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A B S T R A C T

The Internet of Things (IoT) paradigm is assumed to be a major component in the present and future Internet,
with forecasts claiming a humongous number of devices connected in the near future, and applications
fields spanning from agriculture, to healthcare. Despite this, the standardization efforts have not yet resulted
in widely adopted standards, and the market is fragmented into multiple solutions both at physical and
communication protocol levels. Moreover, IoT systems exacerbate the usual test bed limitations, e.g., scalability
(very large number of devices), hardware compatibility, space, and price. Due to the above problems,
simulation tools become an extremely interesting tool for studying IoT systems both for academia (new
algorithms), standardization (new protocols), and industry (what-if analysis). In this paper we will discuss
what are the most relevant features and models that a simulation tool like ns-3 should prioritize to enable the
above-mentioned needs from academia, standardization, and industry, and if they are achievable in the short,
medium, or long term.
1. Introduction

Fulled by the support of the industry tech giants, the Internet of
Things (IoT) promise of all connected ‘‘smart’’ devices society is fast
approaching. Nevertheless, at this time, there are still many challenges
to overcome before this future becomes a reality.

Simulation and hardware implementations are common tools to
develop both applications and communication protocols driving IoT
development. In particular, simulation tools play an important role in
IoT development, as they can be used for major design phases, namely:
(1) protocol development, including academic research and standard-
ization, (2) industrial evaluation of a protocol (what-if analysis), and
(3) study of IoT systems in academia.

In the first case, the goal is to test new protocols, new algorithms,
etc. that could not be easily analyzed using real hardware, either
because the hardware is too costly, or because the simulator allows to
analyze scenarios difficult to implement.

In the second case the analysis is more aimed at analyzing the
performance of a full system, e.g., would an application drain the
batteries of a device if this protocol stack is being used? Also, in this
case, the simulation tool can provide access to scenarios difficult to
replicate in a testbed.

The third case equally important, allows academic bodies and en-
ables future generations of students to study IoT systems without the
costs of a full-scale testbed, which are often beyond acceptable.

∗ Corresponding author.
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Despite the undeniable advantages that simulation tools provide,
these tools are not short of challenges, ranging from limited support,
interoperability issues, lack of documentation, and narrow capabilities
to mention a few.

In this paper, we will discuss the actual limitations of open-source
simulation tools concerning IoT standards, and give an overview of
what is, in our opinion, the most interesting development and research
opportunities. While some of the perspectives discussed in this work
are valid for other network simulation tools, we specifically explore
the case of the ns-3 network simulator throughout our examples in this
work and, provide our perspectives from the point of view of its IoT
module maintainers to which the authors belong.

This paper is structured as follows: Section 2 gives an overview of
IoT discrete event simulators and the ns-3 network simulator. Section 3
discusses the differences between different simulation and hardware
implementations. Section 4 explores some of the challenges faced in
IoT network simulations. Our last Section discusses priorities and needs
that provide characteristics of future relevant IoT simulation systems.
This is followed by our conclusions.

2. Discrete event network simulators for IoT development

Ideally, network simulations should accurately replicate a real net-
work’s behavior with an established precision level. Naturally, the
https://doi.org/10.1016/j.comnet.2024.110749
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level of precision required can drastically change from user to user.
While in some cases users might require simple representations of data
transmission from one point to another; other users require a level of
granularity that requires the setup of complex simulations of the entire
communication process in and out of hardware.

Furthermore, an important consideration in network simulation
development is the time cost vs. complexity relationship. A great
deal of users are willing to sacrifice simulation precision as long as
the creation process is less complex than alternatives. GUI (Graphical
User interface) plays a big role in this respect, and many users will
favor a network simulator that uses GUI over a text-based interface.
Unfortunately, many open network simulation tools are text-based only
with limited graphical options. A large portion of users find text-
based simulators to have steep learning curves as they require both
programming experience and computer network knowledge to use.

Licensed paid network simulations, on the other hand, include GUI
options but are often not open source, and even in the cases where the
source is included, the simulator modules cannot be extended, studied,
or modified in any shape or form without the licenses mentioned above.
This is a severe limitation for most researchers.

When choosing a network simulator, users must weigh these limi-
tations and choose the best option for each use case.

Without loss of generality, in the following, we will refer mainly to
ns-3, as the authors have an extensive knowledge of the simulator, and
are active maintainers of some of its models. However, the points that
will be discussed can be applied to different systems.

2.1. The ns-3 network simulator

Ns-3 is a discrete event network simulator that supports the simu-
lation of different types of computer networks. Ns-3 implements IoT-
related networks mainly in its Lr-WPAN and 6LoWPAN modules. Lr-
WPAN has support for a single simulated 2.4 GHz Band with an O-QPSK
modulation. Ns-3’s Lr-WPAN module also supports a MAC layer (IEEE
802.15.4-2003-2011) with network initialization options (scanning and
association) and 2 supported transmission modes: beacon and beacon-
less mode. Both ns-3’s Lr-WPAN PHY and MAC implement most of the
primitives described by the standard (2011) which are used to directly
interface with these layers.

Ns-3’s Lr-WPAN module is currently missing support for Guaranteed
Time Slots (GTS) and has only partial support for indirect transmissions
(present in the association procedure). Moreover, because ns-3 only
implemented the standard until the 2011 revision, advanced MAC
behaviors such as TSCH (Time slotted channel hopping) and DSME (De-
terministic and synchronous multi-channel extension) are not included.
Likewise, capabilities to provide the RSSI (Received signal strength
indication) are not supported. All of these features were introduced
with the 2015 revision of the standard. On the physical layer side,
ns-3 only supports a 2.4 GHz ISM band with an O-QPSK modulation
error model. While the standard covers a wide variety of modulations
and bands [1], these are not typically covered by most hardware
implementations in the market but are a point of improvement that
ns-3 can look forward to in the future.

Ns-3’s 6LoWPAN model can be used in conjunction with either Lr-
WPAN or other standards like WiFi. 6LoWPAN is necessary to use IPv6
over Lr-WPAN, due to IPv6’s maximum transmit unit (MTU) require-
ments. Moreover, it alleviates some shortcomings of Low-Power and
Lossy Networks (LLN), like short packets leading to excessive overhead
(by implementing compression) and simple support for multicast and
mesh routing. Even though 6LoWPAN was developed for LLNs, it can
be used also on other network kinds.

Besides Lr-WPAN or 6LoWPAN, ns-3 does not have official support
for other IoT-oriented protocol stacks (network or application layers).
However, 3rd parties have made some progress in this respect as well

as modules for other IoT standards such as LoRA.

2 
While ns-3 source code is highly documented and organized, its lack
of GUI tools to generate network scenarios could be considered by many
a major drawback. This is especially true for beginners, who might
find it a daunting task to code network scenarios in C++ while also
learning the basics of computer networking. The importance of GUI
development and present capabilities of ns-3 is discussed in detail in
Section 5.1.

In its present state, ns-3’s LR-WPAN and 6LoWPAN modules are
not able to communicate with external hardware. However, future
integration is possible. Current ns-3 hardware emulation support and
the specific case of IoT hardware emulation potential are discussed in
Section 5.2.

3. IoT protocols: standards vs. market adoption

The number of protocols that are and can be used by IoT systems
is large and still growing. Often we refer to transmission protocols as
either wireless personal area networks (WPAN) or low power wide area
networks (LPWAN), depending on the radio range of the technology.
Examples of such protocols are the widely used IEEE 802.15.4 for
WPAN and LoRA/LoRAWAN for LPWAN. In the following sections,
without loss of generality, we will refer to these two protocols. Nat-
urally, they are not the only protocols available, notable mentions
include Bluetooth (IEEE 802.15.1) and WBAN (IEEE 802.15.6) for
WPAN networks and SigFox for LPWAN networks. However, due to
space constraints, they will not be discussed in this work.

3.1. LoRA and LoRAWAN

Long Range (LoRa) is a physical layer (PHY) developed by Semtech
company and based on the Chirp Spread Spectrum (CSS) modula-
tion. It operates on the unlicensed frequency bands 868 MHz and
915 MHz. Its promise of long-range communication with low energy
consumption makes it an attractive offer for many applications in open-
area environments. However, due to the same long-range coverage
and frequency characteristics, its performance can drastically vary in
situations where many nodes exist or in scenarios with many obstacles
such as buildings that can cause signal degradation due to attenuation
and fading effects. Its link layer (i.e., MAC layer) was developed by the
LoRA Alliance and is known as LoRAWAN. LoRAWAN uses the medium
access method known as ALOHA. LoRA/LoRAWAN does not have any
official stack that supports mesh networks. However, numerous works
exist in the literature addressing this point [2]. Being relatively new
when compared to other IoT protocol stacks, fewer simulation options
exist. Models for both OMNet++ [3] and ns-3 [4,5] simulators exist,
but they do not exist in an official capacity and are only externally
maintained.

3.2. IEEE 802.15.4 std.

The IEEE 802.15.4 std. is the low-rate wireless personal area net-
work (Lr-WPAN) standard and is currently the de facto standard used
in IoT (Internet of Things) home applications. The standard describes
a physical layer (PHY layer) and a link layer (a.k.a MAC layer). While
the standard defines these 2 layers, users are free to use any supported
protocol stacks on top of these layers. To date, this standard has issued
5 major revisions (2003, 2006, 2011, 2015, 2020). These revisions
describe the support for a wide range of band frequencies and mod-
ulations. However, IEEE 802.15.4 capable devices found in the market
are mostly constrained to the 2006 revision of the standard and the
2.4 GHz ISM band (250 kbps O-QPSK). Our survey on manufacturers
of this standard indicates that adoption of newer revisions is slow and
typically not adopted until many years after their release, therefore, it
is not uncommon to find decade-old or older standards implemented
even in devices recently introduced to the market.
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Table 1
IEEE 802.15.4 std. compliant hardware and their supported standard.

Manufacturer Model IEEE 802.15.4
Standard Rev.

NXP [6] JN516x/JN517x series 2006
Texas Instruments [7] CC253x/CC263x series 2006
Nordic Semiconductor [8] nRF528xx series 2006
NXP [9] K32W061/41 2011
NXP [9] JN518x series 2011
Expressif [10] ESP32-H2 2015
Silicon Labs [11] EFR32MGxx series 2012 (g)

Table 2
Network Simulators and their supported IEEE 802.15.4 implementations.

Network
simulator

Version IEEE 802.15.4
Standard Rev.

Actively
supported

Open
source

Doc

ns-3 [12] 3.42 2011 Yes Yes Web PDF
ns-2 [13] 2.35 2003 No Yes Web
Qualnet [14] 9.3.0 2006 Yes Yesa PDF
Omnet++
[15]

4.6 2006 Nob Yes PDF doc

Opnet [16] 18.9.0 Not disclosed Yes Yesa Web

a Requires license fees.
b Omnet++ is actively supported but the module which implements IEEE 802.15.4
(Castalia) is not.

Table 1 shows a compilation of released IEEE 802.15.4 capable
hardware devices. Similarly, Table 2 shows a comparison of simulators
similar to ns-3 and their supported IEEE 802.15.4 revisions. From the
information shown in these tables, the most adopted revision is the
2006 revision closely followed by the 2011 revision. As shown in
Table 1, even with devices considered state of the art like the ESP32-H2
released in 2023, the latest adopted revision was the 2015 revision. The
definition of revision used is often overlooked in evaluations, but the
difference between revisions is an important characteristic because it
denotes the capabilities of the device or the simulation. For instance,
there are significant differences [17] among 2006, 2015 revisions and
the 2012(g) amendment.

From the standard point of view, revisions are incremental. For
example, unless specifically stated, a 2011 revision will typically in-
clude features described in both 2003 and 2006 revisions (with minimal
changes and a few deprecated content). On the other hand, simula-
tions and hardware implementations do not always include all the
features described by the standard. Our survey indicates that the level
of completeness drastically varies in both hardware and simulation
implementations. Overall, most implementations support the 2.4 GHz
ISM band and a few of them also support 868 MHz and 915 MHz bands.
Other regional, industrial, or medical bands are typically not included
in devices meant for smart home devices. Likewise, MAC modes such
as the beacon-enabled mode are often not included in implementations.
This is mainly because higher layer protocol stacks like the Thread and
Zigbee Pro stacks do not make use of this MAC mode or the support of
additional PHY bands1 which are out of the scope of these standards.

.3. The Thread standard

Thread is an open standard for low-power low-data rate devices
nd it is designed to provide security and IPV6 network connectivity
ptions to IEEE 802.15.4 devices. More specifically, Thread is a com-
ination of multiple communication protocols that complement IEEE
02.15.4 devices’ capabilities, hence is often referred to as the Thread
tack. When IEEE 802.15.4 was conceived it was meant to be used in

1 Zigbee 3.0 R23 revision (2023) [18] added for the first time support for
he long released 868 MHz and 915 MHz bands but from our review there
ere no Zigbee Pro R23 devices in the market that make use of these bands.
3 
mesh networks (multi-hop networks), however, IEEE 802.15.4 devices
themselves cannot form mesh networks, they require the use of higher
layer protocol stacks to do so. In IEEE 802.15.4, all devices are part of a
Personal Area Network (PAN) and must be organized in a coordinator-
end device relationship. Coordinators provide essential services to end
devices such as assigning short MAC addresses and access to join a
particular PAN. While the IEEE 802.15.4 MAC layer typically provides
these services, in Thread, these MAC services are not used but are
provided by Thread instead. The Thread protocol stack uses protocols
that have not been standardized by IETF or with modifications that
make them non-standard. A significant example of this is the modified
version [19] of the Mesh Link Establishment (MLE) protocol [20] which
is used to provide address assignment and additional services such
as neighbor tracking and administration of asymmetric links. Further-
more, Thread uses 6LoWPAN header compression but with DHCPv6 for
IPV6 address assignment instead of 6LoWPAN-ND [21–23]. The IPV6
routing protocol is custom-built and is loosely based on the routing
information protocol (RIP) [24,25].

Google’s OpenThread [26] is arguably the most popular imple-
mentation of Thread. Originally it was designed to work with IEEE
802.15.4-2006 compliant devices, but devices such as JN5189,
nRF528xx, and ESP32-H2 which run newer revisions of the stan-
dard work with the OpenThread as described by its documentation.
OpenThread can be used with a System-on-Chip (SoC) design, meaning
that the complete stack and applications are embedded into an inte-
grated circuit of an IEEE 802.15.4 device. Alternatively, OpenThread
has support for co-processor designs: (1) The radio co-processor (RCP)
design in which the application and the Thread stack are running
on a separate processor and communicate with an IEEE 802.15.4
device via UART or SPI serial protocols, (2) The network co-processor
(NCP), where the OpenThread stack is also embedded into a chip
and communicates with an application in the host processor via serial
communication. OpenThread designs are summarized in Fig. 1.

To simulate Thread on ns-3 there are two future approaches. The
first one is to integrate OpenThread and ns-3, using ns-3 to simulate
IEEE 802.15.4. The second one is to add the required protocol models
to ns-3 (i.e., CoAP, MLE, RIP).

The first alternative seems to be the most straightforward, but it
is also the most limiting. The limitations are relative to the capability
to make slight changes in the protocol, like substituting DHCPv6 with
6LoWPAN-ND, or extending the base Thread routing protocol.

Adding all the required protocols to ns-3 is not straightforward
but is conceivable, with the main complexity being represented by
accessing the protocols’ formal definitions.

3.4. Zigbee

The CSA’s (Connectivity Standards Alliance) Zigbee protocol stack
was specifically designed to be used along IEEE 802.15.4. It com-
plements many of its shortcomings, notoriously, neighbor discovery
capabilities, security, and mesh routing. Unlike similar protocol stacks
like Thread, Zigbee is not IP-dependent, instead, it uses a combination
of 16-bit and 64-bit addresses (short and extended addresses) already
present in the definition of IEEE 802.15.4.

The specification of Zigbee has seen many changes throughout its
more than 20 years of history. It is precisely this longevity its major
asset, making Zigbee one of the most proven and extended IoT-oriented
full stacks in the market. Zigbee can be roughly divided into 3 parts:
The network layer (NWK), the application support layer (APS), and the
application layer (APL).

• The NWK complements the MAC layer association capabilities
(network bootstrap and joining) and adds tree and mesh routing
capabilities. The mesh routing is loosely based on the Ad hoc
On-Demand Distance Vector Routing (AODV) but with enhanced
support for neighbor discovery and link quality management

capabilities among others.
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Fig. 1. OpenThread Designs.
• The APS is responsible for the management of application bind-
ings, messages between devices, mapping between extended and
short addresses, fragmentation, and reassembly.

• The APL defines the environment in which applications are hosted
on devices. It relies on profiles, clusters, and attribute modes. It
is this layer that later on will form the basis of what is known as
the Matter application layer. Both Zigbee APL and Matter share a
common creator in the CSA and common concepts like the use of
application profiles. However, both of these layers work on top of
different protocol stacks and are not compatible with each other.

ZBOSS [27] is the only licensed complete open-source implemen-
ation of the Zigbee stack. Its version 1.0 is freely accessible to the
ublic while subsequent releases are only available to members of the
BOSS public initiative which requires a paid membership. The ZBOSS
ommercial version of the stack is popular among IoT device vendors
ike Nordic Semiconductors and Espressif. Vendor-specific binaries of
he stack can be found on the websites of these ZBOSS public initiative
embers. Other Open-source alternatives include Zigpy [28], but it
ight not be suitable for every deployment because is an RCP design

hat requires Python.
The support of Zigbee on discrete event simulations is very limited.

his is in part due to its restrictive license. It is important to notice
hat the terms Zigbee, AODV, and IEEE 802.15.4 are often used in the
iterature indistinctly. However, as described in this document, Zigbee
s not IEEE 802.15.4 nor AODV. In the present document, we consider a
igbee-capable simulator that implements at least a Zigbee NWK layer.
n the literature, some works have reported using Zigbee simulation
esults using Riverbed’s Opnet simulator [29,30]. Likewise, the 2006
pecification of Zigbee was implemented in the now-discontinued ns-2
imulator. Currently, there is no official implementation of Zigbee in
s-3 simulator.

.5. The Matter standard

Matter [31] is a general-purpose application layer standard by
he CSA, the same alliance that introduced the Zigbee Protocol. The
bjective of Matter is to create a common API (application program-
ing interface) that helps to create applications for a diverse range of

ommunication hardware technologies (Lr-WPAN, WiFi, Bluetooth LE).
efore Matter, each vendor had to introduce their proprietary applica-
ion layer API. This created incompatibility between ‘‘smart’’ devices
rom different vendors and created a great deal of frustration among
oT application developers who had to maintain their applications for

ach hardware variation. In Matter, all devices talk the same language

4 
therefore, compatibility is increased and development time is reduced
without major issues.

On the downside, Matter fails to address a significant backward
compatibility issue. What to do with the millions of existing IoT devices
already deployed? Matter is an application layer that depends on var-
ious underlying protocol stacks to function (Fig. 2). This combination
of protocols might not be interoperable with many of the existing IoT
devices in the market.

In IEEE 802.15.4 devices, Matter must be combined with the Thread
protocol stack. That means that any device using existing alternative
stacks like Z-wave or Zigbee stacks will not work with Matter. Given
the popularity of Zigbee as one of the IoT pioneering ‘‘complete stack
solutions’’ and with millions of devices in the market this is not a small
problem to have. The CSA has proposed the use of bridge devices that
can talk both Thread and Zigbee. However, the CSA only provides
soft guidelines of how these bridge devices should work and require
additional hardware. This opens yet another front line of potential
interoperability issues and puts the support of legacy Zigbee devices
at risk even with the optimistic Zigbee 3.0 revision R23 [18] released
at the start of 2023. Manufacturers can provide firmware updates to
port existing devices from a Zigbee/Z-wave stack to a Thread stack,
however, with no financial motivations or constrained by the process-
ing or memory capabilities of the deployed devices, in most cases these
solutions are unlikely to happen or at best relegated to a network
co-processor (NCP) solution.

For home use cases, Matter increases the portability of applications
for smart devices but it will not serve all types of applications. Matter
applications require a considerable overhead to work (Matter + Thread
+ TCP/IP), this might not be the best approach for devices that have
only a few kb of memory to spare and limited battery life. After
all, the IEEE 802.15.4 standard was intended for low data rates and
memory-constrained devices from which in many cases the complete
application and protocol stack must be embedded into the chip. Privacy
and security are also a concern. Security is extensively covered in
Thread but comes with the aforementioned overhead and in many cases
users might desire to remain independent from an IP network, which
is arguably the safest and most private approach.

To summarize, Matter is a solution for IoT home devices and con-
sumers can expect to see more of it in the future due to the big tech
companies support. Unfortunately, Matter has a substantial overhead
that might not suit every solution in the market. Because of this and
other limitations described, it will not serve most legacy devices, or
provide a common application layer solution for non-IP-dependent

networks.
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Fig. 2. IoT protocol stacks comparison.
4. Network simulations challenges

Preview sections show that the reality of the standardization for IoT
systems does look like a famous comic strip.2 Actual or proposed net-
work stacks range from non-IP stacks like Zigbee, Z-Wave, or LoRaWAN
to IPv6-oriented, like Thread and Matter.

The disparity found between different user requirements places a
strain on simulation developers, who must find a balance that fulfills
the needs of academia, industry, and standardization bodies. The fol-
lowing subsections briefly describe important challenges faced in IoT
network simulation system development.

4.1. Physical and MAC layers (L1 and L2)

Physical layer simulations can be done considering the low level
of granularity taking place in this layer (e.g., encoding and decoding
of frames and considering signal behaviors). These types of simulators
are known as link-layer simulators and are widely used by researchers
and standardization bodies. Link-layer simulators are ideal for rep-
resenting data transmissions between a couple of devices. However,
because computational requirements are incompatible with network-
level simulations, discrete event simulators are better suited for these
tasks. In such simulators, the physical layer is often simulated through
statistical properties rather than simulating the exact signals transmit-
ted or received. Toward this end, most discrete event simulation tools
can simulate different scenarios using channel propagation models,
interference models, etc. These are easily extendable and usually do
not represent a major issue. It is worth mentioning, however, that
these propagation models are typically developed as discrete approx-
imations and do not mimic all wireless conditions present on real
devices. Representation of a full set of these conditions is still a major
challenge [32].

The medium access control (MAC) layer is simulated as accurately
as possible. However, it represents a peculiar element because the
amount of possible ‘customization’ in a real device is usually minimal.
As a matter of fact, the MAC level is usually implemented in the
device, and developers have no access to the source code, which makes
it difficult to propose changes or improvements to the MAC layer
in any significant way. Likewise, this directly impacts the level of
precision with which a hardware-specific MAC layer can be accurately
reproduced in a simulation.

2 https://xkcd.com/927/
5 
Academia and standard bodies can be interested in analyzing
changes in the MAC level (e.g., new techniques for collision avoidance),
and simulations are essential tools in these cases. Nevertheless, the aim
of a simulator should be to provide the user with an implementation of
the ‘base’ standard, possibly of the latest version.

4.2. Network and transport layers (L3 to L6)

As shown in Section 3, Fig. 2, protocol stacks can be quite different
from each other. As a consequence, there are two different sets of needs.

4.2.1. Single-choice stacks
We call ‘single-choice’ stacks those where the protocol alternatives

are limited or non-existent. Examples are Z-Wave, LoRaWAN, Zig-
bee, etc. In these stacks, implementation elements are mandated by
specifications, and there is little to no room for changes. The goal is
to be as close as possible to the specification APIs and conventions
in such a manner that the implementation can be used to evaluate
application-level performances and proposals for modifications to the
specification.

We shall note that stacks like Thread, which can use alternative IPv6
elements, can be considered ‘single-choice’ because it is not possible
to modify elements such as routing or neighbor discovery protocols
without deviating from the specification.

Nevertheless, it is useful to provide some degree of flexibility to
allow research and standardization alike.

4.2.2. Multi-choice stacks
Multi-choice stacks are the ones based on IPv6 standards (or equiv-

alent) where the user is free to customize several parts of the stack,
e.g., the routing type.

Multi-choice stacks are primarily used for research purposes, or to
build custom networks. The goal of the simulators in this case is also to
help identify the pros and cons of choosing alternatives, like routing or
transport protocols. Toward this end, a simulator should allow a user
to have a set of alternative protocols, or to allow the user to (easily)
integrate their models in the system.

4.3. Application layer (L7)

The application-level protocols are, usually, a problematic element
for simulations, mainly because they also have to consider human
interactions. E.g., a web client should mimic the user behavior, which
is (usually) complex.

https://xkcd.com/927/
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The solution is to use ‘standardized’ models for application-level
behavior, often derived from standardization bodies. These can be
described as user-level interactions (e.g., HTTP requests and the replies’
size) or traffic flows (i.e., UDP or TCP traffic generation).

5. Development priorities and opportunities

In previous sections, we presented an outline of some of the most
popular commercially available IoT standard protocol stacks. Addition-
ally, we draw comparisons between hardware implementations and
some of their simulated counterparts. Differences in these implemen-
tations highlighted some of the many challenges that IoT-simulated
systems must overcome. In this section, we discuss what, in our opin-
ion, are development priorities, and research opportunities to improve
future IoT-oriented network simulation systems. The ns-3 simulator is
used as a base to present our recommendations (Fig. 4). While the
level of importance may vary for similar projects, we believe that
these guidelines are general enough to identify the priorities in any
simulation system.

5.1. Accessibility and user interfaces

The addition of novel communication protocols offered by IoT net-
work simulation systems is an important part of the existing offerings.
However, there is a pressing element that deserves more attention from
the community in the existing simulation systems: user interaction.

Accessibility elements in network simulators are, in our opinion,
currently the main need to sustain a great IoT network simulation tool.
Regardless of whether the simulation tool is used to perform a ‘‘what-
if’’ scenario, enhance protocol performance, or for didactic purposes,
the simulation should be easy to set and visualize. In this sense, the
development of a more varied and rich GUI capable of setting complex
simulated scenarios could greatly benefit current network simulation
systems, which are traditionally heavily text-driven.

Network simulators are often considered to have steep learning
curves because they require knowledge of network standards and a
variety of programming and scripting languages to use. GUI can min-
imize this burden for newcomers. Furthermore, GUI provides a means
to minimize the setting of menial but time-consuming tasks such as
topology shapes and protocol stack configurations. GUI should be
seen as a complement to text-based simulations, not a replacement.
This is analogous to tools such as Unreal Engine, widely used in the
entertainment sector. This tool combines both the benefits of GUI
interfaces (e.g., unreal engine blueprints) and interactions with diverse
programming languages to create complex simulated environments.

The lack of GUI assistant tools in network simulations should not
imply that text-driven simulations do not offer facilities to quickly
set network simulations. For instance, the ns-3 network simulator
introduced the use of helpers since its beginnings. Helpers are small
pieces of code, and their role is to simplify the module configuration,
taking care of the class setup and initialization of different properties.
Traditionally, each ns-3 module provides a set of one or more of these
helpers.

In the particular case of IoT, a network simulation system could
benefit from the simulation of complex indoor scenarios considering
walls. Toward this end, it would be useful to enhance the capabilities
of existing tools and enable their models to import floor plans with node
placements, which could be later exported in SVG files. Another useful
feature is the capability to infer and draw network topologies. This is a
complex problem, as topology can change over time and is dependent
on the protocol stack: physical level, IP level, routing level, application
level, etc.

Moreover, a GUI should be capable of reading/writing the sim-
ulation parameters and configuration to an easily readable format
(e.g., ASCII, JSON, or XML files) to allow variations of a particular
scenario. In the specific case of ns-3, this is already implemented in
6 
the feature known as ConfigStore but this could be further improved
and used as part of a unified GUI.

Creating GUIs for existing text-based network simulators is no easy
task. To create simulated scenarios using a GUI, a descriptive language
is necessary to serve as a bridge between the graphical interfaces and
the text-based simulation. One example of such languages includes the
network description (NED) language used by OMNet++. The amount
of data and simulation details that should be written to a network
description file is highly subject to debate and can range from a
representation of simple protocol parameters and node positions to a
full representation of networks, including the device’s relationships,
protocols per node, stack configuration parameters, etc. In a simulation
system, it is advisable to aim for a balance between completeness
and usability. Usability has the primary goal of allowing a user to
effortlessly run common tasks, like slight variations on the scenario,
to perform Monte Carlo analysis.

In this regard, GUI proposals [33–36] have been made to ns-3 in
the past, but none of them have been officially adopted because of
problems related to long-term maintenance, scope, and complexity.
Nevertheless, officially maintained visualizers [37–39] do exist and
provide a soft level of visualization capabilities to ns-3. It is worth
noting that, unlike GUI simulation creation tools, visualizers are unable
to graphically create simulations from scratch, only to show them after
the simulation has taken place. To succeed where many other proposals
have not reached an audience, future GUI tool proposals must take
into consideration ns-3 present features, keep a balance between depth
and complexity, and finally, make the appropriate considerations for
its maintenance.

5.2. Emulation and reproducibility

As a second level of importance, we place the capability of IoT
network simulation systems to interact with hardware implementa-
tions. Network simulations should represent the behavior of existing
hardware implementations, however, this level of realism is hard to
achieve without close comparisons to real devices. A practical way
to achieve this reproducibility requirement is by crossing over the
capabilities of the simulator with those of hardware implementations,
in essence, combining simulator and hardware implementation stacks.
In simulation systems, these capabilities are commonly referred to as
emulation capabilities. Many proposals have been made to advance the
emulation capabilities of network simulators such as ns-3 [40,41] and
OMNet++ [42].

For IoT devices, making these crossovers presents unique chal-
lenges.

First, IoT models in discrete event simulators are designed to mimic
standards or specifications descriptions. In many cases, the configu-
ration values used in these descriptions might not be ideal in some
real deployment environments or altogether not used by hardware im-
plementations. Furthermore, hardware implementations are tailored to
specific devices and it is not uncommon to find deviations or additions
to the standard. Naturally, these small changes create inconsistencies
across devices which affects interoperability and crossover usability.

Second, while standard specifications are often open to the public,
the protocol implementations found in hardware are mostly closed-
source. These IoT device-specific stacks are with a few exceptions,
non-interchangeable across devices from different vendors, and often
use monolithic designs. This makes it difficult for simulators to re-
produce results from specific hardware as looking underneath these
implementations is often not possible.

Nevertheless, simulation developers must overcome these chal-
lenges and offer IoT simulation tools that resemble the implementation
used in hardware.

In ns-3, emulation capabilities are typically provided by a generic
device known as FdNetDevice capable of reading and writing from a

Linux file descriptor. This file descriptor can be associated with an
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Fig. 3. Ns-3 emulation capabilities examples.
Fig. 4. Ns-3 IoT simulation system priorities and needs.
nderlying packet socket to provide connectivity with the host system’s
eal device. However, with a few exceptions (e.g., Linux-WPAN [43])
his file descriptor emulation method is not possible for IoT devices
hat have a complete or a piece of a stack in an MCU instead of
he Linux kernel. For those cases, it is possible to provide emulation
apabilities and allow ns-3 to send data to real devices via UART or
PI protocols. This is in essence, the same approach used by the Thread
rotocol explained in Section 3.3. While this feature is not present in
he current release of ns-3 (v3.42) its future implementation is possible
y providing a shim layer to bridge a host computer and the MCU
evices (Fig. 3).

.3. Maintenance

As a third level of importance, we consider the simulation codebase
volution. Many implementations of IoT protocol simulations exist.
owever, not all implementations are maintained or grow after de-
loyment. New specifications and extensions to existing communication
rotocols are introduced every day but reliable IoT simulations are

any years behind and more often than not, stagnant. This puts many

7 
IoT simulations found in the literature under the category of aban-
donware, where implementation is done once and maintenance of the
project is short-lived or never considered.

When choosing a simulation system, users should make careful
considerations and be aware of the shortcomings in documentation,
activeness in development, and the version of the protocol simulated.
As described in Section 3, it is often the case that available IoT simula-
tions and hardware from both open-source and commercial simulators
are either incomplete or outdated when compared to the most recent
specifications.

A great IoT simulation system like any great piece of software
should in our opinion, contain models that are actively developed,
maintained, and consistently documented. This is not a simple problem
to solve, as most of the IoT simulations are done by volunteer work and
many authors find little to no motivation to maintain their code.

5.4. Energy modules development

Energy evaluation plays a crucial role in IoT network simulations.

Unlike many other networks, IoT networks are predominantly battery-
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operated, imposing constraints on data transmission and operational
energy usage. A meticulous examination of energy consumption be-
comes imperative for the development of energy-efficient communi-
cation protocols or the identification of patterns that can minimize a
device’s energy footprint. Achieving this necessitates intricate models
that accurately capture both the consumption patterns of transceivers
and the non-linear discharge behavior of batteries [44–46], with the
latter aspect often being overlooked.

5.5. Security

Finally, a significant difference between simulated and hardware
IoT implementations is that security is often treated as a top priority in
hardware implementations, taking as much as half of the descriptions of
a specification. However, from the point of view of an IoT simulation,
this implementation is often the least important element.

Performing a real security process (e.g., cryptography algorithms)
n a simulation adds unnecessary complexity to the simulated system
nd increases its processing power requirements. Therefore security
omponents are often omitted in IoT simulations. However, we argue
hat a great IoT simulation system should support the representation of
he overhead [47] caused by the security process:

• Delay caused by the processing of coding and decoding packets.
• The packet overhead resulting from the variations in packet size

when security options are enabled.

. Conclusions

In this paper, we analyzed the IoT networking challenges and how
etwork simulations can be useful to help academy, standardization,
nd industry to build a solid next-gen set of protocols specifically
ailored for IoT devices.

The standardization efforts are still in their early stages, and market
ensions are still at play (sometimes undermining the standardization
fforts). Hence, a solid and flexible simulation system is needed to help
he interested parties in performing the right choices, or quickly spot
he possible elements to be optimized.

We also highlighted what are, in our opinion, the most promising
rotocols to model in ns-3, and what are the gaps to fill in order to
ave a tool that is powerful, easy to use, and flexible.
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