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The mapping of number onto space is fundamental to measure-
ment and mathematics. However, the mapping of young children,
unschooled adults, and adults under attentional load shows
strong compressive nonlinearities, thought to reflect intrinsic
logarithmic encoding mechanisms, which are later “linearized”
by education. Here we advance and test an alternative explana-
tion: that the nonlinearity results from adaptive mechanisms in-
corporating the statistics of recent stimuli. This theory predicts
that the response to the current trial should depend on the mag-
nitude of the previous trial, whereas a static logarithmic nonline-
arity predicts trialwise independence. We found a strong and
highly significant relationship between numberline mapping of
the current trial and the magnitude of the previous trial, in both
adults and school children, with the current response influenced
by up to 15% of the previous trial value. The dependency is
sufficient to account for the shape of the numberline, without
requiring logarithmic transform. We show that this dynamic
strategy results in a reduction of reproduction error, and hence
improvement in accuracy.

numerical cognition | predictive coding | approximate number system |
Weber–Fechner law | serial dependency

Humans have a strong intuition of the spatial nature of
numbers, usually (but not always) a horizontal “mental

numberline,” with numbers increasing from left to right (1–4).
However, the nature of number mapping is not identical for all,
but changes during development, starting from a nonlinear rep-
resentation, well characterized as logarithmic (placing, for ex-
ample, the number 10 near the midpoint of a 1–100 scale), then
becoming more linear over the first years of schooling (3, 5, 6).
Similarly, logarithmic-like numberlines have been demon-
strated in indigenous Amazonian populations without formal
mathematical schooling (4).
Several recent studies have shown that under certain circum-

stances even the math-educated tend to reproduce numbers
logarithmically. For example, we showed that depriving atten-
tional resources leads to logarithmic-like numberline responses
(7), consistent with the possibility that the native logarithmic
encoding emerges when attention is deprived. Other studies have
shown that the use of unfamiliar numerical format (such as ex-
ponential) can induce a switch from a linear to a logarithmic-like
response, even in math-educated adults (7, 8). Most recently,
Dotan and Dehaene (9) have devised a clever technique to re-
cord the whole trajectory of the pointing response (across the
face of a touchscreen), rather than just the endpoint: The re-
sponse begins quite logarithmically, then corrects toward linear
mapping by the time contact is made. All these studies have led
many to interpret the logarithmic map as the direct reflection
of the internal native number representation (4, 10–12) that
becomes corrected over time by education but can emerge under
special circumstances.
Whereas the nonlinear numberline is consistent with intrinsic

logarithmic processes, other explanations have been suggested.
One promising possibility is that the nonlinearity results from

a “central tendency of judgment” or “regression toward the
mean” (7, 13, 14), which has been successfully applied to many
perceptual tasks (15) and recently well described within the
Bayesian framework (7, 16): Under conditions of uncertainty—
such as under attentional load or unfamiliar numerical format—
responses tend to be biased toward the mean of the stimulus
distribution. Importantly, strategies of this sort can lead to
reductions in error, particularly under conditions of high un-
certainty or noise (7, 16–19). In the numberline task, regression
toward the mean predicts a logarithmic pattern of results (7, 13),
with a goodness of fit similar to a log-linear model (7).
How can we distinguish between these two plausible classes of

explanations of the numberline nonlinearities? One major dif-
ference is that whereas the logarithmic transform is a static
nonlinearity, regression to the mean is a dynamic process that
requires continuous online updating. A strong prediction, therefore,
is that there should exist serial dependencies between the re-
sponse to the current stimulus and the strength of previous stimuli.
In this study we measure intertrial dependencies and demon-
strate strong and significant correlations between the current
response and previous stimuli, clearly favoring the central ten-
dency explanation of the nonlinear numberline. We go on to
develop a simple Bayesian integration model to show how the
intertrial dependencies can explain completely the nonlinear
numberline, without resort to logarithmic encoding or other
static nonlinearities.

Results
We measured numberline mapping under high and low atten-
tional demand. Five subjects were asked to indicate the numerosity
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of clouds of dots on a line demarcated by a single dot on the left
and a 100-dot cloud on the right. In the single-task condition they
simply responded to the numerosity, in the dual-task condition
they first responded to a difficult visual conjunction task, then
to the numerosity (Methods and ref. 7). The symbols of Fig. 1
show the average results for single-task (Fig. 1A) and dual-task
(Fig. 1B) conditions. Agreeing with previous studies (7, 14), the
data show a less linear pattern under conditions of high atten-
tional load. The thin black curves show the best linear and log fits
and the red a mixed model combining linear and logarithmic
components:

R= a
�
ð1− λÞN + λ

Nmax

lnðNmaxÞlnðNÞ
�
; [1]

where R is the response to numerosity N, a is a scaling factor,
Nmax the end of the numberline (equal to 100), and λ a factor
describing the logarithmic nonlinearity (0 for pure linear, 1 for
pure logarithmic). This two-parameter fit was quite good (fitting
parameters are given in the legend to Fig. 1). The logarithmic
component λ was 0.11 for the single-task condition, and 0.38 for
the double task, reflecting the nonlinear number mapping under
attentional load. The blue curves show the predictions of a
Bayesian integration model, described later. Fig. 1 C and D show the SDs for the numberline judgments

under the two conditions (on log–log coordinates). These can be
taken as estimates of the thresholds for localization on the
numberline. The thick lines show the output of two models
(discussed later), and the thin straight lines best-fitting regres-
sions (for use in modeling). In fitting the data, we excluded the
subitizing range, because there is very good evidence that dif-
ferent mechanisms operate over that range (2). Furthermore,
subitizing mechanisms are attention-dependent, operating only
when there are sufficient attentional resources (20, 21). For that
reason, it seemed safest to exclude those measurements from the
fits of single-task data.

Trialwise Dependencies. The simplest direct prediction of the central-
tendency explanation is that responses to trials preceded by a
less numerous stimulus should on average be lower than re-
sponses to trials preceded by a more numerous stimulus. Fig. 2
shows that this prediction is borne out. The red points show
response errors for when the previous trial was greater (by at
least 7), blue points where it was at least 7 less, and the green
points where it was similar ðjΔj< 7Þ. For the dual-task condition
the errors for trials preceded by larger numbers were consis-
tently higher than those for trials preceded by smaller numbers,
with the “similar” category falling in between. The difference
between the greater-than and less-than conditions is clearly
significant [repeated measures ANOVA for the numerosities
covered by both, F(1,4) = 29.9, P < 0.005]. For the single-task
condition (which showed little logarithmic tendency), the curves
again separate (although less obviously), and again the differ-
ence is significant [F(1,4) = 15.9, P = 0.016].
We next looked for more quantitative dependencies between

the magnitude of the current responses and previous stimuli.
Fig. 3A shows responses at four sample numerosities as a func-
tion of the numerosity of the previous trial for the single- (Left)
and dual-task (Right) conditions. At low subitizing numerosities,
the previous trials had very little effect, but at higher numer-
osities there was a clear dependency on the previous trial, with
responses varying almost monotonically with the magnitude of
previous stimulus. The dashed, color-coded lines show the
robust linear regressions of the data, all of which have positive
slope. The thick lines (in this and the other figures) are model
predictions, discussed later.
We take the slope of these regressions as an index of the re-

sponse dependency on previous stimuli and plot them in Fig. 3B
as a function of the numerosity of the current trial (black squares).
The dependencies are highest at midhigh numerosities, falling
off at the lowest and the highest numerosities. We averaged the
weights of Fig. 3B for the range of numerosities greater than 5

A B

C D

Fig. 1. Mapping number to space. The square black symbols show the av-
erage response location of subjects in the single-task (A) and dual-task (B)
conditions. The thin black lines show the best-fitting linear and logarithmic
models. The blue and red lines show, respectively, the best-fitting pre-
dictions for the Bayesian (Eq. 2) and log-linear models (Eq. 1). (C and D) SDs
of responses as a function of number presented (on log axes). The thin black
lines show the best-fitting linear regressions (outside the subitizing range),
defining the index of the power law (α of Eq. 5), used for the modeling. The
blue and red curves show, respectively, the predicted SDs from the Bayesian
and log-linear models. Goodness of fit was assessed by the coefficient of
determination (R2) and the Akaike information criterion (AIC), which takes
into account degrees of freedom (45). The values of R2 and AIC (respectively)
for the log-linear model were 0.79 and 16.4 (single) and 0.94 and 27.0
(double). For the Bayesian model they were 0.72 and 17.0 (single) and 0.97
and 16.7 (double). Smaller AIC values denote better fits, with differences of
2 considered negligible.

A B

Fig. 2. The effect of previous stimulus magnitude. (A and B) Average re-
sponse error (difference between response and stimulus magnitude) for trials
parsed into three categories based on the magnitude of the previous stimulus:
purple, previous stimulus at least seven numbers less; green, previous stimulus
within seven of the current one; red, previous stimulus at least seven higher.
The magnitude of the previous stimulus had a clear effect, particularly in the
dual-task condition, and was statistically significant in both conditions.
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(outside the subitizing range) and plot them as a function of past
and future trials in Fig. 3C. The average weights of trial i–1 were
strong (w = 0.08 for single-task, w = 0.12 for dual-task), and
highly significant (P < 10−5, bootstrap sign test). For the dual-
task condition, there was also a significant dependency for
trial i–2 (w = 0.04, P = 0.04, bootstrap sign test). That for the
single-task condition was also positive (w = 0.01) but not
significantly greater than zero. Importantly, there were no sig-
nificant dependencies on future trials, a strong control against
statistical artifacts.

Bayesian Integration Model. To show how intertrial dependencies
can predict the nonlinear numberline, we implement a simple
Bayesian integration model whose output is shown by the blue
lines in Figs. 1 and 3. This model should be considered more
of an existence proof to show that correlations can lead to

nonlinearities, rather than attempting to describe actual physi-
ological mechanisms. The model resembles a Kalman filter, in
that we assume that the expected response to any given trial i is
given by the weighted average of the numerosity of the current
stimulus and the estimate of that of the past:

Ri = ð1−Wi−1ÞNi +Wi−1Ri−1; [2]

where Wi−1 is the weight assigned to the estimate of the
numerosity of previous trial. In Bayesian terms this can be con-
sidered as a prior from previous stimulus history. Because sub-
jects do not have direct access to the physical magnitude of the
previous trial, we assume that the best estimate of it is the re-
sponse Ri−1. Because Ri−1 in turn depends on Ri−2, the formula
is clearly recursive, so it will accumulate evidence from the past
without accessing the full stimulus history, or a rolling average
of it.
How do we define the weight Wi−1? For two redundant cues,

the weight of each cue should be proportional to its reliability ρ,
the inverse of variance:

Wi−1 =
ρi−1

ρi + ρi−1
=

1=σ2i−1
1=σ2i

+ 1=σ2i−1
=

σ2i
σ2i + σ2i−1

: [3]

This formula expresses ideal weighting when trials i and i−1
sample the same physical stimulus. In this case they do not, and
the probability that they are different can be shown to vary with
the square of their separation (22, 23). The formula now
becomes

Wi−1 =
σ2i

σ2i + σ2i−1 + ðNi −Ri− 1Þ2
: [4]

We assume that the SD (thresholds) will, like most sensory
discriminations, follow a power law:

σ = kNα; [5]

where α is the index of the power law and k a free constant
(the only degree of freedom in the model), giving the overall
level of noise. Substituting Eq. 5 in Eq. 4 the weight given to the
previous trial is

Wi−1 =
k2N2α

i

k2N2α
i + k2N2α

i−1 + ðNi −Ri− 1Þ2
: [6]

Fig. 4 shows the general behavior of the model for various
values of α and k. Note that α = 1 (threshold proportional to N)
describes Weber’s law, α = 0.5 describes a square-root rela-
tionship, commonly referred to as “shot-noise” or “Poisson noise,”
and α = 0 describes constant noise, invariant with numerosity.
The curves for different α (Fig. 4A) all show strong logarithmic-
like compression. The major effect of changing the index is that
for high α the deviation from veridicality is mainly at high
numbers, whereas for lower values there is also a deviation to-
ward the mean at low numbers (clearer on the expanded insert).
It is clear that the general pattern of results does not depend on a
specific noise regime. Even the implausible assumption of con-
stant noise (α = 0) causes a strong regression to the mean, log-
arithmic-like over much of the range. Simply adding the constraint
of veridicality in the subitizing range would make the function
quite like a logarithmic transform.
In the simulations of Fig. 4A the free parameter k was adjusted

to best fit the data in the dual-task condition (which showed the
most nonlinearity). Fig. 4B shows the effect of varying noise
level k (fixing α at 0.36, the measured value for the dual-task
condition). With increasing k, the functions become more curved,
deviating more from veridicality in a logarithmic-like manner.

A

B

C

Fig. 3. Predicted and measured serial dependencies. (A) Response as a func-
tion of numerosity of the previous trial for single-task (Left) and dual-task
(Right) conditions for the experiment data (□), together with the predictions
from the Bayesian integration model of Eq. 2 (heavy color-coded lines), for the
four representative numerosities. Values of k are 2.75 for the single-task con-
dition and 12.6 for the dual-task. The thin straight lines show best-fitting linear
regressions to the data. The arrows show the veridical responses. (B) Average
dependency (weight) on previous stimuli, as a function of current numerosity,
given by the slope of regression lines such as those above. The thick lines show
the predicted weights for the log-linear (Eq. 1, red) and Bayesian (blue) models.
The black symbols show the correlations in the data for the three datasets. The
error bars mark ±1 SEM. (C) Average weights as a function past and future trial
number, for the data (open squares) and the two model predictions (Bayesian
integration blue, log-linear red). Asterisks indicate significance from
zero: ***P < 10−5, *P < 0.05, one-tailed bootstrap sign test.
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Modeling the Data. To model our numberline data, we calculated
the value of the power-law index (α in Eqs. 5 and 6) from the
data (Fig. 1 C and D) by linear regression. This yielded a value of
0.52 (shot-noise) for the single-condition data and 0.36 for the
dual-task condition. Note, however, that although using the data
to determine α seemed the most assumption-free strategy, Fig.
4A shows that the choice of α is not fundamental for the general
pattern of results. We then adjusted parameter k (the overall
level of noise) to give the best fits to the data. With only this one
degree of freedom, the model captures the nature of the number-
line data with a comparable or better fit than the two-parameter
log-linear model (fit parameters in the legend to Fig. 1).
The blue lines of Fig. 3 show Monte Carlo simulations of the

model, obtained by simulating 1,000 virtual subjects, assuming
that their estimates of Ni were corrupted by Gaussian noise
of SD given by Eq. 5 (α and k given by data and best fit, re-
spectively). Fig. 3A shows simulated responses as a function
of magnitude of previous response. In general, the pattern of
results is similar to the data, with clear dependencies at all except
the lowest numerosity. We then calculated linear regressions of
the simulations and plotted these with those of the data in Fig.
3B. Again the model captures the trend in the data: low for low
numerosities, higher for mid and high levels. It even captures the
tendency of the single-task data to show weaker dependencies
at the highest numbers. Fig. 3A show the predictions of overall
dependencies, again capturing the trend in the data, predicting
strong dependencies in both conditions for trial i–1 and also
a measureable dependency at trial i–2, as was observed. The red
curves of Fig. 3 B and C show the simulations of a memory-free
system with partial logarithmic encoding (using the values of the
fit of Eq. 1, and the same values of α and k as for the Bayesian
model). As may be expected, the static linearity predicted zero
correlations in all conditions. Although this prediction is obvious,
it serves as a sanity check to ensure that the programs functioned
correctly without introducing spurious, artifactual correlations.
Finally, we obtained fits to the data by simulating the behavior

of 1,000 virtual subjects performing experimental sessions like
the subjects, randomizing trial order for each simulation. For
each trial the response was calculated as a weighted average of
the current stimulus (corrupted by Gaussian noise with SD given
by Eq. 5) and the previous response:

Ri = ð1−Wi−1Þ
�
Ni +N �

0; kNα
i

��
+Wi−1Ri−1; [7]

whereN represents the normal distribution andWi−1 follows Eq.
6. Responses that would have exceeded the numberline (because
of a large draw of noise) are clipped at the boundary of the line.
The current response is stored and retrieved on the following
simulation without further noise corruption.
The blue curves of Fig. 1 show the simulated responses (A and

B) and SDs (C and D). Clearly, the simulation describes the data
well, particularly in the dual-task condition where it captures
97% of the variance (see the Fig. 1 legend for fit parameters).
The thick blue lines of Fig. 1 C and D show the SDs of the
simulated responses. These follow a trend similar to the mea-
sured SDs, approximating a power law of similar slope to the
data, but slightly higher: by a factor of 1.2 for the single task and
1.7 for the dual task. This implies that the system assumes
a slightly higher noise level than actually exists. The red lines
show the predictions of the log-linear model, assuming that
precision is dictated by the inverse of the slope of the log-linear
Eq. 1. In practice this leads to Weber’s law when the model is
fully logarithmic (λ = 1) and to constant noise when the mixture
model is fully linear (λ = 0). However, we do not take the
failure in predicted noise levels as strong evidence against the
logarithmic model.

Potential Advantages of Bayesian Integration. Bayesian strategies
are usually thought to be statistically advantageous, reducing the
variability of sensory estimates (e.g., ref. 16). Fig. 5 shows how
this may apply in this case. We simulated rms error as a function
of the noise constant (k of Eq. 5) for a memoryless linear system
and the Bayesian integration model. The Bayesian model pre-
dicts less error than the memoryless model, and the difference
increases with noise level. The symbols studded into the lines
show the noise level that best fit the dual-task adult condition.
Fig. 5B gives an intuition of how the weighted average can lead

to an advantage. We take the example of adult responses under
attentional load. Following Jazayeri and Shadlen (16), we par-
tition the error into two orthogonal components, the bias (av-
erage accuracy) given by the distance of the average response
from veridicality (the distance of the points of Fig. 1 from the
equality line), and the precision, given by the SD of the scatter of
responses around that mean. The Pythagorean sum of these two
components gives the total error, on this graph represented by

A B

Fig. 4. Predictions of the Bayesian model. (A) Predicted numberlines for
various power-law noise functions (Eq. 5), for α ranging from 0 (constant
noise) to 1. All values predict a negatively accelerating numberline, with the
main effect of varying α visible at low numerosities (Inset): Low α causes
greater deviation from veridicality at these low numerosities. The value of k
was chosen to best fit the data of the dual-task condition (k = 12.6). (B) The
effect of varying the noise level k (for α = 0.36, the level best-fitting from the
dual-task data). Increasing k causes greater deviations for veridicality.

A B

Fig. 5. The effect of the Bayesian integration model on error. (A) Pre-
dictions of how error increases with noise for a memoryless system (red) and
the Bayesian integration model (blue). The Bayesian model predicts less er-
ror, with the difference increasing as the noisiness of the system increases.
The symbols indicate k = 12.6, the level that best fit the dual-task data. (B)
The abscissa shows the bias (average deviation from veridicality) and the or-
dinate the precision (SD of the scatter of responses around their mean) for the
dual-task adult data. Each data point refers to a different numerosity. The red
curve shows the prediction of a memoryless linear model and the blue curve
that of the Bayesian model (Eq. 2). The black symbols show the data. The
Bayesian model captures the pattern of the data: Both the model and the data
show less total error (distance from origin) than the memoryless model.

7870 | www.pnas.org/cgi/doi/10.1073/pnas.1402785111 Cicchini et al.
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the distance from the origin. While a memoryless linear system is
essentially bias-free (near vertical red curve), both the Bayesian
model and the data show increasing bias for larger numbers. The
result of this is that the total error (distance from the origin) is
about 33% less than that predicted by a memoryless system
with the same amount of noise. The Bayesian model predicts
the nature of the error, with positive bias for low numbers and
negative for high. The total error predicted is about 1.7 times
more than that actually observed (as we have seen in Fig. 1),
suggesting that the system overestimates its internal noise.
However, besides this small overestimation the model captures
the pattern of the data.

Nonlinear Number Mapping in Children. Finally, we asked whether
the current model may be useful in explaining previously reported
numberline data for school-aged children. To this end, we
reanalyzed the previously published (24) numberline data of 68
primary school children (ages 8–11 y). As with the adult data, we
found a clear and statistically significant dependency of the
current trial on trial i−1 (P = 0.002). The dependency on trial i–2
was not significant. A split-half analysis like that of Fig. 2 also
revealed a significant difference between trials preceded by a
lower numerosity and those preceded by a higher numerosity
[F(1,3) = 35.9, P = 0.009].

Discussion
Two general conclusions can be drawn from this study. The first
is that the characteristic nonlinearities in numberline mapping of
young or unschooled subjects, or adults under attentional load,
need not result from logarithmic encoding of number. We are
able to account completely for the nonlinearities observed in
three sets of data with a simple Bayesian model that performs
a linear weighted sum between present and past stimuli. Obvi-
ously we cannot exclude that static nonlinearities also occur, but
the nonlinear numberline cannot be taken as evidence for them.
Second—and perhaps more importantly—we suggest that taking
stimulus history into account may reflect a very general strategy
of optimizing behavior to take into account environmental sta-
tistics. Because the physical world is largely stable and continu-
ous over time, the recent past is a good predictor of the present
(25). As Fischer and Whitney (26) have recently suggested for
orientation, serial dependence of estimates of numerosity
may reflect a basic mechanism to improve the efficiency of
numerosity estimation.

Logarithmic Transformation of Stimulus Magnitude. Much evidence
has been thought to reflect logarithmic encoding of number,
including the approximation to Weber’s law (thresholds pro-
portional to numerosity) of range for both humans (27) and
monkeys, and the logarithmic bandwidth of neurons selective to
number (11, 28, 29). However, compressive nonlinearities do not
necessarily implicate intrinsic logarithmic encoding (30–32). This
is a very old controversy in psychophysics, dating back to Weber
and Fechner, who interpreted the proportionality of sensory
thresholds to stimulus intensity (now called the Weber–Fechner
law) to reflect logarithmic processing (as the derivative of the
logarithm is 1/x) (33, 34). However, this was famously challenged
by Stevens (35), who showed that the logarithmic-like behavior
holds only at threshold. Weber–Fechner behavior for sensory
attributes is now rarely interpreted to imply logarithmic encod-
ing, usually adaptation or gain control, mechanisms that have
been linked to optimal behavior (26, 36–38). So, the strongest
evidence for logarithmic coding was the logarithmic numberline:
Because that now has a more plausible explanation, there exists
no evidence at all for logarithmic encoding of number in primate
brains. Just as the dependency of increment thresholds on
magnitude led to erroneous assumptions of logarithmic trans-
formation of sensations, rather than dynamic gain control, so
too has the logarithmic-like shape of the numberline led to
assumptions of logarithmic encoding of number, rather than
dynamic adaptive coding.

We also point out that although Weber’s law is often assumed
it is seldom actually observed. In a recent study (39) we showed
that for discrimination of numerosity Weber’s law applied over
only a very limited interval, with the square-root law (α = 0.5)
operating over most of the range. In the current study, which
required a pointing response (which presumably also introduced
some noise), the power law exponents ranged from 0.36 to 0.5,
well outside the Weber range. Although this is not particularly
strong evidence against logarithmic encoding, it certainly does
not support the concept. And recent evidence that monkeys can
perform simple additions almost linearly (40) also speaks against
logarithmic encoding.

Modeling. We model our results with a simple Bayesian-like
model, which incorporates a weighted estimate of past stimuli in
a recursive way, so responses tend to be drawn toward the mean.
The degree to which they deviate depends on three factors: the
estimated reliability (inverse variance) of the current stimulus,
that of the previous stimulus, and the difference in magnitudes
between the two (Eq. 4).
The model (Eq. 2) resembles closely a Kalman filter, with the

weighting to previous stimuli acting like Kalman gain. However,
we do not attach any particular significance to this similarity.
Kalman filters are typically used to stabilize and maintain cali-
bration in control systems by minimizing the difference between
predicted and observed states. The filter does not completely
recalibrate each time a difference between prediction and ob-
servation occurs, because that would render it unstable. In our
case it is not clear why a Kalman filter should apply, as it is being
stabilized or calibrated. Perhaps the apparent similarity of our
model to a Kalman filter merely results from the fact that both
incorporate a running average in the final estimate of magnitude.
We believe that the particular form of modeling we have chosen
is not unique, but acts as an existence proof to show how trialwise
correlations can lead to logarithmic-like distortions.
The model could certainly be refined. For example, there is no

active memory in estimating the mean. Stimuli older than 1-back
affect the predictions only because of the innate recursiveness
of the model: The best estimate of the magnitude of trial i−1 is
considered to be the response to it, which includes a weighting
from trial i−2, etc. Indeed, in the condition with the highest noise
(dual task), we do find a significant dependency on trial i−2.
However, it is conceivable that the system may actively construct
an estimate of the mean as the prior, as has been suggested in
previous work (7, 16, 18). It would be relatively simple to extend
the model to incorporate a running average of the mean, which
may lead to further improvements in the fits.
Perhaps the most important question is, Why should the current

responses depend on the magnitude of previous stimuli? Within
the Bayesian framework, the use of priors has typically been
considered to be optimal. Indeed, also in this case, the prior does
lead to an improvement of overall accuracy (Fig. 5). However, the
improvement is not great, only about 33%. Is this a large enough
advantage to be driving this effect? Possibly, but it is also possible
that other factors are at work. For example, the dependencies may
reflect an inherent hysteresis of the system. Indeed, priming
(positive dependency on past events) is a ubiquitous phenomenon
in psychology (41, 42), which may well reflect a general strategy to
cope adaptively in the natural environment (37, 43).
Some readers may wonder why we did not look for correlations

between responses, rather than stimuli. Because Eq. 2 predicts
a dependency on the estimate of the previous numerosity, ap-
proximated by the response to it (Ri−1), it may seem sensible to
search for dependencies on previous responses, rather than stimuli.
However, this is psychophysically impractical, because response
biases could lead to spurious correlations between successive
responses. For example, a subject first responding consistently
too low, then consistently too high, would produce a spurious cor-
relation between neighboring trials. However, no such behavior can
lead to spurious correlations between previous stimuli and current
responses, because each stimulus was drawn independently.
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As the main component of Ri−1 is given by Ni−1, showing
a dependency of Ri on Ni−1 is the strongest support possible
for the model. That there is no dependency on Ni+1 is very
strong proof against artifacts producing spurious correlations.
In our study we chose to use clouds of dot stimuli, because their

sensory characteristics are more easily defined. However, many
numberline tasks use symbolic stimuli, such as Arabic digits, and
the logarithmic form of the numberline has been shown to be
predictive of math performance in school-age children. We have
yet to investigate whether the coding of symbolic numbers may be
influenced by past history. Because the model does not depend on
any particular power-law relationship, but works even with con-
stant noise (α = 0), there is no reason why the model should not
predict performance in this situation too. If similar effects are
observed, it may provide insights into why nonlinear numberline
performance is associated with poor math performance.

Conclusions
To summarize, we have shown that when mapping number to
space subjects adjust responses to take into account recent his-
tory, fitting well with suggestions that the spatial representation
of numbers is not an inert map but is a highly dynamic process
(8). If this notion is correct, we are in a position to make pre-
dictions for a wide range of research. For example, our model
predicts the serial dependency recently reported for perception
of orientation (26). We also predict serial dependencies in other
tasks, such as Dotan and Dehaene’s (9) demonstration that num-
berline mapping responses are initially toward the “logarithmic”
goal, before being corrected toward the linear response. We predict
that the early responses should be highly correlated with prior
stimuli, reflecting the intrinsic tendency to incorporate the prior,

which is steadily reduced as evidence accumulates. We also expect
to find strong trialwise correlations in many other experimental
conditions, such as time reproduction (16) and even causality (44).

Methods
Five adults naïve to the purpose of the study (mean age 26 y), all with normal
or corrected-to-normal vision, participated in the study. Participants gave
written informed consent. The experiments were approved by the local
ethics committee (Azienda Ospedaliero-Universitaria Pisana n. 45060).
Stimuli and procedures were similar to those in typical numberline experi-
ments, described in detail elsewhere (e.g., ref. 7). Briefly, participants were
presented with a cloud of dots and asked to indicate the quantity on a line
demarcated by two sample numerosities. Each trial started with participants
viewing a 22-cm “numberline” that remained visible throughout the trial
with sample dot clouds representing the extremes: one dot on the left of the
numberline and 100 on the right. Dot stimuli (half black, half white) were
presented for 240 ms (in a circular region of 8° diameter) and were fol-
lowed by a random-noise mask. The numerosities were 2, 3, 6, 18, 25, 42, 67,
71, 86; subjects responded by mouse click. As described in ref. 7, in the dual-
task condition adults performed the task together with a color-orientation
conjunction task on the central squares, before making the number-line
judgment. In the single-task condition, everything was identical except they
ignored the color-orientation stimuli and responded only to the number
task. In each session, subjects were presented with two repetitions of each
stimulus, a total of 18 trials, presented in random order. All subjects per-
formed eight blocks of 18 trials each, randomly intermingling single- and
dual-task conditions. No feedback was provided in any condition.
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