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Abstract

The research work described in the present thesis is addressed to an investigation of the
analysis methods working within the framework of limit analysis for the stability assessment
of masonry domes. The theoretical and numerical studies mainly focus on the development
of an analysis method able to provide useful indications in the case a masonry dome is
loaded upon by a system of vertical and horizontal loads, the latter somewhat representative
of seismic loads.

The dome shapes considered in the thesis are not axisymmetric. This is motivated by the
fact that, although throughout the centuries masonry domes have been usually built in the
shape of solids of revolution, in the Romanesque period and later, during the Renaissance,
builders began constructing new domed structures characterised by oval shapes. These
structures, which have already received special attention from the historical point of view,
undoubtedly deserve as much attention from the perspective of their mechanical response,
which study is made even more complicated by their complex geometry.

The problem of determining the safety level of masonry domes with regard to structural
collapse is an ancient one. Scholars involved in this issue effectively used graphical methods
to assess the stability since the 18th century, long before limit analysis was formalised in
the modern terms we are used nowadays. For this reason, together with a brief synthesis of
the modern literature, a historical perspective of the methods used in the past centuries for
modelling and designing masonry domes is presented.

After a short survey of the historical methods, the thesis focuses on the investigation
of different methods for the safety assessment of masonry domes by exploiting the static
theorem of limit analysis. A suitable implementation of two methods widespread used and
available in the literature, the “thrust network analysis (TNA)” and the “thrust surface
analysis (TSA)” method, is illustrated. An expressly developed method for searching for
statically admissible distributions of the internal forces is presented in which the dome is
considered as a thin shell.

The thesis is composed of five chapters. The summary of the topics addressed in the
thesis is recalled in the following.

Chapter 1 briefly outlines the state of the art on modelling methods used to study the
load bearing capacity of masonry structures. A selection of the main historical contributions
over the last three centuries aimed at assessing the safety level of masonry domes is also
presented. These contributions have been revived in recent times, thanks to the fundamental
contribution of Jacques Heyman, who has provided a common interpretation background to
most of the historical techniques, by showing how they could be brought back within the
framework of limit analysis.
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In Chapter 2, the Thrust Network Analysis (TNA) and the Thrust Surface Analysis
(TSA), which are two well-established methods for studying the stability of masonry domes
used today are illustrated along with their hypotheses. The comparison between the two
methods is performed in detail on a case study considering only the presence of vertical
loads. The comparison, which represents one of the original parts of the thesis, highlights
analogies and differences in the results obtained and constitutes a starting point for checking
the feasibility in practice of a possible method combining thrust network and thrust surface.
Finally, the applications of these two methods in case of horizontal loading are presented. In
particular, it is highlighted how the two techniques present limitations which emerge clearly
in case of horizontal loads. For these reasons, instead of focusing the attention on TNA and
TSA, an alternative approach based on the thin shell model is developed in the following
chapters.

In Chapter 3 the classical thin shell model is recalled in detail. The fundamental static
and kinematic theorems of limit analysis are reformulated, and an explicit proof is provided
by specialising them to the case of shells. Different hypotheses on the failure criteria for the
material are also discussed, which could be effectively used for modelling the ultimate limit
state of masonry domes.

In Chapter 4, an original analysis method is illustrated for the safety assessment of
a masonry dome. The procedure implemented in the method is inspired by the flexibility
method used for determining internal forces in indeterminate beam systems. The dome is
considered a thin shell, the dome stability is evaluated by the static theorem of limit analysis.
In this regard, the method looks for optimal distributions of the internal forces, i.e., able to
maximise the safety factor, by scanning a suitable set of statically admissible internal forces.
The method is able to include information regarding the joints’ orientation, as well as to
cope with domes having a general shape. To ease the description the simple case of a conic
shell is addressed before an illustration of the method is provided in the general case.

Finally, in Chapter 5, two case studies are presented. The first case study is a classical
benchmark: the spherical dome. The second case is the dome of Pisa Cathedral, a dome
with a peculiar oval plan and ogival profile. The results obtained are discussed in detail.
The safety of the dome is assessed with and without horizontal loads. The influence of
different material hypotheses on the results obtained is checked, as well as the effectiveness
of the method to yield satisfactory estimates of the masonry dome safety level by suitably
optimising the internal forces within the dome itself.

In conclusion, the thesis presents two main original contributions. The first one is a
comparison between TNA and TSA, where similarities and differences between the two
techniques are highlighted on a case study, as well as the feasibility in practice of a possible
new method combining the two. The second one is the development of an original analysis
methodology, for the analysis of the safety level of masonry domes against vertical and
horizontal loads. The method, which is based on the thin shell model, is presented in detail
and applied to two case studies. Remarkably, this new technique is able to overcome some
major limitations of TNA and TSA. The change in the structural scheme from membrane
to shell allows accounting for a wider set of resources for the masonry dome, otherwise
neglected, that proved to be important when only vertical loads act on the structure and
become crucial when horizontal loads are added to vertical ones.
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Sommario

Il lavoro di ricerca descritto nella presente tesi utilizza i metodi dell’analisi limite ed è rivolto
alla valutazione della sicurezza delle cupole in muratura nei confronti del possibile collasso
strutturale. L’attenzione si concentra, principalmente, sullo sviluppo di un nuovo metodo di
analisi valido nel caso in cui sulla cupola in muratura agisca, oltre ai carichi gravitazionali,
un sistema di carichi orizzontali ritenuto rappresentativo, in qualche senso da definire, delle
azioni di origine sismica.

Nella tesi si considerano con particolare attenzione cupole la cui forma non è assial-
simmetrica. Questa scelta trae la sua motivazione dal fatto che, sebbene durante i secoli
passati le cupole in muratura siano state costruite quasi sempre nella forma di solidi di
rivoluzione, nel periodo romanico e, successivamente, durante il Rinascimento, i costruttori
iniziarono a realizzare cupole di nuova concezione, caratterizzate da forme ovali. Queste
strutture, che hanno già ricevuto particolare attenzione dal punto di vista storico, senza
dubbio meritano altrettanta attenzione dal punto di vista dello studio della loro risposta
meccanica, studio che è reso ancora più complicato dalla loro particolare geometria.

La determinazione del livello di sicurezza delle cupole in muratura nei riguardi del collasso
strutturale è un problema ‘antico’. Gli studiosi che si sono occupati di queste tematiche hanno
efficacemente utilizzato fin dal diciottesimo secolo metodi e strumenti propri dell’analisi
limite, in forma grafica, molto prima che questa disciplina fosse formalizzata nei termini
moderni ai quali siamo abituati oggi. Per questo motivo, insieme a una breve sintesi della
letteratura moderna, viene presentato anche un resoconto sintetico dei principali metodi
usati nei secoli passati per la verifica strutturale e la progettazione delle cupole in muratura.

Dopo una breve rassegna dei metodi storici, la tesi si concentra sull’indagine di alcuni
metodi comunemente utilizzati per la valutazione della sicurezza delle cupole in muratura
ricorrendo al teorema statico dell’analisi limite. Si illustra una specifica implementazione di
due metodi ben noti in letteratura, il metodo della ‘rete di spinta’ (thrust network) e quello
della ‘superficie di spinta’ (thrust surface). Viene inoltre presentato un metodo sviluppato
ad hoc per la ricerca di distribuzioni di sollecitazioni staticamente ammissibili, nel quale la
cupola è schematizzata come un guscio sottile.

La tesi è articolata in cinque capitoli. Gli argomenti affrontati sono richiamati sintetica-
mente nel seguito.

Il Capitolo 1 illustra brevemente quello che è lo stato dell’arte per quanto riguarda gli
schemi interpretativi utilizzati per lo studio del comportamento meccanico e del calcolo a
rottura delle strutture in muratura. Viene inoltre presentata una selezione dei principali
contributi storici che negli ultimi tre secoli sono stati proposti per valutare il livello di si-
curezza delle cupole in muratura. Questi contributi sono stati ripresi in tempi recenti, grazie
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al fondamentale lavoro di Jacques Heyman, che ha fornito uno sfondo interpretativo co-
mune alla maggior parte dei metodi storici, mostrando come questi possano essere ricondotti
nell’ambito dei metodi propri dell’analisi limite.

Nel Capitolo 2 vengono presentati la "Thrust Network Analysis" (TNA) e la "Thrust
Surface Analysis" (TSA), due metodi ormai consolidati e utilizzati correntemente per stu-
diare la stabilità delle cupole in muratura; le ipotesi alla base dei due metodi sono inoltre
discusse criticamente. Il capitolo esamina in dettaglio un loro confronto, effettuato su un
caso di studio che considera la presenza di soli carichi verticali. Il confronto, che costituisce
uno degli aspetti originali della tesi, mette in evidenza le analogie e le differenze nei risultati
ottenuti e rappresenta uno spunto di riflessione per quanto riguarda la verifica della fattibil-
ità, nella pratica, di un possibile metodo che combini le reti di spinta e le superfici di spinta.
Infine, vengono presentate le applicazioni di questi due metodi al caso in cui siano presenti
anche dei carichi orizzontali. In particolare, si evidenzia come le due tecniche presentino dei
limiti che emergono in modo più evidente nel caso di carichi orizzontali. Per questi motivi,
invece di focalizzare l’attenzione su TNA e TSA, nel seguito della tesi viene sviluppato un
approccio alternativo nel quale la cupola è vista come un elemento strutturale identificabile
come un ‘guscio sottile’.

Nel Capitolo 3 viene richiamato in dettaglio il modello classico di guscio sottile. I teo-
remi fondamentali, statico e cinematico, dell’analisi limite sono riformulati e ne viene fornita
una dimostrazione esplicita specializzandoli al caso dei gusci. Si discutono anche diverse
ipotesi sui criteri di rottura del materiale che possono essere utilizzati per schematizzare
efficacemente il comportamento a rottura della muratura della cupola.

Nel Capitolo 4 viene illustrato un metodo di analisi originale per la valutazione della
sicurezza di una cupola in muratura. La procedura implementata nel metodo è ispirata
dal metodo delle forze, utilizzato nell’ambito della teoria tecnica delle travi e nel quale i
campi di sforzo staticamente ammissibili sono rappresentati in termini di un numero finito
di parametri. La cupola è schematizzata come un guscio sottile e la sua stabilità è valutata
utilizzando il teorema statico dell’analisi limite. Il metodo proposto prende in considerazione
un opportuno insieme di campi di sforzo staticamente ammissibili e ricerca, al suo interno,
una soluzione ottimale, ovvero tale da di rendere massimo un opportuno coefficiente di
sicurezza. Il metodo è in grado di includere informazioni riguardanti l’orientamento dei
giunti, così come di trattare cupole di forma generale. Per facilitare la descrizione, nel
capitolo si affronta il caso semplice di un guscio conico prima di fornire un’illustrazione del
metodo nel caso generale.

Infine, nel Capitolo 5, vengono presentati due casi studio. Il primo è un classico caso
di riferimento: la cupola sferica. Il secondo caso studio è la cupola del duomo di Pisa, una
cupola con una particolare pianta ovale e un profilo ogivale. I risultati ottenuti sono discussi
in dettaglio. La sicurezza della cupola è valutata nei due casi in cui i carichi orizzontali sono,
rispettivamente, presenti e assenti. Viene verificata l’influenza sui risultati ottenuti delle
diverse ipotesi fatte sul materiale e l’efficacia del metodo nel produrre stime soddisfacenti
del livello di sicurezza della cupola in muratura.

La tesi presenta due contributi ritenuti di maggiore interesse. Il primo è un confronto tra
la TNA e la TSA, in cui si evidenziano le somiglianze e le differenze tra le due tecniche su
un caso di studio, così come la reale fattibilità di un possibile nuovo metodo che combini reti
e superfici delle spinte. Il secondo è lo sviluppo di una metodologia originale di analisi per

xxiv



ABSTRACT

la valutazione del livello di sicurezza delle cupole in muratura soggette a carichi verticali e
orizzontali. Il metodo, che si basa sul modello di guscio sottile, viene presentato in dettaglio
e applicato a due casi di studio. Sorprendentemente, questa nuova tecnica si rivela in grado
di superare alcune importanti limitazioni dei metodi basati sulla TNA e sulla TSA. Il cam-
biamento dello schema strutturale da membrana a guscio permette di far emergere alcune
risorse resistenti delle cupole in muratura, altrimenti trascurate, che si rivelano importanti
anche quando sulla struttura agiscono solo carichi verticali e risultano invece cruciali quando
sono presenti carichi orizzontali oltre a quelli verticali.

Parole chiave: cupole in muratura, analisi limite, equilibrio di gusci, superficie di spinta,
reticolo di spinta, ottimizzazione convessa
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Résumé

Le travail de recherche décrit dans la présente thèse est consacré à l’étude des méthodes
d’analyse s’inscrivant dans le cadre de l’analyse limite pour l’évaluation de la stabilité des
dômes maçonnés. Les études théoriques et numériques se concentrent principalement sur le
développement d’une méthode d’analyse capable de fournir des indications utiles dans le cas
où un dôme en maçonnerie est chargé par un système de charges verticales et horizontales,
ces dernières étant assez représentatives des charges sismiques.

Les formes de dôme considérées dans la thèse ne sont pas axisymétriques. Ceci est motivé
par le fait que, bien qu’au cours des siècles les dômes en maçonnerie aient été généralement
construits en forme de solides de révolution, à l’époque romane et plus tard, pendant la Re-
naissance, les constructeurs ont commencé à construire de nouvelles structures caractérisées
par des formes ovales, que ce soit en plan ou en élévation. Ces structures, qui ont déjà
reçu une attention particulière du point de vue historique, méritent sans aucun doute autant
d’attention du point de vue de leur réponse mécanique, dont l’étude est rendue encore plus
compliquée par leur géométrie complexe.

Le problème de la détermination du niveau de sécurité des dômes en maçonnerie rela-
tivement au risque d’effondrement est ancien. Les chercheurs impliqués dans cette question
ont efficacement utilisé des méthodes graphiques pour évaluer la stabilité depuis le 18ème

siècle, bien avant que l’analyse des limites ne soit formalisée dans les termes modernes que
nous utilisons aujourd’hui. Pour cette raison, en plus d’une brève synthèse de la littérature
moderne, une perspective historique des méthodes utilisées au cours des siècles passés pour
modéliser et concevoir les dômes en maçonnerie est présentée.

Après un bref aperçu des méthodes historiques, la thèse se concentre sur l’étude de
différentes méthodes pour l’évaluation de la sécurité des dômes en maçonnerie en exploitant
le théorème statique de l’analyse limite. Une implémentation appropriée de deux méthodes
largement utilisées et disponibles dans la littérature, la méthode des "réseaux de forces"
(TNA: thrust network analysis) et la méthode de la "surface de pression" (TSA: thrust
surface analysis), est illustrée. Une méthode spécialement développée pour la recherche de
distributions statiquement admissibles des forces internes est présentée dans laquelle le dôme
est considéré comme une coque mince.

La thèse est composée de cinq chapitres. Le résumé des sujets abordés dans la thèse est
rappelé dans ce qui suit.

Le Chapitre 1 présente brièvement l’état de l’art sur les méthodes de modélisation
utilisées pour étudier la capacité portante des structures en maçonnerie. Une sélection des
principales contributions historiques des trois derniers siècles visant à évaluer le niveau de
sécurité des dômes maçonnés est également présentée. Ces contributions ont été relancées
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récemment, grâce à la contribution fondamentale de Jacques Heyman, qui a fourni un cadre
d’interprétation commun à la plupart des techniques historiques, en montrant comment elles
pouvaient être ramenées dans le champ de l’analyse limite.

Dans le Chapitre 2, l’analyse du réseau de forces (TNA : Thrust Network Analysis) et
l’analyse de la surface de pression (TSA : Thrust Surface Analysis), qui sont deux méthodes
bien établies pour étudier la stabilité des dômes en maçonnerie utilisées aujourd’hui, sont
illustrées avec leurs hypothèses. La comparaison entre les deux méthodes est effectuée en
détail sur une étude de cas considérant uniquement la présence de charges verticales. La
comparaison, qui constitue une des parties originales de la thèse, met en évidence les analogies
et les différences dans les résultats obtenus et établit un point de départ pour vérifier la
faisabilité en pratique d’une éventuelle méthode combinant réseau de forces et surface de
pression. Enfin, les applications de ces deux méthodes dans le cas d’un chargement horizontal
sont présentées. En particulier, il est mis en évidence comment les deux techniques présentent
des limitations qui apparaissent clairement dans le cas de charges horizontales. Pour ces
raisons, au lieu de concentrer l’attention sur les réseaux de forces et les surfaces de pression
(TNA et TSA), une approche alternative basée sur le modèle de coque mince est développée
dans les chapitres suivants.

Dans le Chapitre 3, le modèle classique de coque mince est rappelé en détail. Les
théorèmes statiques et cinématiques fondamentaux de l’analyse des limites sont reformulés,
et une preuve explicite est fournie en les spécialisant au cas des coques. Différentes hypothèses
sur les critères de rupture du matériau sont également discutées, qui pourraient être utilisées
efficacement pour modéliser l’état limite ultime des dômes en maçonnerie.

Dans le Chapitre 4, une méthode d’analyse originale est illustrée pour l’évaluation de la
sécurité d’un dôme en maçonnerie. La procédure mise en œuvre dans la méthode est inspirée
de la méthode des forces utilisée pour déterminer les forces internes dans les systèmes de
poutres indéterminées. Le dôme est considéré comme une coque mince, la stabilité du dôme
est évaluée par le théorème statique de l’analyse limite. À cet égard, la méthode recherche
des distributions optimales des forces internes, c’est-à-dire capables de maximiser le facteur
de sécurité, en balayant un ensemble approprié de forces internes statiquement admissibles.
La méthode est capable d’inclure des informations concernant l’orientation des joints, ainsi
que de traiter les dômes ayant une forme générale. Pour faciliter la description, le cas simple
d’une coque conique est abordé avant qu’une illustration de la méthode soit fournie dans le
cas général.

Enfin, dans le Chapitre 5, deux études de cas sont présentées. Le premier cas est une
référence classique : le dôme sphérique. Le second cas d’étude est le dôme de la cathédrale de
Pise, un dôme à plan ovale particulier et un profil ogival. Les résultats obtenus sont discutés
en détail. La stabilité du dôme est évaluée avec et sans charges horizontales. L’influence de
différentes hypothèses de matériaux sur les résultats obtenus est vérifiée, ainsi que l’efficacité
de la méthode pour produire des estimations satisfaisantes du niveau de sécurité du dôme en
maçonnerie en optimisant de manière appropriée les forces internes dans le dôme lui-même.

En conclusion, la thèse présente deux contributions originales principales. La première
est une comparaison des méthodes TNA et TSA, où les similitudes et les différences entre
les deux techniques sont mises en évidence sur une étude de cas, ainsi qu’une étude de la
faisabilité d’une nouvelle méthode combinant les deux. La seconde est le développement
d’une méthodologie originale pour l’analyse du niveau de sécurité des dômes en maçonnerie
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soumis à des charges verticales et horizontales. La méthode, basée sur le modèle de coque
mince, est présentée en détail et appliquée à deux études de cas. De façon remarquable,
cette nouvelle technique est capable de surmonter certaines limitations majeures des TNA
et TSA. Le changement de schéma structurel de la membrane à la coque permet de prendre
en compte un ensemble plus large de ressources de résistance des dômes en maçonnerie,
autrement négligées, qui sont importantes lorsque seules des charges verticales agissent sur
la structure et qui deviennent cruciales lorsque des charges horizontales sont ajoutées aux
charges verticales.

Mots clés: dômes maçonnés, analyse limite, équilibre des coques, surface de pression,
réseaux de forces, optimisation convexe
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Chapter 1

Introduction

Historical masonry constructions, dating back to hundreds, in some cases to thousands, of
years, strongly characterise the architectural heritage of European countries. In many cases,
their same structural elements such as arches, vaults and domes hold great historical, artistic
and architectural interest. Considerable and ever-increasing attention has been paid to their
conservation, especially in recent decades. The focus of such efforts has been particularly on
the need to develop effective analysis methods to assess their ability to resist vertical and,
most notably, horizontal actions (as they are the most insidious) [Boothby, 2001]. This task
is by no means an easy one, given the complex mechanical response of masonry, which is still
far from being fully understood, as it is strongly dependent on a large number of mechanical
and geometric parameters, such as, for example, the nature of the materials, and the texture
and characteristic dimensions of the structure’s constituent elements. Moreover, the skill
of the builders and the construction methods, which are generally unknowable, affect the
response of the masonry, thereby making the mechanical behaviour of historical masonry
buildings even more unpredictable.

One property common to almost all masonry constructions is that they exhibit low ten-
sile strength. This peculiar feature has, since antiquity, decisively influenced the shapes
chosen for building such structures [Benvenuto, 1991], [Huerta, 2001], [Tralli et al., 2014].
In addition, masonry’s limited capacity to transmit tensile stresses, and consequently the
relative ease with which cracks can originate and propagate through the thickness of the
masonry itself, has driven modern structural mechanics to develop various, specifically ded-
icated analysis methods, which also differ from each other in terms of the degree of detail
and complexity. Many constitutive models have been proposed in the literature, neverthe-
less nowadays the problems inherent in analysing masonry structures are still far from being
completely resolved, as a widely accepted approach for studying their stability is still missing
[Tralli et al., 2014].

The following features give an idea of some complexities lying behind the modelling of
masonry structures:

1. The construction technique and the quality of the masonry plays a crucial role in the
mechanical behaviour, thus it’s very unlikely to be able to define precise constitutive
relations which apply to the generality of the masonry types.

2. Since masonry is generally made by an assemblage of blocks and mortar arranged
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accordingly to a particular internal disposition, the material is anisotropic and inho-
mogeneous. However, as a first rough approximation, one can think of the behaviour
to be linear elastic if the masonry is compressed up to a certain limit.

3. The material has an uncertain and generally low resistance to tensile stresses. More-
over, once the tensile strength is attained, no more tensile stresses can be transferred
across that material element (formation of cracks) and thus some sort of ‘damaging’
and permanent deformations develop in the material. From a mechanical standpoint,
this also means that the displacement field and the strain field can be discontinuous.

4. In addition to cracking, the material exhibits other permanent strains due to sliding
and crushing, whose formation is a dissipative process.

In this context, searching for the ‘true’ displacement, strain and stress fields in the structure
would require a precise characterisation of the materials and further information, such as the
building technique adopted during construction and the internal arrangement of the masonry
units (blocks of bricks), just to name a few.

As it is well known, the linear elastic analysis, which is the standard approach in structural
mechanics, proves useless in the study of the mechanical behaviour of masonry structures
(see for example [Huerta, 2001] and references therein). In the extensive literature aimed
at defining possible strategies for studying the structural behaviour of masonry buildings,
two main, well-known approaches have been followed: the nonlinear analysis and the limit
analysis. Nonlinear analysis, which is the common approach in mechanics, aims to follow
the evolution over time of the displacements and stress and strain fields in the structure.
The solution depends on the particular boundary conditions and it requires precise char-
acterisation of the body kinematics and constitutive laws. However, especially in the case
of masonry structures, the results may be very sensitive to slight changes in the values of
the material parameters and this issue is crucial given the uncertainties in the mechanical
characterisation of the masonry. This reason is the main motivation justifying the use of
limit analysis, whose aim, contrary to nonlinear analysis, is to determine the conditions that
lead to a structure’s collapse abandoning the claim to know the ‘real’ state of the structure,
by determining the time evolution of displacements, stresses and deformations fields.

1.1 State of art: literature on masonry structures
The literature on the methods for assessing the mechanical response and load capacity of
masonry structures is very rich. Many methods and techniques have been proposed and
a full review is beyond the scope of this section. Modelling methodologies can be divided
in several ways. For example, a first distinction distinguishes the methods that model the
structure as a finite set of elements (blocks) from the methods that model the structure as
a continuous body. In the first category falls the so-called discrete element method (DEM)
[Cundall and Strack, 1979]. In recent years, Forgács et al. [Forgács et al., 2017] developed
a model and estimated for the first time the minimum thickness of semi-circular skewed
masonry arches with success. Beatini et al. [Beatini et al., 2017] numerically implemented
a regularised non-smooth contact dynamics approach for the study of complex assemblies
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of rigid blocks representative of real masonry structures. Simon and Bagi [Simon and Bagi,
2016] investigated the minimum thickness of domes with different geometries loaded by their
self-weight. The DEM approach was used by the same authors to investigate the role of
frictional resistance between masonry units on the stability of masonry domes [Simon and
Bagi, 2016], [Beatini et al., 2018].

The methods belonging to the second group model the dome as a simple no-tension
three-dimensional body, often referred to as a masonry-like continuum or no-tension ma-
sonry material model. The origins of this model can be dated back to the work of Signorini
[Signorini, 1925b], [Signorini, 1925a]. Since the pioneering 1966 work of J. Heyman, there
have been several attempts by many authors to adopt the masonry-like model as a first
approximation for the mechanical behaviour of masonry structures [Di Pasquale, 1984], [Gi-
aquinta and Giusti, 1985], [Anzellotti, 1985], [Fichera, 1973], [Panzeca and Polizzotto, 1988],
[Del Piero, 1989], [Del Piero, 1998]. Within this context, the nonlinear elastic analysis ap-
proach, which follows the evolution of the stress and strain fields under increasing load is
also used for the analysis of masonry arches. By way of example, Aita et al. [Aita et al.,
2017a], [Aita et al., 2017b] presented some explicit solutions for both statically determinate
and indeterminate problems and Barsotti et al. [Barsotti and Bennati, 2018] studied the
static response of a masonry arch by way of a one-dimensional nonlinear elastic model in
which masonry is regarded as a material with bounded tensile and compressive strengths.

Other widely used approaches are those making use of multi-scale continuummodels. Two
ways are followed here. The first one introduces the micro-scale in order to get information
about the macroscopic properties of the masonry, such as, for example, the elastic constants.
The aim is to determine the properties of a fictitious homogeneous continuum having a
macroscopic structural response equal to the real heterogeneous composite continuum. The
theories that allow the solution of this type of problem are called homogenisation theories.
By way of example we cite [Milani et al., 2007], [Milani and Cecchi, 2013], [Peng et al.,
2018]). It’s worth observing that in these approaches the micro-problem is solved separately
from the macro-problem since the micro-structure serves only to get the parameters for the
macro-structure. The second way introduces additional internal variables and the solution
of the problem involves the contemporary solution of both the micro- and macro-structures
(these are the proper multi-scale approaches). We cite, by way of example, [Drougkas et al.,
2016], [Petracca et al., 2017], [Salvatori and Spinelli, 2018].

1.2 Historical analysis methods for masonry domes
The problem of establishing mechanical rules capable of describing the structural response
of masonry domes has been addressed also in past centuries. Here no claim is made to give a
complete historical overview of all the methods adopted in the past, but focus is made on the
main contributions. In this section, all contributions addressed to masonry arches have been
excluded, focusing exclusively on those works explicitly addressing masonry domes. The
interested reader can find excellent reviews on masonry arches, for example, in [Becchi and
Foce, 2002] and [Aita, 2003]. An integral investigation of the historical evolution of analysis
methods for vaulted structures can be also found in [Huerta, 2008]. Another reference source
for historical perspective about the theory of structure is the book of Kurrer [Kurrer, 2018].
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A review of historical approaches using graphical analysis devoted to the study of masonry
domes can be found in [Fuentes, 2021].

Although a series of design rules and verification methods to determine the safety level
of domes and vaults were developed several centuries ago, by most accounts a true theory of
the static response of arches and domes seems to have been established in quantitative terms
only in the late 17th century [Benvenuto, 1991]. Before the contributions of Philippe De la
Hire and Bernard Forest de Belidor, the design of such structures was performed by means
of a combination of empirical and geometric rules that reconciled the ‘rules of art’ with
equally important aesthetic requirements. The first example of geometric dimensioning for
the profile of masonry domes can be found in Carlo Fontana [Fontana, 1694] (see Figure 1.1).

It was instead Robert Hooke, who in 17th century first highlighted the analogy between
the thrust line of a compressed arch and the shape of an inverted catenary, by writing the
famous statement: "Ut pendet continuum flexile, sic stabit contiguum rigidum inversum" in
the form of an anagram [Hooke, 1675].

In an attempt to give a framework to the various theories that have followed one an-
other, the 19th century certainly constitutes a watershed. In fact, during this century, not
only was the elasticity theory developed, which had a great influence on the methodologies
for calculating masonry vaults and domes, but also the development of membrane analysis
led to a change in the way mechanics of domes was seen. Before 19th century, all the theo-
retical contributions of Bouguer, Bossut, and Mascheroni, were more or less prefigurative of
what will be called in 20th century the slicing technique. Membrane analysis, on the other
hand, was a way to explicitly consider the two-dimensional behaviour of vaulted structures.
However, this approach had the flaw to neglect the poor tensile strength of the masonry,
by predicting tensile stresses. In an attempt to combine pre-19th century approaches with
membrane analysis, notable are the contributions of Eddy, Lévy and Wolfe, all based on
the same idea that the dome could be seen as having a double behaviour: an entirely react-
ing part in which there were stresses of compression-only and a cracked part, in which the
mono-dimensional behaviour replaces the membrane one. One could say that the real first
contributions on domes are these last three, as they have the merit to clearly distinguish the
mechanical behaviour of domes from those of arches.

The contributions presented here are all based on the infinitely resistant rigid block model,
which was the reference conceptual model for the calculations of masonry vaults until the
development of the theory of elasticity. Even after 18th century, this approach has never
been abandoned and it culminated in the nowadays well-established approach called Thrust
Network Analysis, that is presented in the next chapter.

1.2.1 Bouguer, 1734 and Frézier, 1737

The contribution of Pierre Bouguer [Bouguer, 1734] can be considered the first true static
theory of masonry domes. He explicitly tackles for the first time the problem of domes,
distinguishing itself from previous contributions on simple arched vaults. He considers the
stones making the dome as perfectly smooth, since a masonry domes that is stable under
this hypothesis is surely stable also in the real situation of finite friction [cit.]. The main
merit of Bouguer has been to extend to the bi-dimensional case a known result by Giacomo
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Figure 1.1: Geometrical rules for masonry domes, by Carlo Fontana.
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Bernoulli who in 1704 proved that an arch shaped as a reversed catenary is capable of resist
its weight whatever its thickness (from [Benvenuto, 1991]). Starting from the equation of
the catenary he adapts it to the case of domes where the weight of the infinitesimal element
increases towards the base. He comes to the equation describing the curve (see Figure 1.2)

xdx =
pdy′√
1 + y′2

, (1.1)

where p is a constant. By integrating equation (1.1) by series he comes to the description

Figure 1.2: Surface of the dome generated by the rotation around vertical axis of
the curve described by equation (1.1) (from [Benvenuto, 1991]).

by points of the homogeneous surface in equilibrium with its self-weight.
An important remark is that the shape obtained by integrating equation (1.1) is in

equilibrium even if each lune interacts only with the opposite one in the vertex and not with
the adjacent ones (this is the first example of the so-called slicing technique). On the other
hand, if the dome is complete, the equilibrium is granted by every surfaces generated by
curves whose equation satisfy

py′ ≤
∫ x

0

ξdQ, (1.2)

where Q is the weight of the portion above the section of coordinates (x, y) (see Figure 1.2).
Therefore, if we take a curve of equation (1.1), widen its span and make it less convex
everywhere, its rotation everywhere through 360 degrees still yields an equilibrated dome
[Benvenuto, 1991]. This is an important aspect that hides a tacit hypothesis on the resistance
of the material, as specified in the following.
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While Bouguer implicitly applied the slicing technique for the study of masonry domes,
Frézier [Frézier, 1737] explicitly put it in practice on different vaults and domes, although in
a qualitative way.

1.2.2 Poleni, 1748

In 1748, Giovanni Poleni published a monumental treatise which represented a fairly complete
synthesis of the knowledge of the time [Poleni, 1748]. Sadly, he seemed to be unaware of the
works of Bouguer, as he explicitly stated "It seems a marvellous thing to me, that either the
difference between an arch and a sector of a cupola has not been proposed by anybody, or, if
it has been proposed, that I have never met one among the many works of Architecture which
I have seen" (from [Benvenuto, 1991]). Among other things he gave a detailed history of the
discovery of the damage to St. Peter’s and the subsequent discussion in which he summarises
the theoretical and experimental studies on the dome that he conducted starting from 1743.
It is well know that in 1742 Pope Benedict XIV entrusted three famous mathematicians with
the task of finding out the causes that leads to the damage of the dome of St. Peter’s. Even
if the conclusions they drew were wrong, the analyses carried out constituted a new and
correct method for interpreting the behaviour of the dome, where they make a free use of
the principle of virtual work. The discussion about the vicissitude was growing and Poleni
was convened by the Pope and joined the debate. He came to the conclusion that the dome
was not on immediate danger contrary to what was stated by the three mathematicians. He
uses the Stirling’s theory of spheres (see Figure 1.3) to the form of the dome to show that
"the form of the big vault is not bad at all" (from [Benvenuto, 1991]). He then basically
treated the dome as a series of slices on which a modified catenary analysis was performed.

Since Poleni was unaware of Bouguer’s contributions, it can be said that he autonomously
arrived at a formulation of the slicing technique. After all, the contributions on masonry
arches were well known and the application of those same methods of analysis to the domes
considered as a series of arches must have appeared as almost natural.

1.2.3 Bossut, 1770

Bossout’s work on domes is the second of two dense studies published in 1778 [Bossut, 1778b],
[Bossut, 1778a]. He deals with the problem of determining the shape of a vault capable of
ensuring equilibrium even in absence of friction and cohesion between the blocks. In the
case of an arch, he determines an equation relating the shape of the extrados curve, once the
intrados curve and the forces acting on the arch are known. He considers both the case of
finite dimension blocks and infinitesimal blocks carrying out the analysis in differential form
(nowadays one could say: passing from a discrete model to a continuous one).

He tackles two specular problems: the first one consists in finding the shape of the vault
when the distribution of the forces is known, and the second one consists in finding the
distribution of the forces when the shape of the vault is known. He solves these problems
in different cases. The extension to the case of domes is obtained in the hypothesis that
the interaction between two adjacent lunes can be neglected (as was done also by Bouguer).
Then, each lune is simply considered as an arch on varying width and the same analysis used
for barrel vaults is applied (see Figure 1.4).
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Figure 1.3: Poleni’s experiment or ascertaining that the shape of the dome of St.
Peter’s was good (from [Benvenuto, 1991]).
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Figure 1.4: Bossut’s studies on domes (from [Benvenuto, 1991]).
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1.2.4 Mascheroni, 1785

In his treatise [Mascheroni, 1785], Lorenzo Mascheroni addresses the main problems involved
in the design of the arches and vaults. One of them is the calculation of domes of finite
thickness.

It is very interesting to observe, as reported by [Benvenuto, 1991], that during the 18th

century, a fundamental concept drove the calculations of masonry domes. In particular,
before the cardinal work of Coulomb, friction and adhesion between voussoirs was constantly
neglected. In these hypotheses, it was necessary to impose that the resultant on the generic
joint of an arch be orthogonal to the joint itself in order to prevent sliding. For masonry
domes it was sufficient to ensure that the resultant on the generic joint "falls with steeper
slope" (see Figure 1.5), i.e.

Q

P
> tanψ, (1.3)

where P and Q are the horizontal and vertical components, respectively, of the resultant
of the forces acting on the part above the generic section. This is due to the fact that

Figure 1.5: Fundamental concept in the design of domes (from [Benvenuto, 1991]).

circumferential forces can be present between two adjacent lunes and they must always be
compressive. So equilibrium is ensured with compressive hoop forces whenever condition
(1.3) is satisfied. The interesting aspect is that the ancient builders didn’t worried about
the magnitude of these forces, provided that they were compressive: the stone elements that
made up the dome, often because of their superabundant dimensions, could be considered
as they where infinitely resistant and thereby absolutely safe. This consideration has been
recovered also by Jacques Heyman in 20th century. Moreover, under these hypotheses, the
problem of the safety of the dome came down to determining P and Q, a purely geometrical
problem.
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Mascheroni came to the equation

hxds∫
hxds

>
dy′

y′
, (1.4)

where h is the thickness of the dome, that allowed to solve the principal problems concerning
masonry domes of small but finite thickness. In particular, when the intrados curve is known,
the equation rules the size of the edges ensuring equilibrium in each point or, if the geometry
is fully specified, it gives a criterion to judge on the safety of the dome.

Another interesting aspect of the treatise of Mascheroni is the application to spherical
domes. In asking what conditions satisfy equilibrium for a round dome of constant thickness
he came to the conclusion that a round dome cannot be hemispheric because its keystone
cannot exceed 0, 382R, where R is the radius of the dome. In other words, the generating arch
of the dome cannot be more than around 52◦, a nowadays well know result from membrane
theory.

1.2.5 Eddy, 1878 and Lévy, 1888

Eddy in 1878 [Eddy, 1878] and later Lévy 1888 [Lévy, 1888], proposed graphical methods
to perform the equilibrium analysis of masonry domes. While all the previous contributions
of Bouguer, Poleni, Bossut and Mascheroni regarded the dome as a set of one-dimensional
masonry arches, these methods represent a step forward in the comprehension of the stability
of masonry domes as they explicitly take into account the bi-dimensional behaviour.

It is recognised that the first to account explicitly the bi-dimensional behaviour of domes
was J. Wilhelm Schwedler, who provided a detailed graphical solution to the problem
[Schwedler, 1859], [Schwedler, 1863], [Schwedler, 1866]. The dome was separated in two
parts: in the upper part, over a specific hoop, all hoops were considered compressed, while
in the lower part the hoops were considered in tension. This somehow foresaw the result
obtained by Beltrami through the membrane theory [Beltrami, 1882]. Two major issues are
present in the work of Schwedler: actual masonry doesn’t resist tractions and the inversion
point of the hoop forces, that separate the upper from the lower part cannot be predeter-
mined but is an unknown of the problem. This last point is addressed first by Eddy’s work
(see Figure 1.6).

Although Eddy considers spherical domes, its graphical construction can be, de facto,
applied to any dome of revolution. He initially describes his graphical method for thin
metallic domes, for which he applies the membrane behaviour hypothesis. The membrane
hypothesis allows for the determination of the stresses in the circumferential direction. Ex-
ploiting the geometrical properties of spherical caps, he expressed the weights graphically
by means of segments and found the magnitude of the internal forces ensuring equilibrium
by searching the force polygon for each portion of the dome. By repeating the procedure
for a certain number of lunes, he obtains a curve, whose vertical tangent identifies a joint
at around 52◦. The hoops in the part of the dome above this joint are compressed, while
the rest are subjected to tensile stresses. This analysis even if correct for metallic domes,
has to be modified for masonry domes given the zero tensile strength of the material. In
the analysis of masonry domes, Eddy graphically divides the dome in a series of part having
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Figure 1.6: Eddy’s graphical construction (from [Eddy, 1878]).

the same weight and, by exploiting the membrane analysis performed before and the geo-
metrical properties of spherical sectors, the procedure finds the thrust line in the dome, in
the hypothesis of null tensile strength. The methods allows to identify the ‘neutral hoop’
separating the upper portion, which behaves like a compressed membrane, from the lower
part, which behaves as a series of one-dimensional, independent arches. In this way, the
natural behaviour of masonry domes in which fractures along meridian planes in the lower
part arise is accounted. In the procedure, it is assumed that the membrane coincides with
the upper middle third limit, this fact denoting the influence of elasticity in the works of
people dealing with masonry structures. In a certain sense, this method was the first to
successfully put together the mono-dimensional approaches of the 18th century, which on the
one hand neglected the bi-dimensional behaviour, with the membrane theory which, on the
other hand, neglected the no-tension property of masonry.

Ten years later, Lévy extended Eddy’s method to generic shaped domes of possibly vary-
ing thickness and with an oculus. Moreover, the loads acting on the structure could even
include the weight of a lantern on top. In [Galassi et al., 2017] the procedure proposed by
Lévy is accurately described and has been proposed in an analytical form. The method
considers a lune comprised between two meridian planes and divided into an arbitrary num-
ber of blocks, evaluating the weights and the centroids by means of Guldin theorem (see
Figure 1.7).

Lévy distinguished two steps: i) identification of the point of inversion then ii) drawing
the thrust line in the lower part of the dome. In his procedure, which is not discussed here,
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Figure 1.7: Lévy’s graphical construction (from [Lévy, 1888]).

two hypotheses are made: the membrane in the upper part of the dome coincides with the
exterior middle third limit (as for Eddy) and the thrust line passes through the exterior
middle third point at the abutment.

1.2.6 Wolfe, 1921

In his treatise on graphic statics [Wolfe, 1921], Wolfe presents an analysis method to deter-
mine the stresses in masonry domes, that follows the same philosophy as Eddy and Lévy.
He considers a spherical dome (see Figure 1.8) and divides it in a certain number of equally
shaped lunes. Each lune is divided in an equal number of blocks, whose weight is estimated
(approximately) through geometrical properties of the conical surface portion. Then, he
graphically finds the ‘neutral hoop’ by assuming that the upper part of the dome behaves
like a membrane that coincides with its middle surface (differently from Eddy and Lévy
who assumed that the membrane coincides with the exterior middle third surface). He com-
pletes the analysis by finding the thrust line for the lower part (below the neutral hoop) and
proposes design and verification criteria.

1.2.7 Heyman, 1966

With his 1966 fundamental work [Heyman, 1966] and in later publications dedicated to
domes [Heyman, 1977], [Heyman, 2011], Jacques Heyman had the great merit of unifying
under a single theory, that of limit analysis, all the historical contributions mentioned above.
According to him, masonry is considered to behave according to three simple hypotheses:
the material is unable to transmit tensile stresses, the compressive strength is unbounded
and sliding failure cannot occur. The two last hypotheses find even greater justification in
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Figure 1.8: Wolfe’s graphical construction (from [Wolfe, 1921]).

the case of historical monumental buildings, where the compressive levels are generally low
compared to the strength of the material and where suitable construction techniques were
usually adopted to avoid failure by sliding.

These assumptions on the material behaviour, which early builders already had an intu-
itive grasp of and which were endorsed at a more or less advanced level by the first static
theories allow to prove the theorems of limit analysis. In particular, the static theorem of
limit analysis states that: "If any admissible equilibrium state can be found, that is, one
for which a set of internal forces is in equilibrium with the external loads, and, further, for
which every internal portion of the structure satisfies a strength criterion, then the structure
is safe."

This shed new light on the interpretation of the methods adopted in the past. Indeed,
although some authors claimed to have found the ‘real’ state of a structure, by adopting
subjective hypotheses to select a particular internal force distribution, the equilibrium state
thus found is simply one of the possible equilibrium states for the structure. This means that,
while the true state of the structure remains unknown, the existence of a statically admissible
stress field enables to prove the safety of the masonry structure. The consequence is that
every method adopted in the past is fully justified in their hypotheses and could be effectively
exploited to check the safety of a masonry dome, by virtue of the static theorem.
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1.3 Conclusive remarks
It is interesting to note how Heyman helped sparking new interest in the study of historical
methods for the calculation of vaulted masonry structures. There are many recent contri-
butions in which historical methods have been reinterpreted and translated into modern
language, sometimes exploiting the possibilities offered by computers to perform otherwise
excessively onerous operations, in order to propose their application in the analysis of real
structures. In the already cited work of Galassi et al. [Galassi et al., 2017], the Lévy method
is re-developed in analytical form and applied to some case studies. Another example is the
Durand-Claye’s method [Durand-Claye, 1866], [Durand-Claye, 1880], a graphical method
aimed at determining the admissible values of the crown thrust magnitude and eccentric-
ity, defining the so-called stability area. Aita et al. have proposed a modern version of
Durand-Claye’s method by translating the complex graphical construction into a suitable
set of equations in terms of internal forces [Foce and Aita, 2003], [Aita et al., 2017c].

Methods based on the Thrust Line Analysis [Heyman, 1967], [Méry, 1840] have reached
today the status of well-established methods for studying the stability of vaulted masonry
structures which exploit the static theorem of limit analysis.

Although the lower bound theorem of limit analysis is a conservative approach to study
masonry structures, the upper bound theorem of limit analysis is also exploited both for
masonry arches (see for example [Di Carlo et al., 2018]) and for masonry vaults by using a
Finite Element approach, as for example in [Milani et al., 2008]. Moreover, in [Tralli et al.,
2014] limit analysis is acknowledged as the most reliable tool among the various modelling
methods for masonry.

It is worth observing that historical methods for calculating masonry domes all refer,
implicitly or explicitly, to axisymmetric domes. Although the most widespread form of ma-
sonry dome has, throughout history, been represented by the ‘solid of revolution’, in the
Romanesque period and later, during the Renaissance, builders began constructing new
domed structures with oval shapes, in either plan or elevation. These structures, which have
already received special attention from the historical point of view [Huerta, 2007], [Chap-
puis, 1976], undoubtedly deserve as much attention from the perspective of their mechanical
response - study made even more complicated by their complex geometry.

A final remark is in order here. Although all the historical methodologies for calculating
vaulted masonry structures contributed to adding a piece of knowledge to the interpretation
of the mechanics of masonry domes, it is interesting to observe how they never explicitly
addressed the investigation of the structural response of domes subjected to vertical and
horizontal loads, a topic that, most of the time, was completely ignored. This aspect,
perhaps indicating the fact that the ancient builders did not care about this type of loads, is
also interesting with regard to Heyman’s hypotheses: if the hypotheses on the material made
by Heyman find full justification for historical structures subject to their own weight and
that of the elements they carry, the same thing cannot be said for certain when horizontal
loads act on the construction.
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Chapter 2

Analysis methods based on the safe
theorem: the Thrust Network Analysis
and the Thrust Surface Analysis

Within the framework of limit analysis, Thrust Network Analysis (TNA) and Thrust Surface
Analysis (TSA) are two well established techniques that are used nowadays for effectively
determining statically admissible stress fields in masonry vaults and domes. In this chapter,
the two methods are presented, along with their hypotheses, and some considerations on
their correlation and on the results obtained on a case study are discussed.

2.1 Discrete model: Thrust Network Analysis (TNA)
As already observed, all the historical approaches described in Chapter 1 are based on the
infinitely resistant rigid block model. Since Heyman, several calculation methods have been
brought back to the attention of the scientific community, and some of them received further
development and extension also by exploiting the possibilities offered by modern computers.
The case of Thrust Network Analysis (TNA) is probably the most emblematic. It is a discrete
method that can be considered an extension of the Thrust Line Method, that is capable of
accounting for the bi-dimensional behaviour of the structure.

The foundations of Thrust Network Analysis lie in the Force Density Method [Schek,
1974]. It was first formulated and applied to the study of masonry structures in 1999 by
O’Dwyer [O’Dwyer, 1999] under the name of Force Network Method. The method has been
further developed by P. Block in his Ph.D. thesis [Block, 2009] and in other works [Block
and Ochsendorf, 2007], under the name of Thrust Network Analysis, by means of so-called
reciprocal figures. The method has proven to be effective in analysing vaulted masonry
structures and has been reformulated and extended in recent years, as well [Fantin and
Ciblac, 2016], [Marmo and Rosati, 2017].

In the following, the TNA is presented according to the formulation of Fantin & Ciblac,
which clearly highlights the mechanical interpretation of the thrust network. As said, the
TNA models the dome as a system of rigid bodies, termed ‘blocks’, under unilateral contact
conditions. Possible equilibrium states for the system are determined by looking for suitable
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THRUST NETWORK ANALYSIS AND THE THRUST SURFACE ANALYSIS

networks of compressed bars, the so-called thrust network (see Figure 2.1). The thrust
network allows for graphically representing the system of forces acting on each block and
can be considered fully analogous to the funicular polygon that is used to trace the thrust
line for stability assessment of masonry arches. This issue is examined in following sections,
as it is relevant for our investigation. Three hypotheses are commonly made in standard

Figure 2.1: Rigid blocks model: equilibrium of a generic block. The red dots are the
nodes of the network, the blue dots on the block’s sides are the centres of pressure
(defined later in the text).

TNA applications. The first is that all the forces acting on every single block meet at one
point, that is, to each block there corresponds one node of the network. This assumption
narrows the set of possible equilibrium states that are actually investigated but enables
automatic fulfilment of the moment equations. The set of forces is required to fulfil Heyman’s
hypotheses only along the block interfaces, that is, it is required that a compressive force (nil
at least) be transmitted across each joint and that the line of action of the force intersects
the same joint. Moreover, no sliding between blocks is allowed since the joints’ orientation
and friction coefficient in real masonry are such that Coulomb criterion is generally satisfied
for vertical loads.

The second hypothesis concerns the loads that may act on each network node. Each
external nodal force is by hypothesis vertical, thus representing the weight of the block or
some superposed element. In recent years, the method has been extended to the case of
horizontal loads [Block, 2009], [Marmo and Rosati, 2017], but such extension requires some
specific adaptations.

The third hypothesis is that the displacements are small enough so that equilibrium can
be written in the reference configuration.

In the general case, an infinite number of different networks can be found that are in
equilibrium with the same external loads. In order to select one particular network among
all the possible choices an optimisation procedure is usually performed by choosing a suitable
cost function. When dealing with safety level assessment of vaulted masonry structures that
comply with the Heyman hypotheses, TNA can be successfully employed by choosing the
geometrical safety factor (GSF) as the cost function to be maximised (the interested reader
can refer to [Fantin and Ciblac, 2016] for the mathematical details). As is well known, the
concept of a geometrical safety factor was first introduced by Heyman [Heyman, 1966] as a
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measure of safety for masonry arches and is defined as the ratio between the actual thickness
of the arch and the minimum thickness for which it is still possible to find at least one
statically admissible stress field (that is, the minimum thickness within which at least one
thrust line is contained). The notion of the geometrical safety factor is easily extended to
the case of domes and is related to the distance of the centre of pressure from the dome
mean surface.

2.1.1 Formulation of the method

Here the outline of the standard TNA is illustrated in a synthetic but complete way, as
presented in [Fantin and Ciblac, 2016].

Geometry

The centroids of the blocks, in which the structure has been discretised, form a weighted point
cloud, and are connected by a branch for each joint separating two blocks. The resulting
network is what is called mass network. In this way, each branch connects the nodes of the
adjacent blocks in contact at the corresponding joint. The contact force at the joint has the
same direction as the branch. Contrary to the original formulation of Block, the connectivity
of the network is deduced from the performed discretisation, and is not chosen a priori.

Equilibrium

Let x, y, z be the Cartesian components of the nodes and u, v, w the Cartesian components
of the branches (the coordinate difference) and LH their horizontal length (i.e. the length
projected on the horizontal plane). Let U ,V ,W denote the diagonal matrices of u,v,w.
In this section a superscript ∗ identifies all the dual quantities. For example, while u denotes
the coordinate along x-axis of the generic branch, u∗ denotes the x-components of the force
in that branch. The matrix C denotes the m × n branch-node connectivity matrix, where
m is the number of branches and n the number of nodes. This matrix can be separated in
the Ci m × ni and Cb m × nb matrices, where ni is the number of interior nodes and nb is
the number of boundary nodes, and where C = [Ci|Cb]. Then, the equilibrium equations in
the horizontal plane, respectively, along x and y axis can be written as

CT
i u
∗ = 0,

CT
i v
∗ = 0.

(2.1)

Since the branches are parallel in the form diagram and the force diagram, let ζ be the
m-vector of proportionality between the branch lengths in form and force diagrams. Then
the same horizontal equilibrium equations can be written as[

CT
i UL

−1
H

CT
i V L

−1
H

]
ζ = Kζ = 0. (2.2)

Since there are 2ni equilibrium equations and m unknown, the system in indeterminate.
One can then choose mdof = m − rK parameters, being rK the rank of K, that can be
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called degrees of freedom of the system. After reordering the system in order to separate the
parameters ζdof from ζunk, the horizontal equilibrium can be written as follows

ζunk = K−1
unkKdofζdof = 0. (2.3)

The equilibrium along vertical direction z can also be written in matrix form as

CT
i w

∗ = −pz. (2.4)

Moreover, it is possible to obtain the relations between the vertical loading pz and the
position of the boundary nodes zb, also be considerable as degrees of freedom

Dizi = −pz −Dbzb, (2.5)

where
Di = CT

i L
−1
H L

∗
HCi,

Db = CT
i L
−1
H L

∗
HCb.

(2.6)

Optimisation procedure

Firstly, a set of values is chosen for the degrees of freedom of the branches ζdof so that
horizontal equilibrium equations give all horizontal forces in branches ζ. Then, another set
of values is chosen for the degrees of freedom of the boundary nodes zb so that also vertical
equilibrium equations give the vertical positions of all nodes z. Of course, an optimisation
procedure must be enforced in order to choose the best value of the parameters according to
a chosen cost function. The type of mathematical programming problem depends on the cost
function chosen. For convenience, a quadratic function can be used for the cost function,
linked to the concept of geometrical safety factor

cf =
∑

(z2
i − z2

m), (2.7)

where zm is the position of the mass network nodes. Obviously, the optimisation problem is
constrained, since to enforce Heyman hypotheses it must be

zintradosi ≤ zi ≤ zextradosi (2.8)

in order for the nodes to be inside the masonry.

Implementation

For the applications described in the following, the TNA is carried out by exploiting the
MaNACoH software (from http://bestrema.fr/manacoh/) [Fantin, 2017] to search for the
network that maximises the geometrical safety factor under the constraint that all branches
are compressed and inside the thickness of the masonry.
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2.1.2 Some remarks on the method

As is well known, TNA can be conceived without explicitly referring to the blocks’ arrange-
ment within the dome. However, when considering thrust networks totally independent from
the blocks’ arrangement, the determination of a set of admissible compressive forces in all
branches represents in general only a necessary condition for the stability of the dome. On
the contrary, one of the strongest points of TNA as formulated by Fantin & Ciblac is the
possibility of explicitly considering the joint orientations in the masonry as well as different
strength criteria for the joints. This is an important point because, as mentioned, joints’
orientation affects the geometrical safety factor and thus estimation of the safety level of the
structure. In this regard, note that, while in the case of stone masonry the set of blocks as
well as the orientation of the joints may closely follow the actual stereotomy of the construc-
tion, this is not usually possible when dealing with brick masonry. In this latter case, the
number of blocks needed to accurately reproduce the brick pattern would generally be too
large, and in common TNA applications a set of virtual blocks is used, each corresponding
to a given portion of the brick masonry.

Apart from the explicit consideration of the joints in the formulation of TNA, the paper
from Fantin & Ciblac [Fantin and Ciblac, 2016] proposes also an extension of the original
method that is capable of removing a strong limitation. Indeed, by the introduction of
partial branches, it overpasses the condition of the intersection of all forces in one point and
thus extends the equilibrium possibilities for the structure. This point is not deepened here,
but the interested reader can refer to [Fantin and Ciblac, 2016] and [Fantin, 2017].

2.2 Continuum model: Thrust Surface Analysis (TSA)
In the following, reference is made to the first works to present an exhaustive account of the
method by Angelillo and co-workers [Angelillo and Fortunato, 2004], [Angelillo et al., 2013].
The method models the dome as a simple no-tension three-dimensional body, often referred

Figure 2.2: Continuum model: normal rigid no-tension material.

to as a masonry-like continuum or no-tension masonry material model, already presented in
Chapter 1.

It is worth observing that, strictly speaking, in a 3D no-tension continuum an admis-
sible stress state is represented by a negative semidefinite tensor. This is quite a limiting
constraint, and strictly speaking, equilibrium under such a condition could be assured only
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when very particular loading distributions are taken into consideration. Thus, in order to
enable using the method, the actual load distribution is generally approximated by means
of a suitable distribution that is considered equivalent to the actual one. More precisely, the
body loads within the dome are set equal to zero and are replaced by a system of surface
loads distributed on the ‘extrados’ of the structure; said system is statically equivalent to
the body forces. In addition, stress discontinuities are allowed across a surface internal to
the body, as is the development of singularity in the stress fields.

The discontinuity surface Σ (see Figure 2.2) ideally subdivides the dome into a reactive
and a non-reactive part. In the reactive upper part, denoted by Ω+, a uniaxial compressive
state is present. The lower part, denoted by Ω−, is stress-free and it is thought to be inert.
The discontinuity surface is called the thrust surface and can be defined as the middle surface
of a thin shell under a membrane stress state, wholly contained within the thickness of the
masonry, and which in some sense represents the resistant part of the dome [Barsi et al.,
2022]. The membrane is loaded by the jump in the body stress field across the two regions
Ω+ and Ω−. In analogy to TNA, the method searches for a suitable thrust surface, wholly
contained inside the dome thickness, that represents a membrane in equilibrium with the
external loads. For the admissibility of the internal force field, the principal membrane forces
must be compressive.

In the general case, an infinite number of admissible membranes can be found in equi-
librium with the external loads. Hence, as happens in TNA, when performing TSA as well,
some criterion has to be established in order to select one membrane from the many possible
choices.

2.2.1 Formulation of the method

There are different solution strategies for finding an admissible thrust surface, most of which
refer to the so-called Pucher formulation of the equilibrium problem of a membrane [Pucher,
1934]. While the thin shell model is described in detail in Chapter 3, only the equilibrium
equations of a membrane, which are necessary for performing TSA, are recalled here. They
can be written as (see [Angelillo and Fortunato, 2004])

∂(
√
a txx)

∂x
+
∂(
√
a txy)

∂y
+
√
a qx = 0

∂(
√
a txy)

∂x
+
∂(
√
a tyy)

∂y
+
√
a qy = 0

√
a txx

∂2z

∂x2
+ 2
√
a txy

∂2z

∂x∂y
+
√
a tyy

∂2z

∂y2
−
√
a
∂z

∂x
qx −

√
a
∂z

∂y
qy +

√
a qz = 0,

(2.9)

where a is the determinant of the metric tensor, txx, txy = tyx, tyy are the membrane force
components with respect to a Cartesian reference system, qx, qy, qz are the Cartesian com-
ponents of the external load vector and z(x, y) is the function describing the membrane
parametrised a la Monge (i.e. x and y are the plane coordinates). Introducing the pseudo-
forces, defined as sxx =

√
a txx, sxy = syx =

√
a txy, syy =

√
a tyy, and denoting with p =

√
aq
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the surface load per unit area on the projected surface, one can write

∂sxx

∂x
+
∂sxy

∂y
+ px = 0

∂sxy

∂x
+
∂syy

∂y
+ py = 0

sxx
∂2z

∂x2
+ 2sxy

∂2z

∂x∂y
+ syy

∂2z

∂y2
− ∂z

∂x
px − ∂z

∂y
py + pz = 0,

(2.10)

which represent the equilibrium equations of a membrane in Pucher form. The problem can
be simplified by resorting to the well-known Pucher stress function, i.e., a proper potential
function from which the pseudo-stresses can be derived. By restricting the analysis to the
simpler case in which only vertical loads are present (px = 0, py = 0, pz = −p(x, y)), the
Pucher stress function reduces to the Airy stress function, φ(x, y), defined in terms of pseudo-
stresses as

sxx =
∂2φ

∂y2
, sxy = syx = − ∂2φ

∂x∂y
, syy =

∂2φ

∂x2
. (2.11)

By adopting the Airy stress function, the first two equilibrium equations reduce to identity,
and the problem is fully described by the following second order partial differential equation

∂2z

∂x2

∂2φ

∂y2
− 2

∂2z

∂x∂y

∂2φ

∂x∂y
+
∂2z

∂y2

∂2φ

∂x2
= p, (2.12)

where p(x, y) is the external vertical load. Among the solution strategies one can cite,
without any claim to completeness, [Angelillo et al., 2013], [Fraddosio et al., 2020], [Barsi
et al., 2022].

Implementation

In the applications that follow, the TSA is carried out by selecting a class of surfaces, whose
analytical expression is chosen a priori and by performing the membrane analysis in order
to obtain the membrane forces in equilibrium with the external loads. The admissibility
conditions are then checked. If the internal force field thus determined results not compatible
with the material hypotheses a different class of surface is selected and the procedure iterated.

For the numerical solution of the differential equations, either in form of equations (2.9) or
equation (2.12), a finite difference scheme is exploited. The scheme, which is not illustrated
here, follows the one presented in Subsection 4.4.3.

2.2.2 Some remarks on the method

Application of TSA is generally more involved than TNA, but it has the advantage of defining
a generalised stress field that is statically admissible at any point of the continuum body. In
other words, the constraints on the internal forces are enforced at every internal point of the
structure, while in TNA they are imposed only along the interfaces between blocks.

It should be noted that TSA is unable to account for the actual texture of the masonry, as
the method does not involve any explicit hypothesis about joints’ orientation. For this reason,
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in order to carry out a proper comparison between TNA and TSA, the joints’ orientation in
TNA must be suitably chosen, as will be explained in the following. Also note that in TNA
the load distribution on the network nodes depends on the shape of the blocks, and thus on
the orientation of the joints, while in TSA the load acting on each portion of the membrane
is simply given by the weight of the corresponding portion of the continuum body overlying
the membrane in the vertical direction.

2.3 Comparison between TNA and TSA
One question that arises spontaneously is whether these two methods are somehow related
and, if so, under what hypotheses the correlation holds. Although this issue has already been
addressed, even in recent years [Fraternali, 2010], [Marmo et al., 2018], [Nodargi and Bisegna,
2021], the relation between TNA and TSA is not fully understood, and these two methods
are often considered in the literature as nearly equivalent without clearly specifying in what
sense. In this section, the correlation between the two methods is analysed with reference to
a case study, highlighting their similarities as well as their differences. The first objective is to
examine the conditions under which it is effectively possible to establish a proper correlation
between TNA and TSA. Moreover, since both methods search for statically admissible stress
fields, the second objective is to investigate whether a method combining thrust network and
thrust surface can be effectively set up to find equilibrium states for a given structure, as
specified in the following. The study presented here is performed by referring to a real case
study, the dome of Pisa Cathedral, on which some investigations of the mechanical response
have recently been carried out [Aita et al., 2017d], [Aita et al., 2019], [Bennati et al., 2020],
[Barsi et al., 2022]. This magnificent structure, which is characterised by a very peculiar
shape, highlights the capability of the two methods to deal with complex geometries beyond
axisymmetric domes.

2.3.1 Properly comparing TNA and TSA: what about joints’ ori-
entation?

A point that is seldom highlighted is that in order to properly perform a comparison between
TNA and TSA, the joints’ orientation assumed in the analysis cannot be set freely. The
following delves more deeply into this statement, starting, for the sake of simplicity, with
some preliminary considerations regarding the case of a masonry arch. Let’s consider a
plane masonry arch as a system of rigid blocks separated by a finite number of joints. As is
well known, the funicular polygon is a simple graphic static construction that represents the
system of forces acting on each block. The intersection points of each branch of the funicular
polygon with the corresponding joint are called centres of pressure and represent the points
of application of the internal forces acting on each block. If all the centres of pressure are
inside the thickness of the masonry, no tensile stresses are needed to equilibrate the loads,
and the structure can be considered safe. The polygon connecting all the centres of pressure
is called the polygon of the centres of pressure. In the case the arch is stable, an infinite
number of admissible funicular polygons may be traced. Note that the funicular polygon
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may even exit the thickness of the masonry, provided that the centres of pressure all remain
inside the joints.

According to Méry [Méry, 1840], the locus of the centres of pressure when the number
of joints goes to infinite is the thrust line of the arch. At the same limit, the nodes of
the funicular polygon become a curve as well, and is called funicular curve, which can be
considered, by definition, a cable in equilibrium with the load distribution, this latter being
known once and for all when the geometry of the blocks is known (whether their dimensions
be finite or infinitesimal). These two curves are not necessarily coincident, as clearly pointed
out also by Heyman [Heyman, 2009]. Indeed, due to the joints’ orientation, the points of
intersection between the funicular curve and the joints do not, in general, coincide with
the centres of pressure (see Figure 2.3) and, as a consequence, the line of action of the force
acting on each joint is not necessarily tangent to the thrust line. Milankovitch [Milankovitch,
1907] showed that the thrust line coincides with the funicular curve, and therefore the forces
acting on each block are tangent to the thrust line if and only if the joints are vertical. By
following the same line of reasoning, it can be shown that the thrust line coincides with the
funicular curve if the joints have the same direction as the external loads. For an arch under
gravitational loads, only if the joints are vertical can the thrust line be considered a cable in
equilibrium with the same external loads as those acting on the arch (see Figure 2.4).

Figure 2.3: On the left, Moseley’s example [Moseley, 1856] showing the difference
between the funicular polygon (line of pressure) and the polygon of the centres of
pressure (line of resistance). On the right, another case in which the funicular poly-
gon (in red) and the centres of pressure (blue dots) are distinct near the springing;
taken from [Fantin and Ciblac, 2016] (colours added to the originals).

Note that, unlike in TNA, for the arch no hypothesis is needed to assure that all the
forces acting on each block intersect at one point, because it is always necessary for three
forces to meet at one point in order for the equilibrium to be fulfilled. Hence, in the ideal
limit case in which the number of blocks goes to infinity, any admissible distribution of
internal forces corresponds to a line of thrust wholly contained within the arch. Also observe
that, if the funicular polygon, which can be considered a plane truss carrying the external
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load, is compressed, the axial force in the cable obtained by the limit operation will also be
compressive.

Figure 2.4: The thrust line is defined once the joints’ orientations are chosen. In the
case of vertical joints, the funicular polygon (red) and the polygon of the centres
of pressure (blue) tends to a single curve when the number of the blocks increases:
the thrust line.

In analogy to the plane arch, one can consider a masonry dome as a system of rigid
blocks. As already stated, the thrust network is the extension to three dimensions of the
funicular polygon [Fantin and Ciblac, 2016].

By keeping the hypothesis that all the forces acting on each block meet at one point, in
the limit case of infinite blocks the nodes of the network will become a surface, which can be
considered a membrane in equilibrium with the external loads, which are known once and
for all when the geometry of the blocks is known. In the same limit operation, the centres
of pressure will also become a surface, the thrust surface, which is, in general, different from
the membrane (see Figure 2.5). It’s worth observing that this definition of thrust surface
is conceptually different by that given before in the case of TSA, as it refers to a different
mechanical model (rigid blocks).

By reasoning fully analogous to that illustrated for the arch, it is not difficult to conclude
that the two definitions of thrust surface coincide, and the thrust surface becomes a mem-
brane when all the joints between the blocks are parallel to the external load. Moreover, only
in such case can the membrane equilibrium of a thrust surface be formally described by the
same set of equations used in TSA, and therefore the two methods coincide at limit. How-
ever, unlike the case of arches, even if the internal forces in the network are all compressive,
it is by no means assured that the principal stresses in the corresponding membrane will be
compressive. On the contrary, as long as all the joints are parallel to the load, an admissible
thrust surface always corresponds to a statically admissible distribution of internal forces. In
other terms, if it is possible to find a compressed membrane in equilibrium with the external
loads that is entirely contained inside the thickness of the masonry, then the dome is safe.

An interesting aspect that deserves to be highlighted is that an admissible thrust surface
defines a statically admissible distribution of internal forces not only in the limit case, but
even in the case in which the dome is divided into a finite number of blocks. In other words,
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Figure 2.5: Difference between membrane and thrust surface.

if the dome is thought of as a system of blocks, the forces acting on each block can be
evaluated by assessing the resultant of the membrane forces along the joints (see Figure 2.6).
This offers a way to compare the internal force distributions evaluated by both TNA and
TSA, as shown in the following section. It is also interesting to notice that, because of the
curvatures the centres of pressure do not necessarily belong to the membrane (see the orange
dots in Figure 2.6), as it is instead the case for infinitesimal blocks.

In conclusion, the important issue that deserves stressing is that, while the thrust network
is a discretised version of a membrane, in general a thrust surface is not a membrane.
Moreover, when gravitational loads are accounted for, such as for dome’s self-weight, joints
need to be considered vertical for the thrust surface to become a membrane and to be
approached by the limit of a sequence of thrust networks. Hence, a proper comparison
between TNA and TSA can be made if and only if the joints between the blocks are vertical.

2.3.2 Correlation between thrust network and thrust surface

The present section illustrates in some detail the correlation intervening between thrust
networks and thrust surfaces. The comparison is performed by referring to a real case study:
the dome of Pisa Cathedral.

The main goal of the comparison is to check the correspondence between the equilibrium
states defined by thrust network and thrust surface. In particular, the aim is to investigate
whether an admissible network, whose configuration is optimised by the TNA, can suggest
the shape of an admissible thrust surface. Whether this could be effectively found, it would
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Figure 2.6: Membrane force resultants on joints.

be a good starting point for subsequent optimisation of the thrust surface by the TSA which
usually requires the numerical solution of a partial differential equations set (see, for example,
[De Chiara et al., 2019]). Based on the criterion that the surface is as close as possible to
the network’s centres of pressure, the procedure involves the following steps:

1. an optimised thrust network is determined by searching for the set of admissible net-
works by means of the TNA method;

2. three smooth surfaces, each belonging to a predetermined class (namely, elliptical
paraboloid, hyperbolic cosine function and ellipsoid), are determined that are as close
as possible to the centres of pressure of the optimised network;

3. the three approximating surfaces are considered as thrust surfaces, and their admissi-
bility is checked by performing a membrane analysis;

4. the internal force distribution in the thrust surfaces is compared to that in the thrust
network.

The case study: the dome of Pisa Cathedral

The analyses presented in the previous sections are now to be applied to the case of the
dome of Pisa Cathedral, a 12th-century masonry construction of singular historical and ar-
chitectural value (see Figure 2.7). The dome has a peculiar shape, characterised by an oval
base and pointed profile (see Figure 2.8), features that represent an original solution in co-
eval Romanesque architecture and make it an interesting case study with regard to building
techniques and structural response. The interested reader can refer to [Sanpaolesi, 1959] and
[Smith, 1984] for more information through an historical overview of the building’s concep-
tion, design and construction. The dome has a total height of about 12 meters and its base
can be inscribed in a rectangle of about 17 by 14 meters (see Figure 2.9).

In order to provide a suitable and reliable description of the complex geometry of the
dome, the shape of both the intrados and extrados surfaces have been carefully reconstructed
by means of laser-scanner survey and have been approximated by means of regular surfaces,
allowing for as simple as possible analytical expressions [Bennati et al., 2020], [Barsi et al.,
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Figure 2.7: Pisa Cathedral.

Figure 2.8: The dome of Pisa Cathedral.
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Figure 2.9: Dome geometry (from [Sanpaolesi, 1959], dimensions added to origi-
nals).

2022]. The parametric equations of the ideal surfaces are expressed in terms of the parameters
(α, z) as follows: 

x1(α, z) = (d+
√
e2 − z2) cosα

x2(α, z) = (f +
√
g2 − z2) sinα

x3(α, z) = z

(2.13)

in which 0 ≤ α ≤ 2π and 3 m ≤ z ≤ 12 m. The constants d, e, f and g take different values
for the intrados and the extrados surfaces.

In 1956, during the restoration works promoted by Sanpaolesi [Sanpaolesi, 1959] it was
verified that the entire dome of Pisa Cathedral is made of four-head brick masonry and that
each layer of bricks is almost normal to the dome’s middle surface (see Figure 2.10-left).
These findings have been confirmed by the visual inspections performed during the latest
restoration works carried out between 2016 and 2018 [Aita et al., 2017d] (see Figure 2.10-
right).

The TNA solution

As a first step of the investigation, an optimised admissible thrust network is determined
using TNA. In this regard, as already specified, the MaNACoH software (from http://
bestrema.fr/manacoh/) [Fantin, 2017] is exploited to search for the network that maximises
the geometrical safety factor under the constraint that all branches are compressed. The
dome is subdivided into 10 and 20 parts in the meridian and hoop direction, respectively.
By using the equations (2.13) of the dome intrados and extrados, the shape of each block is
easily determined. An overall number of 200 blocks and 360 branches is considered. Each
block corresponds to some 500 bricks at the dome’s base, and 250 bricks at its top. For
the reason illustrated in the previous section, the joints between blocks are all vertical.
The optimal admissible thrust network obtained in this way is shown in Figure 2.11 and
corresponds to a geometrical safety factor equal to 1.93.

The vertical joints assumed in the TNA do not correspond to the actual joints in the
masonry; nonetheless, this particular orientation has been assumed in order to assure proper
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Figure 2.10: Joints’ orientation inside the dome of Pisa Cathedral. On the left,
a drawing adapted from [Sanpaolesi, 1959]. On the right, a photo taken by the
author during the 2017 restoration works.

Figure 2.11: TNA: Thrust Network obtained with the MaNACoH software (vertical
joints).
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comparison between TNA and TSA. The vertical joints, rather than actual material inter-
faces, should be considered merely as ideal surfaces along which the admissibility conditions
are checked for the internal forces. In this regard, it is worth noting that this procedure does
not lead to an overestimation of dome safety: it is an easy task to verify that in the case at
hand (although not in general) if the vertical joints are compressed, so will the actual joints.

As a last remark, naturally, different geometric safety factors could be obtained by con-
sidering different joints’ inclinations in the TNA. By way of example, by assuming joints
orthogonal to the dome middle surface, a slightly higher geometrical safety factor, equal to
2.21, would result. This difference, no matter how insignificant, could not be neglected if
our aim were to evaluate the maximum geometric safety factor. However, as already stated,
our aim here is to compare TNA with TSA, a task that can be done properly only if vertical
joints are considered in the TNA.

The thrust surfaces suggested by TNA

The TNA solution described in the previous section is used as the starting point for obtaining
a corresponding thrust surface. In this regard, the centres of pressure defined by the admis-
sible thrust network are considered, and a suitable surface that best approximates the point
cloud is searched. The best approximating surface is searched for amongst three predefined
classes of smooth surfaces. In each class, some parameters ck are left to be specified, and
the best values of these parameters are obtained by minimising the sum of the squares of
the distances between each centre of pressure and the corresponding point on the surface.
The minimisation is performed numerically by means of the Mathematica R© "NMinimize"
function. As the geometric fitting problem is strongly nonlinear and computationally bur-
densome, in place of the true distance a close approximation is considered, which is easier
to determine. Each centre of pressure Pi is projected vertically onto the surface to identify
the corresponding point on the surface Qi, and the objective function is then set equal to

h(ck) =
n∑
i=1

|Pi −Qi(ck)|2. (2.14)

This approach can be considered acceptable for our aims since the real distance approaches
zero when the vertical distance goes to zero. The three surface classes that have been chosen
are:

1. elliptical paraboloids (TS1);

2. hyperbolic cosine functions (TS2);

3. ellipsoids (TS3).

All these surfaces have an elliptical horizontal section, just as the ideal surfaces repre-
senting the dome intrados and extrados. The first two classes, i.e., parabolas and hyperbolic
cosines, have been selected by recalling that they can reproduce the shape of a cable carry-
ing, respectively, a uniform distributed load and a load proportional to the cable self-weight,
and so they are expected to have good chance of resulting in compressed membranes. The
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third class is used because the ellipsoids’ shape is able to cope well with the peculiar shape
of the dome, while maintaining a relatively simple analytical expression.

For convenience, all the surfaces have been expressed in the same coordinate system as
the ideal surfaces, equations (2.13), since the finite difference scheme set up works within
the domain of those coordinates. The parametric expression for the general class of surfaces
is

x = rg(z) cosα i + sg(z) sinα j + z k (2.15)

where r and s are proportional to the semi-axes of the ellipse at the dome base, and g(z) is
a function of z that depends on the class of surfaces considered.

None of the three optimal surfaces identified by the minimisation routine has cost function
equal to zero, which means that none of the surfaces exactly interpolates the cloud of the
centres of pressure defined by the admissible network. However, the analyses illustrated
below have the value of a counterexample as they highlight the main difficulties arising from
a practical standpoint in setting up a method combining thrust network and thrust surface.
The two main drawbacks, which will be illustrated in the following, are:

• surfaces very close to the network, as well as to admissible thrust surfaces, turn out to
be not admissible;

• not negligible differences are observed in the equilibrium states defined by the thrust
network and the thrust surface.

The admissibility of the internal forces is checked for each optimal thrust surface by
performing a membrane analysis. To this aim, an ad-hoc finite difference scheme has been
developed in Mathematica R© to solve the differential equilibrium equations of a membrane.
The corresponding results are described in the following.

Thrust surface TS1. The first class of surfaces, namely elliptical paraboloids, is described
by the following expression for g(z)

g(z) =

√
1− z − zc

t
(2.16)

where t is a parameter, and (0, 0, zc) are the coordinates of the centre of the paraboloid.
The best parameter values obtained from the optimisation procedure are r = 10.35 m, s =
9.0 m, t = 14.49 m, zc = −2.00 m, and the minimum value of the cost function is equal to
h(r, s, t, zc) = 19.7 m2. Figure 2.12 shows a comparison between the centres of pressure and
the optimal surface on a vertical section of the dome.

By performing the membrane analysis, the membrane forces turn out to be admissible
everywhere. By way of example, the principal membrane forces, f1 and f2, evaluated on the
vertical sections drawn by the major and minor axes of the dome are shown in Figure 2.13.
For these two sections, because of symmetry, the principal membrane forces coincide with
those along hoop and meridian directions respectively (the figure displays the curves inter-
polating the results of the finite difference method).
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Figure 2.12: Vertical section on the dome’s major semi-axis: (dots) centres of
pressure obtained by the TNA, (blue line) optimal TS1 surface.

Figure 2.13: Principal forces (interpolation curves) on two vertical sections on
x2 = 0 (left) and on x1 = 0 (right) for the TS1. For these sections only f1 = hoop
force and f2 = meridian force.
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Thrust surface TS2. The second class of surfaces, defined by hyperbolic cosine functions,
is described by the following expression for g(z)

g(z) = arccosh
(

1− z − zc
t

)
(2.17)

where t is a parameter, and (0, 0, zc) are the centre coordinates. The best parameter values
obtained from the optimisation procedure are r = 3.57 m, s = 3.12 m, t = 2.35 m, zc =
12.00 m, and the minimum value of the cost function is equal to h(r, s, t, zc) = 3.0 m2.
Figure 2.14 shows a comparison between the centres of pressure and the optimal surface on
a vertical section of the dome.

Figure 2.14: Vertical section on the dome’s major semi-axis: (dots) centres of
pressure obtained by the TNA, (blue line) optimal TS2 surface.

By performing the membrane analysis, the forces turn out to be admissible everywhere.
By way of example, the principal membrane forces on two vertical sections are shown in
Figure 2.15 (the figure displays the curves interpolating the results of the finite difference
method).

Thrust surface TS3. The third class of surfaces, namely the ellipsoids, are described by
the following expression for g(z)

g(z) =

√
1−

(
z − zc
t

)2

(2.18)

where t is a parameter, and (0, 0, zc) are the coordinates of the centre of the ellipsoid. The
best parameter values obtained from the optimisation procedure are r = 8.50 m, s = 7.41 m,
t = 14.00 m, zc = −2.00 m, and the minimum value of the cost function is h(r, s, t, zc) =
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Figure 2.15: Principal forces (interpolation curves) on two vertical sections on
x2 = 0 (left) and on x1 = 0 (right) for the TS2.

Figure 2.16: Vertical section on the dome’s major semi-axis: (dots) centres of
pressure obtained by the TNA, (blue line) optimal TS3 surface.
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2.7 m2. Figure 2.16 shows a comparison between the centres of pressure and the optimal
surface on a vertical section of the dome.

In this case, by performing the membrane analysis, the forces turn out to be inadmissible
in the lower region, where tensile forces arise. By way of example, the principal membrane
forces on two vertical sections are shown in Figure 2.17 (the figure displays the curves inter-
polating the results of the finite difference method).

Figure 2.17: Principal forces (interpolation curves) on two vertical sections on
x2 = 0 (left) and on x1 = 0 (right) for the TS3.

It is worth noting that the trend of the internal forces resembles that which develops in-
side a spherical shell under its self-weight. Although the load distribution is slightly different,
this fact is not surprising, since an ellipsoid can be turned into a sphere by an affine transfor-
mation, and according to Rankine’s theorem (1856) [Huerta, 2010], the stability of masonry
structures subject to dead loads alone remain unaltered after an affine transformation.

Discussion of the results

The foregoing results show that, although a criterion based on the closeness of the surface
to the centres of pressure seems to be reasonable, it leads to thrust surfaces that may or
may not be admissible. The optimal TS2 and TS3 show no significant differences in shape;
in fact, they nearly overlap, as shown in Figure 2.18. Nevertheless, the first is admissible,
while the second it is not.

This is a crucial point to be made in the comparison between TNA and TSA. The
case study considered clearly shows that it is by no means assured that the set of centres
of pressure corresponding to an optimum thrust network furnished by TNA will lead to an
admissible thrust surface. In the case study, thrust surface TS3 turned out to be inadmissible.
Moreover, it is interesting to note that when the parameters defining each surface are changed
slightly, TS3 remains inadmissible, while TS1 and TS2 continue to belong to the set of
admissible thrust surfaces. In other terms, it seems that it is the surface class (and the
geometrical properties defining it) that plays a central role in determining whether a given
thrust surface will be admissible or not rather than its proximity to the thrust network. Such
a finding is in keeping with the widespread belief that the admissibility of a thrust surface
is governed mainly by its shape (i.e., the ratio between its curvatures).

By limiting the analysis to the first two surface classes, the optimal thrust network
enables finding two admissible thrust surfaces: TS1 and TS2. In the following one shall
focus on these and have a closer look at their internal forces, the aim being to compare
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Figure 2.18: Comparison between the optimal surfaces on a vertical section on the
dome’s major semi-axis: the differences between TS2 and TS3 are very small.

the two distributions of membrane forces with that in the thrust network. In order to
compare homogeneous quantities, in all cases one refers to the set of blocks the dome has
been ideally subdivided into, and to the resultants acting on each block. Hence, starting
with the membrane internal forces, the resultant forces acting on each block are evaluated
by integration.

First, it should be pointed out that a necessary condition to be fulfilled by the TNA and
TSA solutions in order for the two to be considered equivalent is that the lines of action of the
resultant of the membrane forces acting on each block intersect at one point. However, this
condition is not verified in the general case, and thus allows concluding that it is not possible,
in general, to define a thrust network that is fully equivalent to a thrust surface (Figure 2.19).
In the example at hand, the offsets between the lines of action of the forces acting on each
block have been evaluated for the two admissible thrust surfaces found, TS1 and TS2. As
far as TS1 is concerned, the results show that the mean of the distances between the lines of
action of the forces acting on each block is 6 cm, with a maximum distance of 28 cm. When
TS2 is considered, the offsets are even larger: the mean of the distances between the lines of
action of the forces acting on each block is also 6 cm, with the maximum distance however
reaching 84 cm. The greatest differences regard the line of action of the hoop forces, while
the distances are generally almost negligible between the lines of action of the forces acting
along the meridian directions. In conclusion, since there are considerable distances between
the lines of action of the forces acting on the blocks, the thrust surfaces obtained cannot be
considered fully equivalent to the thrust network.

As a final step in the comparison, let us compare the force distributions on the blocks
furnished by TNA and TSA. Figure 2.20 shows the comparison between the magnitude of
the forces acting on each block for TS1, while Figure 2.21 regards TS2 (the dashed lines
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Figure 2.19: State of equilibrium of a generic block. The forces acting on the blocks
in TSA do not, in general, intersect at one point.

mean that it is not a proper network, i.e. forces on a block do not meet at one point). By
virtue of symmetry, both are limited to a quarter of the dome. Note that in this comparison
one ignores the fact that the TSA forces acting on each block do not all meet at the same
point, and that only the force magnitude is taken into consideration.

Figure 2.20: Comparison between the two force distributions for TS1 on a quarter
of the dome.

In the TS1 solution the force distribution along the meridian directions is similar to that
of TNA. However, the hoop compressions are almost constant while in TNA they decrease
going towards the support structures. The force distribution in the meridian directions is
also similar to TNA for TS2, but the hoop compressions still remain significantly different
from those obtained via TNA. It is reasonable to expect that by suitably widening the set of
surface classes, the two methods would yield more convergent results. However, in practice
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Figure 2.21: Comparison between the two force distributions for TS2 on a quarter
of the dome.

it is not possible to allow a completely arbitrary membrane shape, and the choice of the
most suitable parametric expressions is still an open issue.

2.4 TNA and TSA for the study of horizontal actions
The seismic assessment of masonry domes is an arduous task that goes beyond the purpose
of this thesis work. Apart from the difficulty represented by the masonry itself, whose me-
chanical behaviour has not been completely understood yet, the second problem is linked
to the nature of the seismic actions. First of all, the actions of seismic origin are dynamic
and require a specific study that analyses the behaviour of the structure over time. Further-
more, while measurements and estimates of the actions that reach the structure through the
ground are available, the evaluation of the actions that actually reach the dome is difficult
to determine, as it would require a precise characterisation of the interactions between the
dome, the underlying building and the ground. For these reasons, as a working hypothesis,
reference is made to the problem in which the dome is isolated from the rest of the building
and subjected to a system of vertical and horizontal static forces. The vertical loads are
due to the self-weight of the structure and of the superimposed elements and are thus kept
constant. The horizontal loads, which can represent, at least as a first approximation, the ef-
fect of an earthquake and which are assumed proportional to the self-weight (thus simulating
inertial forces), are slowly increased over time, with the aim to evaluate the maximum lateral
load multiplier before the structure reaches collapse. Under these hypotheses and assuming
that the material satisfies Heyman’s hypotheses, the problem can be considered equivalent
to the problem of finding the maximum angle by which a structure placed on a tilting table
can be rotated before it collapses. Even if these experimental tests are not able to reproduce
the problem described, as the rotation of the structure leads to a progressive decrease of the
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vertical actions, it is possible to demonstrate that the multiplier of the horizontal loads is the
same. There are some examples in which this methodology has been applied to scale models
of masonry panels (see, for example, [Trovalusci, 1992], [Grillanda et al., 2021]), masonry
arches (see, for example, [Stockdale et al., 2020], [Misseri et al., 2018]), and masonry domes
and vaults (see, for example, [Zessin, 2012], [Shapiro, 2012]).

TNA and TSA can also be used to study the stability of masonry domes subjected
to vertical and horizontal loads. Although this doesn’t require changes in the mechanical
models or principles on which the two methodologies are based, some suitable adaptations are
necessary in order to be able to effectively exploit the two techniques in presence of horizontal
actions. Concerning the TNA, some adjustments are required in the numerical algorithm,
as commented in [Block, 2009] and as fully developed in [Marmo and Rosati, 2017]. As for
the TSA, since the selection of a class of surface is a crucial point, it’s worth observing that,
while it is possible to guess a good shape coping well with the dome geometry for vertical
actions, the same is not straightforward when horizontal loads are involved. However, both
these techniques can be applied in the standard way by ideally tilting the structure of a given
angle related to the magnitude of the horizontal loads, without any further modification in
the algorithm. One can observe that this is a first, quite rudimental way of employing TNA
and TSA for the study of the stability when horizontal actions are involved, but it highlights
well the main issues one can find when dealing with this problem.

The TNA has been applied via the MaNACoH software by defining a geometry which is
tilted by a certain angle that simulates the horizontal loads. Since the aim of this analysis is
not to compare thrust networks and thrust surfaces, the joints’ orientation has been defined so
as to follow the principal joints’ directions of the brick pattern, i.e. orthogonal to the middle
surface of the dome. The dome has been subdivided into 200 blocks, as for the previous
analysis. The TSA has been employed by choosing the elliptical paraboloid as the class of
surfaces because it is the surface that more than the others can rotate inside the structure
without going beyond the limits of the masonry. Then, the membrane analysis is performed
in presence of horizontal actions. The Figures 2.22 and 2.23 show the networks obtained for
horizontal loads along the x1 and x2 axis, respectively. The maximum lateral load multipliers
corresponding to the tilting angles are λx1,max = 0.05 and λx2,max = 0.03, respectively. The
Figures 2.24 and 2.25 show the surfaces obtained for horizontal loads along the x1 and x2

axis, respectively. Even in this case, the maximum lateral load multipliers corresponding to
the tilting angles are equal to λx1,max = 0.07 and λx2,max = 0.05, respectively.

In order to compare the results with lateral load multipliers of real earthquakes, reference
is made to the maximum horizontal acceleration expected on the ground having a return
period of 475 years and referred to the 50th percentile1, which is equal to ag(475)rif = 0.118g,
where g is the gravity acceleration. As λ = ag/g the maximum lateral load multipliers
obtained by TNA and TSA are not satisfactory. Since the structure is very thin, both
network and surface don’t have much room to suitably reshape themselves in order to make
equilibrium to the external loads and this may be the reason for the smallness of the load
multipliers.

1https://www.regione.toscana.it/-/accelerogrammi-di-riferimento-provincia-di-pisa
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Figure 2.22: TNA solution with horizontal loads along the x1 axis.

Figure 2.23: TNA solution with horizontal loads along the x2 axis.
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Figure 2.24: TSA solution with horizontal loads along the x1 axis.

Figure 2.25: TSA solution with horizontal loads along the x2 axis.
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2.5 Summary and conclusive remarks
With reference to the limit analysis of masonry vaults and domes, nowadays Thrust Network
Analysis and Thrust Surface Analysis are two well established techniques to find statically
admissible stress fields. These two strategies are sometimes considered as somehow related.
Nevertheless, the actual relation between TNA and TSA does not seem to be fully under-
stood, even in their modern application, and further studies seem to be needed to clarify the
correspondence between these two methods.

The chapter illustrates the results of a critical comparison between Thrust Network Anal-
ysis and Thrust Surface Analysis, with the aim of better understanding their mutual correla-
tions. A necessary condition for establishing a proper correlation between the two methods
is that vertical joints are considered when performing the TNA. Under this condition, the
relation linking thrust network and thrust surface is investigated when considering a finite
mesh size of the force network in the TNA. In particular, the centres of pressure of a thrust
network determined by means of TNA are considered, and the surface closest to this set of
points is determined by searching among a predefined class of surfaces.

The proposed methodology is applied to a real case study, the dome of the famous
Pisa Cathedral. Three classes of surfaces are investigated: elliptical paraboloids, hyperbolic
cosine functions and ellipsoids. When ellipsoids are used, the thrust surface corresponding
to the thrust network is, among those tested, the closest to the centres of pressure, but at
the same time it turns out to be inadmissible. Hence, it is by no means assured that a
thrust surface close to the centres of pressure of a given admissible thrust network will in
turn be admissible, and, as is widely assumed, a crucial role is played by the surface shape.
Both methods, if applied separately, are able to find statically admissible generalised stress
fields, and therefore are able to provide useful indication about the stability of a structure.
However, by referring to the same ideal subdivision of the dome in blocks, what emerges is
that there exist appreciable differences in the distribution of the internal forces yielded by
the thrust surface and the thrust network, although the two are very close each other from
a geometrical point of view.

The counterexample illustrated in the chapter appears to raise serious doubts about the
actual possibility of establishing a correspondence between TNA and TSA. Although in the
limit case, where the mesh size goes to zero, an admissible thrust network may approach an
admissible thrust surface, the results emerging from the foregoing case study clearly show
that for finite mesh size, it is by no means assured that an admissible thrust network is a
good starting point to build an admissible thrust surface.

The first critical comparison discussed in the present chapter seems to show that it is
not a simple matter to exploit the correspondence between TNA and TSA in practice. As a
consequence, some care is advisable in deciding whether a possible method combining thrust
network and thrust surface should be considered, since inadmissible thrust surfaces may
result even very close to the centres of pressure of an admissible thrust network. The results
obtained suggest the complementarity of the two techniques, rather than their combined use
in investigating the stability of domes.

Although some crucial points on the relation between thrust networks and thrust surfaces
have been highlighted, further in-depth analyses of the connections between the two methods
are needed. In particular, the issue concerning discretised (‘grid or network’) vs continuous
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(surface) model of masonry vaults is worth further discussing. Moreover, further studies
could be devoted to checking whether a more refined criterion for the comparison, properly
including the curvatures of the surface, could determine thrust surfaces that are closer to
the network in terms of the equilibrium state defined. The influence of the choice of block
discretisation on the correspondence between networks and surfaces is another issue to be
faced. A comparison between optimised TNA and TSA solutions would also enable checking
whether more accordant equilibrium states could be obtained.

The results obtained in the case horizontal loads are also considered highlight the limited
effectiveness of TNA and TSA in the used form. The values of the statically admissible
horizontal loads turn out to be quite low, and they are likely to be far from the actual ones.
For this reasons other methods that could go beyond the critical issues exhibited by TNA
and TSA are taken into consideration.
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Chapter 3

The no-tension shell model

As it was already observed at the end of the previous chapter, the solutions obtained by both
the TNA and TSA provide a satisfactory safety assessment when the dome is subjected to
vertical loads. However, when horizontal loads also come into play, TNA and TSA do not
seem able to provide reasonable estimations of the actual load capacity of the dome.

The limited effectiveness that both TNA and TSA show especially in the case horizontal
loads are also considered as a consequence of the fact that both methods explore a narrow
subset contained within the whole set of statically admissible internal forces. Hence, both
methods yield lower bound estimates of the dome load capacity that are likely to be quite
far from the true value.

The limitations revealed by TNA and TSA driven us towards the development of methods
that would enable searching for more general distributions of statically admissible internal
forces. In this regard, the natural extension of the analysis methods exploited in the pre-
vious chapter consists in modelling the dome as a thin shell, while accounting for general
distribution of internal forces within the shell, allowing for both membrane and bending
forces.

In this chapter the classical structural model for shells is recalled and suitably adapted
to the case of masonry domes. The kinematic, equilibrium and constitutive issues, although
not new, are explicitly illustrated for reader’s convenience.

Firstly, the geometrical and kinematical hypotheses are introduced. In particular, the
masonry dome is modelled as a shear deformable thin shell. Then, the balance laws are
established, along with the hypotheses on the material. The shell is thought as made of a
material endowed with an infinite compressive strength and a nil tensile strength. Estima-
tions of the safety level against collapse are obtained by exploiting the theorems of limit
analysis. In this regard, masonry is considered as a standard material. The fundamental
theorems of limit analysis are reformulated, by specialising them to the case of a masonry
shell. An explicit proof of both theorems in their specialised form is provided.

It is well known that the theory of shells can be developed directly by considering a 2d
body or derived from the three-dimensional theory [Podio-Guidugli, 1991]. The interested
reader can find the theory of shells, developed in parallel according to both ways, in [Naghdi,
1973] and [Truesdell and Toupin, 1960, sec. 60, 64, 212 and 213]. Here the direct formulation
is adopted by regarding the shell as a Cosserat surface (see [Green et al., 1965] and [Cosserat
and Cosserat, 1909]) because this formulation is more suitable to describe the influence of
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the masonry joints’ orientations on the internal forces and failure criterion adopted.
As will be shown in the following, masonry shear strength will be accounted for in the

general case. In this regard, one observation is worth adding. Ancient builders usually
paid close attention to vertical loads and ensured careful arrangement of the units and
a good interlocking in historical masonry constructions so as to assure a good mechanical
response with respect to these actions. Usually, units’ arrangement is such that joints, which
represent the weak surfaces in the masonry, are oriented so as to face the major compressive
stress. Hence, the shear strength of the masonry is not an issue as far as vertical loads are
concerned. On the contrary, when horizontal loads are considered, it is not excluded that the
shear strength could play an important role in the collapse of historical construction. Large
horizontal actions, like those of an earthquake, are likely to strongly modify the distribution
of internal forces within the masonry and, for this reason, the influence on the limit load
of a finite shear resistance is also investigated in our analysis. When only vertical loading
is considered, the sliding failure is assumed prevented. This assumption, together with
the previous ones, constitutes the adaptation to the case of shells of the famous Heyman
hypotheses.

It is straightforward to recognise that masonry domes can be modelled as shells. The
first obvious consideration to be made is that in general, their thickness is far smaller than
their dimensions in plan or elevation. As an example, for the dome of Pisa cathedral, the
study case that will be addressed in the following, the thickness is some 4% of the mean
diameter, while the thickness of the internal shell in the St. Peter’s cathedral in Rome
is about 5% of the diameter [Como, 2013]. A second relevant consideration is the clever
disposition of units, whether they are stone blocks or bricks, adopted by ancient builders
in masonry domes. Usually, units’ arrangement is such that joints, which represent the
weak surfaces in the masonry, are oriented in the transversal direction, i.e., facing the major
compressive stresses flowing from the top to the bottom of the dome. This arrangement is
the rule in the case of single-layer brickwork (Figure 3.1), but it is also commonly adopted
when courses are composed of mixed headers and stretchers, as in the case of the dome of
Pisa cathedral (Figure 3.2). The arrangement of units in masonry domes makes it natural to
consider the internal forces acting on the transversal surface elements, as it is usually done
in shell theory. Moreover, failure criteria will account for tensile stresses transmitted over
transversal elements (as the joint 1-1 in Figure 3.2), while tensile stresses acting within the
units in the transversal direction will be neglected. In other terms, the tensile strength of
the joints is assumed to be consistently lower than the traction needed to split up the bricks
in the transversal direction. This can be considered a reasonable assumption provided that
the interlocking between units is sufficient to prevent tensile failure across the thickness.

Before going into the details of the model two more observations are added. The first
one concerns how the no-tension hypothesis is handled in the general case where the ma-
sonry is considered as a three-dimensional continuum body. As is well known, in the general
case masonry is assumed unable to carry tensile stresses regardless of the direction, and
this assumption characterises the so called no-tension material model developed in the last
decades of the past century. This is a limit hypothesis: actually, although strongly dependent
on the internal disposition of the constituent elements, almost all masonry structures have
some tensile capacity, which should be taken into account [Chen and Bagi, 2020]. However,
what is more important is that the standard form of no-tension hypothesis results to be
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Figure 3.1: Single-layer brick dome. The bricks are assumed to be sufficiently strong
in the transversal direction to neglect possible tensile failure.

Figure 3.2: Typical internal brick arrangement in masonry domes (figure adapted
from [Sanpaolesi, 1959]).
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very restrictive and makes the search for statically admissible stress fields possible only for
particular loading cases. In effect, in the case of masonry domes and vaults, the no-tension
hypothesis in its classical form hampers determining admissible stress fields in equilibrium
with the actual load distribution. This obstacle is generally overcome by requiring the stress
fields to fulfil equilibrium only in some approximated sense. As an example, in the TSA in
place of the actual load distribution a different suitable distribution that approximates the
actual one is used. The second observation is that the mechanical behaviour of a masonry
structure cannot be properly described simply by adopting suitable constitutive relations
for the material. Masonry cannot be considered simply as a ‘class of materials’ since this
approach lacks to catch essential aspects of masonry structures, related to the building tech-
niques. Besides the mechanical characteristics of constitutive elements, also the structural
typology and the internal disposition of the elements strongly contribute to determining the
mechanical behaviour of masonry construction that, for this reason, should be regarded as
a structural element rather than a simple continuum body. In other words, the approaches
based uniquely on the no-tension assumption are not completely adequate to describe the
mechanical behaviour of masonry domes and the proper description of different building
elements, such as walls, towers, vaults and domes, having different internal structures, may
require different treatments. For this reason, the field of application of the analysis approach
developed in the next chapter is clearly recognised to be on masonry domes made of a series
of organised bricks or regular pieces of stone. The elementary case that inspires the method
is the single bricklayer masonry dome (see Figure 3.1). Looking at this simple case, since the
building blocks, whether made of stones or bricks, usually have a certain tensile resistance,
one can assume that some tensile stresses may arise in the direction of the thickness of the
dome. As was done in the first analysis methodologies, the weak part is associated with the
direction of the joints, whether they are filled with mortar or not and for this reason, we
assume that no tensile stress can arise on the middle surface of the dome.
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3.1 Geometry
To study the motion and the equilibrium of natural objects, one introduces the concept of
body ([Villaggio, 2005]). Formally, a simple body1 is defined as a set B whose elements have
the property to occupy regions of the physical space, modelled as Euclidean three-dimensional
space E3 . The elements of B are called material points2 and are here denoted by p . The
geometric structure of the ambient space is the traditional one of classical mechanics: fixed
a point o ∈ E3 as the origin and a Cartesian triplet of unit vectors {ik}, the generic point
x ∈ E3 is identified with its position vector x = (x− o):

x = xkik (3.1)

which represents the translation that brings o to x (the summation over the repeated indexes
is implicitly intended from now on). Let V = span{ik} denote the vector space spanned by
the base vectors on E3, also called space of translations on E3. One can establish in this
way a correspondence between points x ∈ E3 and the elements of the vector space x ∈ V ,
representing position vectors.

The injective function
f : B→ Ω ∈ E3,

p 7→ x = f(p),
(3.2)

associates material points to the position vectors of the corresponding points in the Euclidean
space and can thus be named geometric configuration. The vector x is the position occupied
by the material point p in the geometric configuration f and one says that the body B occupies
a certain region Ω in the Euclidean space in the geometric configuration f. We assume that a
bijective map between material points and a possible geometric configuration exists. We also
require the geometric configuration function to be surjective so that each point of Ω belongs
to f(B). Commonly, we require the region Ω to be the closure of an open, regular and simply
connected set. We further require the frontier ∂Ω to be locally Lipschitz continuous. For
simplicity, we consider the frontier of class C1 almost everywhere in the sense of measure
theory so that the boundary of the region ∂Ω admits everywhere a normal vector except on
a subset of measure zero.

In what follows, the common operations of scalar, vector and tensor product will be
denoted, respectively, by ·, × and ⊗. The Einstein convention on summations is adopted
and, unless otherwise stated, Latin indices take the values 1, 2 and 3 while Greek indices
take the values 1 and 2.

3.1.1 The shell as a Cosserat surface

Intuitively, a shell can be seen as a continuum body in which one of its dimensions, called
the thickness, is smaller than the other two and whose geometry can therefore be accurately
described by means of a surface, called model surface. In this section, some well-known
notions of the geometry of surfaces that will be useful in the following are recalled (see
[Kreyszig, 1991]).

1The meaning of the term ‘simple’ will become clear later.
2Not to be confused with the concept of material points of classical mechanics [Abeyartne, 2012].
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In this context, let S be a set such that Σ = f(S) is a regular, compact and oriented
surface embedded in the three-dimensional Euclidean space E3. We assume that the surface
Σ admits a parametric representation in terms of two curvilinear coordinates θα

Σ : x = x(θα), θα ∈ Θ ⊂ R2, (3.3)

where Θ is the coordinate domain (see Figure 3.3). We call coordinate lines the curves
identified by the conditions θα = const, which are induced by (3.3). The parametrisation
(3.3) provides a natural basis for the representation of the fields over Σ. We also assume that
the function x(θα) is as regular as necessary for all the derivation operations that appear
below to make sense. In the following, the partial derivatives with respect to θ1 and θ2 are
denoted respectively by •,1 and •,2. The natural local covariant basis associated to this
system of curvilinear coordinates is given by

aα(x) = x,α (with a1 × a2 6= 0 onΣ) (3.4)

and the local reference triad is completed by the surface unit normal vector n given by the
Gauss map

n = a3 =
a1 × a2

‖a1 × a2‖
. (3.5)

The tangent space Tx = span{aα(x)} to Σ at x is spanned by the tangent vectors to the

Figure 3.3: Geometry of the shell.

coordinate curves at that point. We also introduce the dual (contravariant) basis {ai},
defined by the orthogonality conditions

ai · aj = δi.j (3.6)

where δi.j is the Kronecker symbol . In particular, since a3 is a unit vector and it’s orthogonal
to aα, it follows that a3 = a3 and than aα are vectors contained in the tangent plane Tx.

The intrinsic surface metric in the chosen coordinate system is expressed as follows. The
generic line element dx corresponding to the increments in the coordinates dθα can be written
as

dx = aαdθ
α (3.7)

and its length is given by
‖dx‖2 = (aα · aβ)dθαdθβ (3.8)
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which, by setting
aαβ = aα · aβ, (3.9)

can be rewritten as
‖dx‖2 = aαβdθ

αdθβ. (3.10)

This quadratic form is called first fundamental form of the surface and we can show (see
[Kreyszig, 1991]) that the coefficients aαβ are the components of a tensor called metric
tensor 3. A generic vector or second order tensor field can be represented in terms of the
natural basis {ai}, by means of their contravariant components as

u = uαaα + u3a3

T = tαβaα ⊗ aβ + t3αa3 ⊗ aα + tα3aα ⊗ a3 + t33a3 ⊗ a3.
(3.12)

It is also possible to express the same vector or tensor fields in terms of the contravariant
basis {ai}, by means of their covariant components4

u = uαa
α + u3a

3

T = tαβa
α ⊗ aβ + t3αa

3 ⊗ aα + tα3a
α ⊗ a3 + t33a

3 ⊗ a3.
(3.13)

A vector field is called superficial if the only nonzero components are the uα. Analogously
we call a tensor field superficial if the only nonzero components are the tαβ.

The generic surface element corresponding on Σ to the square of sides dθα is identified
by the vectors a1dθ

1 and a2dθ
2 and thus has area equal to

dΣ = ‖a1 × a2‖dθ1dθ2. (3.14)

Usually, we set
a = ‖a1 × a2‖2 = det(aαβ) (3.15)

so that
dΣ =

√
a dθ1dθ2. (3.16)

The scalar product
− dx · a3 = καβdθ

αdθβ (3.17)

is called the second fundamental form of the surface. Being ‖a3‖ = 1, the derivatives a3,β
belong to the tangent plane and can thus be expressed by the Weingarten formula

a3,β = −κα.βaα (3.18)

being κα.β the components of the curvature tensor of the surface. A curve on a surface Σ
whose direction at every point is a principal direction of curvature is known as a line of

3We can introduce the metric tensor using the general notation as A = aα ⊗ aα = aα ⊗ aα. In other
words, the metric tensor is the linear function

A : dx · dx = Adθ · dθ. (3.11)

4In a similar way, one can define mixed-component vector or tensor fields, for which the reader can refer
to the wide literature (e.g. [Itskov, 2007], [Green and Zerna, 1992]).
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curvature of Σ (see [Kreyszig, 1991]). The derivatives aα,β are spatial vectors in general and
can be expressed by the Gauss formula

aα,β = Γλαβaλ + καβa3 (3.19)

where Γλαβ are the Christoffel symbols with respect to the surface5. In the following we
will make use of the covariant derivative with respect to θα, denoted by the symbol |α and
defined, respectively for a scalar, vector and second order contravariant tensor field as (see
[Itskov, 2007] and [Davini, 1993])

ϕ|α = ϕ,α

uα|β = uα,β +uλΓαλβ

tαβ|λ = tαβ,λ +tαρΓβρλ + tρβΓαρλ.

(3.21)

We will use also the following definitions

∇u = u,i⊗ai = uj|iaj ⊗ ai, (3.22)

div u = ∇u ·A = u,i⊗ai · aj ⊗ aj = u,i ·ai = uj|iaj · ai = ui|i, (3.23)

div T = tij|jai, (3.24)

where, in three dimensions, the covariant derivative becomes

tij|k = tij,k +tljΓilk + tilΓjlk. (3.25)

To completely define a shell the model surface is not enough. Each point on the model
surface is equipped with a transversal segment of given length, called material fibre. Hence,
following the definition of body given before, a shell-like continuum is a 3d body whose
points’ positions z are faithfully representable by the pairs (x, θ3), being x a point on the
model surface Σ and being θ3 the distance from it:

Ω = {z : z = x + θ3n, x ∈ Σ, θ3 ∈ (−hi, he)} (3.26)

where hi and he are functions of x representing the distance from the model surface of the
intrados and extrados respectively.

It should be noticed that, in order for the pair (x, θ3) to be an admissible representation
for our aims, the orthogonal segments corresponding to different x must not intersect. This
requisite is assured if the thickness hi + he is sufficiently small. It’s also worth observing
that the model surface doesn’t necessarily have to be the so-called middle surface but it’s
sufficient for it to be inside the thickness of the body. Strictly speaking, the middle surface
is defined as the locus of the centroids of the infinitesimal conoids normal to the middle

5For a general three-dimensional curvilinear coordinate system, the derivatives of the covariant basis
vectors ai = z,i define the Christoffel symbols

ai,j = Γkijak. (3.20)

Thus, we see that, for a surface, Γ3
αβ = καβ .
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surface itself. In general, because of the curvature, the middle surface doesn’t coincide with
the middle surface in the geometric sense (i.e. the surface which has the same distance from
the extrados and the intrados surfaces). Nevertheless, it is possible to demonstrate that, if
the shell is homogeneous, Σ is the middle surface in the geometric sense if the thickness is
small compared to the minimum radius of curvature [Davini, 1993]. This is the the case of
the so-called thin shells for which hi = h, he = h and the total thickness is 2h.

The use of the unit vector normal to the model surface, n, is not mandatory. As is shown
in the next section, in general, a unit vector in a suitable transversal direction may be used.

3.2 Kinematics of shells
The shell is not described only through the position of the points of its middle surface, as
information about the thickness must be provided to characterise the behaviour of the three-
dimensional body. Furthermore, one of our goal is to account for the arrangement of the
masonry units and the joints’ orientation in the model. These two needs can be dealt with
by looking at the shell as a surface having an internal structure, which constitutes a case of
a non-simple body. As it is done in the case of the theory of beams, where a cross-section is
associated to each point of the line of axis, we associate to each point of the surface a material
fibre. The material fibres are assumed to be straight so that a vector field, h, is sufficient to
describe them and we can thus resort to the so-called director theory (see [Ericksen, 1961],
[Green and Laws, 1966]).

One can then define the injective function that associates material points to the director

g : S→ V,

p 7→ h = g(p),
(3.27)

and call it director configuration. In this context one calls configuration the couple {f, g}.
In order to identify a material point of the shell, it is often convenient to select one

geometric configuration of the body, fR, called reference geometric configuration and to use
the unique position x = fR(p) to label it. It should be noticed that the reference configuration
has not to be necessarily the position occupied by the body in a certain instant.

To study the motion of a body it’s necessary to describe the change of configuration in
the time interval of interest [t0, t1]. In other words the motion of the body is known when
all the configurations taken by the body in the time interval are known. If fR and f are two
geometric configurations such that

x = fR(p), y = f(p) (3.28)

and gR and g are two director configurations such that

h = gR(p), d = g(p) (3.29)

then, given the bijectivity of the functions, the mappings

f : fR(S)→ f(S),

x 7→ y = f ◦ f−1
R (x)

(3.30)
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and
g : gR(S)→ g(S),

h 7→ d = g ◦ g−1
R (h)

(3.31)

are induced. The couple (f ,g) is called change of configuration of the shell from the reference
configuration (see Figure 3.4). Clearly, f and g are bijective and their domains and codomains

Figure 3.4: Change of configuration of the shell.

are subspace of R3 so that it makes sense to speak about continuity and differentiability.
We require both the functions f and g to be at least C1 diffeomorphisms and we require
det F > 0, det G > 0, where F = ∇f and G = ∇g. A change of configuration that
satisfies the previous conditions is called a deformation. A motion of a shell is a smooth
one-parameter family of deformations, the time t being the parameter [Gurtin et al., 2010],
described by the functions

f : ΣR × [t0, t1]→ E3,

(θα, t) 7→ y(θα, t),
(3.32)

g : ΣR × [t0, t1]→ V,

(θα, t) 7→ d(θα, t).
(3.33)

So one can simply write

y(θα, t0) = x(θα), d(θα, t0) = h(θα). (3.34)

The current configuration, described by the fields (y,d), can be written

y = x + u, d = h + r, (3.35)

where (u, r) are the generalised displacements, that characterise the deformation. Since the
reference configuration is fixed, the corresponding generalised velocities are

ẏ = u̇ = v, ḋ = ṙ = w, (3.36)
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where the dot denotes the spatial time derivative.
It’s worth observing that, although not specifically stated, it has been tacitly assumed

that the material fibres remain straight during the motion so that they can be effectively
described by a vector field. A stronger kinematical constraint that is introduced on the
admissible motions is that the material fibre is perfectly rigid so that the director cannot
change its length during the motion but can only rotate. This means that the material fibre
is fully described just by the orientation of the director, which accordingly can be assumed
to be a unit vector: ‖d‖ = 1. It is easy to see that this restriction leads to the following

ḋ ⊥ d. (3.37)

By virtue of the constraint, the director d is obtained from h by a rotation

d = Qh, Q ∈ SO(3), (3.38)

where SO(3) is the orthogonal special group (rotation group), and then

w = Q̇h = Q̇QTd = Ωd. (3.39)

It is easy to show that Ω ∈ Skw, being Skw the space of skew-symmetric second order
tensors, so that we can write

w = ω × d (3.40)

where ω is the axial vector of Ω. Therefore the vector w is orthogonal to the vector d.

Definition of the local triad

One can find it convenient to refer to the local triad {a1, a2,h} to describe material fields.
The quantities in the reference configuration, when needed, will be denoted by a subscript
•R while the quantities without the subscript are referred to the current configuration. The
coordinate system {O, θα} is convected, so that it constitutes a coordinate system also for
the deformed surface, having the representation

Σ : y = y(θα) = x(θα) + u, θα ∈ Θ ⊂ R2. (3.41)

This parametrisation induces also on Σ a system of coordinate lines and furnishes the fol-
lowing natural basis for the representation of the surface spatial fields

eα = y,α = aα + u,α . (3.42)

For the third vector completing the triad, instead of using the outward unit normal vector
in the current configuration, given by

n =
e1 × e2

‖e1 × e2‖
, (3.43)

one can find it convenient to refer to the deformed director instead, e3 = d. Since e3 is not
constrained to be orthogonal to the tangent plane Ty then the contravariant basis vectors
are not contained in the plane Ty. We call normal space (to the generic fibre) at point y
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Figure 3.5: Covariant and contravariant basis vectors in current configuration.

the space Ny = span{eα(y)}. The covariant and contravariant basis vectors are shown in
Figure 3.5. We remark that, since ‖d‖ = 1, then e3,α⊥ e3 and it can be written in general
form as

e3,α = −κβ
.αeβ, (3.44)

where κβ
.α can be defined as director curvatures and are different from the surface curva-

tures κβ.α unless d ≡ n. In analogy with the geometric curvatures, we call a curve on a
surface Σ whose direction at every point is a principal direction of director curvature a line
of director curvature of Σ. The field of director vectors and the director curvatures (see
Figure 3.6) enable describing the joints and specifying the failure criterion with reference
to them. Moreover, since in general e3 is not the normal vector to the surface, we also
put eα,β = Γλαβeλ + καβe3, because, while καβ depends on the surface, καβ depends on the
orientation chosen for the director.

Figure 3.6: Difference between the curvatures and the director curvatures: the
director curvatures are null while the curvatures are different from zero (a); the
director curvatures coincide with the curvatures since e3 = n (b); the curvatures
and the director curvatures are different from each other and both different from
zero (c).

3.3 Balance laws for shells
In this section we deal with physical quantities that are associated to parts of the body, and
not to material points. A part of a shell is a subset P ∈ S with the same properties. We

58



3.3. BALANCE LAWS FOR SHELLS

denote with Π ∈ Σ the image of the geometric configuration of the part P. We say that E is
a (surface) extensive physical property if there is a function E(Π) defined on the set s of all
parts of S such that

1. E(Π1 ∪ Π2) = E(Π1) + E(Π2) for all arbitrary disjoined parts Π1 and Π2;

2. E(Π)→ 0 as area(Π)→ 0.

Under these circumstances there exist a density e(y) such that

E(Π) =

∫
Π

e(y) dΣ, (3.45)

where dΣ is the area element of the part Π.

Mass and micro inertia conservation laws

The inertial properties of the shell can be defined by considering the material fibre as a
straight rigid rod endowed with a uniformly distributed mass ρF . The mass of the single
fibre, with dimensions of mass per unit area, is given by

mF =

∫ h

−h
ρFdζ = 2hρF . (3.46)

The centre of mass of the fibre is y because the first order moments vanish∫ h

−h
ρF ζd dζ = 0. (3.47)

Since the moment of inertia around the fibre axis is zero, the second order moments can be
evaluated as

JF =

∫ h

−h
ρF

(
(ζd · ζd)I− ζd⊗ ζd

)
dζ =

2

3
ρFh

3(I− d⊗ d). (3.48)

Considering the generic surface element pertaining to a point in the current configuration,
and denoted by υ(y) the number of fibres per unit area, the total mass and total inertia of
the surface element are then

dm(y) = υ(y)mFdΣ, dJ(y) = υ(y)JFdΣ. (3.49)

The mass is a non-negative extensive quantity m(Π) defined on each part of the shell that
has the representation

m(Π) =

∫
Π

ρ dΣ (3.50)

where ρ = υ(y)mF is a non-negative scalar function called mass density. The moment of
inertia is a non-negative extensive quantity J(Π) defined on each part of the shell that has
the representation

J(Π) =

∫
Π

ι(I− d⊗ d) dΣ (3.51)
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where ι = 2
3
υ(y)ρFh

3 is a non-negative scalar function called inertia density.
If there is no mass flux across the boundary ∂Π and there is no mass supply in the domain

Π, then the law of conservation of mass can be written as

d

dt

∫
Π

ρ dΣ = 0 (3.52)

which must hold for each part. By applying the transport theorem we can write

ṁ(Π) =

∫
Π

(ρ̇+ ρ div v) dΣ (3.53)

and then
ρ̇+ ρ div v = 0 (3.54)

which can be easily integrated giving

ρ = ρR
1

det F
, (3.55)

where ρR = υR(x)mF is the mass density in the reference configuration. Analogously, we
state the law of conservation of micro inertia6 as

d

dt

∫
Π

ι dΣ = 0, (3.56)

that gives

ι = ιR
1

det F
, (3.57)

where ιR is the inertia density in the reference configuration.

Inertial properties of shells

Besides the mass, we introduce other two vectorial extensive quantities: the momentum

P =

∫
Π

p dΣ, (3.58)

where p is the momentum density, and the angular momentum

L =

∫
Π

l dΣ, (3.59)

where l is the angular momentum density. For a Cosserat surface the momentum density
per unit area, can be written as

p , υ

∫ h

−h
ρF ṡ dζ = υ

∫ h

−h
ρF (v + ζw) dζ = 2υhρFv +

∫ h

−h
ρF ζw = ρv (3.60)

6For a deepening on the concept of micro-inertia and on the nonlocal continuum field theories for bodies
with micro-structure see for example [Eringen, 2002].
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as the last integral vanishes because the function is odd. Here s = y + ζd denotes the
position in E3 of the generic point on the material fibre in current configuration. The
angular momentum density per unit area is defined as the moment of momentum of the
material fibres

l , υ

∫ h

−h
(s× ρF ṡ) dζ = υ

∫ h

−h

(
(y + ζd)× ρF (v + ζw)

)
dζ =

= υ

∫ h

−h

(
y × ρFv + ζd× ρFv + y × ζw + ζ2d× ρFw

)
dζ.

(3.61)

The second and third term in the last integral vanish because they are linear in ζ and the
integral is evaluated between −h and h. We remark that the choice of a different model
surface will cause those terms not to vanish. Since w = ω × d we have

d× ω × d = (d · d)ω − (d · ω)d = ω (3.62)

and
l = y × ρv + υd× 2

3
ρFh

3w = y × ρv + d× ιw = y × ρv + ιω. (3.63)

Frequently, the last term is put in the form

d× ιw = Jω. (3.64)

In the same way used to derive the momentum and the angular momentum, we can
introduce a scalar quantity, the kinetic energy which is a state function

T =

∫
Π

τ dΣ (3.65)

where τ is the kinetic energy density per unit area, defined as follows

τ ,
1

2
υ

∫ h

−h
ρF ṡ · ṡ dζ =

1

2
υ

∫ h

−h
ρF

(
(v + ζw) · (v + ζw)

)
dζ =

=
1

2
υ

∫ h

−h
ρF

(
v · v + 2ζv · ζw + ζ2w ·w

)
dζ.

(3.66)

The second term in the integral vanishes because it is linear in ζ and the integral is evaluated
between −h and h, so the kinetic energy density is

τ =
1

2
ρv · v +

1

2
ιw ·w. (3.67)

Balance of momentum and angular momentum

To model the interactions between the body and the environment we introduce the (gener-
alised) forces, which are extensive quantities. It is usually assumed that there are two kind
of forces: the body forces that act at each internal point in the domain of the generic part Π
and the contact forces that act at points on the boundary of the domain of the generic part
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∂Π. To define a force we must say how it contributes to the resultant force, to the resultant
moment and how it does work. For shells, we introduce the body forces b(y, t) and the body
couple forces c(y, t) both per unit surface acting at each interior point, and the contact
forces t(y,ν, t) and the contact couple forces m(y,ν, t) both per unit length acting at each
point on the boundary having the external unit normal ν. The couple of forces are thought
to act at the endpoints of the generic material fibre and we also assume that they belong to
the normal space Ny. In this way, the choice of the director implies also the choice of what
component of the couples is zero. This assumption is customary in shell theory and would
deserve a further discussion, also in relation to the hypothesis of director in-extensibility, but
we will not carry out such deepening in the present work. The generalised forces are shown
in Figure 3.7 for clarity. The resultant force on the generic part is then

Figure 3.7: Body forces (a) and contact forces on the boundary of normal vector
e1 (b).

R ,
∫

Π

b dΣ +

∫
∂Π

t dΓ, (3.68)

where Γ = ∂Π is the curve in the three-dimensional space bounding the region Π. The
resultant moment is defined as

M ,
∫

Π

(
y × b + 2(hd× c)

)
dΣ +

∫
∂Π

(
y × t + 2(hd×m)

)
dΓ =

=

∫
Π

(y × b + d× c) dΣ +

∫
∂Π

(y × t + d×m) dΓ,

(3.69)

being c = 2hc and m = 2hm, and can also be rewritten in the following way

M =

∫
Π

(y × b + c) dΣ +

∫
∂Π

(y × t + m) dΓ, (3.70)

by the introduction of c = d × c and m = d × m which are, respectively, the external
body torque vector and the contact torque vector. Further, consequently to the kinematical
hypotheses made, the work increment of the external loads can be defined as

d̄W ,
∫

Π

(b · du + 2hc · dr) dΣ +

∫
∂Π

(t · du + 2hm · dr) dΓ =

=

∫
Π

(b · v + c ·w) dΣ dt+

∫
∂Π

(t · v + m ·w) dΓ dt,

(3.71)
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which again, by noticing that

c ·w = c · ω × d = (d× c) · ω,
m ·w = m · ω × d = (d×m) · ω,

(3.72)

can be rewritten as

d̄W =

∫
Π

(b · v + c · ω) dΣ dt+

∫
∂Π

(t · v + m · ω) dΣ dt. (3.73)

In general, d̄W is an inexact differential except in the case in which forces are conservative
and the expressions in the integrals can be expressed as total differentials of potential scalar
quantities (in that instance, the work increment will be denoted by dW).

It’s worth observing that, formally, c is a polar vector having the physical dimensions of
a force while c is an axial vector having the dimensions of a force times a length (torque).
For our aims, it is convenient to keep working with the forces c and m instead of the couples
c and m.

The external power (or power of the external forces or rate of working) is defined as

PE =

∫
Π

(b · v + c ·w) dΣ +

∫
∂Π

(t · v + m ·w) dΓ. (3.74)

The balance laws for momentum and angular momentum state that

R =
dP

dt
, M =

dL

dt
, (3.75)

and, making the terms explicit, they are written as

d

dt

∫
Π

ρv dΣ =

∫
Π

b dΣ +

∫
∂Π

t dΓ,

d

dt

∫
Π

(y × ρv + d× ιw) dΣ =

∫
Π

(y × b + d× c) dΣ +

∫
∂Π

(y × t + d×m) dΓ.

(3.76)

3.3.1 Cauchy theorem

Let’s consider the balance of a part Π in current configuration, bounded by the curve Γ. One
can prove the following (see [Davini, 1993])∫

∂Π

ν dΓ =

∫
Π

κα
.αe3 dΣ. (3.77)

Indeed, by divergence theorem∫
∂Π

ναe
α dΓ =

∫
Π

(
eα,α +Γββαe

α
)
dΣ. (3.78)

We notice
Γββα = eβ,α ·eβ = eα,β ·eβ = −eβ,β ·eα (3.79)
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and
eα,α = (eα,α ·eβ)eβ + (eα,α ·e3)e3 (3.80)

and the first term in the right expression becomes∫
Π

(
(eα,α ·eβ)eβ + (eα,α ·e3)e3 − (eβ,β ·eα)eα

)
dΣ =

∫
Π

(eα,α ·e3)e3 dΣ. (3.81)

Remembering eα,α ·e3 = −eα · e3,α≡ κα
.α the thesis is obtained. If e3 = n, then κα

.α = κα.α.
Cauchy theorem states that if the body forces and couples are bounded, there exist two

second order tensors T(y) and M(y) such that the force and couple per unit length acting
on a line element of unit normal ν are given by

t = Tν, m = Mν, (3.82)

with
T = tα ⊗ eα, M = mα ⊗ eα. (3.83)

The proof is based on the standard argument ([Davini, 1993]). We consider a family of
curvilinear triangle ∆Π on Π with two sides on the coordinate lines θα = const and the
third, having unit normal ν = ναe

α. We denote with ds1 the length of the side along
θ2 = const, with ds2 the length of the side along θ1 = const and with ds the length of the
third side. By the mean value theorem and the (3.77) we have

νds− e1

‖e1‖
ds2 −

e2

‖e2‖
ds1 = o(ds), (3.84)

where o(ds) is a vector with element being higher order infinitesimal in ds. Multiplying
(3.77) by eα and keeping first order terms we find

‖e1‖(ν · e1)ds = ds2, ‖e2‖(ν · e2)ds = ds1. (3.85)

Using (3.76)1 on ∆Π together with the mean value theorem we get

t(ν)ds+ t
(
− e1

‖e1‖
)
ds2 + t

(
− e2

‖e2‖
)
ds1 = o(ds). (3.86)

On dividing by ds and passing to the limit ds→ 0 the preceding equation becomes

t(ν) + t
(
− eα

‖eα‖
)
‖eα‖(ν · eα) = 0. (3.87)

Assuming ν = eβ/‖eβ‖ we have the action-reaction principle

t
( eβ

‖eβ‖
)

= −t(− eβ

‖eβ‖
). (3.88)

Therefore, we find that

t(ν) = t
( eα

‖eα‖
)
‖eα‖(ν · eα), (3.89)
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that is
t(ν) = (tα ⊗ eα)ν (3.90)

being

tα ≡ t
( eα

‖eα‖
)
‖eα‖. (3.91)

Analogously, one can repeat the preceding steps for the vector m, obtaining

m(ν) = (mα ⊗ eα)ν (3.92)

being

mα ≡m
( eα

‖eα‖
)
‖eα‖. (3.93)

3.3.2 Local momentum balance laws

Applying Cauchy’s theorem to (3.76)1 and using the conservation of mass yield∫
Π

ρv̇ dΣ =

∫
Π

b dΣ +

∫
∂Π

Tν dΓ, (3.94)

that can be rewritten as ∫
Π

ρv̇ dΣ =

∫
Π

b dΣ +

∫
∂Π

(tα ⊗ eα)ν dΓ. (3.95)

By divergence theorem the equation becomes (see [Davini, 1993])∫
Π

ρv̇ dΣ =

∫
Π

b dΣ +

∫
Π

tα|α dΣ. (3.96)

Since this equation must hold for each Π ⊂ Σ, if the integrand is continuous one can apply
localisation lemma and get

tα|α + b = ρv̇, (3.97)

where
tα|α = tα,α +tαΓλλα. (3.98)

Applying the definition of covariant derivative,

tα|α = (tβα|α − t3ακβ
.α)eβ + (t3α|α + tβακαβ)e3 (3.99)

and remembering that, formally, Γ3
αβ = καβ and Γβ3α = −κβ

α, the balance equation can also
be rewritten as

div T + b = ρv̇. (3.100)

Analogously, applying Cauchy’s theorem to (3.76)2 and using the conservation of mass and
micro inertia yield∫

Π

(y × ρv̇ + d× ιẇ) dΣ =

=

∫
Π

(y × b + d× c) dΣ +

∫
∂Π

(y ×Tν + d×Mν) dΓ,

(3.101)
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that can be rewritten as∫
Π

(y × ρv̇ + d× ιẇ) dΣ =

=

∫
Π

(y × b + d× c) dΣ +

∫
∂Π

(
y × (tα ⊗ eα)ν + d× (mα ⊗ eα)ν

)
dΓ.

(3.102)

By divergence theorem one obtains∫
Π

(y × ρv̇ + d× ιẇ) dΣ =

∫
Π

(y × b + d× c) dΣ+

+

∫
Π

(
y,α×tα + y × tα|α + d,α×mα + d×mα|α

)
dΣ.

(3.103)

On using (3.97) the previous equation becomes∫
Π

d× ιẇ dΣ =

∫
Π

d× c dΣ +

∫
Π

(y,α×tα + d,α×mα + d×mα|α) dΣ. (3.104)

Remembering that y,α = eα, d = e3 and since this equation must be valid for each Π ⊂ Σ,
if the integrand is continuous one can apply localisation lemma and get

e3 ×mα|α + e3,α×mα + eα × tα + e3 × c = e3 × ιẇ. (3.105)

Equation (3.105) can be rewritten in terms of the generalised force tensors by noticing that

eα × tα = eα ×Teα = eα × (tβαeβ + t3αe3) = ε3αβt
βα
√
e e3 + ε3βαt

3α
√
e eβ =

= −
√
eεijkt

jkei = −eT,
(3.106)

where e is the alternating tensor e = εijk
√
e ei ⊗ ej ⊗ ek. Moreover

e3,α×mα = e3,α×Meα = −κβ
.αeβ ×mλγ(eλ ⊗ eγ)e

α = −κβ
.αeβ ×mλαeλ = κβ

.αm
λαε3λβ

√
ee3

(3.107)
and given that

κκκM = κλ
.γeλ ⊗ eγmαβeα ⊗ eβ = κλ

.αm
αβeλ ⊗ eβ (3.108)

one gets
eκκκM =

√
eεijkk

j
.αm

αkei (3.109)

and since j, k 6= 3 then i = 3, j, k = α, β, and one can write the term as

eκκκM =
√
eε3αβκα

.λm
λβe3. (3.110)

Therefore

e3,α×mα = −eκκκMT, (3.111)

and thus the balance equations (3.105) can be rewritten as

e3 × div M− e(T + κκκMT) + e3 × c = e3 × ιẇ. (3.112)
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Equations (3.97) and (3.105) have to be completed with proper boundary conditions on the
edges on which the external forces are known, that is{

t = t∂,
m = m∂

on ∂ΣN , (3.113)

where t∂ and m∂ are the known external force and couple force vectors acting on the uncon-
strained boundary of the shell, denoted by ∂ΣN .

The balance laws are now derived in components for later convenience. Remembering the
representation (3.12)2 the force vector and couple force vector can be written in contravariant
components as

tα = tβαeβ + t3αe3,

mα = mβαeβ,
(3.114)

since m ∈ Ny. The contravariant components of the generalised forces represent the action,
per unit length, exerted on a curvilinear unitary line element on the coordinate lines. The
components are shown in Figure 3.8. Remembering the definition of covariant derivative and

Figure 3.8: Force components (a) and couple force components with moments (b).

the definition of director curvatures (3.44) one can write

tα|α = (tβα|α − t3ακβ
.α)eβ + (t3α|α + tβακβα)e3,

mα|α = mβα|αeβ +mβακβαe3.
(3.115)

Using the previous expressions, the (3.97) can be written in term of the local covariant base
as

(tβα|α − t3ακβ
.α)eβ + (t3α|α + tβακβα)e3 + bkek = ρv̇kek. (3.116)

Projection along eβ yields the first two scalar equations

tβα|α − t3ακβ
.α + bβ = ρv̇β, (3.117)
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CHAPTER 3. THE NO-TENSION SHELL MODEL

and by projecting along e3 one gets the third scalar equation

t3α|α + tβακβα + b3 = ρv̇3. (3.118)

Analogously, the (3.105) can be written in terms of the local covariant base as

e3 ×
(
mβα|αeβ +mβακβαe3

)
− κλ

.αeλ ×mβαeβ + eα ×
(
tβαeβ + t3αe3

)
+

+ e3 × ckek = e3 × ιẇkek.
(3.119)

Expanding the vector products, knowing that ei × ej =
√
eεijke

k, one obtains an expression
in terms of the contravariant local base vectors as follows

ε3βλ
√
emβα|αeλ + ε3λβ

√
eκλ

.αm
βαe3 + εβ3α

√
etβαe3+

+ ε3λα
√
et3αeλ + ε3βλ

√
ecβeλ = ε3βλ

√
eιẇβeλ.

(3.120)

Since the metric is invertible, it is
√
e 6= 0 and one can simplify it from the equation. By

projecting along ek, observing that

ε3λβ�
βeλ · eλ = �λ+1, modulo 2, (3.121)

and renaming the dummy index λ+ 1 = β one obtains

mβα|α − t3β + cβ = ιẇβ (3.122)

for the first two scalar equations (by projecting along eλ) and

εαβ(tαβ − κα
.λm

βλ) = 0 (3.123)

for the third one (by projecting along e3). The six balance equations are summarised in the
following system 

tβα|α − t3ακβ
.α + bβ = ρv̇β, β = 1, 2

t3α|α + tβακβα + b3 = ρv̇3,
mβα|α − t3β + cβ = ιẇβ, β = 1, 2
εαβ(tαβ − κα

.λm
βλ) = 0.

(3.124)

By virtue of Cauchy theorem, the known values of the force vector and the couple force
vector on the boundary are written as

t∂ = tiαναei,

m∂ = mβαναeβ.
(3.125)

3.3.3 Equation of virtual powers

A fundamental result for the proof of the theorems of limit analysis is derived in this section.
With reference to the generic part Π ∈ Σ, let’s consider a virtual displacement field and the
generalised velocities (v∗,w∗). The external power is

P∗E =

∫
Π

(b · v∗ + c ·w∗) dΣ +

∫
∂Π

(t · v∗ + m ·w∗) dΓ. (3.126)

68



3.3. BALANCE LAWS FOR SHELLS

Using Cauchy’s theorem and divergence theorem, and remembering the identity div(TTv∗) =
T · ∇v∗ + v∗ · div T (see [Gurtin et al., 2010]), one can write

P∗E =

∫
Π

(b · v∗ + c ·w∗) dΣ +

∫
∂Π

(Tν · v∗ + Mν ·w∗) dΓ =

=

∫
Π

(b · v∗ + c ·w∗) dΣ +

∫
∂Π

(TTv∗ · ν + MTw∗ · ν) dΓ =

=

∫
Π

(
(b · v∗ + c ·w∗) + T · ∇v∗ + v∗ · div T + M · ∇w∗ + w∗ · div M

)
dΣ.

(3.127)

By equation (3.97) one obtains

P∗E =

∫
Π

(
ρv̇∗ · v∗ + c ·w∗ + T · ∇v∗ + M · ∇w∗ + w∗ · div M

)
dΣ. (3.128)

Using the fact that w = ω × d and the triple product rule some terms can be rewritten as

P∗E =

∫
Π

(
ρv̇∗ · v∗ + T · ∇v∗ + e3 × c · ω∗ + M · ∇w∗ + e3 × div M · ω∗

)
dΣ (3.129)

and by virtue of equation (3.105)

P∗E =

∫
Π

(
ρv̇∗ ·v∗+T·∇v∗+M·∇w∗+(e3×ιẇ∗−eα×Teα−e3,α×Meα)·ω∗

)
dΣ. (3.130)

Remembering the mixed product rule one can compute

e3 × ιẇ∗ · ω∗ = ω∗ × e3 · ιẇ∗ = ιẇ∗ ·w∗, (3.131)

than can also be expressed in terms of ω using the triple product rules and using the fact
that ‖d‖ = 1,

ẇ ·w = (ω̇ × e3 + ω × ė3) · (ω × e3) = (ω̇ × e3) · (ω × e3) +

(
ω × (ω × e3)

)
· (ω × e3) =

= (ω̇ · ω)(e3 · e3)− (ω̇ · e3)(e3 · ω) +

(
(ω · e3)ω − (ω · ω)e3

)
· (ω × e3) = ω̇ · ω.

(3.132)
It is possible to recognise the time derivative of the kinetic energy associated with the virtual
displacement field as

Ṫ ∗ =

∫
Π

(
ρv̇∗ · v∗ + ιω̇∗ · ω∗

)
dΣ, (3.133)

so it is possible to write

P∗E = Ṫ ∗ +

∫
Π

(
T · ∇v∗ + M · ∇w∗ − (eα ×Teα + e3,α×Meα) · ω∗

)
dΣ. (3.134)

The first term in the interior parenthesis becomes

eα ×Teα = eα × (tβαeβ + t3αe3) = ε3αβt
βα
√
e e3 + ε3βαt

3α
√
e eβ, (3.135)
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and, given ω3 = 0, we have

− (eα ×Teα) · ω∗ = −ε3βα
√
e t3αω∗β. (3.136)

Since the gradient of a vector field is defined as (see [Itskov, 2007] and Equation (3.22))

∇v = v,i⊗ei = vj|iej ⊗ ei, (3.137)

it is possible to write

T · ∇v∗ = (tβαeβ ⊗ eα + t3αe3 ⊗ eα) · (v∗j |i ej ⊗ ei) = tβαv∗β|α + t3αv∗3|α (3.138)

and then

T · ∇v∗ − (eα ×Teα) · ω∗ = tβαv∗β|α + t3αv∗3|α − ε3βα
√
e t3αω∗β =

= tβαv∗β|α + t3α(v∗3|α − ε3βα
√
e ω∗β).

(3.139)

Defining the tensor L = ∇v + eω, of components

lβα = vβ|α, l3α = v3|α −
√
eε3βαω

β, lk3 = 0, (3.140)

we have
T · ∇v∗ − (eα ×Teα) · ω∗ = tij l̇ij = T · L∗, (3.141)

where the tensor L has the following representation

L = lij ei ⊗ ej. (3.142)

The last term in (3.134) is computed starting from

e3,α×Meα = −κβ
.αeβ ×mλγ(eλ ⊗ eγ)e

α = −κβ
.αeβ ×mλαeλ = κβ

.αm
λαε3λβ

√
ee3, (3.143)

so that −(e3,α×Meα) · ω∗ = 0. Even if a power conjugate tensor to M in terms of w can
be straightforwardly defined, we decide to give it in terms of ω as done for L. In particular,
since

∇w = ∇(ω × e3) = (ω × e3),i⊗ ei = (ω,i×e3 + ω × e3,i )⊗ ei =

= (ω,α×e3)⊗ eα + (ω × e3,α )⊗ eα = (ωβ|αeβ × e3 − ωλeλ × κβ
.αeβ)⊗ eα =

= (ε3λβ
√
eωβ|αeλ − ε3λβ

√
eωλκβ

.αe
3)⊗ eα,

(3.144)

and given that m3α = 0, one gets

M · ∇w∗ = mλαε3λβ
√
eω∗β|α. (3.145)

By defining the tensor D = −e3 ×∇ω, where

− e3 ×∇ω , −ωβ|α(e3 × eβ)⊗ eα = ε3λβ
√
eωβ|αeλ ⊗ eα. (3.146)

and whose components are

dβα = ε3λβ
√
eωλ|α, d3α = 0, dk3 = 0, (3.147)
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we can write
M · ∇w∗ − (e3,α×Meα) · ω∗ = mαβd∗αβ = M ·D∗, (3.148)

where the tensor D has the following representation

D = dαβe
α ⊗ eβ. (3.149)

It is now possible to define the internal power as

P∗I =

∫
Π

(
T · L∗ + M ·D∗

)
dΣ, (3.150)

and so we proved the virtual power theorem (sometimes called work-energy theorem)

P∗E = Ṫ ∗ + P∗I . (3.151)

It is interesting to notice that theorem (3.151) can be considered as an extension of the kinetic
energy theorem for rigid systems where the kinetic energy increment is not given simply by
the external power but also by the contribution (negative in sign) of the deformability of the
system. The previous result can also be written in incremental form as

d̄W∗ = dT ∗ + d̄I∗, (3.152)

where d̄I∗ is called internal work increment. It’s worth observing that, while in general both
d̄W and d̄I are inexact differential as they depend on the path, the kinetic energy increment
dT is an exact differential since the kinetic energy is a state function.

Definition of the strain measures

In dealing with the statics of masonry domes, we assume that the displacements are small
compared to both the characteristic dimension of the shell and its minimum radius of cur-
vature and hence we also assume that the balance equations can be written in the initial
(reference) configuration. In addition, we assume the strains to be small, so that it is possi-
ble to refer to the linearised theory also referred to as small strain and small displacement
regime (sometimes called small perturbations regime).

In the foregoing hypotheses, the external work on the generic part Π can be written as

W∗ =

∫
Π

(b · u∗ + c · r∗) dΣ +

∫
∂Π

(t · u∗ + m · r∗) dΓ. (3.153)

Analogously, the internal work can be expressed as

I∗ =

∫
Π

(
T ·H∗ + M ·K∗

)
dΣ (3.154)

where the strain tensor H and the change of curvature tensor K have been defined such that
L = Ḣ and D = K̇. As a consequence the strain tensor can be defined as H = ∇u + eϕ,
whose components are

ηβα = uβ|α, η3α = u3|α −
√
eε3βαϕ

β, ηk3 = 0, (3.155)
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and the change of curvature tensor can be defined as K = −e3×∇ϕ, whose components are

χβα = ε3λβ
√
eϕλ|α, χ3α = 0, χk3 = 0, (3.156)

having the following representations H = ηij ei ⊗ ej, K = χαβe
α ⊗ eβ. The tensors H and

K assume the meaning of strain measures work-conjugate to the force measures T and M.
It is not difficult to recognise that, analogously to the case of a three-dimensional contin-

uum body, the components ηij represent the stretching in the direction of the covariant base,
as shown in Figure 3.9. The stretching in a generic direction ν is expressed as ην = Hν · ν,
indeed, for instance, it is He1 · e1 = ηij (ei ⊗ ej)e1 · e1 = η11.

Figure 3.9: Covariant components of the stretching.

3.3.4 Conservation of Energy

As already done for forces, it is assumed that the heating of the generic part Π of the shell is
due to two sources: the heat supply which is provided throughout Π (ex. radiation, chemical
reactions, etc.) and the heat flux, entering into Π across its boundary ∂Π. The heating is
here considered to be positive if entering the body, and the total rate of heat of Π is

d̄Q =

∫
Π

r(y, t) dΣ dt+

∫
∂Π

q(y, t,ν) dΓ dt, (3.157)

which is an inexact differential. The heat supply depends on the point and on the instant
while the heat flux depends also on the unit normal vector to the generic surface, in analogy
of what is done for the forces. The First Principle of Thermodynamics states that it exists
a state function E(Π,y, t), called internal energy, which is the energy a body possesses other
than it’s kinetic energy and such that

dE + dT = d̄W + d̄Q. (3.158)

The internal energy is an extensive quantity which possesses a density, so that

dE =

∫
Π

ρε dΣ dt. (3.159)
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In differential form, the first law (3.158) can be written as

Ė + Ṫ = PE + PQ, (3.160)

where the heating PQ is

PQ =

∫
Π

r(y, t) dΣ +

∫
∂Π

q(y, t,ν) dΓ. (3.161)

Applying the equation of virtual powers, we obtain the part-wise first law for shells

Ė = PI + PQ, (3.162)

expressed by

d

dt

∫
Π

ρε dΣ =

∫
Π

r dΣ +

∫
∂Π

q dΓ +

∫
Π

(
T · Ḣ + M · K̇

)
dΣ. (3.163)

With the same argument used to prove the Cauchy theorem, one can show that (3.163)
implies that the heat flux depends linearly on ν, that is, it exists a vector q(y, t), called heat
flux vector, such that

q(y, t,ν) = q(y, t) · ν. (3.164)

Rewriting (3.163) as

d

dt

∫
Π

ρε dΣ =

∫
Π

r dΣ +

∫
∂Π

q · ν dΓ +

∫
Π

(
T · Ḣ + M · K̇

)
dΣ, (3.165)

and applying the divergence theorem and the localisation lemma, by the conservation of
mass, we state the point-wise energy field equation as

ρε̇ = r + div q + T · Ḣ + M · K̇. (3.166)

3.4 Constitutive equations for elasto-plastic shells
A crucial role in thermodynamics is played by the concept of equilibrium. We can say
that a thermodynamical system is in equilibrium if the variables that describe its state
remain unchanged in time. Equilibrium (or classical) thermodynamics deals essentially with
the study of macroscopic properties of matter at equilibrium and can be applied also to
the description of reversible processes, that represent a special class of idealised processes
considered as a continuum sequence of equilibrium states. The theory of solids undergoing
permanent deformations falls within the framework of irreversible thermodynamics which is a
large, modern and fully alive field of research, concerning physical processes that goes beyond
equilibrium. The main difficulty in dealing with non-equilibrium processes is that concepts
like temperature and entropy are not univocally defined outside equilibrium. Several theories
exist, each of which has advantages and disadvantages and the choice of the theory to adopt
depends on what physical phenomenon is described. For inelastic solids, one of the most
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fruitful approaches is the theory of internal state variable of which we recall here only some
main concepts, leaving the complete treatment to the vast literature7.

The theory of internal variables postulates that the thermodynamic state of a material
medium at a given point and instant is completely defined by the knowledge of the local
equilibrium variables (observable) H, K and a certain number of internal variables (hidden)
ξ. The presence of additional variables in the constitutive relations requires additional
evolution equations, which for rate-dependent inelastic body are given assuming that the
rate of evolution of the internal variables is determined by the local state

ξ̇ = ξ̇(H,K, ϑ, ξ), (3.167)

where ϑ denotes the absolute temperature. In the context of Thermomechanics of inelas-
tic continuum bodies with internal variables, a local state is an equilibrium local state if
ξ̇(H,K, ϑ, ξ) = 0. The theory is based on the accompanying state axiom. The essence of
this postulate is that to each non-equilibrium state corresponds an accompanying equilibrium
state, and to every irreversible process is associated an accompanying “reversible” process,
so that the usual definitions of temperature and entropy can be accepted. By this axiom we
can accept the existence of an ‘accompanying’ entropy, that is a function of the whole set
of state variables S(E ,H,K, ξ), that, as the internal energy, is an extensive quantity which
possesses a density, ρs(ε,H,K, ξ). This definition of entropy refers to a fictitious equilibrium
state, and then, the usual definition of entropy applies dS = ϑ−1d̄Qrev. The part-wise rate
of change of entropy may be written as

d

dt

∫
Π

ρs dΣ =

∫
∂Π

j · ν dΓ +

∫
Π

(ς + σs) dΣ, (3.168)

where j is the entropy flux, ς is the entropy supply and σs is the entropy production, whose
expressions depend on the model. It has been assumed, as done for the heating, that the
entropy inflow is due to two sources: the entropy internal supply per unit volume (or simply
entropy supply) which is provided throughout Π and the entropy flux, entering into Π across
it’s boundary ∂Π. For the present model, we assume that the entropy flux is given by j = q/ϑ
and the entropy supply is given by ς = r/ϑ, so that by applying the divergence theorem and
localisation lemma, also given the conservation of mass, the point-wise balance of entropy
can be written as

ρṡ = div

(
q

ϑ

)
+
r

ϑ
+ σs. (3.169)

The Second Principle of Thermodynamics states that the entropy production σs is zero for
reversible processes or at equilibrium and it is strictly positive for irreversible processes, that
is σs ≥ 0. Plugging the definition of entropy into the first law (3.158) yields

dS = ϑ−1dE − ϑ−1dI. (3.170)

In the small perturbation regime, using the conservation of mass, the above expression can
be written as

ṡ = ϑ−1ε̇− (ρϑ)−1T · Ḣ− (ρϑ)−1M · K̇, (3.171)
7For a review of the theories of irreversible thermodynamics and for a deepening in the theory with

internal variables see [Lebon et al., 2008]
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which is known under the name of Gibbs’ equation in rate form. On the other hand, by
differentiating the entropy one gets

ṡ =
∂s

∂ε
ε̇+

∂s

∂H
· Ḣ +

∂s

∂K
· K̇ +

∂s

∂ξ
· ξ̇ (3.172)

and since at equilibrium ξ̇ = 0, in absence of internal constraints, we have the following
constitutive equations

1

ϑ
=
∂s

∂ε
, T = −ρϑ ∂s

∂H
, M = −ρϑ ∂s

∂K
. (3.173)

In an irreversible process, plugging the entropy balance equation in rate form into the first
law and remembering that

div

(
q

ϑ

)
= ϑ−1 div q + q · ∇ϑ−1, (3.174)

one obtains

ṡ = ϑ−1ε̇− (ρϑ)−1T · Ḣ− (ρϑ)−1M · K̇ + ρ−1q · ∇ϑ−1 + ρ−1σs. (3.175)

Since we will be dealing with very slow processes (pseudo-static processes) it is justified to
assume that the forces acting in the actual physical space are equal to those acting in the
fictitious reversible process. On using the constitutive relations, the entropy production can
be written as

ρ
∂s

∂ξ
· ξ̇ − q · ∇ϑ−1 = σs ≥ 0. (3.176)

This inequality must hold in any process and at any state, so that we get the heat-conduction
inequality

− q · ∇ϑ−1 ≥ 0 (3.177)

along with the Kelvin inequality
σ · ξ̇ ≥ 0 (3.178)

where
σ = ρ

∂s

∂ξ
(3.179)

are the thermodynamic forces or affinity (also known as configurational or Eshelby force in
some branches of solid mechanics) conjugated to ξ. The general theory that describes ma-
terials undergoing permanent deformation (i.e. deformations that remain after the external
load is removed) is the theory of visco-plasticity. Here we assume that viscous effects can
be neglected and we refer to rate-independent materials, i.e. materials whose response is
linearly proportional to the adopted time scale (that, for this reason, needs not to be the
physical time). In the following, the influence of temperature is omitted by considering ϑ as
a constant and uniform field, referring to an isothermal setting so that the total dissipation
is given by equation (3.178).
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CHAPTER 3. THE NO-TENSION SHELL MODEL

3.4.1 Masonry material and limit analysis

Under the hypothesis that the strains are small enough, it is almost universally assumed
that the strain tensor can be decomposed additively into an elastic strain and an inelastic
strain (see [Lubliner, 2008]) . For shells this assumption particularises as

H = He + Hp, K = Ke + Kp, (3.180)

being e and p the superscripts denoting, respectively, the elastic parts and the permanent
parts of the strain tensors. We assume that the generalised forces depend linearly on the
elastic part of the strains. For simplicity, here we adopt the following (decoupled) relations

T = CTHe, M = CMKe, (3.181)

where CT and CM are two fourth-order positive definite tensors. Moreover, we assume σT =
ϑ−1T and σM = ϑ−1M the thermodynamic forces conjugated to Hp and Kp respectively.
By the positive definiteness of the elasticity tensors it follows that the previous equations
can be inverted

He = DTT, Ke = DMM, (3.182)

where DT = C−1
T , DM = C−1

M are the compliance tensors. Although the theorems of limit
analysis hold in general for work-hardening materials, their application when the elastic
range varies during the evolution is complex. For this reason, wanting to exploit the static
theorem of limit analysis from now on we refer to elastic-perfectly plastic materials, thus the
only internal variables are the permanent part of the strain tensors.

We assume the existence of a convex set H, called the set of admissible generalised stresses
or stress range8, of all the possible stress states that satisfy certain failure criteria. A stress
state belonging to the interior of the stress range is called safe generalised stress state and a
stress state belonging to the boundary of the stress range is called a limit generalised stress
state. The set of statically admissible generalised stress fields is

A(H) =

{
(T,M) ∈ L2(Σ,Lin)× L2(Σ,Lin) : (T,M) ∈ H, and

div T + b = 0, e3 × div M− e(T + κκκMT) + e3 × c = 0 onΣ,

Tν = t∂, Mν = m∂ on ∂ΣN

}
,

(3.183)

that are the admissible stresses which are also in equilibrium with the external loads and
that represent all the stress states attainable by the structure. A generalised stress field
belonging to A(Int(H)) is called a statically safe generalised stress field. In the following, we
use the notation

(Ta,Ma) ∈ H, (Ts,Ms) ∈ Int(H), (T,M) ∈ ∂H, (3.184)

and
As = A(Int(H)), ∂A = A(∂H). (3.185)

8In the rest of this chapter we use the term stress as a synonym of generalised forces.
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For a rate-independent elasto-plastic material we provide a law for the evolution of the
internal state variable, namely the permanent part of the strains, and we usually set the
following associate flow rule related to a single criterion plasticity (since the flux rate ξ̇ is
the same for the two strain tensors)

Ḣp = 0, K̇p = 0 if f(T,M) < 0,

Ḣp = ξ̇
∂f

∂T
, K̇p = ξ̇

∂f

∂M
if f(T,M) = 0,

(3.186)

where f(T,M) = 0 is the yield surface, defined by the stress range by the conditions

H = {(T,M) : f(T,M) ≤ 0} , ∂H = {(T,M) : f(T,M) = 0} . (3.187)

An equivalent way of expressing the normality rule is to set the normal flow rule

Ḣp = ξ̇
∂f

∂T
, K̇p = ξ̇

∂f

∂M
(3.188)

along with the set of Karush-Kuhn-Tucker conditions (see [Karush, 2014], [Kuhn, 1982])

ξ̇ ≥ 0, f ≤ 0, ξ̇f = 0. (3.189)

The specific dissipation, defined by δ = ϑσs, is then

δ = T · Ḣp + M · K̇p (3.190)

and it satisfies the Kelvin inequality since f(T,M) is convex.
Let K denote the set of compatible strains or strain range of all the strains attainable by

the system, which is, similarly to the stress range, a material feature. The set of kinematically
admissible displacement fields is

D(K) =

{
(u,ϕ) ∈ BD(Σ, V )×BD(Σ, V ) : H = ∇u + eϕ, K = −e3 ×∇ϕ,

(H,K) ∈ K, andu = u∂, ϕ = ϕ∂ on ∂ΣD

}
,

(3.191)

which are the displacement fields that are also compatible with the constraints. The function
space BD, introduced in [Matthies et al., 1979] and studied in [Temam and Strang, 1980],
[Kohn and Temam, 1983] is the subset of L1(Σ) such that the strains H and K associated to
u and ϕ belong toM1(Σ,Lin), which is the function space of bounded Radon measures. The
choice of this function space is motivated by the fact that [Temam and Strang, 1980] shows
that the space BD seems to be the correct space for the displacement field in the problems
of perfect plasticity. The choice of the space L2 for the stress fields is the classical one used
both in linear elasticity and plasticity9. In the following, we denote by a superscript k the
kinematically admissible displacement fields, i.e. (uk,ϕk) ∈ D.

9Unlike what is done for the NRNT material, while the strains can be reasonably represented as singular
measures as they may comprise concentrated jumps in the displacement field, the use of singular stresses
for the description of the internal state of the material appears to be more controversial from a conceptual
standpoint and it will not be adopted in our setting.
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CHAPTER 3. THE NO-TENSION SHELL MODEL

We define a state of impending plastic collapse as one in which a non-vanishing strain
rate occurs under constant loads. In other words the collapse is the phenomenon for which,
once a particular external load condition is reached (b, c, t∂,m∂), called the limit load, the
displacements and deformations of the structure, or a part of it, increase indefinitely while
the load cannot increase. We call collapse mechanism the part of the displacement fields
and their shape that increase indefinitely. Provided that the set H is convex and the strain
increments obey an associate flow rule it is possible to prove the theorems of limit analysis.

If the set H is convex then, following [Lubliner, 2008], we can write

f(tT + (1− t)Ta, tM + (1− t)Ma) ≤ tf(T,M) + (1− t)f(Ta,Ma) (3.192)

for any admissible (T,M) and (Ta,Ma) and any t such that 0 ≤ t ≤ 1. It follows that

∂f

∂T

∣∣∣∣
T

· (T−Ta) +
∂f

∂M

∣∣∣∣
M

· (M−Ma) ≥ f(T,M)− f(Ta,Ma). (3.193)

Thus, given the associate flow rule, for any (Ta,Ma) such that f(Ta,Ma) ≤ f(T,M), we
have

(T−Ta) · Ḣp + (M−Ma) · K̇p ≥ 0, (3.194)

known as the maximum dissipation inequality10. Moreover, since the set H is convex, we
have

(T−Ts) · Ḣp + (M−Ms) · K̇p > 0, ∀(Ts,Ms). (3.196)

Another consequence of (3.194) is the Drucker stability condition, written in terms of the
second order plastic work. Following [Bigoni, 2012], dividing (3.194) by the time increment
dt and taking the limit for dt→ 0 we get

Ṫ · Ḣp + Ṁ · K̇p ≥ 0. (3.197)

To prove the lower bound theorem we need the following lemma

Lemma 3.5. The elastic strain increments and the stress increments are null at collapse:

Ṫ = 0, Ṁ = 0, Ėe = 0, Ẋe = 0, Ė = Ėp, Ẋ = Ẋf . (3.198)

Proof. The virtual work equation for the load increments at impending collapse writes as∫
Σ

(ḃ · v + ċ ·w) dΣ +

∫
∂ΣN

(ṫ∂ · v + ṁ∂ ·w) dΓ = 0

=

∫
Σ

(
Ṫ(Ḣp + C−1

T Ṫ) + Ṁ(K̇p + C−1
M Ṁ)

)
dΣ.

(3.199)

10The name is due to the fact that the associate flow rule can be deduced by requiring the dissipation
(3.178) to be maximum under the constraint f(σ) ≤ 0. The problem can be written as

min
ξ̇

(ξ̇f(σ)− σ · ξ̇), (3.195)

where ξ̇ is a Lagrange multiplier. Taking the first variation with respect to σ yields the normality rule (3.188)
along with the KKT conditions (3.189).
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Since the elasticity tensors are positive definite, C−1
T Ṫ · Ṫ > 0 and C−1

M Ṁ · Ṁ > 0 unless
Ṫ = 0 and Ṁ = 0. This fact together with the (3.197) implies that at impending collapse or
incipient plastic flow the stress rates vanish so that the elastic strain increments vanish.

It’s worth observing that the previous result holds true also for any kinematically admis-
sible displacement field (uk,ϕk). In view of Lemma 3.5, it is noticed that, for kinematically
admissible displacement fields, the internal power reduces to the so-called total dissipation
power (or simply total dissipation)

PI =

∫
Σ

(
T · Ḣp + M · K̇p

)
dΣ =

∫
Σ

δ dΣ = D. (3.200)

We are now in the position to prove the static theorem of limit analysis.

Theorem 3.6 (Static theorem). The existence of a safe stress field, that is As 6= ∅, is a
sufficient condition for the collapse not to occur.

Proof. To prove the static theorem of limit analysis we suppose by absurd that a safe stress
state exists for the structure in presence of the collapse loads. Then, it also exists the stress
field in equilibrium with the external loads. Writing the virtual power equation for the field
(T − Ts,M −Ms), which is self-equilibrated, and for the real collapse strain increments,
yields ∫

Σ

(
(T−Ts) · Ḣp + (M−Ms) · K̇p

)
dΣ = 0 (3.201)

in contrast with the convexity of the safe stress domain, which can be expressed as

(T−Ts) · Ḣp + (M−Ms) · K̇p > 0. (3.202)

In the applications of the static theorem of limit analysis we assume that the final con-
figuration is so close to the reference one that the equilibrium can be written in the initial
geometry of the structure and that, whatever the stress and strain history the shell under-
goes, the stress range remains the same and it is known at time t0.

We can also prove the kinematic theorem of limit analysis.

Theorem 3.7 (Kinematic theorem). The existence of a kinematically admissible displace-
ment field, that is D 6= ∅, for which PE > D is a sufficient condition for the collapse to
occur.

Proof. By absurd, we suppose that a kinematically admissible displacement field exists for a
stable structure (i.e. for which the collapse doesn’t occur). Then, it also exists a stress field
in equilibrium with the external loads (b, c, t∂,m∂), such that∫

Σ

(b · vk + c ·wk) dΣ +

∫
∂Σ

(t · vk + m ·wk) dΓ =

∫
Σ

(
T · Ḣk + M · K̇k

)
dΣ. (3.203)

Since (T,M) is statically admissible it must be∫
Σ

(
(Tk −T) · Ḣk + (Mk −M) · K̇k

)
dΣ > 0, (3.204)
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where (Tk,Mk) is the stress field associated to (Ḣk, K̇k) by the flow rule, not necessarily in
equilibrium with the collapse loads. Then, it follows∫

Σ

(
Tk · Ḣk + Mk · K̇k

)
dΣ ≥

∫
Σ

(
T · Ḣk + M · K̇k

)
dΣ. (3.205)

But, since (vk,wk) is unstable,∫
Σ

(b · vk + c ·wk) dΣ +

∫
∂Σ

(t · vk + m ·wk) dΓ >

∫
Σ

(
Tk · Ḣk + Mk · K̇k

)
dΣ ≥

≥
∫

Σ

(
T · Ḣk + M · K̇k

)
dΣ

(3.206)

that is PE[b, c, t∂,m∂] > PI [T,M, Ḣk, K̇k] which is in contrast with equation (3.203).

Some simple classes of materials are used in the analyses of the case studies and are thus
examined in the following. In the previous hypotheses and with the aim of exploiting the
static theorem of limit analysis, it is sufficient for their characterisation to specify the convex
set of the admissible stresses H and the compatible strain range K.

3.7.1 M1: Heyman material

This material model is an adaptation to the case of shells of that proposed by Heyman. The
hypotheses are:

1. the shell has a null tensile strength in any direction contained in the tangent plane to
the middle surface;

2. the shell compressive strength is unbounded;

3. the shear strength is unbounded.

The only feature of such a material is the null resistance to tractions. This material model
is non-dissipative as fractures nucleates and propagates at zero stress. To define the stress
range it is useful to introduce the concept of normal eccentricity11, or simply eccentricity, as
the ratio

e(ν) ,
m(ν) · ν
t(ν) · ν

=
Mν · ν
Tν · ν

, (3.207)

where the last expression is a consequence of Cauchy theorem. For the internal stresses to
be only compressive the condition −h ≤ e(ν) ≤ h must hold ∀ν. Since ν ∈ Tx, we can also
rewrite this requirement as

hNν · ν + |Mν · ν| ≤ 0, (3.208)
11Although one can define different concepts of eccentricity, using other components of the force vector

and the couple force vector, here we are interested in the eccentricity of the internal actions acting on the
normal space Nx and orthogonally to the generic coordinate line. The physical justification for this choice
lies in the fact that in order to formulate a failure criterion based on Heyman’s hypotheses, we focus the
attention on material ‘joints’ of height 2h, and base dθα which are considered incapable of carrying tensile
stresses.
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where N ∈ Sym is the surface part of T12. In these hypotheses, the stress range can be
expressed independently from ν as

H(y) =
{

(N,M) ∈ Sym× Sym : |M|+ h(y)N ∈ Sym−
}
. (3.209)

It can be easily verified that the set H is convex. We observe that the condition can also be
expressed by

h(y)N + M ∈ Sym− and h(y)N−M ∈ Sym− (3.210)

which also imply N ∈ Sym− (as shown in [Lucchesi et al., 1999]). The first dissipative term
can be decomposed as follow

T · Ḣp = tαβ ξ̇αβ + t3αξ̇3α. (3.211)

Moreover, since the shear strength is unbounded, there is just the elastic part of the shear
strains ξ̇3α = 0. It is observed that the only parameter that determines the stress range is
the thickness of the shell.

Following [Lucchesi et al., 1999] since the compressive strength is unbounded, the fracture
strains satisfy the following relations

Ep + hKp ∈ Sym+, Ep − hKp ∈ Sym+, (3.212)

where E denotes the surface part of H. Then we have

K(y) =
{

(H,K) ∈ Sym× Sym : E + h|K| ∈ Sym+
}
, (3.213)

and the dissipative term is zero, as the following orthogonality condition holds

δ = N · Ėp + M · Ẋp = 0. (3.214)

Denoted by N , T andM the normal force, shear force and bending moment on the generic
joint respectively, the admissible domain in the N, T,M space is shown in Figure 3.10.

3.7.2 M2: Material with finite shear resistance

While for masonry domes under gravitational loads the shear resistance is generally not
an issue, things can be different when the shell is subjected to horizontal actions too. In
that case, particular attention should be paid to checking the maximum magnitude of the
shear forces in order to verify the no-sliding hypothesis. For this reason, in order to relax
the Heyman hypotheses by considering finite shear strength, a modification to the previous
M1 model is analysed. An extension of the Heyman hypotheses has been already made in
[Angelillo et al., 2010], by adopting a mixed non-linear elastic and plastic model, considering
a NENT material in traction and a plastic material with finite compressive strength in
compression. In the same spirit of that work, we instead specialise the material model to
the case of shells having a finite shear resistance.

12It’s worth observing that it is explicitly required, as a constitutive assumption, that the tensors N and
M are symmetric. Different assumptions for the material are also possible but they will not be treated in
the present thesis.
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Figure 3.10: Admissible domain for M1 model.

Defining a suitable shear strength criterion for masonry is not a fully resolved issue,
especially when the effect of masonry texture must be considered (see, e.g., [Mousavian and
Casapulla, 2020]). The easiest way to approach the problem is to refer to the Mohr-Coulomb
law for the shear resistance. Thus, with reference to the generic joint’s interface, we write

|T | ≤ c− tanφN (3.215)

with φ > 0 the friction angle and c ≥ 0 the cohesion, where

|T | =
√

TTTν · ν − (Tν · ν)2, N = Tν · ν. (3.216)

Since the tensor T is not symmetric, this condition cannot be expressed independently of ν,
as in the case of M1 model13.

The intersection of the limitations on tensile and shear strength yields the stress range
for M2 material

H =

{
(T,M) ∈ Lin× Sym :|M|+ h(y)N ∈ Sym−,√

TTTν · ν − (Tν · ν)2 + µTν · ν − c ≤ 0, ∀ν
}
,

(3.218)

with µ = tanφ the friction coefficient. It can be proved that this is a convex set since it’s the
intersection of two convex cones. In this case, the only parameters characterising the failure
criterion are the thickness, the friction angle and the cohesion. The energy dissipation rate
in this case is different from zero, and equal to

δ = T · Ḣp ≥ 0. (3.219)

The admissible domain in the N, T,M space is shown in Figure 3.11.
13In the case of a 3d body, since T ∈ Sym, by exploiting the Cayley-Hamilton theorem (see, for example,

[Itskov, 2007]), it is shown in [Lucchesi et al., 2021] that the stress range can be written independently from
ν as

Hs =

{
T ∈ Lin : ‖T− c I‖2 − 1 + sin2 φ

2

(
tr(T− c I)

)2 ≤ 0, tr(T− c I) ≤ 0

}
(3.217)

with c = c/ tanφ. The set Hs is a convex cone.
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Figure 3.11: Admissible domain for M2 model.

Considerations about the shear strength: influence of the texture

Since the cohesion is generally difficult to estimate, and since it is generally assumed null on
the joints as a conservative assumption, one is tempted to search for a stress field compatible
with the hypothesis that the cohesion is zero everywhere. However, finding a stress field with
such restriction may be very challenging as the assumption of zero cohesion is often overly
limiting from a mechanical standpoint.

To give an example, let’s consider a generic dome, where the bricks are disposed by hor-
izontal layering and with half running bond pattern, as shown in Figure 3.12 (a). Moreover,
let’s consider a null cohesion on mortar joints. It is recognised that in the meridian direction,
which is a weak direction for the shear strength as mortar joints are uninterrupted (see Fig-
ure 3.12 (b)), the Mohr-Coulomb failure criterion needs to be satisfied with zero cohesion.
On the other hand, if we consider the circumferential direction or any direction between
the meridian and the circumferential one, a sliding surface can form either by intersecting
different mortar joints (blue line in Figure 3.12 (c) and (d)) or by cracking the bricks (red
line in Figure 3.12 (c) and (d)). If bricks are cracked, considering the cohesion equal to zero
would be excessively conservative, as the resistant elements surely have some strength that
needs to be considered. If the mortar joints are met, then it is seen how the surfaces of
the bricks in the meridian direction would contribute to the shear resistance (purple lines in
Figure 3.12 (c) and (d)).

These remarks highlight that the issue of the shear failure is not banal, and simply adopt-
ing the Morh-Coulomb criterion with null cohesion could lead to overly cautious estimates
of dome safety. In what follows, when the shear strength needs to be taken into account, we
adopt a criterion that limits the shear force only along what we call weak shear directions,
that can be identified based on the texture of the bricks (or blocks).

A remark on the dilatancy effect

Adopting the M2 model implies the so-called dilatancy effect, i.e. the presence of normal
strain together with the shear strain in order to maintain the normality hypothesis. Al-
though the dilatancy effect is sometimes seen in masonry, it is not necessarily linked to
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Figure 3.12: Texture effect on shear resistance.

the friction angle, but rather to the internal masonry units disposition. In order to keep
physical coherence and still be able to apply the static theorem of limit analysis, we can
exploit Radenkovic theorems for nonstandard materials (see for example [Lubliner, 2008]).
The second Radenkovic’s theorem is based on the existence of a convex subset Ĥ ⊂ H which
has the property that to any (T,M) ∈ ∂H there correspond a (T̂, M̂) ∈ ∂Ĥ such that

1)

Ḣp = ξ̇
∂g

∂T

∣∣∣∣
T̂

, K̇p = ξ̇
∂g

∂M

∣∣∣∣
M̂

, (3.220)

where g(T,M) is defined by the conditions

Ĥ =
{

(T,M) : g(T̂, M̂) ≤ 0
}
, ∂Ĥ =

{
(T,M) : g(T̂, M̂) = 0

}
, (3.221)

2)
(T− T̂) · Ḣp + (M− M̂) · K̇p ≥ 0, ∀(T̂, M̂) ∈ Ĥ (3.222)

where inequality holds strictly for safe stress states (T̂s, M̂s) ∈ Int(Ĥ).

In other words, it exists a fictitious standard material associated to the real non standard
one, whose convex stress range is entirely contained inside the real stress range and for which
an associated flow rule holds. Once such material can be identified, we are able to prove

Theorem 3.8 (Radenkovic’s second theorem). The existence of a safe stress field for the
fictitious standard material, that is Âs 6= ∅, is a sufficient condition for the collapse not to
occur.

Proof. The proof retrace the one for the static theorem of limit analysis. Let’s suppose that
a safe stress state (T̂s, M̂s) exists for the fictitious standard material in presence of collapse.
Then, it also exists the real stress field in equilibrium with the external loads. By the virtual
power theorem written for the fields (T − T̂s,M − M̂s), which is self-equilibrated, and for
the real collapse strain increments, yields∫

Σ

(
(T− T̂s) · Ḣp + (M− M̂s) · K̇p

)
dΣ = 0, (3.223)
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and by localisation
(T− T̂s) · Ḣp + (M− M̂s) · K̇p = 0. (3.224)

Since (T̂s, M̂s) is statically admissible, and since Ĥ is convex, it holds the inequality

(T̂− T̂s) · Ḣp + (M̂− M̂s) · K̇p > 0. (3.225)

But, by adding the previous to the inequality (3.222) we get

(T− T̂s) · Ḣp + (M− M̂s) · K̇p > 0, (3.226)

in contrast with equation (3.224).

We notice that the auxiliary subset Ĥ is not unique. The closer Ĥ is to H the best
estimation of the lower bound one can get. However, since the two sets do not coincide, it
follows that the lower and upper bounds on the limit loading, being based on two different
standard materials, cannot be made to coincide. The correct limit loading in the nonstandard
material cannot, therefore, be determined in general. This result is consistent with the
absence of a uniqueness proof for the stress field in a body made of a nonstandard perfectly
plastic material ([Lubliner, 2008]).

Radenkovic’s second theorem allows us to somehow ‘avoid’ the problem of dilatancy.
Indeed, let’s assume that an admissible stress field is identified, for which the permanent
strain increment is normal to the stress range. Given the shape of the domain, for every
such a stress field, we can identify a convex fictitious stress range, which is entirely contained
in the real one, and for which an associated flow rule can be defined that doesn’t foresee
dilatancy, as shown in Figure 3.13. It can be shown that the normality rule holds true if the
strain increment belongs to the normal cone (grey cone in Figure 3.13) in the corner point
Q. Since such a fictitious domain can always be identified in this way, we can always refer
to the nonstandard material which doesn’t foresee dilatancy and apply the static theorem
for the standard fictitious material.

Figure 3.13: Modification to the stress range in order to avoid dilatancy effect: (a)
standard material with permanent strain increment normal to the stress range; (b)
modified stress range.
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3.8.1 M3, M4: Material with bounded compressive strength

If one wants to account for a limited compressive strength, say fc, it can be assumed that
the internal forces are distributed according to a stress-block law in the real 3d body, as
shown in Figure 3.14. Considering the single fibre, of height 2h and infinitesimal width ds,

Figure 3.14: Assuming a stress-block distribution, a finite compressive strength can
be accounted in the material model.

for the translational equilibrium we have N = −xfc. It can be easily shown that the bending
moment has to satisfy the following condition

|M | ≤ −N
(
h+

N

2fc

)
. (3.227)

In this way, we can define two additional material models: the first one, termed M3
material, is a modification of material M1, with a finite compressive strength, whose stress
range is

H(y) =

{
(N,M) ∈ Sym× Sym : |M|+ N

(
h(y)I +

N

2fc

)
∈ Sym−

}
. (3.228)

It can be shown that this set is still convex although it is not a cone. For the generic material
element, the admissible domain in N, T,M space is shown in Figure 3.15.

If the limitation on compressive strength is added to the M2 material we identify the
second additional model, termed M4 material, whose stress range is

H =

{
(T,M) ∈ Lin× Sym :|M|+ N

(
h(y)I +

N

2fc

)
∈ Sym−,√

TTTν · ν − (Tν · ν)2 + µTν · ν − c ≤ 0, ∀ν
}
.

(3.229)

This domain is a convex set, since it is the intersection of convex sets. In the space N, T,M ,
the admissible domain is shown in Figure 3.16.

3.9 Summary and conclusive remarks
In this chapter, the classical thin shell model used to study the statics of masonry domes is
recalled, and all hypotheses and governing equations are presented in detail. The classical
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Figure 3.15: Admissible domain for M3 model.

Figure 3.16: Admissible domain for M4 model.
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theorems of limit analysis are specialised to the case of masonry shells and explicit proofs
are provided. In the following we make use of the static theorem of limit analysis to carry
out stability analysis of masonry domes subjected to vertical and horizontal loads. In doing
so, it has been shown how the set of statically admissible generalised stress fields A(H) is
sufficient to characterise the material for our purpose. The analyses that will be carried out
will make use mainly of the M1 material, although it remains proven that the existence of
a stress field in the case of M2, M3 and M4 materials will ensure stability since every one of
these sets is convex and thus the static theorem holds.

88



Chapter 4

Statically admissible shell internal forces
for safety assessment of masonry domes

This chapter traces a methodology for the safety level assessment with respect to collapse
of unreinforced masonry domes having a generic shape, subjected to vertical and horizontal
loads. The lower bound theorem of limit analysis enables us to perform conservative esti-
mation of the limit load of a masonry structure by simply looking at the set A(H), checking
for the existence of generalised force fields which are both in equilibrium with the external
given loads and compatible with the material resistance. In general, several different stress
states are possible for the structure, so the method selects one equilibrium state by means of
a specifically developed optimisation procedure. Two kinds of problems will be addressed:

(P1): Under a given vertical loads distribution, find the minimum theoretical thickness
of the dome which allows finding at least one statically admissible generalised force
field;

(P2): For the real thickness of the structure, find the maximum horizontal loads that
can be added to the vertical loads and for which it is possible to find at least one
statically admissible generalised force field.

The first problem is addressed when vertical loads act on the dome and one wants to
evaluate the (static) safety level. As already mentioned in Chapter 2, under Heyman hy-
potheses on the material, one of the measures that is commonly adopted to evaluate the
safety level of the structure is the geometrical safety factor. As well known, the concept of
a geometrical safety factor was first introduced by Heyman [Heyman, 1966] as a measure of
safety for masonry arches but it can also be extended to masonry vaults. In particular, the
geometrical safety factor is defined as the ratio between the actual thickness of the dome and
the minimum thickness that would allow finding at least one statically admissible generalised
force field. This safety factor is purely conventional and takes on meaning only in Heyman’s
hypotheses, that is to say, for the M1 material. In any case, the minimum thickness gives us
useful evidence on how suitable the shape chosen for a particular dome is: if the minimum
thickness is much smaller than the thickness of the dome it means that the structure could
balance external loads with a stress regime which doesn’t differ much from the membrane
one (which is optimal for masonry).
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The second problem deals with the evaluation of the maximum ‘lateral load multiplier’
in seismic (pseudo-static) analyses. In this second case, the aim is to evaluate the maximum
lateral loads that can act on the structure before collapse, that is, the maximum horizontal
actions for which it is possible to find at least one statically admissible generalised force field.

A first version of the technique can be found in [Barsotti et al., 2017] and later developed
in [Barsotti et al., 2021]. A more similar procedure to that presented here was first applied,
although in a simplified form, in [Barsi et al., 2019] in studying a sail vault. Then, in
[Nodargi and Bisegna, 2021] an analogous method for axisymmetric domes subjected to
vertical loads is fully developed. The approach presented here differs from the previous in
some aspects. First, the method is not limited to axisymmetric domes, but it is capable
of tackling domes having a generic shape. The equilibrium problem is numerically solved
in its strong differential formulation by means of the collocation method and hence the
generalised force components determined have smooth analytical expressions with global
support. This allows for an accurate evaluation of the error made in the numerical solution
of the equilibrium equations as well as for checking the material conditions everywhere within
the domain and not just on a finite subset of point. Moreover, since the solution is analytical,
the computation of every other mechanical quantity from the force field is straightforward.
It is also capable of accounting for different joints’ orientation as well as a limited shear
resistance, which is a crucial aspect when horizontal loads are present.

4.1 The equilibrium problem of a shell
At equilibrium v = 0 and ω = 0, so the balance system of equations (3.124) reduces to

tβα|α − t3ακβ
.α + bβ = 0,

t3α|α + tβακβα + b3 = 0,
mβα|α − t3β + cβ = 0,
εαβ(tαβ − κα

.λm
βλ) = 0,

(4.1)

and the problem is completed with the boundary conditions (3.125)

t∂ = tiαναei,

m∂ = mβαναeβ.
on ∂ΣN . (4.2)
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Expanding the covariant derivatives, the same system can be rewritten in the following form

t11,1 +2t11Γ1
11 + t21Γ1

12 + t12Γ1
12 + t21,2 +t11Γ2

21 + t21Γ2
22 + t21Γ1

21 + t22Γ1
22+

−κ1
.1t

31 − κ1
.2t

32 + b1 = 0,

t12,1 +t12Γ1
11 + t22Γ1

12 + t11Γ2
11 + t12Γ2

12 + t22,2 +t12Γ2
21 + 2t22Γ2

22 + t21Γ2
21+

−κ2
.1t

31 − κ2
.2t

32 + b2 = 0,

t11κ11 + t12κ12 + t21κ21 + t22κ22 + t31,1 +t31Γ1
11 + t32Γ1

21 + t32,2 +t31Γ2
12+

+t32Γ2
22 + b3 = 0,

m11,1 +2m11Γ1
11 +m21Γ1

12 +m12Γ1
12 +m21,2 +m11Γ2

21 +m21Γ2
22 +m21Γ1

21 +m22Γ1
22+

−t31 + c1 = 0,

m12,1 +m12Γ1
11 +m22Γ1

12 +m11Γ2
11 +m12Γ2

12 +m22,2 +m12Γ2
21 + 2m22Γ2

22 +m21Γ2
21+

−t32 + c2 = 0,

t12 − t21 +m11κ2
.1 −m12κ1

.1 +m21κ2
.2 −m22κ1

.2 = 0.
(4.3)

It can be noticed that both the surface geometry (via the Christoffel symbols) and the joints’
orientation (via the director’s curvatures) play an important role in the equilibrium system.

The constitutive prescriptions of the material models require the surface part of the
force tensor T and the couple force tensor M to be symmetric. Keeping in mind that also
the Christoffel symbols are symmetric with respect to the lower indices Γαβλ = Γαλβ, the
equilibrium system (4.3) reduces to

t11,1 +2Γ1
11t

11 + 3Γ1
12t

12 + t12,2 +Γ2
12t

11 + Γ2
22t

12 + Γ1
22t

22 − κ1
.1t

31 − κ1
.2t

32 + b1 = 0,

t12,1 +Γ1
11t

12 + Γ1
12t

22 + Γ2
11t

11 + 3Γ2
12t

12 + t22,2 +2Γ2
22t

22 − κ2
.1t

31 − κ2
.2t

32 + b2 = 0,

κ11t
11 + 2κ12t

12 + κ22t
22 + t31,1 +Γ1

11t
31 + Γ1

12t
32 + t32,2 +Γ2

12t
31 + Γ2

22t
32 + b3 = 0,

m11,1 +2Γ1
11m

11 + 3Γ1
12m

12 +m12,2 +Γ2
12m

11 + Γ2
22m

12 + Γ1
22m

22 − t31 + c1 = 0,

m12,1 +Γ1
11m

12 + Γ1
12m

22 + Γ2
11m

11 + 3Γ2
12m

12 +m22,2 +2Γ2
22m

22 − t32 + c2 = 0,

κ2
.1m

11 + (κ2
.2 − κ1

.1)m12 − κ1
.2m

22 = 0.
(4.4)

Equations (4.4) represent a statically not determined equilibrium problem and sundry
methods can be enforced to make it determined. The classical approach is to suitably
characterise the elastic constants and solving the incremental problem, but this has the
disadvantage of requiring a precise characterisation of all the relevant data for the problem,
such as the material’s parameters, the internal disposition of the units and the auto-stress
state due to the history of building, only to cite some. Usually it’s very difficult, if not
impossible, to get all this information for masonry structures. Other approaches, based on
limit analysis, consist of a priori choosing some of the generalised force functions and solving
the equations in terms of the remaining ones. This approach, although often adopted in the
past, has the disadvantage of limiting the possibilities of the structure to balance the loads.
In the next section, two special of such choices are discussed.

In concluding this section it is worth observing that if the coordinate lines on the surface
are also curvature lines, the mixed curvatures are null. Therefore, when κ1

1 6= κ2
2 the (4.4)6
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yields m12 = 0. This means that, except in the particular case where κ1
1 = κ2

2 , the moment
tensor has the same principal directions as the curvature tensor. Hence the geometry of the
shell partially determines the moment tensor regardless of the loads.

4.2 Some comments on two historical methods
Before going to the proposed method for the determination of statically admissible internal
force distributions and the safety level assessment of masonry domes, it is worth to briefly
address two methods, both working within the framework of limit analysis, which deserve to
be recalled for their historical importance: the slicing technique and the membrane analysis.

4.2.1 The slicing technique

The so-called slicing technique is a well renowned method that dates to the 18th century
[Poleni, 1748]. It consists in ideally subdividing a masonry dome into a series of plane arches
thought as independent from each other. If a statically admissible distribution of internal
forces can be determined within each arch, the whole dome is safe. Usually, the arched
sub-structures are identified with a ‘lunar slicing’ method, by ideally cutting the dome along
the meridians. Here the method is presented in the framework of shell theory, by assuming
that a family of curves, that represents the axes of the arched structures, can be identified to
be coincident with a family of coordinate lines, for example, the coordinate lines θ1 = const.
Let’s assume that each spatial arch doesn’t interact with the adjacent one, so that the only
force components different from zero are {t22, t32,m22}, and let’s also assume that no external
couple act on the dome, that is cβ = 0. In the given hypotheses the equilibrium equations
become 

Γ1
22t

22 − κ1
.2t

32 + b1 = 0,

Γ1
12t

22 + t22,2 +2Γ2
22t

22 − κ2
.2t

32 + b2 = 0,

κ22t
22 + Γ1

12t
32 + t32,2 +Γ2

22t
32 + b3 = 0,

Γ1
22m

22 = 0,

Γ1
12m

22 +m22,2 +2Γ2
22m

22 − t32 = 0,

−κ1
.2m

22 = 0.

(4.5)

If m22 = 0, from (4.5)5 we have t32 = 0, and the reduced system, which is statically under-
determined, describes the equilibrium of a cable. On the contrary, when m22 6= 0, for the
(4.5)6 to be fulfilled we conclude that κ1

.2 = 0, which means that, if the director is normal to
Σ and then κ1

.2 = κ1
.2 = 0 the coordinate lines must be lines of curvature. If the director is

generally oriented this requirement is not compulsory, for example, in a false dome κα
.β = 0

and (4.5)6 always holds. For the (4.5)4 to be fulfilled, it’s required that Γ1
22 = 0 , which

means that the coordinate lines θ1 = const. must be plane curves. Finally, from (4.5)1 we
see that b1 = 0, that is the load direction must be contained in the plane identified by the
coordinate lines θ1 = const. The above restrictions yield the notable result that strictly
speaking the slicing technique is applicable only to axisymmetric domes if the external load
is vertical. Moreover, if horizontal loads are also present, the slicing technique can be applied
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to spherical domes only. The restrictions on the slicing technique are essentially due to the
fact that the moment tensor is superficial. This means that if the slicing technique is applied
to domes of general shape, the set of arches in which the shell is ideally subdivided should
be considered as a set of spatial beams in which all internal force and moment components
are present, rather than as parts of a shell.

4.2.2 The membrane analysis

Setting t3α = 0 and mαβ = 0, the system (4.5) reduces to three equations describing the
equilibrium of a membrane along with the compatibility conditions on the loads, that require
cβ = 0. This kind of analysis is generally not suitable for assessing the safety level of a dome,
since a membrane solution that involves only compressive stresses is seldom found, but it
provides an efficient way to define the best shape to be given to a dome, once the external
loads are given, in order to avoid tensile stresses.

An analysis method that is somewhat linked to the membrane equilibrium solutions is
the Thrust Surface Analysis, which is sometimes thought as an extension of the membrane
solution for the shell. Roughly speaking, TSA searches for the membranes wholly contained
within the thickness of the dome, not necessarily coinciding with its middle surface, able
to make equilibrium to the external loads by compressive forces only. The eccentricity of
the membrane forces from the dome middle surface introduces bending moments along the
meridian and hoop direction, and so thrust surfaces can be seen as an extension of the set
of statically admissible distributions of internal forces for the dome with respect to the pure
membrane solution.

As a matter of fact, this is exactly true only if at any point on the middle surface the
joints are parallel to the load, otherwise transport couples would act on the membrane thus
violating the compatibility conditions on loads.

In the case of the real Thrust Surface Analysis, the model on which such technique is
based, at least in one of its formulations, is not the thin shell but the 3d Normal Rigid
No-Tension (NRNT) simple continuum body (see references in Chapter 2), and the thrust
surface is the support of a discontinuity in the stress field. In such a case the mechanical
meaning of the thrust surface is deeply different from that of a shell solution

4.3 Statically admissible shell forces (SASF): the first
simple case study of the conic shell

The historical methods mentioned in the previous section assess the safety level of masonry
domes by searching for equilibrium solutions in suitable subsets of statically admissible in-
ternal forces. The simplification introduced by restricting the set of possible equilibrium
states explored entails that in general the actual load bearing capacity of the dome is under-
estimated. This section presents a method for assessing the safety level of masonry domes
modelled as shells that can greatly reduce this limitation. The idea of the method is first in-
troduced with a simple example in which calculations can be carried out analytically. Then,
the method is explained in detail, as well as its implementation.
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Let’s consider an axisymmetric shell of uniform thickness 2h having a middle surface
shaped like a straight cone of height H and basis radius R (see Figure 4.1). The shell is

Figure 4.1: The conic shell.

made of a homogeneous material having a given specific weight γ and subjected exclusively
to its self-weight. For simplicity, we consider the presence of a small hole at the top, whose
diameter tending to zero and we assume that the shell is clamped at the base. Let’s assume
the material to be M1 (Heyman-like), that is, incapable of carrying tensile stresses but
with infinite compressive strength and capable of opposing any relative sliding motion. The
goal is to find the minimum thickness granting the stability, i.e., by virtue of the static
theorem, the aim is to find for what thickness it is possible to find at least one statically
admissible generalised force field. Given the symmetry of the structure, it is assumed that
the best force field is axisymmetric1. The equilibrium equations for an axisymmetric shell
and axisymmetric generalised forces reduces to a system of three equations in five unknowns,
given by 

(rns),s−
rts
ρ
− nθ cosϕ+ rps = 0,

(rts),s +
rns
ρ

+ nθ sinϕ+ rpn = 0,

(rms),s−rts −mθ cosϕ = 0,

(4.6)

where s ∈ [0, L] and θ ∈ [0, 2π] are the curvilinear coordinates and the force components are
referred to the natural covariant base. For the conic shell we have

L =
√
R2 +H2, cosϕ =

R

L
, sinϕ =

H

L
,

ρ→∞, r = s sinα, sinα = cosϕ, cosα = sinϕ,
(4.7)

1Although a statically admissible force field need not to be axisymmetric, it can be easily seen that, since
we are interested in optimised force fields, the best solution is one that satisfies symmetry conditions given
by the geometry and the distribution of external loads.
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and then, the equilibrium equations simplifies in
(sns),s−nθ + sps = 0,

(sts),s +nθ
H

R
+ spn = 0,

(sms),s−sts −mθ = 0.

(4.8)

It can be observed that a solution of the system exists for whatever value of the components
nθ and mθ, so the equilibrium problem is two times statically not determined. By restricting
ourselves to the case in which mθ = 0 and by defining the force components in an equivalent
beam as

N = sns, T = sts, M = sms, (4.9)

it is possible to rewrite the equilibrium equations in the following way
N,s +ps = 0,

T,s +pn = 0,

M,s−T = 0,

(4.10)

which is formally identical to the set of equations describing the equilibrium of a straight
beam and where the component nθ appears as an additional external load

ps = sps − nθ, pn = spn +
H

R
nθ. (4.11)

For a conic shell under its self-weight we have

ps = γ sinϕ = γ
H

L
, pn = γ cosϕ = γ

R

L
, (4.12)

and then
ps = γ

H

L
s− nθ, pn = γ

R

L
s+

H

R
nθ. (4.13)

Assuming the force components to be sufficiently differentiable, from the (4.10)3 it is T = M,s
and the differential problem becomes

N ′ + ps = 0,

M ′′ + pn = 0,

N(0) = 0, M ′(0) = 0, M(0) = 0,

(4.14)

where the boundary conditions are imposed by the infinitesimal hole at the top. The admis-
sibility conditions for the M1 require that{

N(s) ≤ 0,

−h ≤ e(s) ≤ h,
∀s ∈ [0, L], (4.15)

that is the normal force has to be compressive and the eccentricity diagram (thrust line)
has to be contained inside the shell’s thickness. In addition it is required that nθ ≤ 0, ∀s ∈
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[0, L]. Since the meridian and hoop directions are principal directions of forces and bending
moments and since mθ = 0 the admissibility conditions are only those just given.

If nθ = 0 the problem is statically determined, the force components being

N = −γH
2L

s2, M = −γR
6L

s3, T = −γR
2L

s2, (4.16)

and the eccentricity is e = −Rs/3H whose absolute value is maximum in s = L and equal
to |e(L)| = RL/3H. The minimum half-thickness that the cone should have to contain
the thrust line is then hmin = RL/3H. A solution of (4.14) can be obtained for every
function nθ. We now wonder if it is possible to find a distribution of compressive nθ and its
intensity such to minimise the maximum of the absolute value of the eccentricity. In other
words, we ask if it’s possible to select, among the infinite functions nθ, the one for which the
minimum thickness of the shell is the smallest possible (or, equivalently, the geometric safety
factor is the greatest possible). With this purpose, we initially limit ourself to the simplest
distribution considering the class of constant functions nθ = const., and we search for the
best value of that constant such to minimise max |e(s)|. Solving the equilibrium equations
one gets

N = −γH
2L

s2 + nθs, M = −γR
6L

s3 − Hnθ
2R

s2, T = −γR
2L

s2 − Hnθ
R

s, (4.17)

and then
e =

s(γR2s+ 3HLnθ)

6LRnθ − 3RHγs
. (4.18)

By expressing nθ as

nθ = −γR
2

HL
c, (4.19)

with c being a positive constant (having the dimension of a length) and by introducing the
dimensionless quantity µ = R/H = tanα > 0, the eccentricity becomes

e = −µ
3

(
s2 − 3cs

2µ2c+ s

)
. (4.20)

The eccentricity can have an extremum either where the first derivative is null or at the
boundaries. The first derivatives is

de

ds
= −µ

3

(
s2 + 4µ2cs− 6µ2c2

(2µ2c+ s)2

)
. (4.21)

The only acceptable solution of the equation e,s = 0 is

s = µc
(
− 2µ+

√
6 + 4µ2

)
. (4.22)

Therefore, 

e(s = 0) = 0,

e(s = L) = −µ
3

(
L2 − 3cL

2µ2c+ L

)
,

e(s = s) =
µc

3

(
3 + 4µ2 − 2µ

√
6 + 4µ2

)
.

(4.23)
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One then needs to solve the following optimisation problem

min
c
{max{|e(L)|, |e(s)|}} . (4.24)

There may be two cases; the first one is the case for which

e(s) = e(L), (4.25)

whose unique solution is

c1 =
L

6µ
(2µ+

√
6 + 4µ2). (4.26)

The second case is
e(s) = −e(L), (4.27)

which is an equation with two solutions, only one of which is acceptable since it’s the only
positive one

c2 =
L

3 + 2µ2 − µ
√

6 + 4µ2 +
√
−(3 + 4µ2)

[
− 3 + 2µ(−2µ+

√
6 + 4µ2)

] . (4.28)

For c = c1 it is s|c=c1 = L and the eccentricity is

e(L)|c=c1 =
L

6

(
− 2µ+

√
6 + 4µ2

)
> 0. (4.29)

For c = c2 it is, with the position ∆ = −(3 + 4µ2)
[
− 3 + 2µ(−2µ+

√
6 + 4µ2)

]
,

e(s)|c=c2 =
L

6µ

(
− 3 + µ(−2µ+

√
6 + 4µ2) +

√
∆

)
> 0,

e(L)|c=c2 = −e(s)|c=c2 < 0.

(4.30)

It can be proven that
e(s)|c=c1 > e(s)|c=c2 (4.31)

and then the optimal value of c which always minimise the maximum of the absolute value
of the eccentricity is

cO =
L

3 + 2µ2 − µ
√

6 + 4µ2 +
√
−(3 + 4µ2)

[
− 3 + 2µ(−2µ+

√
6 + 4µ2)

] . (4.32)

The hoop normal force, constant with s, is

nOθ = −γR µ

3 + 2µ2 − µ
√

6 + 4µ2 +
√
−(3 + 4µ2)

[
− 3 + 2µ(−2µ+

√
6 + 4µ2)

] (4.33)

and the minimum half-thickness is

hmin =
L

6µ

(
− 3 + µ(−2µ+

√
6 + 4µ2) +

√
∆

)
. (4.34)
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Figure 4.2: Plot of the dimensionless minimum half-thickness and the dimensionless
optimum hoop normal force.

Figure 4.2 shows hmin/R and nθ/γR as functions of µ.
The value found for nθ is the one that optimise the eccentricity for the problem at hand

only with reference to the class of constant functions. In this case it is possible to carry
out the calculations by hand, but for more complex cases, in which the class of functions
is richer, the procedure leads naturally to mathematical optimisation problems. It’s worth
observing that, if one was able to explore all possible functions, one could find the absolute
minimum thickness of the shell. Of course, the richer the class of functions considered, the
closer the minimum thickness found will be to the real one.

4.4 Statically admissible shell forces (SASF): outline of
the method

The method searches for the equilibrium state that maximise the safety level within the set of
statically admissible internal forces. The adopted strategy is very simple and it is borrowed
from the well-known flexibility method, used in the mechanics of beams. It consists of the
following steps:

Step 1: Let E be the number of equilibrium equations (4.4), and U the number of un-
known internal force components. As U > E the system is statically undeter-
mined. One can choose a set of X = U−E functions, called redundant generalised
forces, and express each of them as a linear combination of known basis functions,
chosen a priori, leaving the coefficients unspecified. By doing so the system of
equations becomes determinate;

Step 2: One can thus solve the linear system of equations with respect to the other U−X
internal force components, which are linear in the coefficients. In this way, the
equilibrium equations are satisfied whatever the values of the coefficients of the
linear combinations;

Step 3: One can finally solve a constrained optimisation problem that searches for the
minimum of a suitable cost function related to the inverse of the safety level.
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The independent variables of the optimisation problem are the coefficients of the
linear combinations of known basis functions used for the redundant generalised
forces while the constraints are the admissibility conditions for the material.

The various aspects of the illustrated procedure are analysed in detail below.

4.4.1 The choice of the redundant generalised force components

Regarding the first step, for a surface having a generic geometry and generic joints’ dispo-
sition, it is U = 8 and E = 6 so that X = 2 redundant force functions have to be chosen.
However, there are cases where the sixth equilibrium equation turns out to be an identity.
The first example is the case in which the joints are ‘spherically arranged’ (in the simplest of
such cases, the surface is a sphere with normal joints), for which κ1

.2 = κ2
.1 = 0 and κ1

.1 = κ2
.2.

Moreover, also in the case where all the joints have the same direction it is κα
.β = 0 (a simple

case would be vertical joints, although there are no domes built with such a joints’ dispo-
sition for evident building reasons). We refer to these special cases as the spherical joints
case and the flat joints case, respectively. In these instances, the sixth equation is always
an identity and the equilibrium equations reduce to a system of five differential equations so
U = 8, E = 5 and X = 3 redundant force functions have to be chosen.

Concerning the choice of the redundant forces, a question arises whether they may be
chosen freely among any component of the internal forces. The issue is not trivial since
not every choice of redundant forces is admissible. To show this statement let’s assume
components t31 and m11 are chosen as redundant forces and try to solve the equilibrium
equations when they are set to zero. From (4.4)6 we see that where the lines of director
curvature coincide with the coordinate lines κ1

.2 = 0 and since, in general, the principal
curvature are distinct κ1

.1 6= κ2
.2, we have m12 = 0. Then, if Γ1

22 = 0 the (4.4)4 becomes an
identity and the system is underdetermined. Instead, if Γ1

22 6= 0 then (4.4)4 implies m22 = 0
so that mαβ = 0 and t3α = 0 and we fall back to the membrane solution. It is trivial to
verify that also other choices of redundant forces are not admissible. The redundant force
components selection is also linked to the parametrisation used to describe the middle surface.
To this aim, a cylindrical coordinate system is adopted to describe the shell’s geometry, and
it is assumed that the surface admits the parametric expression

x(α, z) = h(α, z) cosα i1 + h(α, z) sinα i2 + z i3 (4.35)

in which 0 ≤ α ≤ 2π and z0 ≤ z ≤ z1, and and h(α, z) is a function that depends on the
shape. This parametric expression is quite general because is able to closely approximate
not only axisymmetric domes but also elliptical and oval base domes, which together con-
stitute the vast majority of existing shapes. Moreover, the coordinate domain Θ is always
rectangular and both the dome’s base and the central opening on top (where the lantern is
usually placed) are easily identified by the coordinate lines z = z0 and z = z1 respectively.
The following considerations, although specialised to the case at hand, can be also extended
to other classes of surfaces.

Although other choices of redundant forces may be also appropriate, one choice that has
proven to be suitable is to select the contravariant components t11 and m11, which are linked
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to the normal force and bending moment in the hoops’ direction, as redundant forces. Such
choice has been verified to lead to a stable numerical solution scheme.

One reason that led to this choice is the fact that all the components whose values are
known on the upper boundary, i.e. t12, t22, t32,m12,m22, are kept in the system and five over
six of the boundary conditions can be directly specified on those components (Dirichlet-type
boundary conditions). As for the last boundary condition on the component t31, equation
(4.4)4 can be used where a partial derivative of m12 appears. In this way the differential
problem is set with Robin-type boundary conditions (see [Salsa, 2016]).

In the cases of spherical joints or flat joints, the third redundant force component to
be added has been chosen to be t31, which is linked to the transverse shear force in hoops’
direction. In this case, there are Dirichlet-type boundary conditions only on the unknown
force components t12, t22, t32,m12,m22.

4.4.2 The choice of the basis functions

The necessity to specify the basis functions and to express the redundant force components
in terms of them arises from the requirement that the generalised force components have to
be L2 fields. Unlike the case of beams systems, the statically indeterminacy of system (4.4) is
due to an excessive number of unknown functions and not to an excess number of boundary
conditions on constraints reactions (which are scalars). For this reason, a procedure that
identifies the value of a function in the same way as the flexibility method for beam systems
is not possible. However, one can choose to reduce the class of functions explored by referring
to a linear combination of known functions, called basis functions (or coordinate functions).
As is frequent in plasticity, the square integrable functions, which is a Hilbert space, is chosen
as the function space for forces, that is we set

tij ∈ L2(Σ,R), mαβ ∈ L2(Σ,R). (4.36)

A priori, it’s not possible to give the expression of the redundant forces that minimise a
certain cost function. Anyhow, from the theory of PDE we know that an orthonormal
basis of L2 are the trigonometric functions and thus, any element of L2 can be expressed
as a Fourier series. This guaranties the uniform convergence of the series to the function
almost everywhere. For this reason, we choose the trigonometric functions as the series
functions, precisely because this choice doesn’t restrict much the class of functions explored.
For example, if the best trend of the normal forces along the hoop directions is piecewise
constant, the Fourier series is able to approximate that function with arbitrary precision,
contrary for example to the case in which polynomial approximation is used. As a downside,
this could come at a cost of computation time, because a high number of series functions
could be needed. For this reason, in order to speed up computations, sine, cosine and
constant functions are used. Let’s consider the column vectors of functions

˜
f = {1, sinα, sin 2α, . . . , sinnα, cosα, cos 2α, . . . , cosnα}T , (4.37)
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and

˜
g =

{
1, sin

(
π
z − z0

z1 − z0

)
, sin

(
2π

z − z0

z1 − z0

)
, . . . , sin

(
mπ

z − z0

z1 − z0

)
, cos

(
π
z − z0

z1 − z0

)
,

cos
(
2π

z − z0

z1 − z0

)
, . . . , cos

(
mπ

z − z0

z1 − z0

)}T

.

(4.38)

Here and in the following bold italics letters with an underscore ‘tilde’ symbol are used to
distinguish the column vectors and matrices used in the numerical computations from the
vectors and tensors, used in the formalisation of the structural model, and denoted with bold
normal font without underscore. The redundant force contravariant components can then
be written as

t11 =
˜
fT

˜
U

˜
g, m11 =

˜
fT

˜
V

˜
g, (4.39)

where
˜
U and

˜
V are the matrices collecting the coefficients of the linear combinations of

basis functions, whose constant components have to be determined. Each redundant force
component is expressed as a series of C = (1 + 2n)(1 + 2m) terms in which every known
basis function is multiplied by an unknown coefficient. Hence, the total number of unknown
coefficients to be determined is 2C.

In the special cases of spherical joints or flat joints, the third redundant force component
can be written as

t31 =
˜
fT

˜
W

˜
g, (4.40)

where
˜
W is a matrix collecting the coefficients of the linear combination of basis functions,

whose constant components have to be determined. In this case, the total number of unknown
coefficients to be determined is 3C.

4.4.3 Solution of the equilibrium problem

The redundant force components can be considered as additional known loading terms, which
then assume the form

b
1

= b1 + t11,1 +2Γ1
11t

11 + Γ2
12t

11,

b
2

= b2 + Γ2
11t

11,

b
3

= b3 + κ11t
11,

c1 = c1 +m11,1 +2Γ1
11m

11 + Γ2
12m

11,

c2 = c2 + Γ2
11m

11,

c3 = κ2
.1m

11,

(4.41)
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and the equilibrium system of equations is reduced to the following

3t12Γ1
12 + t12,2 +t12Γ2

22 + t22Γ1
22 − κ1

.1t
31 − κ1

.2t
32 + b

1
= 0,

t12,1 +t12Γ1
11 + t22Γ1

12 + 3t12Γ2
12 + t22,2 +2t22Γ2

22 − κ2
.1t

31 − κ2
.2t

32 + b
2

= 0,

2κ12t
12 + κ22t

22 + t31,1 +t31Γ1
11 + t32Γ1

12 + t32,2 +t31Γ2
12 + t32Γ2

22 + b
3

= 0,

3m12Γ1
12 +m12,2 +m12Γ2

22 +m22Γ1
22 − t31 + c1 = 0,

m12,1 +m12Γ1
11 +m22Γ1

12 + 3m12Γ2
12 +m22,2 +2m22Γ2

22 − t32 + c2 = 0,

m12(κ2
.2 − κ1

.1)− κ1
.2m

22 + c3 = 0.

(4.42)

Given the linearity of the problem, the solution of the system of equations (4.42), FE, can
be expressed as the linear combination of the solutions of 2C + 3 auxiliary subsystems:

FE = Fz + λxFx + λyFy +
∑
i,j

˜
UijF

t
ij +

∑
k,l

˜
VklF

m
kl. (4.43)

In equation (4.43) Fz denotes the solution of the equilibrium problem in which only the
external vertical loads at the internal and on the boundary are present. Fx and Fy denote
the solutions of the equilibrium problem in which only horizontal loads equal to the self-
weight of the dome and applied respectively in the x1 and x2 directions are present and the
boundary conditions are homogeneous.

Ftij and Fmkl, with i, k = 1, . . . , 2n+ 1 and j, l = 1, . . . , 2m+ 1, denote the solutions of the
equilibrium problems in which the coefficient ij and kl in the series term of the redundant force
components t11 and m11, respectively, is set equal to unity while all the others are set to zero,
and the external loads and boundary conditions are homogeneous. In this way, the second
step of the method consists of solving 3 + 2C equilibrium systems of equations, different one
from each other only for the loading term. Once the solutions of all the subsystems have
been obtained, all the generalised force components in the effective system can be expressed
as a linear combination of the solutions of the subsystems. For instance, the meridian normal
force can be formally written as

(t22)E = (t22)z + λx(t
22)x + λy(t

22)y +
∑
i,j

˜
Uij(t

22)tij +
∑
k,l

˜
Vkl(t

22)mkl. (4.44)

To apply the preceding strategy, one needs to solve 3 + 2C statically determinate equi-
librium problems, for which a numerical method is required. In the following, two different
solution strategies are set up: the finite difference method and the collocation method.
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The case of spherical joints. In this special case, remembering that κ1
.2 = κ2

.1 = 0 and
κ1
.1 = κ2

.2 the additional loading terms assume the form

b
1

= b1 + t11,1 +2Γ1
11t

11 + Γ2
12t

11 − κ1
.1t

31,

b
2

= b2 + Γ2
11t

11,

b
3

= b3 + κ11t
11 + t31,1 +Γ1

11t
31 + Γ2

12t
31

c1 = c1 +m11,1 +2Γ1
11m

11 + Γ2
12m

11 − t31,

c2 = c2 + Γ2
11m

11,

(4.45)

and the equilibrium equations can be written as

3t12Γ1
12 + t12,2 +t12Γ2

22 + t22Γ1
22 + b

1
= 0,

t12,1 +t12Γ1
11 + t22Γ1

12 + 3t12Γ2
12 + t22,2 +2t22Γ2

22 − κ2
.2t

32 + b
2

= 0,

κ22t
22 + t32Γ1

12 + t32,2 +t32Γ2
22 + b

3
= 0,

3m12Γ1
12 +m12,2 +m12Γ2

22 +m22Γ1
22 + c1 = 0,

m12,1 +m12Γ1
11 +m22Γ1

12 + 3m12Γ2
12 +m22,2 +2m22Γ2

22 − t32 + c2 = 0.

(4.46)

The auxiliary subsystems are 3C + 3 and the effective solution can be expressed as

FE = Fz + λxFx + λyFy +
∑
i,j

˜
UijF

t
ij +

∑
k,l

˜
VklF

m
kl +

∑
r,s

˜
WrsF

q
rs, (4.47)

where Fqrs with r = 1, . . . , 2n+1 and s = 1, . . . , 2m+1, denotes the solution of the equilibrium
problem in which the coefficient rs in the series term of the redundant force component t31 is
set equal to unity while all the others are set to zero, and the external loads and boundary
conditions are homogeneous.

The case of flat joints. If the joints’ curvatures are all equal to zero, the additional
loading terms simplifies as

b
1

= b1 + t11,1 +2Γ1
11t

11 + Γ2
12t

11,

b
2

= b2 + Γ2
11t

11,

b
3

= b3 + t31,1 +Γ1
11t

31 + Γ2
12t

31

c1 = c1 +m11,1 +2Γ1
11m

11 + Γ2
12m

11 − t31,

c2 = c2 + Γ2
11m

11,

(4.48)
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and the equilibrium equations can be written as

3t12Γ1
12 + t12,2 +t12Γ2

22 + t22Γ1
22 + b

1
= 0,

t12,1 +t12Γ1
11 + t22Γ1

12 + 3t12Γ2
12 + t22,2 +2t22Γ2

22 + b
2

= 0,

t32Γ1
12 + t32,2 +t32Γ2

22 + b
3

= 0,

3m12Γ1
12 +m12,2 +m12Γ2

22 +m22Γ1
22 + c1 = 0,

m12,1 +m12Γ1
11 +m22Γ1

12 + 3m12Γ2
12 +m22,2 +2m22Γ2

22 − t32 + c2 = 0,

(4.49)

while the effective solution can still be expressed with equation (4.47).

Special geometries. So far, some special cases concerning joints’ orientation have been
analysed. However, it is noted that the equilibrium equations do depend on the orienta-
tion of the joints, but also on the geometry of the middle surface. This means that other
simplifications of the problem are possible in some particular cases, in which the shape of
the middle surface takes on particular characteristics. However, in this chapter, no other
particular cases, besides those already treated, are analysed.

The case of a reinforcing ring. If a strengthening ring is present near the oculus,
an horizontal force component and a bending moment can be provided at the boundary
z = z1, assuming that the ring is strong enough to sustain circumferential compressions
of any magnitude. In this case, two additional redundant unknowns are present. This
components are functions of α in general and could be written as a linear combination of
basis functions just as the other redundant components. In this work and in the following
applications, these components are assumed constant, H0 and M0 respectively, so that the
effective solution can be written as

FE = Fz +H0FH +M0FM + λxFx + λyFy +
∑
i,j

˜
UijF

t
ij +

∑
k,l

˜
VklF

m
kl, (4.50)

where FH and FM denote the solutions obtained by setting the external loads to zero and
the horizontal force boundary condition or the moment boundary condition equal to unity,
respectively. If the joints are spherically arranged, the sum

∑
r,s ˜
WrsF

q
rs has to be added.

Solution of the statically determinate equilibrium sub-problems: numerical so-
lution via finite difference method

Having adopted the cylindrical parameters, for domes with the upper oculus, the coordinate
domain is rectangular, and can be discretised by finite difference as shown in Figure 4.3. The
rectangular domain is divided in nα × nz points. We do not impose directly the periodicity
conditions on i = nα but we write unknown and equations on nα − 1 points and we impose
periodicity conditions when writing the partial derivative with respect to α. Let N =
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Figure 4.3: The finite difference grid.

(nα−1)nz denote the number of grid nodes. The unknowns are written in a vector
˜
u ∈ R6N×1

with the following ordering

˜
u = {

˜
t12,

˜
t22,

˜
t31,

˜
t32,

˜
m12,

˜
m22}T, (4.51)

where, for example,
˜
t12 ∈ RN×N is the collection of all the values of t12 computed on the

grid points and ordered as follows

˜
t12 = {t12

1,1, t
12
1,2, . . . , t

12
1,nz , t

12
2,1, t

12
2,2, . . . , t

12
2,nz , . . . , t

12
(nα−1),nz}

T. (4.52)

The 6N linear equilibrium equations can be written in matrix form as

˜
A

˜
u =

˜
d, (4.53)

where
˜
A ∈ R6N×6N ,

˜
u ∈ R6N×1 and

˜
d ∈ R6N×1. The matrix

˜
A can be decomposed as

the sum of three matrices, two of them associated to the finite difference and one to the
coefficients, as follows:

˜
A =

˜
Bα +

˜
Cz +

˜
D. (4.54)

The partial derivatives are approximated by forward/backward finite difference as follows

∂α =


fi+1,j − fi,j

∆α
if i 6= nα − 1

f1,j − fi,j
∆α

if i = nα − 1,

∂z =


fi,j+1 − fi,j

∆z
if j 6= nz

fi,j − fi,j−1

∆z
if j = nz.

(4.55)
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To find expressions of matrices
˜
Bα and

˜
Cz we consider for example the vector

˜
t12. It’s easy

to verify that, in this case, the finite difference matrices
˜
Tα ∈ RN×N and

˜
Tz ∈ RN×N are

˜
Tα =

1

∆α



−
˜
1

˜
1

˜
0 . . .

˜
0

˜
0

˜
0 −

˜
1

˜
1 . . .

˜
0

˜
0

... . . . ...

˜
0 . . . −

˜
1

˜
1

˜
1

˜
0 . . .

˜
0 −

˜
1


,

˜
Tz =

1

∆z



˜
T 0
z

˜
0

˜
0 . . .

˜
0

˜
0

˜
0

˜
T 0
z

˜
0 . . .

˜
0

˜
0

... . . . ...

˜
0 . . .

˜
T 0
z

˜
0

˜
0 . . .

˜
0

˜
T 0
z


(4.56)

where the sub-matrix
˜
T 0
z ∈ Rnz×nz

˜
T 0
z =



−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

... . . . . . . ...

0 . . . 0 −1 1

0 . . . 0 −1 1


(4.57)

is such that
∂z

˜
t12

1,j =
˜
T 0
z
˜
t12

1,j, (4.58)

being
˜
0 ∈ Rnz×nz the zero matrix and

˜
1 ∈ Rnz×nz the identity matrix. Matrices

˜
Bα ∈ R6N×6N

and
˜
C ∈ R6N×6N are block matrices that can be assembled by putting

˜
Tα and

˜
Tz in the (k, l)

place such that the derivative with respect to α or z respectively of the unknown of index l
appears in equation k and by putting

˜
O otherwise, where

˜
O ∈ RN×N is the zero matrix. In

particular,

˜
Bα =



˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tα

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tα

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tα

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O


,

˜
Cz =



˜
Tz

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tz

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tz

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tz

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O

˜
Tz

˜
O

˜
O

˜
O

˜
O

˜
O

˜
O


. (4.59)

The
˜
D matrix collects all coefficients and can be expressed in the following way

˜
D =



˜
D1

˜
D2

˜
D3

˜
D4

˜
O

˜
O

˜
D7

˜
D8

˜
D5

˜
D6

˜
O

˜
O

˜
D9

˜
D10

˜
D11

˜
D12

˜
O

˜
O

˜
O

˜
O −

˜
I

˜
O

˜
D1

˜
D2

˜
O

˜
O

˜
O −

˜
I

˜
D7

˜
D8

˜
O

˜
O

˜
O

˜
O

˜
D6 +

˜
D3

˜
D4


(4.60)
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where
˜
I ∈ RN×N is the identity matrix and the diagonal

˜
Di ∈ RN×N matrices all have the

form

˜
Di = diag

(
{f i1,1, f i1,2, . . . , f i1,nz , f

i
2,1, . . . , f

i
2,nz , . . . , f

i
(nα−1),nz}

T
)

(4.61)

being the functions f i the following

f 1 = 3Γ1
12 + Γ2

22, f 2 = Γ1
22, f 3 = −κ1

.1, f 4 = −κ1
.2,

f 5 = −κ2
.1, f 6 = −κ2

.2, f 7 = Γ1
11 + 3Γ2

12, f 8 = Γ1
12 + 2Γ2

22,

f 9 = 2κ12, f 10 = κ22, f 11 = Γ1
11 + Γ2

12, f 12 = Γ1
12 + Γ2

22.

(4.62)

Finally, the vector of the external known forces writes as

˜
d = {−

˜
b1,−

˜
b2,−

˜
b3,−

˜
c1,−

˜
c2,−

˜
c3}T, (4.63)

where
˜
bi ∈ RN×1 are vectors ordered as the others following the scheme below

˜
b1 = {b1

1,1, b
1
1,2, . . . , b

1
1,nz , b

1
2,1, . . . , b

1
(nα−1),nz}

T. (4.64)

Once all matrices are assembled we need to insert the boundary conditions by suitably
modifying some elements of

˜
A and

˜
d. In our case, all boundary conditions are imposed on

the (i, nz) points. Hence, we need to replace equilibrium equations written in the points
(i, nz) with equations like

t12
i,nz = t̂12

i,nz , i ∈ [1, nα − 1],

t22
i,nz = t̂22

i,nz , i ∈ [1, nα − 1],

t31
i,nz = t̂31

i,nz , i ∈ [1, nα − 1],

t32
i,nz = t̂32

i,nz , i ∈ [1, nα − 1],

m12
i,nz = m̂12

i,nz , i ∈ [1, nα − 1],

m22
i,nz = m̂22

i,nz , i ∈ [1, nα − 1],

(4.65)

where the quantities denoted by �̂ are known quantities. To do this, we replace the k −
1)N+ inz rows for k ∈ [1, 6] and i ∈ [1, nα−1] with rows having 1 in the place corresponding
to unknown u1,nz and zero elsewhere. In this way we identify a sub-matrix

˜
Abc ∈ R6(nα−1)×6N

that is assembled by 6× 6 blocks
˜
A0
bc ∈ R(nα−1)×N

˜
Abc =



˜
A0
bc

˜
0

˜
0

˜
0

˜
0

˜
0

˜
0

˜
A0
bc

˜
0

˜
0

˜
0

˜
0

˜
0

˜
0

˜
A0
bc

˜
0

˜
0

˜
0

˜
0

˜
0

˜
0

˜
A0
bc

˜
0

˜
0

˜
0

˜
0

˜
0

˜
0

˜
A0
bc

˜
0

˜
0

˜
0

˜
0

˜
0

˜
0

˜
A0
bc


(4.66)
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where

˜
A0
bc =


0 . . .

(nz)

1 0 . . . 0 . . . 0

0 . . . 0 . . .
(2nz)

1 0 . . . 0
... . . . . . . ...

0 . . . 0 . . . 0 . . . 0
((nα−1)nz)

1

 . (4.67)

Finally, we need to replace also the (k − 1)N + inz rows for k ∈ [1, 6] and i ∈ [1, nα − 1] of
the vector

˜
d with the value of the correct boundary conditions. In the simple yet interesting

case in which the free edge, where boundary conditions are imposed, is identified by z = z1,
and adopting the same system of coordinates, the boundary curve Γ : x(α, z1) is a plane
curve. The tangent, binormal and normal unit vectors are, respectively,

τ (α) =
x′(α, z1)

‖x′(α, z1)‖
, β(α) = k, ν(α) = β(α)× τ (α), (4.68)

with ν3 = 0 and τ3 = 0 because Γ is plane. The force vector on the surface element having
unit normal vector ν can be expressed by Cauchy theorem as

tν = Tν =

[
tαβaα ⊗ aβ + t3αa3 ⊗ aα

]
· νγaγ = tαγνγaα + t3γνγa3. (4.69)

It’s worth observing that, for surfaces parametrised by the particular coordinate system
adopted, ν is always normal to a1 as the first is orthogonal to Γ by definition while the
second is tangent to the curve. Thus, ν1 = ν · a1 = 0. On the other hand, ν could be not
parallel to a2, because a1 and a2 are not orthogonal (or, in other words, a2 could not be
orthogonal to Γ). The boundary conditions impose that tν = t∂, namely

t12 =
t1∂
ν2

, with t1∂ = t∂ · a1, ν2 = ν · a2,

t22 =
t2∂
ν2

, with t2∂ = t∂ · a2, ν2 = ν · a2,

t32 =
t3∂
ν2

, with t3∂ = t∂ · a3, ν2 = ν · a2.

(4.70)

In the case in which the boundary couples are due to an eccentricity in the external load t∂
with respect to the middle surface, the remaining boundary conditions are written as

m12 = e∂
t1∂
ν2

, with t1∂ = t∂ · a1, ν2 = ν · a2,

m22 = e∂
t2∂
ν2

, with t2∂ = t∂ · a2, ν2 = ν · a2.

(4.71)

Convergence of the numerical scheme. The convergence of the finite difference scheme
is investigated on the Fz equilibrium system for the case of the dome of Pisa cathedral. The
rate of convergence depends on the ratio chosen for the discretisation grid (i.e. r = nz/nα),
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Figure 4.4: Convergence of the finite difference scheme with varying r.
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as shown in Figure 4.4 (left column). It is observed how higher values of r correspond to
higher convergence rates. In order to achieve a good spacing between the grid points, a
value r = 2 is chosen in order to perform further convergence analyses with more unknowns.
Figure 4.4 (right column) shows the convergence rate achieved by the numerical method. In
the following, the results obtained with the finite difference scheme are compared with those
obtained by other numerical techniques.

Solution of the statically determinate equilibrium sub-problems: numerical so-
lution via collocation method

The finite difference method is a standard and simple numerical scheme that can be used
effectively to solve systems of differential equations. Other frequently used options are the
finite element method and the finite volume method. However, since our aim is to define
a proper generalised force field, that is a set of analytical functions that can be evaluated
everywhere in the domain, we chose to adopt a collocation method (see for example [Quar-
teroni and Quarteroni, 2009]) to numerically solve the equilibrium problem in its strong
formulation. Differently from the other techniques, the collocation method has the advan-
tage of giving the solution in terms of smooth functions with global support. This allows
us to evaluate the error, as well as checking the fulfilment of the admissibility conditions
on the material everywhere in the domain and not just in a finite subset of points. In this
regard, it is worth pointing out that, although it is possible to verify that the equilibrium
and material admissibility conditions are met at any point within the domain, it is generally
not operationally possible to prove that they are met everywhere. However, admissibility
checks can be conducted at a sufficiently large number of points such that the physical dis-
tance between two points is less than the smaller dimension of the resisting elements. In this
way, it is possible to employ a sparse mesh grid for solving the problem and a dense mesh
grid for admissibility checks. This is the procedure followed in applications. Based on the
above considerations, in the following, it will be implicitly understood that the expression
‘everywhere in the domain’ means ‘in a sufficiently large number of points’.

The collocation method consists in writing the generic unknown function, u, as a linear
combination of known basis functions

u =
˜
fT

˜
Zu

˜
g (4.72)

where the same basis functions (4.37) and (4.38) used to write the redundant generalised force
components are adopted. The matrix

˜
Zu collects the coefficients of the linear combinations

of basis functions, whose constant components have to be determined. Thus, each unknown
function is expressed as a series of D = (1 + 2k)(1 + 2l) terms in which every known basis
function is multiplied by an unknown coefficient. Hence, the total number of unknown
coefficients to be determined is, in general, 6D. Then, equilibrium equations and boundary
conditions are imposed in a finite number of points on the domain in order to find the
coefficients of the series. We choose a number of equally spaced collocation points on the
domain. Having adopted the cylindrical parameters, for domes with the upper oculus, the
coordinate domain is rectangular, and can be discretised in the same way as in the finite
difference method (the Figure 4.5 is shown again for reader’s convenience) by dividing the
rectangular domain in nα × nz points. Then, six equilibrium equations at each internal
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point and six boundary conditions at the free boundary are imposed. Periodicity conditions

Figure 4.5: Collocation grid. The circles are the points on which equilibrium equa-
tions are imposed. The crosses are points on which boundary conditions are im-
posed. The periodicity along α is satisfied by the choice of the basis functions.

on i = nα are not enforced directly, as the choice of the basis functions lead to automatic
fulfilment of this condition, but unknowns and equations are written on nα− 1 points along
direction α. Once k and l are chosen, we set nα = 2 + 2k and nz = 1 + 2l in order for the
number of unknown to be equal to the number of equations, i.e. 6 × nα × nz. It’s worth
observing that the values of k and l chosen for the unknowns may differ from the values
chosen for the redundant forces (the latter could also be zero for an equilibrium solution to
be found, as in the case of the Fz subsystem). The resulting algebraic system can be solved
with a classical technique, such as direct LU decomposition methods.

Comparison between the numerical methods

As for the case of the finite difference scheme, a comparison between the numerical methods
in order to check their accuracy is performed, again on the Fz equilibrium system for the
case of the dome of Pisa cathedral. The equilibrium system is solved with the finite dif-
ference method, the collocation method and also the finite element method made available
by Wolfram Mathematica R© in the NDSolve routine. As shown in Figure 4.6 the numerical
methods give solutions which are practically coincident. A final remark on efficiency is in
order here. Obviously, all three methods lead the original problem back to the solution of a
linear algebraic system of equations, which, for the finite difference and finite element meth-
ods, is represented by a sparse matrix, while for the collocation method it is represented by a
dense matrix. This implies that, for the same size of representative matrices, the collocation
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method is slower than the other two. However, in the applications, the collocation method
is employed for its capability to give the solution in terms of analytical functions with global
support. In the following chapter, the analysis of the error in the solution of the equilibrium
equations is carried out.

Figure 4.6: Comparison between the solutions obtained via finite difference, col-
location and finite element methods on components t22, t32 and m22 for system
Fz.

4.4.4 Optimisation of the parameters

Once the solution of the system of equations has been expressed in terms of the parameters

˜
Uij,

˜
Vij, λx and λy (and possibly

˜
Wrs, H0 andM0 in special cases), the last step of the method

consists in choosing those values such that a certain cost function is minimised under the
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constraint that the admissibility conditions are satisfied. Here we distinguish between the
two problems P1 and P2 and we refer to the case of generically oriented joints since the
extension of the procedure to one of the special cases illustrated above is straightforward.

P1: analysis with only vertical loads

For problem P1 we have λx = 0 and λy = 0 and, as anticipated in the previous section,
the safety level assessment is performed by maximising the geometric safety factor. To this
aim, one searches for the minimum thickness and thus for the minimum eccentricity of the
internal actions. However, setting the absolute value of the maximum eccentricity as the
cost function would lead to a nonlinear optimisation problem with respect to the parameters
of the series. For this reason, a procedure that searches for the minimum thickness of the
dome iteratively is adopted. The strategy is as follows:

1. We start by defining a suitable linear cost function;

2. We solve a convex semidefinite optimisation problem;

3. If an admissible solution is found, the thickness is reduced and the procedure is iterated
from point 1).

For the choice of the linear cost function, it is interesting to notice that there is no need for a
specific choice as long as it is linear in the coefficients. Indeed, the interest is only in checking
for the existence of a feasible solution, no matter which. Having said this, two choices appear
natural though: minimise or maximise the sum of the meridian forces evaluated at the base
of the dome, as this is related to the overall thrust of the dome.

In this way, the solution consists in solving a series of convex optimisation problems
for which fast and reliable minimisation routines exist. Although for every material model,
M1, M2, M3 and M4, a specific convex optimisation problem could be set up, we will re-
fer exclusively to the M1 model (satisfying Heyman’s hypotheses). This is necessary for
problem P1, as the geometrical safety factor finds its justification only within these as-
sumptions. For M1, the optimisation problem is semidefinite, as the constraints are those
on the eccentricity, given by equation (3.210). In particular, for the applications we made
use of the SemidefiniteOptimization routine, made available by Wolfram Mathematica R©,
that implements the DSDP algorithm. The DSDP software is a free open source imple-
mentation of an interior-point method for semidefinite programming. It provides primal
and dual solutions, exploits low-rank structure and sparsity in the data, and has relatively
low memory requirements for an interior-point method. It allows feasible and infeasible
starting points and provides approximate certificates of infeasibility when no feasible so-
lution exists. The dual-scaling algorithm implemented in this package has a convergence
proof and worst-case polynomial complexity under mild assumptions on the data (from
https://www.mcs.anl.gov/hs/software/DSDP/).

The minimisation problem can be stated as

min
˜
U ,

˜
V
{l(

˜
U ,

˜
V )},

s.t. h
˜
N +

˜
M ∈ Sym−

h
˜
N −

˜
M ∈ Sym−,

(4.73)

113

https://www.mcs.anl.gov/hs/software/DSDP/


CHAPTER 4. STATICALLY ADMISSIBLE SHELL INTERNAL FORCES FOR
SAFETY ASSESSMENT OF MASONRY DOMES

where
˜
N and

˜
M denote the matrices of the physical components of the membrane force

tensor N and the moment tensor M respectively, given in terms of the contravariant com-
ponents, by

t〈αβ〉 = tαβ
√
aαα
√
aββ, t〈3α〉 = t3α

√
aαα, m〈αβ〉 = mαβ√aαα

√
aββ, (4.74)

l(
˜
U ,

˜
V ) can be any linear function of the parameters and where the constraints on the

eccentricity are convex cones. It is again stressed the fact that, in order to find the minimum
thickness required to evaluate the geometrical safety factor, only the constraints of the
optimisation problem matter, so the only thing one should check is the feasibility, provided
that the objective function is a linear one. The optimisation problem has to be discretised
in a finite subset of points of the domain. To this end, another grid is adopted where
the constraint conditions are imposed. However, given the regularity of the solution, the
optimised generalised force field satisfying the constraints on the grid will turn out to be
admissible in every point of the domain, as for the case studies shown in the next chapter.

P2: analysis with both vertical and horizontal loads

For problem P2, since the lateral load multipliers λx and λy are related by the direction of
the seismic action, one can express them as a function of a single lateral load multiplier once
a particular direction has been chosen. With reference to the Cartesian coordinate system,
let’s denote by

˜
k = {cos β, sin β}T the column vector identifying the plan direction of the

horizontal action, where β is the angle between x1 and the direction of the load. Thus

λx = λ cos β, λy = λ sin β. (4.75)

Since the goal is to find the maximum horizontal load that can act on the dome, once the
direction is identified, the following minimisation problem for M1 is set

min
λ,

˜
U ,

˜
V
{−λ},

s.t. h
˜
N +

˜
M ∈ Sym−

h
˜
N −

˜
M ∈ Sym−,

(4.76)

while for M2, M3 and M4 one need to add further constraints2. Another way to proceed
is to always refer to the M1 model in the optimisation problem and verify a posteriori of
the analysis whether the generalised force field identified also satisfies the hypotheses of the
other material models. If that’s the case, one can assert, by virtue of the static theorem of
limit analysis, that the generalised force field is statically admissible even for the M2, M3
and/or M4 material. The analysis has to be repeated, in general, for every relevant direction
of the horizontal actions.

2Since the constraint on the limited shear strength is a convex cone, the routine to be used in that case
is the ConicOptimization, made available by Wolfram Mathematica R©. In the case in which also the limited
compressive strength is taken into account, the problem is generally convex and the Convex Optimization
routine has to be used in Wolfram Mathematica R©.

114



4.5. SUMMARY AND CONCLUSIVE REMARKS

4.5 Summary and conclusive remarks
In this chapter a method for the stability assessment of masonry domes, which is based on
the static theorem of limit analysis and makes use of the thin shell model is presented. The
method searches for the equilibrium state that maximises the safety level within the set of
statically admissible internal forces. The strategy adopted is very simple and it is borrowed
from the well-known flexibility method used in the mechanics of beams. A suitable number
of redundant internal forces is selected. All the internal force components are expressed
in terms of a given set of basis functions, chosen among the trigonometric functions. The
linear system of equilibrium equations is solved by keeping the redundant components as free
parameters. A constrained optimisation problem is solved that searches for the minimum
of a suitable cost function related to the safety level. The independent variables of the
optimisation problem are the coefficients of the linear combination of known basis functions
used for the redundant internal force components. The solution is pursued numerically by
two different solution procedures. In the first one, the finite difference method is used; the
other makes use of the collocation method. The optimisation problem is tackled by defining
a suitable linear cost function and ending with a convex semidefinite optimisation problem.
In the case vertical loads only are acting an expressly developed iterative method searches
for the minimum thickness and thus for the minimum eccentricity of the internal actions. On
the contrary, when also horizontal loads are present the optimisation is aimed at finding the
maximum horizontal loads that can act on the dome, once the load direction is identified.

Although the application intended for this technique refers mainly to the safety level
assessment of masonry domes and searches for the ‘best’ generalised force field in the sense
of geometrical safety factor or greatest lateral load multipliers, it can possibly be exploited
in several ways. For example, by playing with the constraints of the optimisation problem,
one could search for generalised force fields having different features. One application would
be, for example, to look for generalised force fields that satisfy conditions that account for
the real cracking pattern in an existing dome.
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Chapter 5

Case studies

In this chapter, the application of the Statically Admissible Shell Forces (SASF) analysis
technique, described in Chapter 4, is illustrated with reference to a couple of case studies.
The first case study is the spherical dome with an oculus on top. The second case study is
the dome of Pisa Cathedral, a dome with a peculiar oval plan and ogival profile. The safety
of the dome is assessed with and without horizontal loads and the influence of different
material hypotheses on the results obtained for the case of the dome of Pisa Cathedral is
also investigated.

5.1 Spherical dome with top opening
This section addresses the case of a spherical dome having a middle surface of radiusR = 10 m
and a constant thickness 2h = 1 m. The dome has a top opening whose radius is equal to
r = 1.5 m provided with a reinforcing ring. The dome is considered to be made of bricks with
joints orthogonal to the middle surface of the shell. The parametric equations describing the
middle surface of the dome are given in cylindrical coordinates, with the function describing
the surface being (the dome is centred in the origin of the reference system)

h(α, z) =
√
R2 − z2, (5.1)

with 0 ≤ α ≤ 2π, z0 = 0 m and z1 =
√
R2 − r2.

As shown in Chapter 4, for spherical geometry with normal joints, since the equilibrium
equation (4.4)6 is an identity, the procedure involves the identification of three redundant
force components instead of two: t11, t31 and m11.

5.1.1 Geometrical safety factor for vertical loads: minimum thick-
ness

The first analyses are carried out considering the dome subjected only to vertical loads, as
shown in Figure 5.1. For this problem, termed P1, the goal is to find the maximum GSF by
searching for the minimum admissible thickness of the dome. The analyses are performed
by minimising the horizontal overall thrust at the base of the dome for different thickness
values. The minimum thickness for which a feasible solution of the optimisation problem
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exists is the admissible thickness. As already specified, the M1 model is adopted for all the
analyses involving only vertical loads.

Figure 5.1: Scheme of the mechanical problem: spherical dome under vertical loads.

Convergence analysis

The analyses are carried out for different numbers of basis functions in order to check the
convergence of the method. As shown in Figure 5.2, by increasing the number of basis
functions the maximum of the absolute value of the eccentricity decreases as expected, while
the time taken by the optimisation routine increases. The solution described in the following
corresponds to the far-right point with 36 basis functions.

Figure 5.2: Convergence analysis: number of basis functions vs maximum eccen-
tricity (in absolute value).

The optimised generalised internal force field

The generalised internal force field found by the method is described by analytical expressions
and can be thus evaluated everywhere in the domain. Given the symmetry of the problem
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the search for the optimal force field has been performed by setting n = 0, thus forcing
the axial symmetry around x3. The solution shown in the following has been obtained by
setting m = 8. Moreover, also the reactions provided by the reinforcing ring, H0 and M0

have been chosen by the algorithm. Then, the minimisation problem involved optimising 17
basis functions for each redundant component and two boundary forces, resulting in a total
of 36 coefficients. The optimisation grid has 20 × 40 equally spaced points. The optimal
values of the parameters which are different from zero (17 coefficient for t〈11〉) are shown in
Table 5.1. The transverse hoop shear force turns out to be null for the optimal solution.
The optimal values for the boundary coefficient are H0 = 500.000 and M0 = −10.686.

U(1,1) = 0.000 U(1,2) = −130.047 U(1,3) = −1312.980 U(1,4) = 547.740
U(1,5) = 744.458 U(1,6) = −296.0.35 U(1,7) = −105.008 U(1,8) = 31.674
U(1,9) = 1.815 U(1,10) = 886.932 U(1,11) = −392.724 U(1,12) = −1178.500
U(1,13) = 486.287 U(1,14) = 336.803 U(1,15) = −122.496 U(1,16) = −20.273
U(1,17) = 3.932

Table 5.1: Spherical dome under vertical loads: optimal values of the coefficients.

The optimisation algorithm takes around 10 seconds to run on a MacBook Pro 16” 2019
with an Intel Core i9 2,3 GHz processor and 32 GB RAM. The generalised internal force
field components different from zero are shown in Figure 5.3. A vertical section of the force
fields diagrams is shown in Figure 5.4.

Admissibility conditions: eccentricity and principal membrane forces

To check the admissibility of the generalised internal force field, as anticipated in Chapter
4, a dense mesh of ncheckα ×ncheckz is adopted, with ncheckα = 1080 and ncheckz = 330, for a total
of 356400 points. In this way, the maximum distance between two points is around 6 cm in
the circumferential direction and around 3 cm in the meridian direction. These distances are
of the same order as the average bricks’ dimensions and are assumed to be adequate for the
case at hand. Thus, in the following, the expression ‘everywhere in the domain’ means in
each of the 356400 points of the ‘check grid’.

The maximum of the absolute value of the eccentricity, which is linked to the geometric
safety factor, is 23.5 cm. In other words, the dome would have been stable even with a
thickness of only 47 cm, resulting in a geometric safety factor of 2.13 since the thickness
of the dome is 1 m. Although the case of the closed sphere is different from this one, the
present result is not far from the minimum theoretical thickness found by Heyman, and equal
to hmin = 0.042R. The maximum modulus eccentricity surface is shown in Figure 5.5. The
principal membrane forces are, as expected, everywhere compressive as shown in Figure 5.6,
where f 〈1〉 and f 〈2〉 denote, respectively, the maximum and the minimum principal force.

It should be noted that the solution found satisfies the zero tensile strength assumption
along all directions passing through a generic point on the middle surface. Therefore, as
this solution totally ignores possible beneficial effects due to the finite tensile strength of the
bricks or effects related to texture, it should be recognised as fairly conservative.
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Figure 5.3: Spherical dome under vertical loads: optimal generalised force compo-
nents.
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Figure 5.4: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 0◦ (r = x1).

Figure 5.5: Maximum modulus eccentricity surface on a vertical section.

Although the optimisation procedure imposes the admissibility conditions on a finite set
of points it is a remarkable feature of the method to return a solution that is everywhere
compatible with the material constraints. In this regard, a remark on the admissibility
condition is in order. In the context of standard Heyman hypotheses, the solution found by
the optimisation method is considered statically admissible regardless of the magnitude of
compressive and shear stresses. From a mechanical standpoint, one wants to check if the
maximum compressive and shear stresses are compatible with those commonly admissible
for the masonry material. The compressive stresses are evaluated by assuming a stress block
distribution within the thickness of the shell. The maximum stress resulted to be equal to
3.3 MPa a value that could be compatible with a good masonry. Moreover, the maximum
stress is located around the top oculus since a high horizontal thrust is required at the crown.
However, the maximum stress decreases rapidly resulting less than 1.0 MPa from about 80 cm
below the top opening. The maximum friction coefficient required for equilibrium is around
0.26, a value that is also fully compatible with the friction coefficient of historical masonry.
It is therefore observed that the solution found adopting the M1 model is also statically
admissible for the other material models described in Chapter 3.

Equilibrium error evaluation

The error in the optimal solution of the equilibrium problem can be easily evaluated ev-
erywhere in the domain since the solution is explicit. By writing the equilibrium system of

121



CHAPTER 5. CASE STUDIES

Figure 5.6: Principal membrane forces (for vertical loads).
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equations in dimensionless form, the loading vector
˜
l = (b̃1, b̃2, b̃3, c̃1, c̃2, c̃3) is defined, where

b̃k, c̃k are the dimensionless components corresponding to b1, b2, b3, c1, c2, c3 (in the problem
at hand c̃1 = c̃2 = c̃3 = 0). The error is estimated by computing the residuals ri of the six
dimensionless equilibrium equations and comparing them with the norm of the load vector

˜
l, that is

erri =
ri

‖
˜
l‖
, i = 1, . . . , 6. (5.2)

The residuals ri can be interpreted as the components of fictitious load distribution to be
added to the real one in order to exactly fulfil the local equilibrium equations.

The highest error is located close to the free boundary of the domain and it is equal to
around 2% in a narrow region around the top of the dome (red region in Figure 5.7). The
maximum error on each component in the green region on Figure 5.7 is less than 1%.

Figure 5.7: Maximum errors in the equilibrium equations.

5.1.2 Maximum lateral load multiplier for horizontal loads

The second set of analyses is carried out considering the dome subjected both to vertical and
horizontal loads, as shown in Figure 5.8. In this kind of problem, termed P2, the purpose is
to find the maximum lateral load multiplier. The analyses are carried out by maximising λ
adopting the M1 model.

Convergence analysis

The analyses are carried out for different numbers of basis functions in order to check the
convergence of the method. As shown in Figure 5.9, by increasing the number of basis
functions the maximum lateral load multiplier increases as expected, while the time taken by
the optimisation routine also increases. The solution described in the following corresponds
to 35 basis functions, which represents a good compromise between accuracy achieved and
time taken.
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Figure 5.8: Scheme of the mechanical problem: spherical dome under vertical and
horizontal loads.

Figure 5.9: Convergence analysis: number of basis functions vs maximum lateral
load multiplier.
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The optimised generalised internal force field

The solution obtained by setting n = 2 and m = 3 for t11, t31 = 0 and m11 = 0 is shown
here because it is more regular compared to solutions in which also t31 and m11 have been
optimised and at the same time it manages to reach a fairly high maximum load multiplier. In
solving problem P2, the thickness of the dome is set to the real thickness in order to maximise
the lateral load multiplier. The optimisation grid has 20 × 40 equally spaced points. The
optimal values of the parameters which are different from zero (35 coefficient for t〈11〉) are
shown in Table 5.2. The optimal values for the boundary coefficient are H0 = 119.510 and
M0 = −6.784, while the maximum lateral load multiplier turns out to be λmax = 0.166.

U(1,1) = −39.411 U(1,2) = 61.369 U(1,3) = −6.961 U(1,4) = −6.107
U(1,5) = 7.376 U(1,6) = 28.303 U(1,7) = −2.291 U(2,1) = −0.022
U(2,2) = 0.035 U(2,3) = 0.004 U(2,4) = −0.004 U(2,5) = −0.004
U(2,6) = 0.017 U(2,7) = 0.001 U(3,1) = 0.005 U(3,2) = −0.008
U(3,3) = −0.003 U(3,4) = 0.001 U(3,5) = 0.003 U(3,6) = −0.004
U(3,7) = −0.001 U(4,1) = 26.716 U(4,2) = −42.205 U(4,3) = 2.499
U(4,4) = 4.840 U(4,5) = −2.357 U(4,6) = −20.482 U(4,7) = 0.878
U(5,1) = −12.010 U(5,2) = 19.100 U(5,3) = −1.423 U(5,4) = −2.266
U(5,5) = 1.344 U(5,6) = 9.336 U(5,7) = −0.486

Table 5.2: Spherical dome under vertical and horizontal loads: optimal values of the coeffi-
cients.

The membrane force components are shown in Figure 5.10, the transverse meridian shear
and meridian bending moment are shown in Figure 5.11, while the other generalised force
components are zero. Two vertical sections of the internal force components diagrams are also
shown in figure Figure 5.12 and Figure 5.13. The distributions of internal forces at z = 0 m
and at z = 5 m are also shown in the diagrams plotted in Figure 5.14 and Figure 5.15
respectively.

Admissibility conditions: eccentricity and principal membrane forces

The diagram of the maximum modulus eccentricity surface on two vertical sections, on
α = 0◦ and α = 90◦, respectively, are shown in Figure 5.16. Even for this load condition, as
expected, the principal membrane forces are compressive, as shown in Figure 5.17. It must
be said that, for the solution found, the maximum compressive stress would be excessive
from a physical point of view, as it turns out to be σmin = −126 MPa. Also, the friction
coefficient required would be greater than one. However, the optimal solution found is
perfectly admissible according to the material model M1. A deepening on this aspect is
carried out for the case of the dome of Pisa cathedral.

Equilibrium error evaluation

The error in the optimal solution of the equilibrium problem is evaluated in the same way
as for vertical loads. In the green region in Figure 5.18, the maximum error is less than 1%.
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Figure 5.10: Spherical dome under vertical and horizontal loads: optimal membrane
force components.
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Figure 5.11: Spherical dome under vertical and horizontal loads: optimal meridian
transverse shear and bending moment.

Figure 5.12: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 0◦ (r = x1).
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Figure 5.13: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 180◦ (r = −x1).

Figure 5.14: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 0 m.

Figure 5.15: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 5 m.
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Figure 5.16: Maximum modulus eccentricity surface on two vertical sections at
α = 0◦ (left) and α = 90◦ (right).

Figure 5.17: Principal membrane forces (for vertical and horizontal loads).
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Close to the top oculus, in the yellow region, the maximum error increases up to a maximum
of 10%. Along the edge the error is zero, strictly speaking, as the boundary conditions
are exactly fulfilled. Nevertheless, since the equilibrium differential equations must hold at
a distance arbitrarily close to the edge, the local error made on the equilibrium differential
equations has been checked also along the edge where it reaches some 39% in a narrow region
at the top of the dome (red region in Figure 5.18). In this regard, it is worth observing that
the additional load that should be applied along the top edge to restore equilibrium has a
negligible resultant, less than 0.6% of the total horizontal load.

Figure 5.18: Maximum errors in the equilibrium equations.

5.2 The dome of Pisa Cathedral
The dome of Pisa Cathedral is an extremely interesting construction from many points of
view. In this section, only the results of the analysis are presented, as the case study has
already been described in Chapter 2.

By adopting the parametric representation in cylindrical coordinates (4.35), the middle
surface of the dome is described by the function

h(α, z) =

(
d+
√
e2 − z2

) (
f +

√
g2 − z2

)
√(

d+
√
e2 − z2

)2
sin2(α) +

(
f +

√
g2 − z2

)2

cos2(α)

, (5.3)

being d = −5.57 m, e = 13.99 m, f = −8.11 m, g = 15.43 m dimensional constants depending
on the shape of the surface.

5.2.1 Geometrical safety factor for vertical loads: minimum thick-
ness

The first analyses are carried out considering the dome subjected only to vertical loads, as
shown in Figure 5.19. For this problem, termed P1, the goal is to find the maximum GSF
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Figure 5.19: Scheme of the mechanical problem: dome of Pisa Cathedral under
vertical loads.

by searching for the minimum admissible thickness of the dome. The analyses are performed
by minimising the horizontal overall thrust at the base of the dome for different thickness
values. The minimum thickness for which a feasible solution of the optimisation problem
exists is the admissible thickness. As already specified, the M1 model is adopted for all the
analyses involving only vertical loads.

Convergence analysis

The analyses are carried out for different numbers of basis functions in order to check the
convergence of the method. As shown in Figure 5.20, by increasing the number of basis
functions the maximum of the absolute value of the eccentricity decreases as expected, while
the time taken by the optimisation routine increases. The solution described in the fol-
lowing corresponds to the far-right point with 65 basis functions, which represents a good
compromise between accuracy achieved and time taken.

Figure 5.20: Convergence analysis: number of basis functions vs maximum eccen-
tricity (in absolute value).
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The optimised generalised internal force field

The solution shown has been obtained by setting n = 2 and m = 6 corresponding to 65 basis
functions for each redundant component and a total of 130 coefficients to be optimised. The
optimisation grid has 20 × 40 equally spaced points. The optimal values of the parameters
which are different from zero (38 in total) are shown in Table 5.3.

U(1,1) = −456, 449 U(1,2) = 794, 745 U(1,3) = −258, 252 U(1,4) = −247, 176
U(1,5) = 109, 704 U(1,6) = 11, 640 U(1,7) = −5, 266 U(1,8) = 185, 639
U(1,9) = 520, 836 U(1,10) = −208, 630 U(1,11) = −76, 700 U(1,12) = 35, 404
U(1,13) = −0, 188 U(5,1) = −288, 897 U(5,2) = 510, 484 U(5,3) = −134, 077
U(5,4) = −176, 973 U(5,5) = 61, 821 U(5,6) = 12, 881 U(5,7) = −3, 502
U(5,8) = 93, 335 U(5,9) = 348, 003 U(5,10) = −112, 196 U(5,11) = −62, 472
U(5,12) = 21, 276 U(5,13) = 0, 875 V(1,2) = 0, 012 V(1,3) = −0, 020
V(1,4) = 0, 020 V(1,5) = −0, 012 V(1,6) = 0, 005 V(1,7) = −0, 001
V(5,2) = −0, 010 V(5,3) = 0, 018 V(5,4) = −0, 021 V(5,5) = 0, 016
V(5,6) = −0, 008 V(5,7) = 0, 002

Table 5.3: Dome of Pisa Cathedral under vertical loads: optimal values of the coefficients.

The optimisation algorithm takes around 40 seconds to run on a MacBook Pro 16” 2019
with an Intel Core i9 2,3 GHz processor and 32 GB RAM. The membrane force components,
the transverse shear components and the moment components are shown in Figure 5.21, Fig-
ure 5.22 and Figure 5.23 respectively. Two vertical sections of the internal force components
diagrams are also shown in Figure 5.24 and Figure 5.25. The distributions of the internal
forces at z = 4 m and at z = 8 m are shown in the diagrams plotted in Figure 5.26 and
Figure 5.27 respectively.

Admissibility conditions: eccentricity and principal membrane forces

To check the admissibility of the generalised internal force field, as anticipated in Chapter
4, a dense mesh of ncheckα × ncheckz , with ncheckα = 720 and ncheckz = 300, for a total of 216000
points, is adopted. In this way, the maximum distance between two points is around 7 cm
in the circumferential direction and around 3 cm in the meridian direction. These distances
are of the same order as the bricks’ dimensions and are assumed to be adequate for the case
at hand. Thus, in the following, the expression ‘everywhere in the domain’ means in each of
the 216000 points of the ‘check grid’.

The maximum of the absolute value of the eccentricity, which is linked to the geometric
safety factor, is 5.5 cm. In other words, the dome would have been stable even with a
thickness of only 11 cm, resulting in a geometric safety factor of 5.45 since the real thickness
of the dome is 60 cm. At the structure’ scale the maximum modulus eccentricity surface and
the middle surface are almost indistinguishable (see Figure 5.28). Comparing these results
with some previous analyses [Aita et al., 2017d], [Bennati et al., 2020], [Barsi et al., 2022],
it is shown how the widening of the equilibrium possibilities given to the structure by the
introduction of the bending moments could make a huge difference in the evaluation of its
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Figure 5.21: Dome of Pisa Cathedral under vertical loads: optimal membrane force
components.
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Figure 5.22: Dome of Pisa Cathedral under vertical loads: optimal transverse shear
components.
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Figure 5.23: Dome of Pisa Cathedral under vertical loads: optimal moment com-
ponents.
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Figure 5.24: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 0◦ (r = x1).

Figure 5.25: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 90◦ (r = x2).

Figure 5.26: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 4 m.

136



5.2. THE DOME OF PISA CATHEDRAL

Figure 5.27: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 8 m.

stability. The principal membrane forces are, as expected, everywhere compressive as shown

Figure 5.28: Maximum modulus eccentricity surface on two vertical sections at
α = 0◦ (right) and α = 90◦ (left).

in Figure 5.29, where f 〈1〉 and f 〈2〉 denote, respectively, the maximum and the minimum
principal force.

For the dome of Pisa Cathedral, the maximum stress is equal to 1.3 MPa a value that is
fully compatible with a common masonry. This is due to the fact that the distribution of
the internal forces is characterised by a very low eccentricity and thus the shell forces are
distributed on almost the whole thickness. The maximum friction coefficient required for
equilibrium is around 0.36, a value that is also fully compatible with the friction coefficient of
historical masonry, except for the boundary region, where a value of around 0.86 is required.
A remark concerning the friction limits is in order here. In the region of the introduction
of the external boundary loads (i.e. boundary conditions) the friction coefficient required is
given simply by the geometry of the dome and the direction of the external load: if the load
is in the friction cone then the shear resistance is sufficient, otherwise it is not.

The simple adoption of the point-wise Coulomb friction law could lead to the erroneous
conclusion that the dome is not stable, while a failure due to shear near the oculus is never
observed in real domes, even when the load is introduced outside the friction cone. This is due
essentially to the incompatibility of a possible local collapse mechanism which would require
a sliding through the interior of the dome that is prevented by the orientation of the joints
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Figure 5.29: Principal membrane forces (for vertical loads).

(that for this reason cannot be vertical) and the consequent development of circumferential
compressive forces in the upper ring. Thus, the simple introduction of the Coulomb friction
law in the admissibility conditions requires some sort of consciousness to avoid considering
ordinary situations like this as potentially unsafe. However, when the shear collapse is due
to horizontal forces, the preceding considerations should be carefully reconsidered.

Equilibrium error evaluation

The error in the optimal solution of the equilibrium problem is evaluated as for the case of
the spherical dome. The highest error is located close to the free boundary of the domain
and it is equal to around 9% in a narrow region around the top of the dome (red region in
Figure 5.30). This is likely due to a boundary layer effect in the numerical solution of the
PDAE, a topic that will deserve further investigation. However, the error is very contained
for our purpose given also the uncertainties in the evaluation of the load itself. Moreover, the
error decreases very quickly going away from the free edge. To give an idea, the maximum
error on each component in the range 3 m ≤ z ≤ 11.87 m is less than 1% (the green region
on Figure 5.30). In addition, the global equilibrium of each ring delimited by two parallels
is satisfied exactly except for truncation errors.
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Figure 5.30: Maximum errors in the equilibrium equations.

The effect of a strengthening ring

The eccentricity diagrams that are shown in Figure 5.28 highlight that the highest values
of the eccentricity are near the top opening, and this is due to the introduction of the
boundary load as a pure vertical loading. As already said, if a strengthening ring is present
around the opening or the dome can exchange internal forces with the overlying structures,
it is possible for a horizontal thrust H0 to develop as a boundary load. This is also well
explained by Durand-Claye in [Durand-Claye, 1880], as shown in Figure 5.31. The effect of

Figure 5.31: Horizontal component of boundary load due to what Durand-Claye
called anneau supérieure, i.e. the strengthening ring (from [Durand-Claye, 1880],
colours added to original).

such horizontal thrust is beneficial for the dome, as the eccentricity diagram may follow more
closely the middle surface of the dome. By setting the horizontal thrust H0 such that the
resultant of the boundary load is tangent to the middle surface near the oculus, the analysis
yields a solution that is better than the previous one in terms of the maximum eccentricity,
as shown in Figure 5.32. In this case, the maximum of the absolute value of the eccentricity
is only 3.3 cm and thus the minimum thickness is just 6.6 cm resulting in a GSF equal to
9.1. Obviously, this is an ideal situation in which the thrust assumes an optimal value, but
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Figure 5.32: Differences between the eccentricity diagrams with and without hori-
zontal thrust.

it shows the beneficial effect that a strengthening ring may have on the safety of the dome.

5.2.2 Maximum lateral load multiplier for horizontal loads

The second set of analyses is carried out considering the dome subjected both to vertical and
horizontal loads, as shown in Figure 5.33. The horizontal loads act along the r axis, rotated

Figure 5.33: Scheme of the mechanical problem: dome of Pisa Cathedral under
vertical and horizontal loads.

by an angle β with respect to the x1 axis. The analyses are carried out by maximising λ
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adopting, as a first hypothesis, the M1 model. Then, some considerations regarding the
influence of a limited compressive and shear strength are carried out.

Convergence analysis

Also for the case of horizontal loads, the analyses are carried out for different numbers of
basis functions in order to check the convergence of the method. As shown in Figure 5.34,
by increasing the number of basis functions the maximum lateral load multiplier increases as
expected, but with a slow trend, while the time taken by the optimisation routine increases
more sensibly. The solution described in the following corresponds to the point with 45 basis
functions, which represents a good compromise between accuracy achieved and time taken.

Figure 5.34: Convergence analysis: number of basis functions vs maximum lateral
load multiplier.

The optimised generalised internal force field

The solution has been obtained by setting n = 2 and m = 4 for t11 and setting m11 = 0.
This is due to the fact that the solution is more and more irregular as the basis functions
for the hoop bending moment increase. In solving problem P2, the thickness of the dome
is set to the real thickness in order to maximise the lateral load multiplier. The problem
involves 45 basis functions for the normal hoop force redundant component and thus a total
of 45 coefficients to be optimised. The optimisation grid has 20× 40 equally spaced points.
The optimal values of the parameters which are different from zero (45 in total) are shown
in Table 5.4 and the optimal value of the lateral load multiplier is λmax = 0.360.

Since the dome is not axisymmetric, the maximum lateral load multiplier changes with
the direction of the horizontal actions, as shown in Figure 5.35. The solution in the case
β = 0◦ (horizontal actions along the x1 direction), for which the maximum lateral load
multiplier is λmax = 0.360, is shown in the following. Concerning these results, it should be
noticed that, even in the most restrictive case, where the horizontal loads are oriented in the
weaker direction of the dome, the maximum lateral load multiplier is λmax = 0.245, a value
that is likely larger than the maximum real one of the earthquakes that could have interested
the structure since its building in the 12th century. This may be indicative of how reliance
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U(1,1) = −99, 515 U(1,2) = 164, 490 U(1,3) = −10, 898 U(1,4) = −33, 185
U(1,5) = 1, 290 U(1,6) = 10, 252 U(1,7) = 92, 953 U(1,8) = −5, 556
U(1,9) = −5, 868 U(2,1) = 0, 012 U(2,2) = −0, 031 U(2,3) = −0, 065
U(2,4) = 0, 007 U(2,5) = 0, 009 U(2,6) = 0, 054 U(2,7) = −0, 018
U(2,8) = −0, 037 U(2,9) = 0, 001 U(3,1) = −0, 161 U(3,2) = 0, 272
U(3,3) = 0, 032 U(3,4) = −0, 059 U(3,5) = −0, 004 U(3,6) = −0, 027
U(3,7) = 0, 159 U(3,8) = 0, 018 U(3,9) = −0, 011 U(4,1) = 100, 526
U(4,2) = −168, 360 U(4,3) = 1, 736 U(4,4) = 36, 992 U(4,5) = −0, 539
U(4,6) = −1, 615 U(4,7) = −98, 412 U(4,8) = 1, 417 U(4,9) = 6, 854
U(5,1) = −49, 317 U(5,2) = 83, 627 U(5,3) = −2, 240 U(5,4) = −18, 613
U(5,5) = 0, 571 U(5,6) = 1, 527 U(5,7) = 49, 409 U(5,8) = −1, 820
U(5,9) = −3, 334

Table 5.4: Dome of Pisa Cathedral under vertical and horizontal loads: optimal values of
the coefficients.

Figure 5.35: Maximum lateral load multiplier as a function of β.
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on the shell resources of the masonry dome is essential when particular types of loads act on
the structure.

The membrane force components, the transverse shear components and the moment
components are shown in Figure 5.36, Figure 5.37 and Figure 5.38 respectively. Two vertical
sections of the force fields diagrams are also shown in Figure 5.39 and Figure 5.40. The
distributions of the internal forces at z = 4 m and at z = 8 m are shown in the diagrams
plotted in Figure 5.41 and Figure 5.42 respectively.

Figure 5.36: Dome of Pisa Cathedral under vertical and horizontal loads: optimal
membrane force components.
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Figure 5.37: Dome of Pisa Cathedral under vertical and horizontal loads: optimal
transverse shear components.
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Figure 5.38: Dome of Pisa Cathedral under vertical and horizontal loads: optimal
moment components.

Figure 5.39: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 0◦ (r = x1).
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Figure 5.40: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on the vertical section α = 180◦ (r = −x1).

Figure 5.41: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 4 m.

Figure 5.42: Membrane normal forces (left), meridian transverse shear and meridian
bending moment (right) on z = 8 m.
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Admissibility conditions: eccentricity and principal membrane forces

The diagram of the maximum modulus eccentricity surface on two vertical sections on major
and minor axes is shown in Figure 5.43. Even for this load condition, as expected, the

Figure 5.43: Maximum modulus eccentricity surface on two vertical sections at
α = 0◦ (left) and α = 90◦ (right).

principal membrane forces are compressive, as shown in Figure 5.44.

Figure 5.44: Principal membrane forces (for vertical and horizontal loads).

Equilibrium error evaluation

The error in the optimal solution of the equilibrium problem for β = 0◦ and M1 model is
evaluated in the same way for vertical loads. The highest error is located close to the free
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boundaries of the domain and at the base and it is equal to 7% in a narrow region around the
top of the dome and at the base (red regions in Figure 5.45). Moreover, the error decreases
very quickly going away from the red regions. To give an idea, the maximum error on each
component is less than 1% in the green region on Figure 5.45.

Figure 5.45: Maximum errors in the equilibrium equations.

Influence of a limited compressive strength

In case of horizontal loads, the optimal solution found by adopting the material model M1
is perfectly admissible. However, from a physical point of view, the maximum compressive
stress turns out to be greater than 140 MPa which is out of reach of any masonry material. For
this reason, a solution for which the maximum stress is lower than a certain value is sought.
To this end, the optimisation problem (4.73) is slightly modified by adding a constraint
on the maximum compressive force (adopting the M3 model). In particular, t〈11〉 ≥ t̂〈11〉

is set, where t̂〈11〉 is a (negative) limit value on the hoop normal compressive force. By
performing the analysis for different values of t̂〈11〉 the maximum stress is reduced as shown
in Table 5.5. It is observed that in the range (−50 kN m−1,−30 kN m−1) the maximum lateral

t̂〈11〉 σmin λmax

−300 kN m−1 −32 MPa 0,360
−100 kN m−1 −11 MPa 0,355
−50 kN m−1 −5 MPa 0,345
−30 kN m−1 −3 MPa 0,110

Table 5.5: Maximum stress as a function of t̂〈11〉 with h = 30 cm.

load multiplier decreases rapidly while the maximum stress decreases more slowly. This may
be indicative of the fact that a compressive strength between 3 and 5 MPa may be required,
at least locally, in order to make equilibrium to the external loads and is, therefore, a sign
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that the actual compressive strength, which is not an issue in the case of vertical loads, may
be important when horizontal loads act on the dome.

Influence of the shear resistance

The shear strength for the generalised internal force field illustrated before is such that the
required friction coefficient would be larger than unity. To evaluate the influence of the shear
strength on the maximum lateral load multiplier, the M2 model is adopted to carry out the
analysis. Based on the considerations on the shear strength in Chapter 3, the shear failure
criterion is required to be satisfied only along the meridian direction with zero cohesion. For
the case in which horizontal loads are directed along the x1 axis, i.e. β = 0◦, Table 5.6 shows
the maximum lateral load multiplier as a function of the friction coefficient. As it is seen,

φ 25◦ 30◦ 35◦ 40◦ 45◦

µ 0,47 0,58 0,70 0,84 1,00
λmax 0,100 0,114 0,130 0,148 0,168

Table 5.6: Maximum lateral load multiplier as a function of the friction angle for β = 0◦.

the maximum lateral load multiplier in case the shear strength is bounded is significantly
lower than the one that has been found with the M1 model.

In case the horizontal actions act along the x2 axis, i.e. β = 90◦, and assuming the
friction angle equal to φ = 35◦, the maximum lateral load multiplier is λmax = 0.120, which
is close to the case of β = 0◦. This shows that when the shear resistance is the condition
that leads to collapse the lateral load multiplier is little influenced by the direction of the
horizontal loads despite the fact that the dome’ shape is not axisymmetric.

Statically admissible generalised internal force field for limited compressive and
shear strength

Assuming the material has bounded compressive and shear strength (that is, by adopting the
M4 model), one is interested in finding the maximum lateral load multiplier corresponding
to a stable condition. Assuming the compressive strength equal to fminc = −6 MPa and the
friction angle equal to φ = 35◦, the analyses are carried out for the weaker direction of the
horizontal loads, β = 90◦. The maximum lateral load multiplier satisfying all constraints is
λmax = 0.120 with the maximum compressive stress equal to |σmin| = 5.5 MPa. It is seen
how the maximum lateral load multiplier is equal to the case of M2 model. This multiplier,
although much less than the one found neglecting both compressive and shear strength, is
more in line with the maximum expected peak ground acceleration in the Pisa area, and,
despite all the restrictions on the material, it is higher by more than 50 % of the maximum
found with TNA and TSA, which instead are carried out assuming Heyman’s hypotheses.

149



CHAPTER 5. CASE STUDIES

5.3 Summary and conclusive remarks
The SASF method, introduced in Chapter 4, has been employed for the analysis of two case
studies: the spherical dome and the dome of Pisa Cathedral. The method has proven able
to provide useful estimations about the dome’s safety level under different hypotheses on
the material. Firstly, the analyses have been carried out with and without horizontal loads,
assuming the M1 model. Then, some considerations on Heyman’s hypotheses have been
added for the case of the dome of Pisa Cathedral. It is recognised that the results obtained
have consistently improved with respect to those obtained with both the application of TNA
and TSA. This is likely due to the fact that the method removes important limitations of both
techniques, considering all the resources of the shell for making equilibrium to the external
loads. Moreover, also the evaluation of the influence of different hypotheses on the material
resistance has been taken into account, highlighting that compressive and shear strength
could both play a crucial role in the evaluation of the safety level of a dome subjected to
horizontal actions.
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Conclusions

The present thesis addressed the safety assessment of masonry domes with respect to possible
collapse conditions. The theoretical and numerical studies mainly focused on the investiga-
tion of analysis methods operating within the framework of limit analysis. The domes were
considered loaded upon by both vertical and horizontal force distributions: the former ac-
counted for gravitational loads, while the latter were thought as representative in some sense
of the seismic actions. The dome shapes considered in the thesis went far beyond the basic
case in which the dome is shaped like a ‘solid of revolution’. More complex forms were ad-
dressed as, for example, the oval-shaped domes, which required further effort to adapt and
refine the analytical tools and numerical techniques needed for studying their stability.

The thesis refers to the rich and nowadays still active stream of research that has been
developing in Europe over the last three centuries to address and solve the problem of
determining the safety level of masonry domes against possible collapse. In this regard, a
historical review of the approaches used since the 17th century has been conducted, alongside
with a concise survey of the recent literature on the subject. The review culminated with
Jacques Heyman’s seminal contribution by showing how most historical approaches find their
theoretical justification in the context of the modern formulation of limit analysis and how,
for this reason, they could be usefully revised and adopted even nowadays.

Two analysis methods drawn from the literature were critically investigated: the Thrust
Network Analysis and the Thrust Surface Analysis. The two well-established methods, which
are often employed today for the limit analysis of masonry vaulted structures, were presented
along with the mechanical hypotheses they are based on. Since in the literature these two
methods are sometimes thought to have common aspects, a question that arises naturally
is whether the two methods are somehow related and, if so, under what assumptions the
correlation holds. To investigate this issue a detailed comparison between TNA and TSA was
conducted, which represents one of the original parts of the thesis. The analysis confirmed
that the joints between blocks in the TNA must be vertical in order for the two methods to
be theoretically comparable. Under this hypothesis, the relationships linking thrust networks
to thrust surfaces were investigated to check the feasibility in practice of a possible method
combining thrust networks and thrust surfaces.

Starting from a subdivision of the dome into a finite number of the blocks, the results
obtained from the TNA were used to identify a thrust surface. Specifically, the closeness to
the centres of pressure identified by TNA is used as a criterion to select a surface, among
some predetermined classes, that could be thought of as ‘corresponding’ to the original
thrust network. The proposed methodology has been applied to the case in which the dome
of Pisa Cathedral is subjected to vertical loads only. The analyses clearly have shown that
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the closeness of the surface to the centres of pressure doesn’t ensure its admissibility and
that a decisive role is played by the surface’s shape. Furthermore, a comparison of the
equilibrium states defined by the thrust network and the admissible thrust surface that most
closely approximates the centres of pressure showed appreciable differences in the distribution
of internal forces, even though the network and surface are geometrically very close. In
conclusion, the illustrated counterexample seems to raise major doubts about the possibility
of establishing in practice a correspondence between the network and the surface, when
considering the dome as a set of blocks of finite size and thus, that a combined use of the
two techniques is not easily exploitable. However, there remain some aspects that deserve
further investigation. One of them is whether a more refined criterion including, for example,
surface curvatures, can be set up to identify admissible surfaces starting from optimised
thrust networks. Another issue is whether optimised solutions obtained from independent
applications of TNA and TSA could yield closer equilibrium states.

The investigation on TNA and TSA methods was concluded by applying them to the
case in which the dome of Pisa cathedral is subjected to horizontal as well as vertical loads.
The analyses showed that the restrictions imposed on the equilibrium states that can be
explored by these two methods lead to unsatisfactory estimates of the maximum collapse
multiplier. This is the main reason why the rest of the research work presented in this thesis
has been addressed to the development of a new analysis method, able to overcome these
limitations.

The proposed method models the dome as a thin shell and, like TNA and TSA, it is able
to cope with domes having generic shapes, not necessarily axisymmetric. The adoption of a
thin shell model has been accurately motivated and the hypotheses on which the method is
based were highlighted. The classical theory of thin shells has been recalled in detail as well
as the fundamental theorems of limit analysis, which have been further specialised to the case
of shells. Different failure criteria have been considered to evaluate the influence of different
material assumptions on the results. The method searches for an optimal distribution of
internal shell forces to assess the safety of the dome by virtue of the static theorem of limit
analysis. The adopted procedure is inspired by the well-known flexibility method used to
solve statically indeterminate beam systems. The equilibrium problem for a shell, which
is always statically indeterminate, is rendered determinate by choosing a certain number
of redundant force components and expressing them as a series of known functions. The
equilibrium problem for the effective system is solved in terms of the coefficient of the series,
by considering the redundant forces as external loads and by exploiting the linearity of the
system. Three techniques have been employed to solve the equilibrium sub-problems. A
finite-differences scheme has been specifically developed for domes expressed in cylindrical
coordinates. Moreover, by exploiting the symbolic computation capability of Mathematica R©,
the collocation method has also been implemented. Finally, the results obtained have been
compared with the ones obtained by the finite element method. All three methods showed
good agreement in the results. The good convergence properties of the finite difference
scheme and collocation method have been verified. Once the effective system has been solved,
the procedure finds the values of the coefficients of the series by setting up an optimisation
problem, which minimises a certain cost function related to the safety factor.

The method has been applied to two case studies: the dome of Pisa Cathedral and the
spherical dome. The minimum admissible thickness turned out to be as low as 11 cm for the
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dome of Pisa Cathedral in the case it is loaded upon by vertical actions only. Compared to the
dome’s actual thickness of 60 cm, this result yields a lower bound estimate of the geometric
safety factor for vertical loads equal to roughly 5.5. The comparison of this result, with some
previous estimates obtained through the application of the TSA, showed that the change in
the structural scheme has a significant effect on the geometric safety factor, which resulted
more than tripled. It has also been shown that a reinforcing ring placed around the opening
can have a beneficial effect on the safety of the dome. Indeed, assuming a sufficiently high
horizontal thrust at the crown (made possible by assuming a state of uniform compression in
the reinforcing ring), the minimum thickness falls down to 6.6 centimetres, i.e., the surface
of the maximum eccentricities deviates a little more than 3 centimetres from the average
surface. The possibility for the dome to make equilibrium to the vertical loads by membrane
internal forces suggests that the form chosen by the builders of the dome of Pisa cathedral is
particularly suited to cope with gravitational loads and that the master builders of the time
possessed a profound knowledge, resulting from intuition and experience, of the mechanics
of these structures.

In the case of a spherical dome with a top opening subjected to vertical loads, the
minimum thickness was found to be 4.7 % of the radius when the width of the top opening is
1.5 metres. This result is very close to Heyman’s minimum theoretical thickness of 4.2 % of
the radius for the case of a spherical dome with a closed top. Nevertheless, strong differences
are observed between the distribution of the internal forces in the two cases. A first set
of analyses has been carried out under the standard Heyman’s hypotheses for horizontal
loads. The maximum lateral load multiplier for the open spherical dome resulted to be
λmax = 0.166. The maximum collapse multiplier obtained for the dome of Pisa Cathedral
lies within the range λmax = 0.24−0.36, depending on the direction of the loads as the dome
is not axisymmetric.

For the case study of the dome of Pisa Cathedral, a parametric analysis of the maximum
lateral load multiplier was performed by relaxing Heyman’s hypotheses, i.e., by varying the
compressive and shear strength. The results obtained seem to show that it can be indi-
viduated a threshold value for the compressive strength, of the order of common masonry
compressive strength values, above which the horizontal load multiplier is practically unaf-
fected. On the contrary, for compressive strength below the threshold value, an abrupt drop
in the horizontal load multiplier is observed. This finding suggests that when the masonry of
the dome is weak or strongly damaged greater care should be taken in assessing the collapse
of the dome. The maximum collapse multiplier resulted to be considerably affected by the
limited shear strength of the masonry. As a first step towards the definition of a suitable
shear failure criterion, the classical Mohr-Coulomb criterion was adopted along the direc-
tions orthogonal to uninterrupted mortar joints, which for the case study coincided with the
meridians.

The limitation on the shear strength led to a significant decrease in the maximum hor-
izontal multiplier, which turned out to be more sensitive to the friction angle than to the
direction of the external load. In other words, for dominant horizontal actions, it seems that
the shear strength cannot be fully disregarded, at least in some cases, when assessing the
dome collapse. However, the most restrictive collapse multiplier estimate, obtained in the
case both shear and compressive strength are limited, was equal to λmax = 0.120. This value
is about 50 % higher than those obtained with TNA and TSA, performed under the less
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restrictive classical Heyman assumptions.
In conclusion, the methodological choice of modelling the dome as a shell seems to widen

considerably the set of equilibrium configurations that can be effectively exploited for the
safety assessment of the dome by means of the static theorem of limit analysis. The pos-
sibilities offered by the suitable combination of shell membrane and bending forces enable
yielding a consistent increase in the safety factors compared to previous estimates determined
by established methods working within the framework of limit analysis.

The expressly developed method can be applied to domes and vaults of arbitrary shape
and general load distributions. The results obtained represent the first validation step of
the method but are by no means ultimate. Further work will be devoted to improving the
method by refining the optimisation procedure that searches for the maximum values of the
safety factor. Moreover, the next steps of the research will address a thorough investigation
of the safety assessment of domes under horizontal loads, as well as a comparison between
theoretical and experimental results.
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