions
compactly supported in Ωε. For each fixed G , F is the solution of (1.3) vanishing
on Σ0. Then we can define a higher dimensional holonomy map Hε

M , whose image
is the solution F , evaluated on the top of the cylinder Ωε. We say that a ruled
submanifold is regular when by varying the controls G the image of the holonomy
map is a dense subspace, that contains a Schaulder basis of the Banach space of
continuous vertical functions on Σε vanishing at infinity. This Banach space is the
closure with respect to the supremum norm of the space of compactly supported
vertical functions on Σε. Namely an immersion is regular if we are able to generate
all possible continuous vertical functions vanishing at infinity on Σε ⊂ {x1 = ε} by
letting vary the control G in the space of continuous horizontal functions vanish-
ing at infinity inside the cylinder Ωε. The main difference with respect to the one
dimensional case is that the target space of the holonomy map is now the Banach
space of continuous vertical vector vanishing at infinity on the foliation, instead of
the finite vertical space of vectors at the final point γ(b) of the curve. In Theo-
rem 5.8 we provide a nice characterization of singular ruled submaifolds in analogy
with [29, Theorem 6].

For general submanifolds there are several obstacles to the construction of a
satisfactory generalization of the holonomy map. The main difficulty is that we do
not know how to verify a priori the compatibility conditions [26, Eq. (1.4), Chapter
VI], that are necessary and sufficient conditions for the uniqueness and the existence
of a solution of the admissibility system (1.2) (see [26, Theorem 3.2, Chapter VI]).
In Example 3.5 we show how we can deal with these compatibility conditions in
the particular case of horizontal immersions in the Heisenberg group.

In order to give a positive answer to the second question, we need to consider
two additional assumptions on the ruled submanifold: the first one (i) is that the
vector fields E2, . . . , Em of degree s fill the grading H1 ⊂ . . . ⊂ Hs from the top,
namely dim(Hs) − dim(Hs−1) = m − 1, and the second one (ii) is that the ruled
immersion foliated by curves of degree ι0 verifies the bound s − 3 6 ι0 6 s − 1.
Under these hypotheses the space of m-vector fields of degree grater than deg(M)
is reasonably simple, thus in Theorem 6.6 we show that each admissible vector field
on a regular immersed ruled submanifold is integrable in the spirit of [29, The-
orem 3]. This result is sharper than the one obtained for general submanifolds
[14, Theorem 7.3], where the authors only provide variations of the original immer-
sion compactly supported in an open neighborhood of the strongly regular point.
Indeed, since we solve a differential linear system of equations along the charac-
teristics curves of degree ι0, we obtain a global result. On the other hand in [14,
Theorem 7.3] the admissibility system is solved algebraically assuming a pointwise
full rank condition of the matrix A(p̄). To integrate the vector field V (p̄) on Ωε
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we follow the exponential map generating the non-admissible compactly supported
variation Γτ (p̄) = expΦ(p̄)(τV (p̄)) of the initial immersion Φ, where supp(V ) ⊂ Ωε.

By the Implicit Function Theorem there exists a vector field Y (p̄, τ) on Ωε vanish-

ing on Σ0 such that the perturbations Γ̃τ (p̄) = expΦ(p̄)(τV (p̄) + Y (τ, p̄)) of Γ are

immersions of the same degree of Φ for each τ small enough. In general Γ̃ does
not move points on Σ0 but changes the values of Φ on Σε. Finally, the regularity
condition on Φ allows us to produce the admissible variation that fixes the values
on Σε and integrate V . On the other hand, when the bundle of m-vector fields
of degree greater than deg(M) for a general ruled submanifold is larger than the
target space of the higher dimensional holonomy, we lose the surjection in Implicit
Function Theorem that allows us to perturb the exponential map to integrate V .

A direct consequence of this result is that the regular ruled immersions of degree
d that satisfy the assumption (i) and (ii) are accumulation points for the domain
of degree d area functional Ad(·). Therefore it makes sense to consider the first
variation formula computed in [14, Section 8]. An interesting strand of research is
deducing the mean curvature equations for the critical points of the area functional
taking into account the restriction embodied by the holonomy map. Contrary to
what can be expected, we exhibit in Example 6.7 a plane foliated by abnormal
geodesics of degree one that is regular and is a critical point for the area functional
(since its mean curvature equation vanishes).

Furthermore these ruled surfaces appear in the study of the geometrical struc-
tures of the visual brain, built by the connectivity between neural cells [16]. A
geometric characterization of the response of the primary visual cortex in the pres-
ence of a visual stimulus from the retina was first described by the D. H. Hubel and
T. Wiesel [30], that discovered that the cortical neurons are sensitive to different
features such as orientation, curvature, velocity and scale. The so-called simple
cells in particular are sensitive to orientation, thus G. Citti and A. Sarti in [15]
proposed a model where the original image on the retina is lifted to a 2 dimensional
surface of maximum degree into the three-dimensional sub-Riemannian manifold
SE(2), adding orientation. In [17] they shows how minimal surfaces play an im-
portant role in the completion process of images. Adding curvature to the model,
a four dimensional Engel structure arises, see § 1.5.1.4 in [42] and [19]. When in
Example 6.8 we lift the previous 2D surfaces in this structure we obtain surfaces
of codimension 2, but their degree is not maximum since we need to take into ac-
count the constraint that curvature is the derivative of orientation. Nevertheless
these surfaces are ruled, regular and verify the assumption (i) and (ii), therefore by
Theorem 6.6 they can be deformed. Hence, there exists a notion of mean curvature
associated to these ruled surfaces and we might ask if the completion process of
images improved for SE(2) based on minimal surfaces can be generalized to this
framework. Moreover, if we lift the original retinal image to higher dimensional
spaces adding variables that encode new possible features, as suggested in [40] fol-
lowing even a non-differential approach based on metric spaces, we may ask if the
lifted surfaces are still ruled and regular.

The paper is organized as follows. In Section 2 we recall the definitions of
graded manifolds, degree of a submanifold, admissible variations and admissible
vector fields. In Section 3 we deduce the admissibility system (1.2). In Section 4
we provide the definition of ruled submanifolds. Section 5 is completely devoted
to the description of the higher-dimensional holonomy map and characterization of
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regular and singular ruled submanifolds. Finally, in Section 6 we give the proof of
Theorem 6.6.

Acknowledgement. I warmly thank my Ph.D. supervisors Giovanna Citti and Manuel
Ritoré for their advice and for fruitful discussions that gave rise to the idea of higher
dimensional holonomy map. I would also like to thank Noemi Montobbio for an
interesting conversation on proper subspaces of Banach spaces and the referee for
her/his useful comments.

2. Preliminaries

Let N be an n-dimensional smooth manifold. Given two smooth vector fields
X,Y on N , their commutator or Lie bracket is defined by [X,Y ] := XY −Y X . An
increasing filtration (Hi)i∈N of the tangent bundle TN is a flag of sub-bundles

(2.1) H1 ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · · ⊆ TN,

such that

(i) ∪i∈NHi = TN
(ii) [Hi,Hj ] ⊆ Hi+j , for i, j > 1,

where [Hi,Hj ] := {[X,Y ] : X ∈ Hi, Y ∈ Hj}. Moreover, we say that an increasing
filtration is locally finite when

(iii) for each p ∈ N there exists an integer s = s(p) satisfying Hs
p = TpN . The

step at p is the least integer s that satisfies the previous property. Then we
have the following flag of subspaces

(2.2) H1
p ⊂ H2

p ⊂ · · · ⊂ Hs
p = TpN.

A graded manifold (N, (Hi)) is a smooth manifold N endowed with a locally
finite increasing filtration, namely a flag of sub-bundles (2.1) satisfying (i),(ii) and
(iii). For the sake of brevity a locally finite increasing filtration will be simply called
a filtration. Setting ni(p) := dimHi

p, the integer list (n1(p), · · · , ns(p)) is called the
growth vector of the filtration (2.1) at p. When the growth vector is constant in a
neighborhood of a point p ∈ N we say that p is a regular point for the filtration.
We say that a filtration (Hi) on a manifold N is equiregular if the growth vector is
constant in N . From now on we suppose that N is an equiregular graded manifold.

Given a vector v in TpN we say that the degree of v is equal to ℓ if v ∈ Hℓ
p and

v /∈ Hℓ−1
p . In this case we write deg(v) = ℓ. The degree of a vector field is defined

pointwise and can take different values at different points.
Let (N, (H1, . . . ,Hs)) be an equiregular graded manifold. Take p ∈ N and con-

sider an open neighborhoodU of p where a local frame {X1, · · · , Xn1} generatingH
1

is defined. Clearly the degree ofXj , for j = 1, . . . , n1, is equal to one since the vector
fields X1, . . . , Xn1 belong to H1. Moreover the vector fields X1, . . . , Xn1 also lie in
H2, we add some vector fields Xn1+1, · · · , Xn2 ∈ H2 \H1 so that (X1)p, . . . , (Xn2)p
generate H2

p. Reducing U if necessary we have that X1, . . . , Xn2 generate H2 in U .
Iterating this procedure we obtain a basis of TM in a neighborhood of p

(2.3) (X1, . . . , Xn1 , Xn1+1, . . . , Xn2 , . . . , Xns−1+1, . . . , Xn),

such that the vector fields Xni−1+1, . . . , Xni
have degree equal to i, where n0 := 0.

The basis obtained in (2.3) is called an adapted basis to the filtration (H1, . . . ,Hs).
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Given an adapted basis (Xi)16i6n, the degree of the simple m-vector field Xj1 ∧
. . . ∧Xjm is defined by

deg(Xj1 ∧ . . . ∧Xjm) :=
m
∑

i=1

deg(Xji).

Any m-vector X can be expressed as a sum

Xp =
∑

J

λJ(p)(XJ )p,

where J = (j1, . . . , jm), 1 6 j1 < · · · < jm 6 n, is an ordered multi-index, and
XJ := Xj1 ∧ . . . ∧ Xjm . The degree of X at p with respect to the adapted basis
(Xi)16i6n is defined by

max{deg((XJ )p) : λJ (p) 6= 0}.

It can be easily checked that the degree of X is independent of the choice of the
adapted basis and it is denoted by deg(X).

If X =
∑

J λJXJ is an m-vector expressed as a linear combination of simple
m-vectors XJ , its projection onto the subset of m-vectors of degree d is given by

(2.4) (X)d =
∑

deg(XJ )=d

λJXJ ,

and its projection over the subset of m-vectors of degree larger than d by

Πd(X) =
∑

deg(XJ )>d+1

λJXJ .

In an equiregular graded manifold with a local adapted basis (X1, . . . , Xn), de-
fined as in (2.3), the maximal degree that can be achieved by an m-vector, m 6 n,
is the integer dmmax defined by

(2.5) dmmax := deg(Xn−m+1) + · · ·+ deg(Xn).

2.1. Degree of a submanifold. Let Φ : M̄ → N be a C1 immersion in an
equiregular graded manifold (N, (H1, . . . ,Hs)) such that dim(M̄) = m < n =
dim(N). Following [32, 35], we define the degree of M = Φ(M̄) at a point p̄ ∈ M̄
by

degM (p̄) := deg(v1 ∧ . . . ∧ vm),

where v1, . . . , vm is a basis of Tp̄M = (dΦ)p̄(Tp̄M̄) and dΦ. We denote by Tp̄M =
(dΦ)p̄(Tp̄M̄) the tangent space at p = Φ(p̄), where (dΦ)p̄ is the differential of Φ at
p̄ ∈ M̄ . We use this notation in order to emphasize that we consider the tangent
space of the image Φ(p̄) of a fixed point p̄ in M̄ . The degree deg(M) of a immersed
submanifold M is the integer

deg(M) := max
p̄∈M̄

degM (p̄).

We define the singular set of a submanifold M by Φ(M̄0) where

(2.6) M̄0 = {p̄ ∈ M̄ : degM (p̄) < deg(M)}.
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Singular points can have different degrees between m and deg(M) − 1. Following
[25, 0.6.B] an alternative way to define the pointwise degree is by means of the
formula

degM (p̄) =

s
∑

j=1

j(m̃j(p̄)− m̃j−1(p̄)),

setting m̃0 = 0 and m̃j(p̄) = dim(Tp̄M∩Hj
p). Namely, the degree is the homogenous

dimension of the flag

(2.7) H̃1
p ⊂ H̃2

p ⊂ · · · ⊂ H̃s
p = Tp̄M,

where H̃j
p := Tp̄M ∩ Hj

p. As we pointed out in [14, Section 3] the area functional
associated to an immersed sumbanifold depends on the degree.

Definition 2.1. Let M be a C1 immersed submanifold of degree d = deg(M) in an
equiregular graded manifold (N,H1, . . . ,Hs) endowed with a Riemannian metric
g. Let µ be a Riemannian metric in M and e1, . . . , em be a µ orthonormal basis.
Then the degree d area Ad is defined by

(2.8) Ad(M
′) =

∫

M ′

| (e1 ∧ . . . ∧ em)d |g dµ(p),

for any bounded measurable set M ′ ⊂ M and where dµ is the Riemannian volume
given by µ. In the previous formula (·)d denotes the projection onto the subset of
m-vectors of degree d defined in (2.4).

2.2. Admissible variations and admissibility system of PDEs. Given a
graded manifold (N,H1, . . . ,Hs), we consider a generic Riemannian metric g = 〈·, ·〉
on TN . Let Φ : M̄ → N be a smooth immersion in N , we set M = Φ(M̄) and
d = deg(M). Let (Xi)i be a local adapted basis around p ∈ M . Following [14,
Section 5] we recall the notions of admissible variation, its variational vector field,
admissible and integrable vector field.

Definition 2.2. A smooth map Γ : M̄ × (−ε, ε) → N is said to be an admissible

variation of Φ if Γt : M̄ → N , defined by Γt(q̄) := Γ(q̄, t), satisfies the following
properties

(i) Γ0 = Φ,
(ii) Γt(M̄) is an immersion of the same degree as Φ(M̄) for small enough t, and
(iii) Γt(q̄) = Φ(q̄) for q̄ outside of a given compact set of M̄ .

Definition 2.3. Given an admissible variation Γ, the associated variational vector

field is defined by

(2.9) V (q̄) :=
∂Γ

∂t
(q̄, 0).

Let X0(M̄,N) be the space of compactly supported smooth vector fields on M̄
with value in N . Since it turns out that variational vector fields associated to an
admissible variations satisfy the system (2.10) (see [14, Section 5]) we are led to
the following definition

Definition 2.4. Given an immersion Φ : M̄ → N , a vector field V ∈ X0(M̄,N) is
said to be admissible if it satisfies the system of first order PDEs

(2.10) 0 = 〈e1 ∧ . . . ∧ em,∇V (q̄)XJ〉+
m
∑

j=1

〈e1 ∧ . . . ∧ ∇ejV ∧ . . . ∧ em, XJ〉
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where XJ = Xj1 ∧ . . .∧Xjm , deg(XJ) > d and e1, . . . , em is basis of Tq̄M , for each
q̄ in M̄ such that q = Φ(q̄).

Definition 2.5. We say that an admissible vector field V ∈ X0(M̄,N) is integrable
if there exists an admissible variation such that the associated variational vector
field is V .

3. Intrinsic coordinates for the admissibility system of PDEs

Let Φ : M̄ → N be a smooth immersion in a graded manifold, M = Φ(M̄)
and d = deg(M). By [14, Proposition 6.4] we realize that the admissibility of a
vector field V is independent of the metric. Therefore we can use any metric in
order to study the system. Let p̄ be a point in M̄ such that p = Φ(p̄) is a point in
M \M0, that is an open set thanks to [14, Corollary 2.4]. Then there exists an open
neighborhood Ō′ ⊂ M̄ of p̄ such that Φ(Ō′) has fixed degree d. Moreover, we can
always find an open neighborhood Ō ⊂ Ō′ such that Φ(Ō) = O is an embedding of
fixed degree d . From now on we will consider this piece of submanifold O.

Letting TO be the tangent bundle of O, we consider the subbundle H̃i = TO∩Hi

for each i = 1, . . . , s. Then the submanifold O inherits from the ambient space
an increasing filtration H̃1 ⊂ . . . ⊂ H̃s, pointwise given by the flag (2.7), that

makes (O, H̃1, . . . , H̃s) a graded structure. Evidently, (i) in Definition 2 is sat-

isfied. On the other hand, if X ∈ H̃i and Y ∈ H̃j , we can extend both vec-
tor fields in a neighborhood of N so that the extensions X1, Y1 lie in Hi and
Hj , respectively. Then [X,Y ] is a tangent vector to O that coincides on N with

[X1, Y1] ∈ Hi+j . Hence [X,Y ] ∈ H̃i+j . This implies condition (ii) in Definition 2.

Moreover, (O, H̃1, . . . , H̃s) is also equiregular by [14, Proposition 3.7], since the
degree is constant equal to d on O. Reducing O if necessary, following the same ar-
gument of Section 2, there exists a local adapted basis (Ẽ1, . . . , Ẽm) to the filtration

H̃1 ⊂ . . . ⊂ H̃s. For each j = 1, . . . ,m we set deg(Ẽj) = ℓj , then we can extend

each vector field Ẽj in a neighborhood U of N around p so that the extensions Ej lie
in Hℓj . Finally we complete this basis of vector fields (E1, . . . , Em) to a basis of the
ambient space TU adding the vector fields Vm+1, . . . , Vn of increasing degree such
that a sorting of {E1, . . . , Em, Vm+1, . . . , Vn} is an adapted basis of TU . Then we
consider the metric g = 〈·, ·〉 that makes E1, . . . , Em, Vm+1, . . . , Vn an orthonormal
basis in a neighborhood U of p. We will denote by (Y1, . . . , Yn) the local adapted
basis generated by this sorting of E1, . . . , Em, Vm+1, . . . , Vn. From now on we will

denote also denote (Ẽ1, . . . , Ẽm) by (E1, . . . , Em) with a little abuse of notation.

Definition 3.1. Letting ι0 be the integer defined by

(3.1) ι0(O) = max
p̄∈Ō

min
16ℓ6s

{α : m̃ℓ(p̄) 6= 0},

we set

(3.2) k := nι0 − m̃ι0 ,

where m̃ℓ(p̄) is defined a line before of equation (2.7).

Remark 3.2. Let W be a vector field on U ⊂ N . Having in mind the equation
(2.10) we consider the scalar product

(3.3) 〈E1 ∧ · · · ∧
(j)

W ∧ · · · ∧Em, Yℓ1 ∧ · · · ∧ Yℓm〉
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where J = (ℓ1, . . . , ℓm), 1 6 ℓ1 6 . . . 6 ℓm 6 n and

deg(Yℓ1) + . . .+ deg(Yℓm) > d+ 1.

If there are at least two Yℓα , Yℓβ ∈ {Vm+1, . . . , Vn} with α, β ∈ {1, . . . ,m} then
(3.3) is equal to zero thanks to the orthogonal assumption of the basis E1, . . . , Em,
Vm+1, . . . , Vn. If {Yℓ1 , . . . , Yℓm}∩{Vm+1, . . . , Vn} = ∅, then deg(Yℓ1 ∧· · ·∧Yℓm) 6 d.
Finally, if there exists only one Yℓα = Vi for some i ∈ {m+ 1, . . . , n} then α = j, if
not (3.3) is equal to zero by orthogonality assumption of the basisE1, . . . , Em. Then,

denoting by σj
i the permutation caused by the reordering and by sgn(σj

i ) = ±1 its
sign, we have

YJ = sgn(σj
i )E1 ∧ · · · ∧

(j)

Vi ∧ · · · ∧ Em.

Since

deg(E1 ∧ · · · ∧
(j)

Vi ∧ · · · ∧ Em) > d

we deduce that deg(Vi) > deg(Ej). Then (3.3) coincides with

sgn(σj
i )〈E1 ∧ · · · ∧

(j)

W ∧ · · · ∧ Em, E1 ∧ · · · ∧
(j)

Vi ∧ · · · ∧ Em〉

= sgn(σj
i )

n
∑

l=m+1

〈W,Vl〉sgn(σ
j
l )δl,i

= sgn(σj
i )

2〈W,Vi〉 = 〈W,Vi〉,

where δl,i is the Kronecker delta. Since (Vi)i and (Ej)j have increasing degree, we
obtain deg(Vi) > deg(E1) = ι0 if and only if i = m+k+1, . . . , n, where k is defined
in (3.2). Therefore we deduce that the only m-vectors Yℓ1 ∧ · · · ∧ Yℓm of degree
strictly greater than d such that (3.3) is different from zero are

sgn(σj
i )E1 ∧ · · · ∧

(j)

Vi ∧ · · · ∧Em,

for i = m+ k + 1, . . . , n and deg(Vi) > deg(Ej).

Definition 3.3. We say that a vector field Vl ∈ {Vm+1, . . . , Vn} is horizontal if
deg(Vl) 6 deg(E1) = ι0 and is vertical if deg(Vl) > deg(E1) = ι0. The horizontal
bundle H is generated by Vm+1, . . . , Vm+k and the vertical bundle V is generated
by Vm+k+1, . . . , Vn, where k = nι0 − m̃ι0 .

Thanks to [14, Proposition 5.5] we know that V ∈ X0(M̄,N) is admissible if and
only if

(3.4) V ⊥ =

m+k
∑

h=m+1

ghVh +

n
∑

r=m+k+1

frVr

is admissible. We denote by V ⊥
H =

∑m+k

h=m+1 ghVh (resp. V ⊥
V =

∑n

r=m+k+1 frVr)
the horizontal projection on H (resp. the vertical projection on V). For h =
m+ 1, . . . ,m+ k and r = m+ k + 1, . . . , n, gh, fr are smooth functions on O and
when we evaluate the vector field V ⊥ at q̄ ∈ Ō we mean

V ⊥(q̄) =

m+k
∑

h=m+1

gh(Φ(q̄))(Vh)Φ(q̄) +

n
∑

r=m+k+1

fr(Φ(q̄))(Vr)Φ(q̄).
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Therefore, locally we can consider the vector field V ⊥ defined on O and extend V ⊥

to the open neighborhoood U ⊂ N . Then, putting V ⊥ in (2.10) we have

(3.5)

0 =〈E1 ∧ · · · ∧Em,∇V ⊥YJ〉+
m
∑

j=1

〈E1 ∧ . . . ∧ ∇Ej
V ⊥ ∧ . . . ∧Em, YJ〉

=

m
∑

j=1

−〈E1 ∧ · · · ∧ ∇V ⊥Ej ∧ · · · ∧ Em, YJ 〉

+ 〈E1 ∧ . . . ∧ ∇Ej
V ⊥ ∧ . . . ∧ Em, YJ〉

=

m
∑

j=1

〈E1 ∧ . . . ∧
(j)

(∇Ej
V ⊥ −∇V ⊥Ej) ∧ . . . ∧ Em, YJ 〉

=

m
∑

j=1

〈E1 ∧ . . . ∧
(j)

[Ej , V
⊥] ∧ . . . ∧ Em, YJ〉.

By Remark 3.2 we have to consider the scalar product only with the m-vector

YJ = sgn(σα
i )E1 ∧ · · · ∧

(α)

Vi ∧ · · · ∧ Em

for i = m + k + 1, . . . , n, α = 1, . . . ,m, deg(Vi) > deg(Eα) and sgn(σα
i ) = ±1

is the sign of the permutation σα
i caused by the reordering. By substituting the

expression (3.4) of V ⊥ in equation (3.5), we obtain that (2.10) is equivalent to

(3.6)

m
∑

j=1

(

n
∑

r=m+k+1

c̃ijrαEj(fr) +

m+k
∑

h=m+1

c̃ijhαEj(gh)

+

n
∑

r=m+k+1

b̃ijrαfr +

m+k
∑

h=m+1

ãijhαgh

)

= 0,

where

c̃ijtα = sgn(σj
t )sgn(σ

α
i )〈E1 ∧ · · · ∧

(j)

Vt ∧ · · · ∧ Em, E1 ∧ · · · ∧
(α)

Vi ∧ · · · ∧ Em〉

ãijhα = sgn(σα
i )〈E1 ∧ . . . ∧

(j)

[Ej , Vh] ∧ . . . ∧ Em, E1 ∧ · · · ∧
(α)

Vi ∧ · · · ∧ Em〉

b̃ijrα = sgn(σα
i )〈E1 ∧ . . . ∧

(j)

[Ej , Vr] ∧ . . . ∧ Em, E1 ∧ · · · ∧
(α)

Vi ∧ · · · ∧ Em〉,

for t = m + 1, . . . , n, r = m + k + 1, . . . , n, h = m + 1, . . . ,m + k, α = 1, . . . ,m,
i = m + k + 1, . . . , n and deg(Vi) > deg(Eα). Then we have that c̃ijtα is equal
to 1 for i = t > m + k, α = j and deg(Vi) > deg(Ej) or equal to zero otherwise.

Moreover, we notice by Remark 3.2 that ãijhα and b̃ijrα are different from zero only
when α = j and in particular we have

(3.7) aijh := ãijhj = 〈Vi, [Ej , Vh]〉,

for h = m+ 1, . . . ,m+ k, i = m+ k + 1, . . . , n, deg(Vi) > deg(Ej) and

(3.8) bijr := b̃ijrj = 〈Vi, [Ej , Vr]〉,
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for i, r = m + k + 1, . . . , n and deg(Vi) > deg(Ej). Hence V is admissible if and
only if

(3.9) Ej(fi) = −
n
∑

r=m+k+1

bijr fr −
m+k
∑

h=m+1

aijh gh,

for i = m+ k + 1, . . . , n and deg(Vi) > deg(Ej).

Remark 3.4.

1. In all the previous computations we strongly used the tools of differential
geometry such as the covariant derivative and the Levi-Civita connection.
However, we notice that the coefficients aijh and bijr are defined almost ev-
erywhere if we only assume that the vector fields E1, . . . , Em, Vm+1, . . . , Vn

are Lipschitz continuous. Indeed, under this Lipschitz assumption, the Lie
brackets [Ej , Vh] and [Ej , Vr] for j = 1, . . . ,m, h = m + 1, . . . ,m + k and
r = m+ k+ 1, . . . , n are defined almost everywhere, thanks to [20]. There-
fore it would be interesting to consider C1,1 immersions and deducing the
admissibility system (3.9) in a weak formulation using the tools of first
order differential calculus for general metric measure spaces, developed in
recent years by [12, 27, 22, 4].

2. Even in this smooth setting we realize that in the admissibility system (3.9)
we can consider the functions fm+k+1, . . . , fn to be continuously differen-
tiable on O and gm+1, . . . , gm+k in the class of continuous functions on
O.

Example 3.5 (Horizontal submanifolds). Given n > 1 we consider the Heisenberg
group Hn, defined as R2n+1 endowed with the distribution H generated by

Xi =
∂

∂xi

+
yi
2

∂

∂t
, Yi =

∂

∂yi
−

xi

2

∂

∂t
i = 1, . . . , n.

The Reeb vector fields is provided by T = ∂t = [Xi, Yi] for i = 1, . . . , n
and has degree equal to 2. Let g = 〈·, ·〉 be the Riemannian metric that makes
(X1, . . . , Xn, Y1, . . . , Yn, T ) an orthonormal basis. Let Ω be an open set of Rm, with
m 6 n. Here we consider a smooth immersion Φ : Ω → Hn such M = Φ(Ω) is a
horizontal submanifold. Let E1, . . . , Em be an orthonormal local frame, then we
have

(3.10) Ej =

n
∑

i=1

αjiXi + βjiYi for j = 1, . . . ,m,

where αji = 〈Ej , Xi〉, βji = 〈Ej , Yi〉,
∑n

i=1 α
2
ji + β2

ji = 1 for each j = 1, . . . ,m and
the matrix

A(p̄) = ((αji)(Φ(p̄))|(βji)(Φ(p̄)))
i=1,...,n
j=1,...,m

has full rank equal to m, for each p̄ ∈ Ω. Since M is horizontal we also have that

〈[Ej , Eν ], T 〉 =
n
∑

i=1

n
∑

k=1

〈[αjiXi + βjiYi, ανkXk + βνkYk], T 〉 = 0,

that is equivalent to

(3.11)

n
∑

i=1

αjiβνi − βjiανi = 0.
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Therefore a vector field V =
∑n

l=1 gl Xi + gl+n Yl + f T is admissible if and only if
it satisfies the system (3.9), that in this case is given by

Ej(f) = −〈[Ej , T ], T 〉f −

(

n
∑

h=1

(〈[Ej , Xh], T 〉gh + 〈[Ej , Yl], T 〉gh+n)

)

,

for j = 1, . . . ,m. A straightforward computation shows that this system is equiva-
lent to

(3.12) Ej(f) =

n
∑

i=1

βjigi − αjigi+n for j = 1, . . . ,m.

A necessary and sufficient conditions for the uniqueness and the existence of a
solution of the admissibility system (3.12) (see [26, Theorem 3.2, Chapter VI]) are
given by
(3.13)

EjEν(f)− EνEj(f) = Ej

(

n
∑

i=1

βνigi − ανigi+n

)

− Eν

(

n
∑

i=1

βjigi − αjigi+n

)

,

for each j, ν = 1, . . . ,m. These are the so called integrability condition [26, Eq.
(1.4), Chapter VI]. A straightforward computation shows that the right hand side
of is equal to

(3.14)

n
∑

i=1

(Ej(βνi)− Eν(βji))gi + (Eν(αji)− Ej(ανi))gi+n

+
n
∑

i=1

βνiEj(gi)− βjiEν(gi)− ανiEj(gi+n) + αjiEν(gi+n).

Moreover, the left hand side is equal to

[Ej , Eν ](f) =

m
∑

k=1

ckjνEk(f) =

m
∑

k=1

ckjν

n
∑

i=1

βkigi − αkigi+n

=

n
∑

i=1

〈[Ej , Eν ], Yi〉gi − 〈[Ej , Eν ], Xi〉gi+n

=

n
∑

i=1

(Ej(βνi)− Eν(βji))gi + (Eν(αji)− Ej(ανi))gi+n.

Therefore the compatibility (or integrability) conditions are given by

(3.15)

n
∑

i=1

βνiEj(gi)− βjiEν(gi)− ανiEj(gi+n) + αjiEν(gi+n) = 0,

for each ν, j = 1, . . . ,m. Moreover, taking into account (3.11), the equation (3.15)
is equivalent to

(3.16)

n
∑

i6=k

(βνiαjk − βjiανk)Xk(gi) + (βνiβjk − βjiβνk)Yk(gi)

+
n
∑

i6=k

(αjiανk − ανiαjk)Xk(gi+n) + (αjiβνk − βνiβjk)Yk(gi+n) = 0.
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Remark 3.6. Notice that if we want to find a solution f of (3.12), the controls
gi, . . . , g2n have to verify the compatibility conditions (3.16). Therefore to obtain a
suitable generalization of the holonomy map (defined for curves in [13, Section 5])
we need to consider the subspace of the space of horizontal vector fields on M that
verify (3.16). We recognize that studying the holonomy map for these horizontal
immersions is engaging problem that have been investigated by [24, 41], but in the
present work we will consider different kind of immersions that allow us to forget
these compatibility conditions in the construction of the high dimensional holonomy
map.

4. Ruled submanifolds in graded manifolds

In this section we consider a particular type of submanifolds for which the ad-
missibility system reduces to a system of ODEs along the characteristic curves,
that rule these submanifolds by determining their degree since the other adapted
tangent vectors tangent to M have highest degree equal to s.

Definition 4.1. Let (N,H1, . . . ,Hs) be an equiregular graded manifold of topo-
logical dimension n and let M̄ a m-dimensional manifold with m < n. We say that
an immersion Φ : M̄ → N is ruled if

(4.1) deg(M) = (m− 1)s+ ι0,

where ι0 is the integer defined in 3.1 satisfying dim(H̃ι0) = 1 and M = Φ(M̄). In
this case, we will call the image of the immersion M a ruled submanifold.

Let p̄ be a point in M̄ such that p = Φ(p̄) is a point of maximum degree in
M . Following the argument of Section 3, we consider an open neighborhood Ō of
p̄ such that O = Φ(Ō) is an embedding of fixed degree. Let (E1, . . . , Em) be an
adapted basis to TO. Therefore deg(E1) = ι0 and deg(Ej) = s for j = 2, . . . ,m
and k = nι0 − 1. Then we follow the construction described in Section 3 to provide
the metric g and the orthonormal basis E1, . . . , Em, Vm+1, . . . , Vn whose sorting is
a local adapted basis of TU . Since deg(Ej) > deg(Vi) for each j = 2, . . . ,m and
i = m+ k + 1, . . . , n, the only derivative that appears in (3.9) is E1. Therefore we
deduce that a vector field V ⊥, given by equation (3.4), is admissible if and only if
it satisfies

(4.2) E1(fi) +

n
∑

r=m+k+1

bi1rfr +

m+k
∑

h=m+1

ai1hgh = 0,

for i = m+ k + 1, . . . , n and for each q ∈ O

ai1h(q) = 〈Vi(q), [E1, Vh](q)〉,

bi1r(q) = 〈Vi(q), [E1, Vr](q)〉

and fr ∈ C1(O), gh ∈ C(O). Given p in M each point q in a local neighborhood O
of p in M can be reached using the exponential map as follows

(4.3) q = exp(x1E1) exp





m
∑

j=2

xjEj



 (p).
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On this open neighborhoodO ⊂ M we consider the local coordinates x = (x1, x2, . . . , xm)
given by the inverse map Ξ of the exponential map defined in (4.3). In the litera-
ture, these coordinates are commonly called exponential or canonical coordinates
of the second kind, see [28, 5]. We set x̂ := (x2, . . . , xm). Given a relative compact
open subset Ω ⊂⊂ Ξ(O) we consider

(4.4) Σ0 = {x1 = 0} ∩ Ω

be the (m− 1)-dimensional leaf normal to E1. Then there exists ε > 0 so that the
closure of the cylinder

(4.5) Ωε = {(x1, x̂) : 0 < x1 < ε, x̂ ∈ Σ0}

is contained in Ξ(O). Then Σε = {(ε, x̂) : x̂ ∈ Σ0} is the top of the cylinder. Since
dΞ(E1) = ∂x1 in this exponential coordinates of the second kind the admissibility

system (4.2) is given by

(4.6)
∂F (x)

∂x1
= −B(x)F (x) −A(x)G(x),

where we set

(4.7) F =







fm+k+1

...
fn






, G =







gm+1

...
gm+k







and we denote by B the (n−m− k) square matrix whose entries are bi1r, by A the
(n−m− k)× k matrix whose entries are ai1h.

5. The high dimensional holonomy map for ruled submanifolds

For ruled submanifolds the system (3.9) reduces to the system of ODEs (4.2)
along the characteristic curves. Therefore, a uniqueness and existence result for
the solution is given by the classical Cauchy-Peano Theorem, as in the case of
curves in [13, Section 5].

Let Φ : M̄ → N be a ruled immersion in a graded manifold. Let Ωε be the open
cylinder defined in (4.5) and TΣ0(f) = f(0, ·) and TΣε

(f) = f(ε, ·) be the operators
that evaluate functions at x1 = 0 and at x1 = ε, respectively.

Let C0(Ωε) the Banach space of continuous functions on Ωε vanishing at the
infinity, that is the closure of the space of compactly supported function on Ωε, see
[45, Theorem 3.17]. We always consider for each f ∈ C0(Ωε) the supremum norm

‖f‖∞ = sup
x∈Ωε

|f(x)|.

We will denote by Ω̄ε the closure of the open set Ωε ⊂ Rm and by C(Ω̄ε) the Banach
space of continuous functions on the compact Ω̄ε. Then we consider the following
Banach spaces:

(1) H0(Ωε) =

{

m+k
∑

h=m+1

ghVh : gh ∈ C0(Ωε)

}

.

(2) V1(Ω̄ε) =

{

n
∑

r=m+k+1

frVr : ∂x1fr ∈ C(Ω̄ε), fr ∈ C(Ω̄ε), TΣ0(fr) = 0

}

.
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(3) V(Σε) =

{

n
∑

r=m+k+1

frVr : fr ∈ C0(Σε)

}

, where C0(Σε) is the space of

continuous functions on Σε vanishing at the infinity.

Notice that the respective norms of these Banach spaces are given by

(1) ‖G‖∞ = max
h=m+1,...,m+k

sup
x∈Ωε

|gh(x)|

(2) ‖F‖1 = max
r=m+k+1,...,n

( sup
x∈Ω̄ε

|fr(x)|+ sup
x∈Ω̄ε

|∂x1fr(x)|)

(3) ‖F‖∞,Σε
= max

r=m+k+1,...,n
sup
x̂∈Σε

|fr(x̂)|,

where F and G are defined in (4.7).
Therefore the existence and the uniqueness of the solution of the Cauchy problem

allows us to define the holonomy type map

(5.1) Hε
M : H0(Ωε) → V(Σε),

in the following way: we consider a horizontal compactly supported continuous
vector field

YH =

m+k
∑

h=m+1

ghVh ∈ H0(Ωε)

and we fix the initial condition YV (0, x̂) = 0. Then there exists a unique solution

YV =

n
∑

r=m+k+1

frVr ∈ V1(Ωε)

of the admissibility system (4.6) with initial condition YV (0, x̂) = 0. Letting

TΣε
: V1(Ωε) → V(Σε)

be the evaluating operator for vertical vectors fields at x1 = ε defined by TΣε
(V ) =

V (ε, ·), we define Hε
M (YH) = TΣε

(YV).

Definition 5.1. We say that Φ restricted to Ω̄ε is regular if the image of the holo-
nomy map Hε

M is a dense subspace of V(Σε), that contains a normalized Schauder
basis of V(Σε) (see [46, Definition 14.2]) .

The following result allows the integration of the differential system (4.6) to
explicitly compute the holonomy map.

Proposition 5.2. In the above conditions, there exists a square regular matrix

D(x1, x̂) of order (n− k −m) such that

(5.2) F (ε, x̂) = −D(ε, x̂)−1

∫ ε

0

(DA)(τ, x̂)G(τ, x̂) dτ,

for each x̂ ∈ Σ0.

Proof. Lemma 5.3 below allows us to find a regular matrix D(x1, x̂) such that
∂x1D = DB. Then equation ∂x1F = −BF−AG is equivalent to ∂x1(DF ) = −DAG.
Integrating between 0 and ε, taking into account that F (0, x̂) = 0 for each x̂ ∈ Σ0,
and multiplying by D(ε, x̂)−1, we obtain (5.2). �

Lemma 5.3. Let E be an open set of Rm−1. Let B(t, λ) be a continuous family of

square matrices on [0, ε]× E. Let D(t, λ) be the solution of the Cauchy problem

∂tD(t, λ) = D(t, λ)B(t, λ) on [0, ε]× E, D(0, λ) = Id,
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for each λ ∈ E. Then detD(t, λ) 6= 0 for each (t, λ) ∈ [0, ε]× E.

Proof. By the Jacobi formula we have

∂(detD(t, λ))

∂t
= Tr

(

adjD(t, λ)
∂D(t, λ)

∂t

)

,

where adjD is the classical adjoint (the transpose of the cofactor matrix) of D and
Tr is the trace operator. Therefore

(5.3)
∂(detD(t, λ))

∂t
= Tr ((adjD(t, λ))D(t, λ)B(t, λ)) = detD(t, λ)Tr(B(t, λ)).

Since detD(0, λ) = 1, the solution for (5.3) is given by

detD(t, λ) = e
∫

t

a
Tr(B(τ,λ)) dτ > 0,

for all (t, λ) ∈ [0, ε] × E. Thus, the matrix D(t, λ) is invertible for each (t, λ) ∈
[0, ε]× E. �

Definition 5.4. We say that the matrix Ã(x1, x̂) := (DA)(x1, x̂) on Ωε defined in
Proposition 5.2 is linearly full Rn−m−k if and only if for each x̂ ∈ Σ0

dim
(

span
{

Ã1(x1, x̂), . . . , Ã
k(x1, x̂) ∀ x1 ∈ (0, ε)

})

= n−m− k,

where Ãi for i = 1, . . . , k are the columns of Ã(x1, x̂).

Lemma 5.5. Let X be a Banach space and Y ⊂ X. Let L : X → R be a bounded

linear functional, L 6≡ 0 such that L(x) = 0 for each x ∈ Y . Then Y is not dense

in X.

Proof. Fix y in Ȳ . Then there exists {yn}n∈N ⊆ Y such that yn → y as n →

+∞. Since L is continuous we have L(yn)
n→+∞
−−−−−→ L(y). On the other hand,

by assumption L(yn) = 0, then we conclude that L(y) = 0. Therefore we have
L(y) = 0 for each y ∈ Ȳ . Assume by contradiction that Y is dense in X , i.e.
Ȳ = X . Therefore we have L(x) = 0 for each x ∈ X , that implies L ≡ 0, that is
absurd. �

Proposition 5.6. The immersion Φ restricted to Ω̄ε is regular if and only if

Ã(x1, x̂) is linearly full in Rn−m−k.

Proof. Assume that immersion Φ restricted to Ω̄ε is not regular. Then the closure

of image of the holonomy map Range(Hε
M ) is a proper closed subspace of V(Σε). By

[6, Corollary 1.8] there exists µ ∈ (V(Σε))
∗, µ 6≡ 0 such that µ(F ) = 0 for each F ∈

Range(Hε
M ), where each element F in Range(Hε

M ) is given by the representation
formula (5.2). Thanks to Riesz’s Theorem (see for instance [34, Theorem 4.7], [21,
Chapter 7] or [7]) the total variation |µ| is a Radon measure on Σε and there exists
|µ|-measurable function Γ : Σε → Rn−m−k with |Γ| = 1 |µ|-a.e. such that

(5.4)

0 = µ(F (ε, ·)) = −µ

(

D(ε, x̂)−1

∫ ε

0

(DA)(τ, x̂)G(τ, x̂) dτ

)

= −

∫

Σε

Γ(x̂)D(ε, x̂)−1

(∫ ε

0

(DA)(τ, x̂)G(τ, x̂)dτ

)

d|µ|(x̂)

= −

∫

Σε

Γ̃(x̂)

(∫ ε

0

(DA)(τ, x̂)G(τ, x̂)dτ

)

d|µ|(x̂)
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where Γ̃ = Γ(x̂)D(ε, x̂)−1 6= 0 a.e. w.r.t. to |µ|. As this formula (5.4) holds for any
G(τ, x̂) ∈ C0(Ωε) we can considerG(τ, x̂) = h(x̂)g(τ) for each g ∈ C0((0, ε),R

k) and

h ∈ C0(Σε,R). We notice that Γ̃(x̂)
∫ ε

0
(DA)(τ, x̂)g(τ) dτ ∈ L1

loc(Σε, |µ|). Then, by
Lemma 5.7 and the fundamental lemma of the Calculus of Variations for continuous
functions we deduce that Γ̃(x̂)Ã(τ, x̂) = 0 for all τ ∈ (0, ε) and |µ|-a.e. in x̂ ∈ Σε.

Since the supp(|µ|) 6= ∅ for each x̂ ∈ supp(|µ|) there exists an open neighborhood
Nx̂ of x̂ such that |µ|(Nx̂) > 0. Eventually reducing Nx̂ we can assume |µ|(Nx̂) <
+∞, by the locally finite property of the Radon measure. Therefore by the Lusin’s
Theorem [21, Chapter 7] for every ǫ > 0 there exists a compact K ⊂ Nx̂ such

that |µ|(Nx̂ r K) < ǫ and Γ̃|K is continuous. Considering ǫ < |µ|(Nx̂) we obtain

|µ|(K) > 0, therefore there exists x̂0 ∈ K such that Γ̃(x̂0)Ã(t, x̂0) = 0 for each

t ∈ (0, ε). Then the columns of Ã(t, x̂0) are contained in the hyperplane of Rn−m−k

determined by Γ̃(x̂0). Identifying the open set Σε with the open set Σ0, by the map

(ε, x̂) → (0, x̂), we deduce that Ã is not linearly full.

Conversely, assume that Ã is not linearly full. Then there exist a point x̂0 ∈ Σ0

and a row vector with (n − m − k) coordinates Γ 6= 0 such that ΓÃ(x1, x̂0) = 0
for all x1 ∈ (0, ε). Then, denoting by δx̂0(ϕ) = ϕ(x̂0) the delta distribution and

Γ̃ = ΓD(ε, x̂0) 6= 0, we have

Γ̃δx̂0(F (ε, ·)) = −

∫ ε

0

Γ(DA)(τ, x̂0)G(τ, x̂0) dτ = 0.

Since the vector-value Radon measure Γ̃δx̂0 6≡ 0 annihilates the image of the holo-
nomy map, by Lemma 5.5 we conclude that the image of holonomy map is not a
dense subspace of V(Σε). �

For the reader’s convenience, in Lemma 5.7 we recall a classical result of calculus
of variations, see for instance [6, Corollary 4.24] or [34, Exercise 4.14].

Lemma 5.7. Let Ω be an open subset of Rn and µ be a Radon measure on Ω. If

f : Ω → R is a measurable function in L1
loc

(Ω, µ) such that
∫

Ω

f(x)h(x)dµ(x) = 0 ∀h ∈ C0(Ω),

then f = 0 a.e. w.r.t. µ.

Proof. First of all we claim that for each compact set K ⊂ Ω
∫

K

f(x)dµ(x) = 0.

Fix a compact K ⊂ Ω and consider a sequence of continuous compactly supported
functions hn 6 1 on Ω, hn ≡ 1 on K, vanishing out of small open neighborhood U

of K such that supp(hn+1) ⊂ supp(hn) for each n ∈ N and hn(x)
n→+∞
−−−−−→ χK(x)

for all x ∈ Ω, where

χK(x) =

{

1 if x ∈ K

0 if x ∈ Ω \K.

Since we have the pointwise convergence and |f(x)hn(x)| 6 |f(x)| for each n ∈ N

with f ∈ L1(supp(h1), µ), by the dominated convergence theorem we obtain

0 =

∫

Ω

f(x)hn(x)dµ(x)
n→+∞
−−−−−→

∫

Ω

f(x)χK(x)dµ(x) =

∫

K

f(x)dµ(x).
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Let us consider δ > 0 and the Borel sets

E+
δ = {x ∈ Ω : f(x) > δ} = f−1((δ,+∞))

and

E−
δ = {x ∈ Ω : f(x) < −δ} = f−1((−∞,−δ)).

Then µ(E+
δ ) = supK⊂E

+
δ
µ(K) for each compact set K ⊂ E+

δ . On the other hand

we have

0 =

∫

K

f(x)dµ(x) > δµ(K).

Therefore µ(K) = 0 for each K ⊂ E+
δ , then µ(E+

δ ) = 0. Hence as δ → 0 we obtain
µ(E+) = 0, where

E+ = {x ∈ Ω : f(x) > 0}.

A similar argument prove that µ(E−) = 0, where E− = {x ∈ Ω : f(x) < 0}. �

The following result provides a useful characterization of non-regularity

Theorem 5.8. The immersion Φ restricted to Ω̄ε is non-regular if and only if there

exist a point x̂0 ∈ Σ0 and a row vector field Λ(x1, x̂0) 6= 0 for all x1 ∈ [0, ε] that
solves the following system

(5.5)

{

∂x1Λ(x1, x̂0) = Λ(x1, x̂0)B(x1, x̂0)

Λ(x1, x̂0)A(x1, x̂0) = 0.

Proof. Assume that Φ restricted to Ω̄ε is non-regular, then by Proposition 5.6 there
exist a point x̂0 ∈ Σ0 and a row vector Γ 6= 0 such that

ΓD(x1, x̂0)A(x1, x̂0) = 0

for all x1 ∈ [0, ε], where D(x1, x̂0) solves

(5.6)

{

∂x1D = DB

D(0, x̂0) = In−m−k.

Since Γ is a constant vector and D(x1, x̂0) is a regular matrix by Lemma 5.3 ,
Λ(x1, x̂0) := ΓD(x1, x̂0) solves the system (5.5) and Λ(x1, x̂0) 6= 0 for all x1 ∈ [0, ε].

Conversely, any solution of the system (5.5) is given by

Λ(x1, x̂0) = ΓD(x1, x̂0),

where Γ = Λ(0, x̂0) 6= 0 and D(x1, x̂0) solves the equation (5.6). Indeed, let us
consider a general solution Λ(t, x̂0) of (5.5). If we set

Ψx̂0(t) = Λ(t, x̂0)− ΓD(t, x̂0),

where Γ = Λ(0, x̂0) 6= 0 and D(t, x̂0) solves the equation (5.6), then we deduce
{

∂tΨx̂0(t) = Ψx̂′(t)B(t, x̂0)

Ψx̂0(0) = 0.

Clearly the unique solution of this system is Ψx̂0(t) ≡ 0. Hence we conclude that

ΓÃ(x1, x̂0) = 0. Thus Ã(x1, x̂0) is not fully linear and by Proposition 5.6 we are
done. �
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6. Integrability of admissible vector fields for a ruled regular

submanifold

In this section we deduce the main result Theorem 6.6. As we pointed out in
the Introduction we need that the space of simple m-vectors of degree grater than
deg(M) is quite simple. Therefore we give the following definition.

Definition 6.1. We say that a m-dimensional ruled immersion, see Definition 4.1,
Φ : M̄ → N into an equiregular graded manifold (N,H1, . . . ,Hs)

(i) fills the grading from the top if ns − ns−1 = m − 1, where ns = dim(Hs)
and ns−1 = dim(Hs−1);

(ii) is foliated by curves of degree grater than or equal to s− 3 if ι0 > s− 3.

A ruled submanifold verifying (i) and (ii) will be called a FGT-(s − 3) ruled sub-
manifold and in this case (ii) is equivalent to

(6.1) s− 3 6 ι0 6 s− 1.

Remark 6.2. Since ns −ns−1 = m− 1 and the condition (6.1) holds we have that
the only simple m-vectors of degree strictly grater than deg(M) are

Vi ∧ E2 ∧ · · · ∧ Em

for i = m + k + 1, . . . , n. When ι0 = s − 1 the submanifold has maximum degree
therefore all vector fields are admissible, thus there are no singular submanifold.

Keeping the previous notation we now consider the following spaces

(1) H(Σ0) =

{

YH =

m+k
∑

i=m+1

giVi : gi ∈ C(Ω̄ε), TΣ0(gi) = 0

}

where the norm

is given by
‖YH‖∞ := max

i=m+1,...,m+k
sup
x∈Ω̄ε

|gi|

(2) V1(Σ0) =

{

YV =

n
∑

i=m+k+1

fiVi : ∂x1fi ∈ C(Ω̄ε), fi ∈ C(Ω̄ε), TΣ0(fi) = 0

}

,

where the norm is given by

‖YV‖1 := max
i=m+k,...,n

( sup
x∈Ω̄ε

|fi|+ sup
x∈Ω̄ε

|∂x1fi|)

(3) Λ(Σ0) is the set of elements given by
n
∑

i=m+k+1

zi(x1, . . . , xm) Vi ∧ E2 ∧ · · · ∧ Em

where zi ∈ C(Ω̄ε) vanishing on Σ0.

We denote by Πd the orthogonal projection over the space Λ(Σ0), that is the bundle
over the vector space of simple m-vectors of degree strictly grater than d, thanks
to Remark 6.2. Then we set

(6.2) G : H(Σ0)× V1(Σ0) → H(Σ0)× Λ(Σ0),

defined by
G(Y1, Y2) = (Y1,F(Y1 + Y2)),

where

(6.3) F(Y ) = Πd (dΓ(Y )(E1) ∧ . . . ∧ dΓ(Y )(Em))
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and Γ(Y )(q) = expq(Yq) for each q ∈ O. The open set O is defined in Section 3
and here exp denotes the Riemannian exponential map defined by means of the
geodesic flow on TN induced by the Riemannian metric 〈·, ·〉 (see [18, Chapter 3]).
In equation (6.3) we consider Ej for each j = 1, . . . ,m as vector fields restricted to

O (to be exact we should use Ẽj following the notation introduced in Section 3) and
dΓ(Y ) denotes the differential of Γ(Y ). Thanks to the diffeomorphism Ξ defined
in Section 4 we can read the map F(Y ) and the variation Γ(Y ) in exponential
coordinates of the second kind (x1, x2, . . . , xm) where the open cylinder Ωε lives.

Observe that now F(Y ) = 0 implies that the degree of the variation Γ(Y ) is less
than or equal to d. Then

DG(0, 0)(Y1, Y2) = (Y1, DF(0)(Y1 + Y2)),

where DF(0)Y is given by

d

dt

∣

∣

∣

t=0
F(0 + tY ) =

n
∑

i=m+k+1

d

dt

∣

∣

∣

t=0
λi(t)Vi ∧ E2 ∧ · · · ∧ Em,

with

d

dt

∣

∣

∣

t=0
λi(t) =

d

dt

∣

∣

∣

t=0
〈dΓ(tY )(E1) ∧ . . . ∧ dΓ(tY )(Em), (Vi ∧ E2 ∧ · · · ∧ Em)Γ(tY )〉

=

n
∑

j=1

〈E1 ∧ · · · ∧ ∇Ej
Y ∧ · · · ∧ Em, Vi ∧ E2 ∧ · · · ∧ Em〉+

+ 〈E1 ∧ · · · ∧ Em,∇Y (Vi ∧ E2 ∧ · · · ∧ Em)〉,

that is the right hand side of the equation (2.10). Therefore, following the compu-
tations developed in Section 4 and using the exponential coordinates of the second
kind we have

DF(0)Y =

n
∑

i=m+k+1

(∂fi(x)

∂x1
+

n
∑

r=m+k

bi1rfr +

m+k
∑

h=m+1

ai1hgh

)

Vi ∧ E2 ∧ · · · ∧ Em.

on Ωε ⊂ Ξ(O), defined in (4.5). Observe that DF(0)Y = 0 if and only if Y is an
admissible vector field, namely Y solves (4.6). Moreover, we have that A and B
are bounded the supremum norm on Ωε, since they are continuous on Ξ(O) and
bounded on the compact Ω̄ε.
Our objective now is to prove that the map DG(0, 0) is an isomorphism of Banach
spaces. To show this, we shall need the following result.

Proposition 6.3. The differential DG(0, 0) is an isomorphism of Banach spaces.

Proof. We first observe that DG(0, 0) is injective, since DG(0, 0)(Y1, Y2) = (0, 0)
implies that Y1 = 0 and that the vertical vector field Y2 satisfies the compatibility
equations with initial condition Y2(0, x̂) = 0 for each x̂ ∈ Σ0. Hence Y2 = 0. The
map DG(0, 0) is continuous. Indeed, if for instance we consider the 1-norm on the
product space we have

‖DG(0, 0)(Y1, Y2)‖ = ‖(Y1, DF(0)(Y1 + Y2))‖

6 ‖Y1‖∞ + ‖DF(0)(Y1 + Y2))‖∞

6 (1 + ‖(ahij)‖∞)‖Y1‖∞ + (1 + ‖(brij)‖∞)‖Y2‖1.
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To show that DG(0, 0) is surjective, we take (Y1, Y2) in the image, and we find
a vector field Y on Ωε such that YH = Y1, DF(0)(Y ) = Y2 and YV(0, x̂) = 0. The
map DG(0, 0) is open because of the estimate (6.4) given in Lemma 6.4 below. �

Lemma 6.4. In the above conditions, assume that DF(0)(Y ) = Y2 and YH = Y1

and Y (a) = 0. Then there exists a constant K such that

(6.4) ‖YV‖1 6 K(‖Y2‖∞ + ‖Y1‖∞)

Proof. We write

Y1 =

m+k
∑

h=m+1

ghVh, Y2 =

n
∑

i=k+1

zi Vi ∧E2 ∧ · · · ∧ Em and YV =

n
∑

r=k+1

frVr.

Then Yv is a solution of the ODE given by

(6.5) ∂x1F (x1, x̂) = −B(x)F (x1, x̂) + Z(x1, x̂)−A(x)G(x1, x̂)

where B(x), A(x) are defined after (4.7), F , G are defined in (4.7) and we set

Z =







zm+k+1

...
zn






.

Since YV(0, x̂) = 0 an YV solves (6.5) in (0, ε), by Lemma 6.5 there exists a constant
K such that

(6.6)
‖YV‖1 = ‖F‖1 6 K‖Z(x)−A(x) G(x)‖∞

6 K̃(‖Y2‖∞ + ‖Y1‖∞).

where K̃ = Kmax{1, ‖A(x)‖∞}. �

Lemma 6.5. Let E be an open set of Rm−1. Let u : [0, ε]×E → Rd be the solution

of the inhomogeneous problem

(6.7)

{

u′(t, λ) = A(t, λ)u(t, λ) + c(t, λ),

u(0, λ) = u0(λ)

where A(t, λ) is a d×d continuos matrix, bounded in the supremum norm on [0, ε]×
E and c(t, λ) a continuos vector field bounded in the supremum norm on [0, ε]×E.

We denote by u′ the partial derivative ∂tu . Then, there exists a constant K such

that

(6.8) ‖u‖1 := ‖u‖∞ + ‖u′‖∞ 6 K(‖c‖∞ + |u0|∞).

Proof. We start from the case r = 1. By [26, Lemma 4.1] it follows

u(t, λ) 6

(

|u0(λ)|+

∫ t

0

|c(s, λ)|ds

)

e|
∫

t

0
‖A(s,λ)‖ds|,

for each λ ∈ E and where the norm of A is given by sup|x|=1 |A x|. Therefore we
have

(6.9) sup
t∈[0,ε]

sup
λ∈E

|u(t, λ)| 6 C1( sup
t∈[0,ε]

sup
λ∈E

|c(t, λ)|+ sup
λ∈E

|u0(λ)|),

where we set

C1 = εeε supt∈[0,ε] supλ∈E ‖A(t,λ)‖.
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Since u is a solution of (6.7) it follows
(6.10)

sup
t∈[0,ε]

sup
λ∈E

|u′(t, λ)| 6 sup
t∈[0,ε]

sup
λ∈E

‖A(t, λ)‖ sup
t∈[0,ε]

sup
λ∈E

|u(t, λ)|+ sup
t∈[0,ε]

sup
λ∈E

|c(t, λ)|

6 (C2 + 1) sup
t∈[0,ε]

sup
λ∈E

|c(t, λ)|.

Hence by (6.9) and (6.10) we obtain

‖u‖1 6 K(‖c‖∞ + ‖u0‖∞). �

Finally, we use the previous constructions to give a criterion for the integrability
of admissible vector fields along a horizontal curve.

Theorem 6.6. Let Φ : M̄ → N be a ruled FGT-(s− 3) immersion into an equireg-

ular graded manifold (N,H1, . . . ,Hs) such that deg(M) = (m − 1)s + ι0, where

m = dim(M̄), and (i) and (ii) in 6.1 hold. Let Ωε = {(x1, x̂) : 0 < x1 < ε, x̂ ∈ Σ0}
with Σ0 defined in (4.4). Assume that Φ is regular on the compact Ω̄ε. Then every

admissible vector field with compact support in Ωε is integrable.

Proof. If ι0 = s − 1 all vector fields are admissible, then all immersions are auto-
matically regular. Each vector field V is integrable for instance by the exponential
map Γt = exp(tV ).

Let now s− 3 6 ι0 6 s− 2. Let us take V vector field on Ωε and {V i}∞i=1 vector
fields equi-bounded in the supremum norm on Ω̄ε. Let l1(R) the Banach space of
summable sequences. We consider the map

G̃ :
[

(−ε, ε)× l1(R)
]

×H(Σ0)× V1(Σ0) → H(Σ0)× Λ(Σ0),

given by

G̃((τ, (τi), Y1, Y2)) = (Y1,F(τV +

∞
∑

i=1

τiV
i + Y1 + Y2)),

where F is defined in (6.3). The map G̃ is continuous with respect to the product
norms (on each factor we put the natural norm, the Euclidean one on the interval,
the l1 norm and || · ||∞ and || · ||1 in the spaces of vectors on Ω). Moreover

G̃(0, 0, 0, 0) = (0, 0),

since the immersion Φ has degree equal to d. Denoting by DY the differential with
respect to the last two variables of G̃ we have that

DY G̃(0, 0, 0, 0)(Y1, Y2) = DG(0, 0)(Y1, Y2)

is a linear isomorphism thanks to Proposition 6.3. We can apply the Implicit
Function Theorem to obtain maps

Y1 : (−ε, ε)× l1(ε) → H(Σ0), Y2 : (−ε, ε)× l1(ε) → V1(Σ0),

such that G̃(τ, (τi), (Y1)(τ, τi), (Y2)(τ, τi)) = (0, 0). We denote by l1(ε) the ball of
radio ε in Banach space l1(R). This implies that (Y1)(τ, (τi)) = 0 and that

(6.11) F(τV +
∞
∑

i=1

τiV
i + Y2(τ, τi)) = 0.

Hence the submanifolds

Γ(τV +
∑

i

τiV
i + Y2(τ, τi))
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have degree equal to or less than d.
Now we assume that V is an admissible vector field compactly supported on

Ωε, and that V i are admissible vector fields such that V i
V vanishing on Σ0. Then,

differentiating (6.11), we obtain that the vertical vector fields

∂Y2

∂τ
(0, 0),

∂Y2

∂τi
(0, 0)

on Ωε are admissible. Since they are admissible and vertical vector fields vanishing
at (0, x̂), they are identically 0.

Since the image of the holonomymap is dense and contains a normalized Schauder
basis for V(Σε), we choose {V i}∞i=1 on Ωε such that {TΣε

(V i
V )}i∈N is a normalized

Schauder basis for V(Σε). Then we consider the map

P : (−ε, ε)× l1(ε) → C0(Σε, N)

given by

(τ, (τi)) 7→ Γ(τV +

∞
∑

i=1

τiV
i + Y2(τ, τi))|Σε

,

where C0(Σε, N) is the set of continuous functions from Σε to N vanishing at in-
finity, that inherits its differential structure as submanifold of the Banach space
C0(Σε,R

2n), see [43, Section 5]. For s, (si) small, the image of this map is an
infinite-dimensional submanifold of C0(Σε, N) with tangent space at Φ|Σε

given by
the Banach space V(Σε) (as TΣε

(V ) = 0 and TΣε
(V i) = TΣε

(V i
V) generate V(Σε)

). Notice that
∂P(0, 0)

∂τi
= TΣε

(V i) = TΣε
(V i

V),

for each i ∈ N. Therefore the differential D2P(0, 0) : l1(R) → V(Σε) defined by

D2P(0, 0)(α) =
∞
∑

i=1

αiTΣε
(V i

V )

is injective, surjective and continuous. Then, by [6, Corollary 2.7] D2P(0, 0) is a
Banach space isomorphism. Moreover, we have

∂P(0, 0)

∂τ
= TΣε

(V ) = 0,

since V is compactly supported in Ωε. Hence we can apply the Implicit Function
Theorem to conclude that there exist ε′ < ε and a family of smooth functions τi(τ),
with

∑

i |τi(τ)| < ε for all τ ∈ (−ε′, ε′), so that

Γ(τV +
∑

i

τi(τ)V
i + Y2(τ, τi(τ)))

takes the value Φ(p̄) for each p̄ ∈ Σε. Since the vector fields {V i}∞i=1 are equi-
bounded in the supremum norm on Ω̄ε, the series

∑

i τi(τ)V
i is absolutely conver-

gent on Ω̄ε.
Clearly, we have

P(τ, (τi(τ)))(p̄) = Φ(p̄),

for each p̄ ∈ Σε. Differentiating with respect to τ at τ = 0 we obtain

∂P(0, 0)

∂τ
+
∑

i

∂P(0, 0)

∂τi
τ ′i(0) = 0.
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Therefore τ ′i(0) = 0 for each i ∈ N. Thus, the variational vector field to Γ is

�(6.12)
Γ(τ)

∂τ

∣

∣

∣

∣

τ=0

= V +
∑

i

τ ′i(0)V
i +

∂Y2

∂τ
(0, 0) +

∑

i

∂Y2

∂τi
(0, 0) = V.

Here we show an unexpected application of Theorem 6.6.

Example 6.7. An Engel structure (E,H) is 4-dimensional Carnot manifold where
H is a two dimensional distribution of step 3. A representation of the Engel group
E, which is the tangent cone to each Engel structure, is given by R4 endowed with
the distribution H generated by

X1 = ∂x1 and X2 = ∂x2 + x1∂x3 +
x2
1

2
∂x4 .

The second layer is generated by

X3 = [X1, X2] = ∂x3 + x1∂x4

and the third layer by X4 = [X1, X3] = ∂x4 . A well-known example of horizontal
singular curve, first discovered by Engel, is given by γ : R → R4, γ(t) = (0, t, 0, 0).
R. Bryant and L. Hsu proved in [10] that γ is rigid in the C1 topology therefore this
curve γ does not satisfy any geodesic equation. However H. Sussman [47] proved
that γ is the minimizer among all the curves whose endpoints belongs to the x2-axis.

Let Ω be an open set in R2 and Φ : Ω → R4 be the ruled immersion parametrized
by Φ(u, v) = (0, u, 0, v) whose tangent vectors are (X2)Φ(u,v) and (X4)Φ(u,v). Then
we have that the degree deg(Φ(Ω)) is equal to four. Fix the left invariant metric g
that makes X1, . . . , X4 an orthonormal basis. Taking into account equation (4.2),
we have that a normal vector field V = f3X3 + g1X1 is admissible if and only if

∂f3
∂u

= g1,

since b313 = 〈X3, [X2, X3]〉 = 0 and a311 = 〈X3, [X2, X1]〉 = −1. Therefore
A(u, v) = (−1) for all (u, v) ∈ Ω, then A is linearly full in R. Thus, by Propo-
sition 5.6 we gain that ruled immersion Φ is regular.

Despite the immersion Φ is foliated by singular curves that are also rigid in the
C1 topology, Φ is a regular ruled immersion. Thus, by Theorem 6.6 we obtain that
each admissible vector field is integrable. Therefore it possible to compute the first
variation formula [14, Eq. (8.7), Section 8] and verify that Φ is a critical point
for the area functional with respect to the left invariant metric g since its mean
curvature vector H4 of degree 4 vanishes. Hence this plane foliated by abnormal
geodesics, that do not verify any geodesic equations, satisfies the mean curvature
equations for surface of degree 4.

Here we show some applications of Theorem 6.6 to lifted surfaces immersed
of codimension 2 in an Engel structure that model the visual cortex, taking into
account orientation and curvature.

Example 6.8. Let E = R2 × S1 × R be a smooth manifold with coordinates
p = (x, y, θ, k). We set H = span{X1, X2}, where

(6.13) X1 = cos(θ)∂x + sin(θ)∂y + k∂θ and X2 = ∂k.

The second layer is generated by

X3 = [X1, X2] = −∂θ
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and X1, X2. The third layer by adding X4 = [X1, [X1, X2]] = − sin(θ)∂x+cos(θ)∂y
to X1, . . . , X3. Notice that the Carnot manifold (E,H) is a Engel structure. Let Ω
be an open set of R2 endowed with the Lebesgue measure. Then we consider the
immersion Φ : Ω → E, Φ(x, y) = (x, y, θ(x, y), κ(x, y)) where we set Σ = Φ(Ω).The
tangent vectors to Σ are

(6.14) Φx = (1, 0, θx, kx), Φy = (0, 1, θy, κy).

Following the computation in [14, Section 4.3] the 2-vector tangent to Σ is given

(6.15)

Φx ∧ Φy =(cos(θ)κy − sin(θ)κx)X1 ∧X2 − (cos(θ)θy − sin(θ)θx)X1 ∧X3

+X1 ∧X4 + (θxκy − θyκx − κ(cos(θ)κy − sin(θ)κx))X2 ∧X3

+ (sin(θ)κy + cos(θ)κx)X2 ∧X4

+ (κ−X1(θ))X3 ∧X4.

Since the curvature is the derivative of orientation we gain that κ(x, y) = X1(θ(x, y))
and therefore the degree of these immersion is always equal to four. Then a tangent
basis of TpΣ adapted to 2.7 is given by

(6.16)
E1 = cos(θ)Φx + sin(θ)Φy = X1 +X1(κ)X2,

E2 = − sin(θ)Φx + cos(θ)Φy = X4 −X4(θ)X3 +X4(κ)X2.

Therefore Σ is a FGT-(s−3) ruled submanifoldruled manifold foliated by horizontal
curves. Adding V3 = X2−X1(κ)X1 and V4 = X3 we obtain a basis of TE. Choosing
the metric g that makes E1, E2, V3, V4 an orthonormal basis we gain that

a413 = 〈V4, [E1, V3]〉 = 1 +X1(κ)
2,

b414 = 〈V4, [E1, V4]〉 = X4(θ).

Therefore the admissibility system (4.2) on the chart Ω is given by

X̄1(f4) = −X̄4(θ)f4 − (1 + X̄1(θ)
2)g3,

where V ⊥ = g3V3 + f4V4 and the projection of the vector field X1 and X4 onto Ω
is given by

X̄1 = cos(θ(x, y))∂x + sin(θ(x, y))∂y

X̄4 = − sin(θ(x, y))∂x + cos(θ(x, y))∂y .

Notice that the matrix A(x, y) = ((1+ X̄1(θ(x, y))
2)) never vanishes for all (x, y) ∈

Ω, then also the matrix Ã = DA defined in Proposition 5.2 never vanishes since
D(x, y) 6= 0 for all (x, y) ∈ Ω. Therefore by Proposition 5.6 the surface Σ is regular,
then by Theorem 6.6 Σ is deformable.
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