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REAL SEMISIMPLE LIE GROUPS AND BALANCED METRICS

FEDERICO GIUSTI AND FABIO PODESTÀ

ABSTRACT. Given any non-compact real simple Lie group Go of inner type and even dimen-
sion, we prove the existence of an invariant complex structure J and a Hermitian balanced
metric with vanishing Chern scalar curvature on Go and on any compact quotient M = Go/Γ,
with Γ a cocompact lattice. We also prove that (M, J) does not carry any pluriclosed metric, in
contrast to the case of even dimensional compact Lie groups, which admit pluriclosed but not
balanced metrics.

1. INTRODUCTION

Given a complex non-Kähler n-dimensional manifold (M, J) it is a natural and meaningful
problem to find special Hermitian metrics which might help in understanding the geometry
of M. Great effort has been spent in the last decades in this research topic and among special
metrics the pluriclosed and the balanced conditions have shown to be highly significant.

The balanced condition can be defined saying that the fundamental form ω = h(·, J·)
of a Hermitian metric h satisfies the non-linear condition dωn−1 = 0 or equivalently,
−Jθ = δω = 0, where δ denotes the codifferential and θ the torsion 1-form (see e.g. [Ga2]).
While this concept appears in [Ga1] under the name of semi-Kähler (see also [Gra]), in [Mi]
the balanced condition was started to be thoroughly investigated, highlighting also the du-
ality with the Kähler condition and establishing necessary and sufficient conditions for the
existence of these metrics in terms of currents. While Kähler metrics are obviously balanced
and share with these the important relation among Laplacians ∆∂ = ∆∂ = 1

2∆ (see [Ga1]),
there are many examples of non-Kähler manifolds carrying balanced metrics. Basic exam-
ples are given by compact complex parallelizable manifolds, which are covered by complex
unimodular Lie groups G and every left invariant Hermitian metric turns out to be balanced
(see [AG][Ga1][Gr]). Further examples of balanced metrics are provided by any Hermitian
invariant metric on a compact homogeneous flag manifold (see also [FGV] for a character-
ization of compact homogeneous complex manifolds carrying balanced metrics) as well as
by twistor spaces of certain self-dual 4-manifolds ([Mi]) and more generally ([To]) by twistor
spaces of compact hypercomplex manifolds (see also [Fo] for other examples on toric bun-
dles over hyperkähler manifolds). Contrary to the Kählerness condition, being balanced is a
birational invariant (see [AB1], so that e.g. Moishezon manifolds are balanced) and compact
complex manifolds X which can be realized as the base of a holomorphic proper submer-
sion f : Y → X inherit the balanced condition whenever Y has it ([Mi]), while the balanced
property is not stable under small deformations of the complex structure (see [AB2],[FuY],
[AU]). On the other hand, the balanced condition is obstructed, as on compact manifolds
with balanced metrics no compact complex hypersurface is homologically trivial, so that for
instance Calabi-Eckmann manifolds do not carry balanced metrics. This is in contrast with
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the fact that Gauduchon metrics, which statisfy the weaker condition ∂∂̄ωn−1 = 0, always
exist on a compact complex manifold.

In more recent years, the rising interest in the Strominger System (see [GF] and [FeY] for
the case of invariant solutions on complex Lie groups) has given balanced metrics a really
central role in non-Kähler geometry, as the equivalence between the dilatino equation (i.e.
one of the equations of the system) and the conformally balanced equation requires the so-
lutions of the system to be necessarily balanced. We refer also to the work [FLY], where new
examples of balanced metrics are constructed on some Calabi Yau non-Kähler threefolds, as
well as to the results in [BV], where a new balanced flow is introduced and investigated.

The main goal of this paper is to search for invariant special Hermitian, in particular bal-
anced, metrics in the class of semisimple real non-compact Lie groups and on their compact
(non-Kähler) quotients by a cocompact lattice; actually it appears that, despite invariant com-
plex structures on semisimple (reductive) Lie algebras being fully classified in [Sn] (after the
special case of compact Lie algebras had been considered by Samelson ([Sam]) and later in
[Pi]), they have never been deeply investigated from this point of view. In contrast, the case
of K compact is fully understood, as in such a case it is very well known that every invariant
complex structure can be deformed to an invariant one for which the opposite of the Cartan-
Killing form is a pluriclosed Hermitian metric h, i.e. it satisfies ddcωh = 0. Moreover it has
been proved in [FGV] that K does not carry any balanced metric at all, fueling the conjecture
([FV]) that a compact complex manifold carrying two Hermitian metrics, one balanced and
the other pluriclosed, must be actually Kähler.

More specifically, in this work we focus on a large class of simple non-compact real Lie
algebras go of even dimension, namely those which are of inner type, i.e. when the maxi-
mal compactly embedded subalgebra k in a Cartan decomposition of go contains a Cartan
subalgebra. In these algebras we construct standard invariant complex structures (regular
in [Sn]) and write down the balanced condition for invariant Hermitian metrics. A careful
analysis of the resulting equation together with some general argument on root systems al-
lows us to show the existence of a suitable invariant complex structure and a corresponding
Hermitian metric satisfying the balanced equation. By Borel’s Theorem, every semisimple
Lie group Go admits a cocompact lattice Γ so that the compact quotient Go/Γ inherits the in-
variant balanced structure from Go. We note here that the resulting metrics come in families
and moreover the same kind of arguments can be applied to show the existence of balanced
structures on quotients Go/S, where Go is any simple non-compact Lie group of inner type
of any dimension and S is a suitable abelian closed subgroup.

We are also able to prove that the compact quotients M = Go/Γ, endowed with the in-
variant complex structure that allows the existence of balanced metrics, do not carry any
pluriclosed metric. This result is in accordance with the conjecture by Fino and Vezzoni
and in some sense reflects a kind of duality between the compact and non-compact case,
switching the existence of balanced/pluriclosed Hermitian metrics. In the last section, we
prove that these balanced manifolds M, despite having vanishing first Chern class, carry no
non trivial holomorphic (n, 0)-forms; furthermore we prove that they have vanishing Chern
scalar curvature. This last property may allow to better understand the geometry of these
manifolds, according to some more recent results concerning the implications of vanishing
Chern-scalar curvature on some geometric features (see [Y]).

The paper is structured as follows. In Section 2, we review basic facts on simple real non-
compact Lie algebras with invariant complex structures and we consider a class of invariant
Hermitian metrics for which we write down the balanced condition in terms of roots. In
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section 3 we state our main result, namely Theorem 3.1, and we prove it by means of sev-
eral steps. We first rewrite the balanced equation in terms of simple roots and then the key
Lemma 3.3 allows us to select an invariant complex structure so that the relative balanced
equation admits solutions. In section 4 we prove that the complex manifolds that we con-
structed in the previous section and that admit balanced metrics, do not carry any pluriclosed
metric. In the last section, we show in Theorem 5.1 that these complex compact manifolds
(M, J) have trivial first Chern class and that the balanced metrics we have constructed have
vanishing Chern scalar curvature; as a consequence we show that the Kodaira dimension
κ(M) = −∞.

Aknowledgements. The second author was supported by GNSAGA of INdAM and by
the project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and Holomorphic
Dynamics”, n. 2017JZ2SW5.

The authors would like to thank Daniele Angella for valuable conversations.

2. PRELIMINARIES

Let go be a real simple 2n-dimensional Lie algebra. It is well known that either the com-
plexification gco is a complex simple Lie algebra (and in this case go is called absolutely sim-
ple) or go is the realification gR of a complex simple Lie algebra g (see e.g. [He]).

When go is even dimensional, it is known ([Mo], see also [Sas]) that go admits an invariant
complex structure, namely an endomorphism J ∈ End (go) with J2 = −Id and vanishing
Nijenhuis tensor or, equivalently, such that

gco = g10o ⊕ g01o , [g10o , g
10
o ] ⊆ g10o .

If Go is any Lie group with Lie algebra go, then the endomorphism J defines a (left)-invariant
complex structure on Go. Moreover, thanks to a result due to Borel ([Bo]), there exists a
discrete, torsionfree cocompact lattice Γ so that M := Go/Γ is compact and the left-invariant
complex structure J on Go descends to a complex structure J on M.

We recall that when Go is compact and even-dimensional, i.e. go is of compact type, the
existence of an invariant complex structure was already established by Samelson ([Sam]),
while in [Pi] it was shown that every invariant complex structure on Go is obtained by means
of Samelson’s construction.

If we now consider an even-dimensional Go and a compact quotient M endowed with an
invariant complex structure J, we are interested in the existence of special Hermitian metrics
h. The following proposition states a known fact, namely the non-existence of (invariant)
Kähler structures.

Proposition 2.1. The group Go does not admit any invariant Kähler metric and the compact quotient
M = Go/Γ is not Kähler.

Proof. The first assertion is contained in [Ch], but we give here an elementary proof. If ω is
an invariant symplectic form on go, then the closedness condition dω = 0 can be written as
follows for x, y, z ∈ go

(2.1) ω([x, y], z) + ω([z, x], y) + ω([y, z], x) = 0.

If B denotes the non-degenerate Cartan-Killing form of go, then we can define the endomor-
phism F ∈ End (go) by B(Fx, y) = ω(x, y) (x, y ∈ go) so that F turns out to be a derivation
by (2.1). As go is semisimple, there exists a unique z ∈ go with F = ad(z), so that z ∈ kerω, a
contradiction.
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We now suppose that the compact manifold M has a Kähler metric with Kähler form ω.
Using ω and a symmetrization procedure that goes back to [Be], we now construct an in-
variant Kähler form on Go, obtaining a contradiction. We fix a basis x1, ..., x2n of go and we
extend each vector as a left invariant vector fields on Go; these vector fields can be projected
down to M as vector fields x∗1, . . . , x

∗
2n that span the tangent space TM at each point. As

Go is semisimple, we can find a biinvariant volume form dµ, that also descends to a volume
form on M. We now define a left-invariant non-degenerate 2-form φ on Go by setting

φe(xi, xj) :=

∫

M
ω(x∗i , x

∗
j) dµ.

As Lx∗
k
dµ = 0 for every k, we have for every i, j, k = 1, . . . , 2n

∫

M
x∗kω(x

∗
i , x

∗
j ) dµ =

∫

M
Lx∗

k
(ω(x∗i , x

∗
j ) dµ) = 0

by Stokes’ theorem and therefore we obtain that

dφ(xi, xj, xk) =

∫

M
dω(x∗i , x

∗
j , x

∗
k) dµ = 0.

This implies that φ is a symplectic form and the proof is concluded. �

Therefore we are interested in the existence of special Hermitian metrics on the complex
manifold (M, J), in particular balanced and pluriclosed metrics, when the group Go is of
non-compact type.

The case of a simple Lie algebra go which is the realification of a complex simple Lie alge-
bra g can be easily treated and will be dealt with in subsection 2.3.

We will now focus on some subclasses of simple real algebras, namely those which are
absolutely simple and of inner type.

2.1. Simple Lie algebras of inner type. Let go be an absolutely simple real algebra of non-
compact type. It is well-known that go admits a Cartan decompositon

go = k+ p,

where k is a maximal compactly embedded subalgebra and

[k, p] ⊆ p, [p, p] ⊆ k,

so that (go, k) is a symmetric pair. Moreover the algebra go is said to be of inner type when
the symmetric pair (go, k) is of inner type, i.e. when a Cartan subalgebra t of k is a Cartan
subalgebra of go, i.e. its complexification tc is a Cartan subalgebra of gco. Using the notation
as in [He], p. 126, we obtain the list of all inner symmetric pairs (go, k) of non-compact type
with go simple and even dimensional (Table 1).

2.2. Invariant complex structures. In this section we will describe how to construct invari-
ant complex structures on even-dimensional absolutely simple non-compact Lie algebras go.

We fix a maximal abelian subalgebra t ⊆ k, so that h := tc is a Cartan subalgebra of g := gco.
Note that if go is even dimensional , the same holds for t. The corresponding root system is
denoted by R and we have the following decompositions

kc = tc ⊕
⊕

α∈Rk

gα, pc =
⊕

α∈Rp

gα,

where a root α will be called compact (resp. non-compact), when gα ⊆ kc (resp. gα ⊆ pc) and
the set of all compact (resp. non-compact) roots is denoted by Rk (resp. Rp). It is a standard
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Type g k conditions

A su(p, q) su(p) + su(q) + R p ≥ q ≥ 1, p+ q odd

B so(2p + 1, 2q) so(2p + 1) + so(2q) p ≥ 0, q ≥ 1, p+ q even

C sp(2n,R) su(2n) + R n ≥ 1

C sp(p, q) sp(p) + sp(q) p, q ≥ 1, p+ q even

D so(4n)∗ su(2n) + R n ≥ 2

D so(2p, 2q) so(2p) + so(2q) p, q ≥ 1, p + q even ≥ 4

G g2(2) su(2) + su(2)

F f4(−20) so(9)

F f4(4) su(2) + sp(3)

E e6(2) su(2) + su(6)

E e6(−14) so(10) + R

E e8(8) so(16)

E e8(−24) su(2) + e7

TABLE 1. Inner symmetric pairs (g, k) of non-compact type with g simple and
even dimensional.

fact that u := k + ip ⊆ g is a compact real form of g and that we can choose a basis {Eα}α∈R
of root spaces so that

τ(Eα) = −E−α, B(Eα, E−α) = 1, [Eα, E−α] = Hα

where τ denotes the anticomplex involution defining u, B is the Cartan Killing form of g and
Hα is the B-dual of α (see e.g. [He]). If σ is the involutive anticomplex map defining go, we
then have that

σ(Eα) = −E−α, α ∈ Rk,

σ(Eα) = E−α, α ∈ Rp.

If we fix an ordering , namely a splittingR = R+∪R− withR− = −R+ and (R++R+)∩R ⊆
R+, we can define a subalgebra

q := h1 ⊕
⊕

α∈R+

gα,

where h1 ⊂ h is a subspace so that h1 ⊕ σ(h1) = h. The so defined subalgebra q ⊂ g satisfies

g = q⊕ σ(q)

and therefore it defines a complex structure J on go with the property that q = g10o . This
complex structure depends on the arbitrary choice of h1, i.e. on the arbitrary choice of a
complex structure on t.

We remark that the complex structure J enjoys the further property of being ad(t)-
invariant, namely

[ad(x), J] = 0, x ∈ t.

Therefore if Go is a Lie group with Lie algebra go, then J extends to a left-invariant com-
plex structure on Go and it will be also right-invariant with respect to right translations by
elements h ∈ T := exp(t) (note that T might be non-compact, unless Go has finite center).

We will call such an invariant complex structure standard.
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Remark 2.2. In [Sn] the class of (simple) real Lie algebras of inner type is called “Class I”
and it is then proved that every invariant complex structure in these algebras are standard,
with respect to a suitable choice of a Cartan subalgebra (such complex structures are called
regular in [Sn]).

2.3. Invariant metrics and the balanced condition. Let M be a compact complex manifold
of the form Go/Γ, endowed with a complex structure J which is induced by a standard in-
variant complex structure J on Go, as in the previous section. It is clear that any left invariant
J-Hermitian metric h on Go induces an Hermitian metric h̄ on M and h̄ is balanced or pluri-
closed if and only if h is so. For the converse, we prove the following

Proposition 2.3. If (M, J) admits a balanced (pluriclosed) Hermitian metric, there exists a left in-
variant and right T-invariant Hermitian metric on Go which is balanced (pluriclosed resp.).

Proof. Suppose we have a balanced metric h onM with associated fundamental formω. Then
using the same notation and arguments as in the proof of Prop.2.1, we define a left-invariant
positive (n− 1, n− 1)-form φ on Go as follows

φe(xi1 , . . . , xi2n−2
) :=

∫

M
ωn−1(x∗i1 , . . . , x

∗
i2n−2

) dµ.

As dωn−1 = 0, we obtain that also dφ = 0. Therefore, we can find an unique (1, 1)-form ω̂
so that ω̂n−1 = φ (see [Mi]) and the metric given by ω̂ is balanced. As φ is left invariant,
so is ω̂ by uniqueness. Now, the group Ad(T) is compact and using a standard avaraging
process we can make φe also Ad(T)-invariant. This means that φ is also invariant under right
T-translations. Again, by the uniqueness, the same will hold true for ω̂.

As for the pluriclosed condition, the lifted metric from M to Go is clearly pluriclosed and
can be made T -invariant by a standard averaging. �

Remark 2.4. We can now deal with the case when go is the realification of a simple Lie algebra
g. In this case the complex structure J commutes with ad(go) and go = u + iu is a Cartan
decomposition, where u is a compact real form of g. Let Go be a real group with algebra go
and let U be the compact subgroup with algebra u. Then the metric h which coincides with
−B on u, with B on iu and such that h(u, iu) = 0 is a Hermitian metric which is balanced.
Indeed, h is Ad(U)-invariant and therefore the corresponding δω is Ad(U)-invariant 1-form,
hence it vanishes identically. This is consistent with the fact that complex parallelizable
manifolds carry balanced metrics as they carry Chern-flat metrics, as noted in [Ga1], p. 121
(see also [AG],[Gr]).

On the other hand, Go admits no invariant pluriclosed metric. Indeed, any such metric h
can be avaraged to produce an Ad(U)-invariant pluriclosed metric, which would be balanced
by the previous argument. This is not possible, as a metric which is balanced and pluriclosed
at the same time has to be Kähler (see e.g. [AI]), contrary to Prop 2.1.

We now focus on the case where go is absolutely simple of inner type, endowed with
an invariant complex structure. We fix a Cartan subalgebra t ⊆ k with corresponding root
system R = Rk ∪ Rp as in section 2.1 and we consider an ordering R = R+ ∪ R− giving an
invariant complex structure Jo on go/t. We extend Jo to an invariant complex structure J on
go.

We also fix a basis of a complement of t in go

vα :=
1√
2
(Eα − E−α), wα :=

i√
2
(Eα + E−α), α ∈ R+

k ,
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vα :=
1√
2
(Eα + E−α), wα :=

i√
2
(Eα − E−α), α ∈ R+

p ,

so that vα, wα ∈ go for every α ∈ R+ and moreover

Jvα = wα, Jwα = −vα,
[H, vα] = −iα(H)wα, H ∈ h,

[vα, wα] = iHα, α ∈ R+
k ,

[vα, wα] = −iHα, α ∈ R+
p .

We now construct invariant Hermitian metrics h on go. First, we define h on t by choosing
a J-Hermitian metric ht on t. If we set mα := Span{vα, wα}α∈R+ , we define for α 6= β ∈ R+

h(t,mα) = 0, h(mα,mβ) = 0,

h(vα, vα) = h(wα, wα) = h2α, h(vα, wα) = 0

for ha ∈ R+.
In particular we are interested in constructing balanced Hermitian metrics, namely Her-

mitian metrics whose associated (1, 1)-form ω = h(·, J·) satisfies dωn−1 = 0 or equivalently
δω = 0, where δ denotes the codifferential.

We use the expression

δω(x) = −Tr∇·ω(·, x) = −
2n∑

i

∇eiω(ei, x) =

=
∑

i

ω(∇eiei, x) + ω(ei,∇eix),

where ∇ denotes the Levi Civita connection of h and {ei} is an orthonormal basis of go w.r.t.
h. Note that both h and J are ad(t)-invariant and therefore δω, which is also ad(t)-invariant,
does not vanish only when evaluated on elements x ∈ t.

We have the following expression for the Levi Civita connection, namely for x, y, z ∈ go

2h(∇xy, z) = h([x, y], z) + h([z, x], y) + h([z, y], x).

Then for every x ∈ t, y ∈ go
h(∇yy, x) = h([x, y], y) = 0.

Therefore for x ∈ t we have

(2.2) δω(x) =
∑

i

ω(ei,∇eix) = −
∑

i

h(Jei,∇eix) =

= −1

2
(h([ei, x], Jei) + h([Jei, ei], x) + h([Jei, x], ei)) .

We now observe that J is ad(t)-invariant and therefore h([Jei, x], ei) = −h([ei, x], Jei) for
every i = 1, . . . , 2n, so that (2.2) can be written as

−δω(x) = 1

2

∑

i

h([Jei, ei], x) =

=
1

2
· 2




∑

α∈R+

k

1

h2α
h([wα, vα], x) +

∑

α∈R+
p

1

h2α
h([wα, vα], x)


 =
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=
∑

α∈R+

k

1

h2α
h(−iHα, x) +

∑

α∈R+
p

1

h2α
h(iHα, x),

so that δω|t = 0 if and only if

−
∑

α∈R+

k

1

h2α
Hα +

∑

α∈R+
p

1

h2α
Hα = 0.

Summing up, the metric h is balanced when the following equation is satisfied

(2.3)
∑

α∈R+

k

1

h2α
α =

∑

α∈R+
p

1

h2α
α.

Note that this does not depend on the choice of the metric along the toral part t.

3. MAIN RESULT

In this section we will prove our main result

Theorem 3.1. Every non-compact simple Lie group Go of even dimension and of inner type admits
an invariant complex structure J and an invariant balanced J-Hermitian metric.

Note that by Borel’s Theorem, we can use a cocompact latice Γ ⊂ Go to obtain compact
quotients M = Go/Γ, which will inherit the same balanced structure.

We start noting that equation (2.3) involves the unknowns {hα}α∈R+ and also a choice of
positive roots, i.e. an ordering or equivalenty a complex structure on go. We will always fix a
complex structure on t once for all. It is known that giving an ordering on the root system R
is equivalent to the choice of a system of simple roots Π and that two systems of simple roots
are conjugate under the action of the Weyl group W . We may fix a system of simple roots
Π = {α1, . . . , αr} and put Π = Πc∪Πnc, where Πc/nc denotes the set of simple roots which are
compact or noncompact. We set Πc = {φ1, . . . , φk}, Πnc = {ψ1, . . . , ψl}, k + l = r = rank(go).
Each root α ∈ R+ can be written as

α =
k∑

i=1

ni(α)φi +
l∑

j=1

mj(α)ψj

for ni(α),mj(α) ∈ N nonnegative integers. If we set gα := 1
h2α

and gj := gφj , hj := gψj
,

equation (2.3) can be written as

∑

α∈R+

k
,α6∈Π

gα



∑

nj(α)φj +
∑

j

mj(α)ψj


+

∑

j

gjφj =

=
∑

α∈R+
p ,α6∈Π

gα


∑

nj(α)φj +
∑

j

mj(α)ψj


+

∑

j

hjψj,

and therefore

(3.4)





gj =
∑

α∈R+
p , α6∈Π

gαnj(α) −
∑

α∈R+

k
, α6∈Π

gαnj(a), j = 1, . . . , k,

hj =
∑

α∈R+

k
, α6∈Π

gαmj(α) −
∑

α∈R+
p , α6∈Π

gαmj(a), j = 1, . . . , l.
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Remark 3.2. If we consider for instance the case go = su(p, q) (p + q even, p, q ≥ 2) and the
standard system of simple roots Π = {ǫ1−ǫ2, ǫ2−ǫ3, . . . , ǫp−1−ǫp, ǫp−ǫp+1, . . . , ǫp+q−1−ǫp+q}
of sl(p+q,C), then Πnc = {ǫp−ǫp+1} and Πc gives a system of simple roots for the semisimple
part kss of k. This means that every root α ∈ R+

k , α 6∈ Π is a linear combination of roots in
Πc and therefore the righthandside of the last equation in (3.4) is non-positive, so that (3.4)
has no solution. This shows that the choice of the invariant complex structure might not be
straightforward.

The following lemmata provide key tools in our argument.

Lemma 3.3. For each symmetric pair (go, k) as in Table 1, (go, k) 6∼= (so(1, 2n), so(2n)) and given
a Cartan subalgebra t ⊆ k with corresponding root system R, there exists an ordering of the roots,
hence a system of simple roots Π, such that

(3.5) ∀ψ ∈ Πnc ∃ψ′ ∈ Πnc with ψ + ψ′ ∈ R.

This implies that, if Πnc = {ψ1, . . . , ψl}, then for every ψj ∈ Πnc there exists α ∈ R+
k with

mj(α) 6= 0 and α ∈ Span{Πnc}.

Remark Note that sp(1, 1) ∼= so(1, 4) is also not admissible in the above Lemma. In general,
for go = so(1, 2n) we have the standard system Π = {ǫi − ǫi+1, ǫn, i = 1, . . . , n − 1} with
Πnc = {ǫn}. As Rc consists precisely of all the short roots, it is clear that for any element σ
of the Weyl group W ∼= Zn2 ⋉ Sn we have that σ(Π)nc consists of one element. We will deal
with this case later on.

Proof. We first deal with the classical case. We start with the standard system of simple roots
Π, following the notation as in [He]. It is immediate to check that in this case Πnc consists of
a single root ψ.

We first deal with the case where ψ is a short root. Let Λ be the set of all simple roots
which are connected to ψ in the Dynkin diagram relative to Π. If s ∈W denotes the reflection
around ψ, then s leaves every element Π \ Λ pointwise fixed. We observe that Λ consists of
either at most three short roots or it contains a long root. In the first case, s(Λ) = {ψ + λ| λ ∈
Λ} ⊆ Rp so that s(Π)nc = {−ψ, s(Λ)} and therefore the system of simple roots s(Π) satisfies
(3.5). If Λ contains a long root, then it also contains a short root, unless (go, k) = (so(2, 3),R+
so(3)), that is isomorphic to (sp(2), u(2)); this case will be dealt with in the second part of the
proof. Therefore Λ = {φ1, φ2} with φ1 short and φ2 long. Again the reflection s around ψ
gives s(φ1) = ψ + φ1 and s(φ2) = φ2 + 2ψ ∈ Rk or s(φ2) = ψ + φ2 ∈ Rp. This implies that the
system of simple roots s(Π) has s(Π)nc = {−ψ,ψ + φ1} or {−ψ,ψ + φ1, ψ + φ2} and in both
cases it satisfies (3.5).

We are left with the case where ψ is a long root, namely the case where go = sp(2n,R) and
k = u(2n). A standard system of simple roots is given by Π = {ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫ2n−1 −
ǫ2n, 2ǫ2n} and Πnc = {ψ = 2ǫ2n}. Again using sβ , we see that sβ(Π)nc = {−2ǫ2n, ǫ2n−1 + ǫ2n}
so that condition (3.5) is satisfied.

We may now deal with the exceptional cases. Starting with the standard system of simple
roots Π, we list the set Πnc, that turns out to consist of a single root β. For each case, using
the symmetry sβ we obtain the system of simple roots Π′ := sβ(Π) that satisfies condition
(3.5).
(1) (go, k) = (g2, su(2) + su(2)). Here Π = {α, β}, with β long. We have Πnc = {β} and
Π′ = {−β, α + β}.
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(2) (go, k) = (f4(−20), so(9)). According to [He], the standard system of simple roots is Π =

{α1 = ǫ2− ǫ3, α2 = ǫ3− ǫ4, α3 = ǫ4, α4 =
1
2(e1− ǫ2− ǫ3− ǫ4)} so that Πnc = {α4} and therefore

Π′
nc = {−α4, α4 + α3}.

(3) (go, k) = (f4(4), su(2)+ sp(3)). In this case Πnc = {α1} and therefore Π′
nc = {−α1, α1+α2}.

(4) (go, k) = (e8(8), so(16)). For e8 we have the standard system of simple roots

α1 =
1

2
(ǫ1 + ǫ8)−

1

2
(ǫ2 + ǫ3 + ǫ4 + ǫ5 + ǫ6 + ǫ7), α2 = ǫ1 + ǫ2,

αj = ǫj−1 − ǫj−2, j = 3, . . . , 8.

Then Πnc = {α1} and Π′
nc = {−α1, α1 + α3}.

(5) (go, k) = (e8(−24), su(2) + e7). Keeping the same notation for simple roots as above, we
have Πnc = {α8} and Π′

nc = {−α8, α8 + α7}.
(6) (go, k) = (e6(2), su(2) + su(6)). As the system root system Π can be taken to be composed

of the simple roots {α1, . . . , α6} of e8, we have Πnc = {α2} and Π′
nc = {−α2, α2 + α4}.

(7) (go, k) = (e6(−14),R + so(10)). We have Πnc = {α1} and Π′
nc = {−α1, α1 + α3}. �

Lemma 3.4. For every system of simple roots Π = Πc ∪Πnc with Πc = {φ1, . . . , φk} we have

∀ j = 1, . . . , k, ∃ α ∈ R+
p , α 6∈ Π : nj(α) 6= 0,

where nj(α) denotes the coordinate of α along the root φj .

Proof. We start noting that the centralizer Ckc(p
c) = Ck(p)

c = {0}. It then follows that
[Eφj , p

c] 6= {0}, hence there exists γ ∈ Rp with [Eφj , Eγ ] 6= 0, i.e. φj + γ ∈ Rp. Now,

if γ > 0, then α := φj + γ ∈ R+
p \ Π and nj(α) ≥ 1. Suppose now γ < 0. We write

γ = cjφj +
∑

θ∈Π\φj
cθθ for some nonpositive integers cj , cθ. As γ 6= −φj , there exists at least

one negative coefficient cθ < 0, for some θ ∈ Π, θ 6= φj . Therefore the root γ + φj must be
negative and 1 + cj ≤ 0, i.e. α := −γ ∈ R+

p \Π and nj(α) = −cj ≥ 1. �

We now fix a system of simple rootsΠ as in Lemma 3.3. In order to solve the corresponding
system of equations (3.4) for the positive unknowns {gi, hj , gα}, we will show how to choose
the positive values {gα}α∈R+\Π in such a way to guarantee that the constants {gi, hj}, defined
to satisfy (3.4), are positive.

We set

Σk := {α ∈ R+
k | α 6∈ Π, α ∈ Span{Πnc}}, Ak = (Rk \ Πc) \ Σk.

Then the system of equations (3.4) can be written as

(3.6)





gj =
∑

α∈R+
p , α6∈Π

gαnj(α)−
∑

α∈Ak

gαnj(a), j = 1, . . . , k, (1)

hj =
∑

α∈R+

k
, α6∈Π

gαmj(α) −
∑

α∈R+
p , α6∈Π

gαmj(a), j = 1, . . . , l. (2)

We start assigning gα = 1 for every α ∈ Ak.
Then, for every j = 1, . . . , k, we use Lemma 3.4 selecting a root α ∈ R+

p with nj(α) 6= 0,
α 6∈ Π. This root α, which depends on j, contributes to the first sum in the righthandside of
equation (1) in (3.6) and the value gα can be chosen big enough so that gj is strictly positive.
Summing up, we can assign values {gα}α∈R+

p \Πnc
so that all gj , j = 1, . . . , k can be defined

as in (3.6), (1), and are strictly positive.
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We now turn to equation (3.6)-(2), which can now be written as

(3.7) hj =
∑

α∈Σk

gαmj(α) +
∑

α∈Ak

mj(α)−
∑

α∈R+
p , α6∈Π

gαmj(a),

where in the righthandside the last two sums have a fixed value. Now, by Lemma 3.3, we
know that for every j = 1, . . . , l, we can find α ∈ Σk with mj(α) 6= 0. These roots can be used
to choose the coefficients gα big enough to guarantee that hj > 0, when defined to satisfy
(3.7), is strictly positive.

In order to complete the proof of our main result Theorem (3.1), we are left with the case
(go, k) = (so(1, 2n), so(2n)) with standard system of simple roots Π = {ǫi − ǫi+1, ǫn, i =
1, . . . , n− 1}, Πnc = {ǫn}. We see that

R+
k = {ǫi ± ǫj, i < j}, Rp = {ǫ1, . . . , ǫn}.

Now, we use equation (2.3) and search for positive real numbers {x, y, zi, i = 1, . . . , n} so
that

x ·
∑

i<y

ǫi − ǫj + y ·
∑

i<j

ǫi + ej =
n∑

i=1

ziǫi,

i.e.
n∑

i=1

[(x+ y)(n− i) + (x− y)(i− 1)]ǫi =
n∑

i=1

ziǫi.

It is clear that the above equation has positive solutions by simply choosing x > y > 0.

Remark 3.5. We can consider the metric ho which coincides with −B on the compact part k,
withB on p and such that ho(k, p) = 0. This metric is easily seen to depend only on go and not
on the Cartan decomposition go = k + p. We could then ask whether there exists a suitable
complex structure such that the metric ho turns out to be balanced. The resulting equation
has been already treated in [AP] and has a solution if and only if go = su(p, p+1) ∼= su(p+1, p)
for p ≥ 1.

4. NON-EXISTENCE OF PLURICLOSED METRICS

In this section we prove the following non-existence result

Proposition 4.1. The compact complex manifolds (M, J), wheer M = Go/Γ, do not admit any
pluriclosed metric.

Note that in the above statement J is the complex structure we have exhibited in section 3.
Now, if h is any such metric, we can obtain a pluriclosed invariant metric h on Go which

is also invariant under right T-translations. It follows that on g we have

h(gα, gβ) = 0 if β 6= −α.
In order to write down the condition ddcω = 0, where ω is the fundamental form of h, we
recall the Koszul’s formula for the differential of invariant forms. If φ is any invariant k-form
on Go or equivalently on go, then for every vo, . . . , vk in go

dφ(vo, . . . , vk) =
∑

i<j

(−1)i+jφ([xi, xj ], v1, . . . , v̂i, . . . , v̂j . . . , vk).

We set φ := dcω and compute dφ(Eα, E−α, Eβ, E−β) for α, β ∈ R+. We have

dφ(Eα, E−α, Eβ , E−β) = −φ(Hα, Eβ , E−β) + φ(NαβEα+β, E−α, E−β)
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−φ(Nα,−βEα−β, E−α, Eβ)− φ(N−α,βEβ−α, Eα, E−β) + φ(N−α,−βE−α−βEα, Eβ)

−φ(Hβ, Eα, E−α),

where we use the standard notation [Eγ , Eǫ] = Nγ,ǫEγ+ǫ for every γ, ǫ ∈ R. Using the known
identities for the Weyl basis (see [He], p. 172,176), we can write that

dφ(Eα, E−α, Eβ , E−β) = −φ(Hα, Eβ , E−β)− φ(Hβ, Eα, E−α)

+2φ(NαβEα+β , E−α, E−β)− 2φ(Nα,−βEα−β , E−α, Eβ).

We also introduce the notation JEγ = iǫγEγ for every γ ∈ R, where ǫγ = ±1 according to
γ ∈ R±. Then

ddcω(Eα, E−α, Eβ, E−β) = −dω(JHα, Eβ , E−β)− dω(JHβ, Eα, E−α)

−2iNα,βdω(Eα+β , E−α, E−β)− 2iNα,−βǫα−βdω(Eα−β , E−α, Eβ).

Now we easily compute

dω(JHα, Eβ, E−β) = −ω(Hβ, JHα)

and

dω(Eα+β , E−α, E−β) = Nα,β(ω(Eα, E−α) + ω(Eβ , E−β)− ω(Eα+β , E−α−β)),

where we have used the fact that Nα,β = Nα+β,−β = −Nα+β,−α (see [He], p. 172). Similarly,

dω(Eα−β , E−α, Eβ) = Nα,−β(−ω(Eβ, E−β) + ω(Eα, E−α)− ω(Eα−β, Eβ−α)).

Summing up we have

ddcω(Eα, E−α, Eβ , E−β) = −2ω(JHα,Hβ)

−2iN2
α,β(ω(Eα, E−α) + ω(Eβ , E−β)− ω(Eα+β, E−α−β))

−2iN2
α,−βǫα−β(−ω(Eβ, E−β) + ω(Eα, E−α)− ω(Eα−β , Eβ−α)).

We now set aα : h(Eα, E−α). The pluriclosed condition implies that

0 = −h(Hα,Hβ)− iN2
α,β(−iaα − iaβ + iaα+β)

−iN2
α,−βǫα−β(−iǫβ−αaα−β + iaβ − iaα)

hence

(4.8) h(Hα,Hβ) = N2
α,β(aα+β − aα − aβ) +N2

α,−βǫα−β(ǫα−βaα−β + aβ − aα)

We recall that

aα = h(Eα, E−α) = −h(vα, vα) < 0, α ∈ R+
k ,

aα = h(Eα, E−α) = h(vα, vα) > 0, α ∈ R+
p ,

h(Hα,Hβ) = −h(iHα, iHβ) ∈ R, h(Hα,Hα) < 0.

Now, we recall that the existence of the complex structure J, which we constructed in
section 3, relies on Lemma 3.3. In particular, when go 6= so(1, 2n), we have the existence of
two simple roots ψ1, ψ2 ∈ Πnc with ψ1 + ψ2 = φ ∈ Rk. The following lemma is elementary.

Lemma 4.2. Either ψ1 + 2ψ2 6∈ R or ψ2 + 2ψ1 6∈ R.

Proof. As ψ1, ψ2 are simple, we have ±(ψ1 − ψ2) 6∈ R. Now, ψi + nψj ∈ R if and only if

0 ≤ n ≤ qj with qj = −2 〈ψ1,ψ2〉
||ψj ||2

∈ N for i 6= j. It is then clear that q1, q2 ≥ 2 is impossible, as

ψ1 6= ψ2 implies q1 · q2 < 4. �
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Suppone then that φ+ ψ1 = ψ2 + 2ψ1 6∈ R. We now apply (4.8) with two possible choices
for α, β, namely:

(1) α = ψ1, β = ψ2. Then

h(Hψ1
,Hψ2

) = N2
ψ1,ψ2

(aφ − aψ1
− aψ2

).

(2) α = φ, β = ψ1. Then

h(Hφ,Hψ2
) = N2

φ,−ψ1
(aψ2

+ aψ1
− aφ).

Subtracting (1) from (2) we get

h(Hψ2
,Hψ2

) =
(
N2
φ,−ψ1

+N2
ψ1,ψ2

)
(aψ2

+ aψ1
− aφ).

This is a contradiction, as h(Hψ2
,Hψ2

) < 0, while aψi
> 0 for i = 1, 2 and aφ < 0.

We are left with the case go = so(1, 2n), that we have dealt with separately in section 3. In
this case the complex structure J is defined by the standard system of positive roots, namely
R+ = {ǫi ± ǫj , ǫi, 1 ≤ i 6= j ≤ n}. In particular R+

k = {ǫi ± ǫj}i 6=j and R+
p = {ǫi}i=1,...,n. We

now consider ψi = ǫi, i = 1, 2, φ1 = ψ1 + ψ2 ∈ R+
k and φ2 = ψ1 − ψ2 ∈ R+

k . We apply (4.8) in
two different ways:
(1) α = ψ1, β = ψ2. Then

h(Hψ1
,Hψ2

) = N2
ψ1,ψ2

(aφ − aψ1
− aψ2

) +N2
ψ1,−ψ2

(aφ2 + aψ2
− aψ1

).

(2) α = φ1, β = ψ2. Note that φ1 + ψ1 6∈ R. Then

h(Hφ1 ,Hψ1
) = N2

φ1,−ψ1
(aψ2

+ aψ1
− aφ1).

Therefore

h(Hψ1
,Hψ1

) = (N2
φ1,−ψ1

+N2
ψ1,ψ2

)(aψ2
+ aψ1

− aφ1) +N2
ψ1,−ψ2

(aψ1
− aφ2 − aψ2

)

We now recall that, if γ, δ ∈ R, then N2
γ,δ = q(1−p)

2 ||γ||2, where δ + nγ, p ≤ n ≤ q, is the

γ-series containing δ (see [He], p.176). We then immediately see that N2
ψ1,ψ2

= N2
ψ1,−ψ2

and

noting furthermore that N2
φ1,−ψ1

= N2
ψ1,ψ2

, we can write

h(Hψ1
,Hψ1

) = N2
ψ1,ψ2

(aψ2
+ 3aψ1

− 2aφ1 − aφ2),

giving the contradiction h(Hψ1
,Hψ1

) > 0.

5. GEOMETRIC PROPERTIES

In this section, we prove the following result, which may contribute to shed to some light
on the geometry of the complex balanced manifolds we have constructed in the previous
sections.

Theorem 5.1. If (M, J,h) is a balanced n-dimensional manifold, where M = Go/Γ, J is a standard
invariant complex structure and h is a balanced Hermitian metric, then the metric h has vanishing
Chern scalar curvature.

Moreover c1(M) = 0 and the Kodaira dimension κ(M) = −∞.

We consider a standard complex structure J on a manifold M = Go/Γ. We denote by
D the Chern connection relative to a Hermitian metric h which is induced by an invariant
metric on Go, again denoted by h. We can moreover suppose that h is invariant by the right
T-translations.

If x ∈ go and if we still denote by x the induced left-invariant vector field on Go, we
consider Dx ∈ End (go) the endomorphism of go which assigns to every y ∈ go the element
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Dxy corresponding to the left invariant vector fieldDxy. ClearlyDx ∈ so(go, h) and [Dx, J] =
0. Moreover

(5.9) Dxy = [x, y]10, ∀x ∈ g01o , y ∈ g10o ,

that follows from the fact that T 1,1 = 0, where T is torsion of D.
IfR denote the curvature, whereRxy = [Dx,Dy]−D[x,y], we are interested in the first Ricci

tensor ρ given by

ρ(x, y) = −1

2
Tr(J ◦Rxy).

As the complex structure and the metric are both invariant under the adjoint action of the
group T = exp(t), we see that

ρ(t, Eα) = 0, ∀α ∈ R,

ρ(Eα, Eβ) 6= 0 implies β = −α, α, β ∈ R.

Therefore we can compute

ρ(Eα, E−α) =
1

2
Tr(JDHα).

Lemma 5.2. For every x ∈ h

Dx = ad(x).

Proof. We use similar arguments as in [Po]. It will suffice to consider the case where x ∈ h10;
then for every α ∈ R+ we have

DxE−α = [x,E−α]
01 = [x,E−α], Dxh

01 = 0

by (5.9). Then if β ∈ R+ we have

h(DxEα, E−β) = −h(Eα,DxE−β) = −β(x)h(Eα, E−β) = 0 if α 6= β,

so that DxEα = α(x)Eα = [x,Eα] (mod h). As h(DxEα, h
01) = −h(Eα,Dxh

01) = 0, we
conclude that

DxEα = [x,Eα].

Finally, h(Dxh
10, h01) = 0 and h(Dxh

10, E−α) = −h(h10, [x,E−α]) = 0, so that Dxh = 0 =
[x, h]. �

It follows that
ρ(h, h) = 0

and

ρ(Eα, E−α) =
1

2


2

∑

β∈R+

iβ(Hα)


 = B(Hα, δ),

where
δ =

∑

β∈R+

iHβ ∈ t.

This means that for every α, β ∈ R we have

ρ(Eα, Eβ) = −B(Eα, [δ,Eβ ]) = B([Eα, Eβ ], δ)

and therefore for every x, y ∈ go

(5.10) ρ(x, y) = B([x, y], δ).

This means that ρ = dφ, where φ is the left-invariant 1-form that is given by φ(v) = B(v, δ).
Then clearly c1(M) = 0.
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We now show that the tensor powers K⊗k
M are holomorphically non trivial for every

m ≥ 1. Indeed, the metric h induces a Hermitian metric on the line bundles K⊗m
M with

curvature form mρ. If Ω is a nowhere vanishing holomorphic section of K⊗k
M , then

mρ = −i∂∂ ln(||Ω||2). If we denote by ̂ the result of the symmetrization process, which

commutes with the operators ∂ and ∂, we obtain on Go that ρ̂ = −i∂∂ ̂ln(||Ω||2) = 0. As ρ is
invariant, ρ̂ = ρ = 0 and we get a contradiction as δ 6= 0.

We now compute the Chern scalar curvature sCh of the metric h using formula (5.10). We
use the orthonormal frame e1, . . . , e2n. Then

sCh =
∑

i

ρ(Jei, ei) = −2
∑

α∈R+

1

h2α
ρ(vα, wα) =

= 2iB




∑

α∈R+
p

1

h2α
Hα −

∑

α∈R+

k

1

h2α
Hα, δ


 = 0

if we consider the system of positive roots satisfying equation (2.3). The claim κ(M) = −∞
now follows from Thm. 1.4 in [Y].

Remark 5.3. Note that also for a compact group K endowed with an invariant complex
structure we have hn,0(K) = 0, see [Pi], Prop. 3.7.

We finally remark here that the balanced condition implies that the two scalar curvatures
that one can obtain tracing the Chern curvature tensor coincide (see [Ga3], p. 501).
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