
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Assessment of Frailty
using a Wrist-worn Device

Domenico Minici

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing



PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Assessment of Frailty
using a Wrist-worn Device

Domenico Minici

Advisors:

Prof. Marco Avvenuti
Dr. Guglielmo Cola

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Jeff D. Williamson,Wake Forest University
Dr. Daniele Ravì, University of Hertfordshire

XXXV ciclo — October 2023



To my Lilli





iii

Acknowledgments
The last three years have constituted a pivotal moment in my life, during which I
have gained valuable insights and experienced a wide range of emotions.

I am deeply grateful to Prof. Marco Avvenuti, whose knowledge, experience,
and constructive comments have guided me throughout this Ph.D. program.

I could not have undertaken this journey without Dr. Guglielmo Cola, who en-
couragedme every step of the way and shared his experience and incredible knowl-
edge with me.

I would like to extend my heartfelt thanks to Prof. Mauro Di Bari, whose vast
experience and invaluable insights have been instrumental in shaping my academic
growth. I would also like to expressmy appreciation to his talented clinical team, in-
cluding Antonella, Elena, Giulia, Giuseppe, Silvana, and Sofia, for their exceptional
contributions to my learning and development.

Sincere thanks go to the members of my Supervisory Committee, Prof. Beatrice
Lazzerini and Prof. Alessio Vecchio, who provided me with important advice and
feedback, thus improving my research.

Special thanks to Prof. Jeff D. Williamson and Dr. Daniele Ravì, who agreed
to review my Ph.D. dissertation and improve it through valuable comments and
precious advice.

I’m extremely grateful to my colleagues - or, as I prefer calling them, my office
friends - who were always willing to give me important guidance and with whom
I shared many beautiful moments and tons of laughs: Alessandro and Alessandro,
Antonio, Carlo, Dario, Maurizio, and Michele.

I had the pleasure of working with Dr. Valeria De Luca, Dr. Andrea Grioni, Dr.
Dimitar Yonchev, and Dr. Jennifer Sorinas Nerin during my internship at Novartis
Institutes for BioMedical Research. This internship has been one of the best experi-
ences of my life, and it would not have been the same without their friendship and
continuous mentoring.

Words cannot express my gratitude to my parents and my sister. Thank you,
mom and dad. Thank you, Ale. Thank you for your love, wisdom, and support
throughout my entire life.

I would love to express my deepest gratitude to Katra, who has given me love,
and with that same love, has helped me overcome several obstacles in this experi-
ence.

Thank you, Cate, Enri, Tè, and Bocci, because you have been there forever. Thank
you, Dani and Deneb, for giving me a new Pisa. Thank you, Fede and Gabri, for all
the beers, the fun, and the comprehensive tech talks. Thank you, Ale, Andre, Bea,
Fabian, Mode, and Sara, for being my Basel (Weekend) Family.



iv

My memory has always failed me, and I apologize if I have forgotten anyone.
Please know that if I have shared even a single smile with you, you have given me
the energy I needed to move forward, and for that, from the depths of my heart, I
thank you.

Finally, I acknowledge the Pegaso grant from Regione Toscana for giving me the
opportunity to take this Ph.D. course through their scholarship.



v

Abstract

The COVID-19 pandemic has considerably shifted the focus of scientific re-
search, speeding up the process of digitizing medical monitoring. Wearable
technology is already widely used in medical research, as it has the potential
to monitor the user’s physical activity in daily life. Therefore, they are partic-
ularly appealing for evaluating older subjects in their environment to capture
early signs of frailty andmobility-related problems. Early detection of abnormal
physical performance and gait may help identify physically frail subjects at an
increased risk of losing their independence but are still amenable to preventive
interventions, such as structured exercise.

This dissertation explores the use of body-worn accelerometers for auto-
mated assessment of frailty duringwalking activity. Weproposed an automated
process based on machine learning techniques, able to classify patients accord-
ing to their frailty status using a set of gait-related parameters extracted from
wearable sensors. Here, we highlight the importance of the position chosen for
placing the sensors by comparing the performances of a wrist- against a lower
back-worn sensor.

Secondly, the dissertation analyzes the use of Continuous Wavelet Trans-
form in combination with sensor-derived gait parameters for frailty status as-
sessment. ContinuousWavelet Transformwas applied to obtain time-frequency
domain representations of gait signals. Here, the most statistically significant
band-based information for frailty status assessment was identified by means
of ANOVA and statistical t-test. Moreover, a Deep Convolutional Neural Net-
work was trained and tested for identifying wavelet-based patterns to classify
subjects as robust or non-robust, a category that includes both Fried’s frail and
pre-frail phenotypes.

Finally, the dissertation aims to explore in-home collected wearable-derived
signals for frailty status assessment. Signal-derived traces were segmented. A
subset of these segments was used to calculate the Subject Activity Level, an
index to quantify how users were active throughout the day. The SAL index
was then combined with gait-derived features to design a novel frailty status
assessment algorithm.
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Chapter 1

Introduction

It has been documented that, besides its direct, dramatic effects on subjects suffer-
ing from the disease, the COVID-19 outbreak has been responsible for severely de-
creased care opportunities in other clinical conditions because the need for social
distancing restricted direct contact between patients and their healthcare providers
(Hantke and Gould, 2020). Consequently, healthcare systems are increasingly try-
ing to develop new paradigms of care, which value enhanced remote clinical as-
sessment andmonitoring, as well as the delivery of therapies at a distance. Different
systems for remote assessment and care have already gained considerable attention,
particularly for patients in isolated communities and remote regions (Albahri et al.,
2018; Sanders et al., 2013). Older persons with chronic comorbidities, frequently
unable to reach the assessment clinic, are a further important target of such efforts
for the development of innovative care technologies, because theywere proven to be
particularly affected by the restriction in the application of the conventional model
of care during the COVID-19 pandemic, with strong, negative impacts (Gilpin, 2018;
Hantke and Gould, 2020).

According to a World Health Organization (WHO) estimate, individuals over
the age of 60 will nearly double over the 2015-2050 period, increasing from 12% to
22% of the world population. Moreover, 80% of the older adults have at least one
chronic disease, and 77% have at least two 1. Among the conditions that undermine
the quality of life of older persons, frailty represents one of the most severe global
public health challenges (Dent et al., 2019).

In recent years, clinical gerontology has devoted a growing interest to frailty.
Frailty is a condition in which individuals are highly vulnerable to both endoge-
nous and external stressors, exposing them to an excess risk of poor clinical out-
comes, such as falls and fractures, disability, hospitalization, and ultimately death
(Collard et al., 2012). Not surprisingly, frail older subjects absorb a significant share

1Mental health of older adults, https://www.who.int/news-room/fact-sheets/detail/
mental-health-of-older-adults
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8 Introduction

of healthcare resources (Fairhall et al., 2015).
One aspect often overlooked is represented by the economic impact of frailty

on global healthcare costs. The European Commission has produced a report to
foresee long-term care costs, where long-term care is usually defined as a set of ser-
vices required by a person with a reduced degree of functional capacity, physical
or cognitive. In the European Union, an increase from the actual 1.6% to 2.7% of
Gross Domestic Product in 2070 is expected 2. The increasing costs will represent
a massive challenge for the sustainability of long-term care, and frailty is seen as
a major factor in the loss of functional independence. Other studies have explored
the impact of frailty on health care costs (Bock et al., 2016; Sirven and Rapp, 2017;
Garcìa-Nogueras et al., 2017; Simpson et al., 2018; Salinas-Rodrìguez et al., 2019). As
diverse as these studies may be, in the method and sample used, they arrive at the
same conclusion: there is a strong correlation between the increase in frail patients
and the increase in public health-related costs.

Within the general definition given above, diverse conceptual models and, con-
sequently, different diagnostic tools have been proposed for frailty. One of the most
accredited among them is the phenotype model, which was developed by Fried
et al. (Fried et al., 2001) and considers a decline in physical performance as the
cornerstone of frailty. Although this tool is simple and of rapid application, it re-
quires some specialized clinical setup and trained personnel. Moreover, it might
be hypothesized that exploring the physical performance of older subjects in their
own environment is more appropriate to capture frailty status than the somewhat
artificial setting needed to apply this and other similar tests. For these reasons,
many researchers have focused on the use of wearable, sensor-based technology
to gather parameters on motor condition (Dasenbrock et al., 2016; Schwenk et al.,
2015; Mohler et al., 2014; Abbate et al., 2012), thus obtaining an objective, ecologi-
cal assessment of frailty status in older subjects (Schwenk et al., 2014; Thiede et al.,
2016). Furthermore, patient monitoring through wearable technology can enable
prolonged studies, thus expanding the bulk of data available for evaluation, while
reducing healthcare costs and the discomfort for the patient when the assessment is
done within a specific clinical setting.

In the following subsections, wewill briefly discuss this Ph.D. dissertation’s aims
and objectives to address the aspects described above.

Towards automated assessment of frailty status
This chapter aims to devise an automated process based onmachine learning, able to
classify subjects according to their frailty status using a set of gait-related parameters

2The 2018 Ageing Report, https://ec.europa.eu/info/sites/default/files/
economy-finance/ip079_en.pdf

https://ec.europa.eu/info/sites/default/files/economy-finance/ip079_en.pdf
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extracted fromwearable accelerometers. Here, we report on the basic approach and
the experimental protocol, and we highlight the importance of the position chosen
for placing the sensors, comparing the performance of a wrist- and a lower back-
worn sensor. We, therefore, propose a method for distinguishing robust (R) sub-
jects from pre-frail and frail subjects, joined under the common denomination of
non-robust (NR). This binary classification still allows geriatricians to identify the
individuals who may need further clinical evaluation, namely pre-frail and frail.
Indeed, early identification of the latter categories enables prompt clinical interven-
tion, which in turn may lead to better health outcomes for the subject.

A three-stage approach is used for frailty status assessment, exploiting either the
wrist or the lower-back sensor. In the first stage, gait cycle detection is executed to
identify segments of four gait cycles. In the next stage, gait signals are analyzed
to extract 25 features characterizing the subject’s gait. Finally, the last stage uses
machine learning to classify participants as R or NR.

We compared two solutions based on a single device as we aim to provide an
unobtrusive solution for frailty assessment.

The experiments to evaluate this approach involved 34 volunteers, who were
asked to walk at a preferred speed under the supervision of experienced medical
staff. Clinicians were also responsible for the frailty classification of participants, by
applying on each participant a standardized frailty exam according to the Fried cri-
teria. The results of the clinical assessment were used to label accelerometer signals
and built a ground-truth dataset that, in turn, was used to train, validate and test
machine learning-based classification of frailty.

The main contributions of this chapter are to (i) gain a better understanding
of the possibility of using practical wearable devices in combination with machine
learning-based classification to discriminate R fromNRolder subjects, (ii) show that
walk-related features in the time-frequency domain, computed bymeans ofWavelet
analysis, can improve performance in frailty status assessment, (iii) compare the
performance of sensors applied in two different body parts, the wrist and the lower
back.

Wavelet-based analysis of gait for automated frailty assessment

In this chapter, we aim to improve the assessment of frailty based on gait-related
parameters derived from a wrist-worn device. Specifically, we focus on potential
predictors offered by the Continuous Wavelet Transform (CWT), which allows us
to observe the evolution of frequency-related parameters over time. We believe that
a deeper investigation of the CWT frequency content, aimed at identifying the most
relevant frequency bands, could be beneficial to the field of automated frailty as-
sessment based on wearable sensors.



10 Introduction

A total of 34 volunteers aged 70+ were initially screened by geriatricians for the
presence of frailty according to Fried’s criteria. After screening, participants were
asked to perform a 60mwalk test at preferred pace, while wearing an accelerometer
on the wrist. A gait detection technique was applied to the sensor-derived signal,
in order to identify segments made of four gait cycles. Continuous Wavelet Trans-
form was applied to obtain time-frequency domain representations, which were
subsequently used in a band-based feature extraction phase. Here, the most signif-
icant band-based features for frailty status assessment were identified by means of
ANOVA and statistical t-test. Finally, a Random Forest for each frequency band was
trained and tested for classifying subjects as robust or non-robust (i.e., pre-frail or
frail). This information may help achieve continuous assessment of frailty in older
adults with a wrist-worn device.

A deep learning approach for frailty status assessment
This chapter discusses the development of a deep learning-based system to support
clinicians in the preventive screening of frailty status assessment. Starting from pre-
vious studies and results, we applied a deep learning model to gait signals to auto-
matically classify subjects according to their frailty status. The chapter explores the
use of a deep neural network combined with Wavelet Analysis applied to gait ac-
celerometric signals acquired at the wrist to classify robust and non-robust subjects.

The initial dataset was the same used for the previous studies and already pre-
sented above. In particular, signals recorded during gait were processed, split into
fixed-length windows, and given as input to Continuous Wavelet Transform. Out-
puts fromWavelet analysis were used to train and test a Convolutional Neural Net-
work to distinguish subjects according to their frailty status.

Automated, ecologic assessment of frailty using a wrist-worn
device
This chapter explores the possibility of assessing the frailty status of a subject based
on a signal collected through wearable technology in an in-home environment. For
this purpose, we aim to demonstrate how an objectively measured activity level
might characterize subjects according to their frailty status. In addition, we intend
to show how gait biomarkers collected through a wrist-worn device may represent
an essential step forward for continuous frailty monitoring.

To this end, subjects aged 70+ years were enrolled and classified into robust, pre-
frail, and frail according to Fried’s phenotype (Fried et al., 2001). A device equipped
with inertial motion sensors was fixed to the subjects’ wrists for 24 hours, during
which the participants conducted their everyday lives. The accelerometer signal
traces collected were split into segments of 10-second duration, which were then
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analyzed using a previously developed algorithm (Cola et al., 2014) designed to rec-
ognize gait segments. All non-gait segments were further analyzed and classified
as other motor activities when they exceeded a pre-determined activity threshold or
rest segments. A Subject Activity Level (SAL) was then calculated using the num-
ber of gait and other motor activities. This parameter then provided the input to
the frailty status assessment algorithm. The algorithm compared the subject’s SAL
with pre-determined thresholds to classify the patient as robust (R) or non-robust
(NR), which included both frail and pre-frail subjects. The gait traces of subjects
that cannot be immediately classified by the SAL index alone were further analyzed
through a Machine Learning model, which assigns the R or NR class based on the
features computed on the gait segments.





Chapter 2

Background

This Ph.D. dissertation explores the use of wearable devices equipped with inertial
sensors for frailty identification. In the following sections, we provide a brief back-
groundof the topics underlying the research presented in the dissertation’s chapters.

2.1 Frailty
Frailty is common in later life across different countries (Manfredi et al., 2019); the
reported prevalence increases progressively with aging and reaches approximately
30% in subjects aged 85+ years (Collard et al., 2012). As pointed out in several
studies (van Kan et al., 2008; Collard et al., 2012), there is a lack of consensus on the
definition of frailty and its clinical identification. A turning point in the conceptu-
alization of frailty was represented by a study by Fried et al., who in 1991 hypothe-
sized the existence of a stage of preclinical disability in which there is a greater risk
of functional decline (Fried et al., 1991). A few years later, Guralnik et al. (Guralnik
et al., 1995) demonstrated that measures of lower extremity functioning, obtained
with a simple battery of three physical performance tests, might be a hallmark of
frailty: in non-disabled subjects, poorer scores on this battery predicted the subse-
quent development of disability in the two domains of mobility and basic activities
of daily living (BADL), thus providing evidence that a state of preclinical disabil-
ity can be clinically identified (Guralnik et al., 1994; Pritchard et al., 2017; Abizanda
et al., 2012). Further advancement was offered by Fried et al. in a 2001 landmark
study (Fried et al., 2001), where researchers introduced the concept of frailty phe-
notype, accompanied by the proposal of a simple tool to recognize frailty through
the following dimensions:

1. an unintentional weight loss of 4.5 kg or more in the last year;

2. low energy, identified through the CES-D (Center of Epidemiologic Studies
Depression Scale) (Orme et al., 1986);

13



14 Background

3. low physical activity, defined thanks to the Physical Activity Questionnaire for
the Elderly (PASE) (Schuit et al., 1997);

4. slowness, defined by the speedmeasured over a distance of 4.5 m and normal-
ized for height and gender;

5. weakness, meaning reduced muscle strength in the dominant hand.

A subject is considered: frail if positive for three or more dimensions; pre-frail if
positive for one or two dimensions; robust if negative for all dimensions.

A substantial body of literature has shown that older persons identified as frail
by these criteria have an increased risk of accelerated functional decline, overt dis-
ability, and other poor clinical outcomes, including death. Thus, Fried’s frailty phe-
notype has become the most commonly accepted model to identify frail older sub-
jects (Guralnik et al., 1995; Bergman et al., 2003; Visser et al., 2003; Collard et al.,
2012). Given the importance of physical functioning and, more specifically, lower
extremity mobility in the detection of frailty, it is reasonable to hypothesize that an
extended evaluation of mobility may improve our ability to identify this condition
more precisely and at an earlier stage.

An alternative automated approach tomeasuring frailty is the Frailty Index (FI),
developed by Rockwood and his research group (Searle et al., 2008). It involves
calculating a cumulative deficit score based on the number of health deficits or im-
pairments that an individual has. The FI has been shown to be a reliable and valid
measure of frailty in various populations. In (Peña et al., 2014), Peña et al. com-
pared alternate scoring methods for the FI. They suggest that variables included in
an FI can be coded either as dichotomous or ordinal, with negligible impact on the
index’s performance in predicting mortality. In other words, the traditional binary
approach (presence/absence of a deficit) and the continuous approach (severity
of deficits) performed almost identically. Authors in (Pajewski et al., 2019) demon-
strated the feasibility of using the FI for frailty screeningwithin aMedicareAccount-
able Care Organization. They found that the FI identified a significant proportion of
individuals with frailty and was associated with higher healthcare utilization and
costs. However, the FI also has some limitations, including the need for a compre-
hensive health assessment and the potential for selection bias if not all health deficits
are considered.

In summary, the Fried approach assesses frailty based on five criteria: uninten-
tional weight loss, exhaustion, low physical activity, slow walking speed, and weak
grip strength. One advantage of the Fried approach is that it is relatively easy to ad-
minister, and the criteria are readily measurable. However, one disadvantage of this
approach is that it does not account for cognitive impairment, which can be a signif-
icant component of frailty in some individuals. The Rockwood approach assesses
frailty based on the accumulation of deficits across multiple organ systems. One
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advantage of this approach is that it considers various health domains, including
physical, cognitive, and social functioning. However, one disadvantage of the Rock-
wood approach is that it can be more time-consuming to administer and may need
to be more readily applicable in specific settings. Ultimately, the choice of frailty
measure depends on the context and particular goals of the assessment.

2.2 Activities of Daily Living
Many longitudinal studies have reported a significant decline in physical perfor-
mance in frailty, leading to the need for care and support in the Activities of Daily
Living (ADL) (Gobbens et al., 2010; Xue, 2011). ADL is a term used to collectively
describe fundamental skills required to independently care for oneself, such as eat-
ing, bathing, and mobility. The term was first coined by Sidney Katz in 1950 (Ede-
mekong et al., 2021; Katz, 1983; Bieńkiewicz et al., 2014). The relationship between
frailty and ADL has been widely discussed in literature (Mañas et al., 2017; García-
Esquinas et al., 2017; Dipietro et al., 2019; Kehler et al., 2018; Kehler and Theou,
2019). Dipietro et al. (Dipietro et al., 2019) suggest that regular physical activity ef-
fectively helps older adults delay the loss of mobility while reducing the risk of fall-
related injuries. Authors in (Kehler and Theou, 2019) conclude that spending less
time in sedentary pursuits confers a protective associationwith frailty. However, the
authors highlight the lack of prospective epidemiological studies confirming this.
Of the same idea are the authors in (Ziller et al., 2020), whose results emphasize the
importance of physical activities and their assessment methods.

2.3 Gait analysis
Among the activities that can be investigated using wearable sensors, gait plays a
very important role in identifying age-related conditions. Generally, human walk-
ing is a periodic movement of the body segments and includes repetitive motions.
To understand this periodic walking course better and easier, the gait phase must
be used to describe an entire walking period (Tao et al., 2012).

Gait analysis represents a critical tool for identifying clinical conditions since it
can capture declines in physical performances. Gait analysis has been the subject
of several studies in the context of personalized healthcare, and gait-related param-
eters derived from wearable sensors have already been associated with conditions
such as frailty (Kosse et al., 2016; Pradeep Kumar et al., 2020).

Figure 2.1 shows an example of gait. Two main events can be identified during
the human walk: toe-off and hell-strike. Toe-off is the moment in which the foot loses
contact with the ground to be moved forward. On the other hand, heel-strike is the
moment in which the foot touches the ground again. A gait cycle is the sequence of
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hell-strike hell-striketoe-off

Stance Swing

Gait cycle

Figure 2.1: Representation of gait events involved in the human walk.

events that occur during the walking process between two consecutive heel strikes
of the same foot.

2.4 Sensor-based frailty identification
In clinical settings, gait is often analyzed using specialized equipment, such as a
treadmill with integrated pressure sensors. At the same time, ADLs are usually
evaluated using self-reporting or interview-based assessment tools (Pashmdarfard
and Azad, 2020). In other words, such measures typically require some special-
ized clinical setup and trained personnel. Inertial sensors have been proposed as
powerful tools to assess functional capacity Millor et al. (2013); Zhang et al. (2015);
Avvenuti et al. (2018). These devices allow the collection of a considerable amount
of data on subjects’ mobility in their home environment over prolonged times; data
can then be automatically transmitted at a distance and analyzed with appropriate
algorithms, potentially reducing operator-dependent variability in the assessment
of frailty.

In particular, accelerometers and gyroscopes have been used tomeasuremobility
parameters or assess the risk of falls in the elderly Zivanovic et al. (2018); Díaz et al.
(2020); Cola et al. (2016); Pradeep Kumar et al. (2020). Several researchers stud-
ied the parameters recorded by body-worn inertial sensors to discriminate patients



2.4 Sensor-based frailty identification 17

according to their frailty status. The authors in Galán-Mercant and Cuesta-Vargas
(2013) described the differences between frail and non-frail older subjects using pa-
rameters extracted from inertial sensors: in particular, they found that frail elderly
persons obtained lower maximum and minimum accelerations than fit individuals.
The authors in Schwenk et al. (2015) found that unique parameters derived from an
objective assessment of gait, balance, and physical activities are sensitive for iden-
tifying pre-frailty and classifying a subject’s frailty status. In Greene et al. (2014),
Greene et al. concluded that it is possible to distinguish frail from non-frail subjects
by usingmobility tests in combinationwithwearable sensors. In (Martínez-Ramírez
et al., 2015), Martínez-Ramírez et al. extracted a collection of sensor-based param-
eters to supply more accurate information about older adults’ frailty syndrome. In
Ritt et al. (2017), Ritt et al. presented strong evidence about the correlation between
gait alteration and frailty using a shoe-mounted inertial- sensor-based mobile gait
analysis system. Zhong et al. (Zhong et al., 2018) analyzed smart bracelets’ signals
to establish reference gait parameters. More recently, authors in (Pradeep Kumar
et al., 2020) collected data using a tri-axial accelerometer fixed at the sternum to
suggest everyday gait characteristics, along with quantitative measures of physical
activity, as an opportunity to screen frailty. Researchers in (García-Villamil et al.,
2021) developed a sensor-based system to measure gait parameters in older adults
with falls and studied how these parameters correlate to different frailty levels. A
relevant project is represented by Frailsafe (Zacharaki et al., 2020), which proposes a
framework that highlights the potential for frailty prediction strategies based on in-
formation and communication technology (ICT). Both quantitative and qualitative
measures of frailty are used to predict long-term outcomes via advanced data min-
ing approaches applied to multi-parametric data. Frailsafe uses wearable sensors
for monitoring several physical activities and physiological parameters.

The precise procedures and methods to apply wearable technology in frailty as-
sessment are still under investigation, and uncertainties exist on the best position of
the sensors and the parameters to be extracted, and the algorithm to process them.
We indeed argue that the position chosen for wearing the sensor can be of funda-
mental importance, not only for usability reasons but also for recognizing frailty. For
this reason, this dissertation compares two different sensor positions (lower back
and wrist). In the literature, other researchers analyzed the importance of data col-
lected fromwrist-worn accelerometers in older adults’ health, functional, and social
assessment. Huisingh-Scheetz et al. used the signal extracted from wrist-worn sen-
sors to determine how frailty and other characteristics relate to activity among older
adults Huisingh-Scheetz et al. (2016, 2018). In our case, besides using a machine-
learning approach, we focus on the relationship between gait-related movements
and the subject’s frailty status. Notably, while in many previous works inertial sig-
nals are mainly treated as static processes, in the proposed methods, we devote par-
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ticular attention to the time-frequency domain using Wavelet analysis.

2.5 Continuous Wavelet Transform
In recent years, other researchers investigated the use of Continuous Wavelet Trans-
form (CWT) in combination with sensor-derived data extracted during different ac-
tivities (Martínez-Ramírez et al., 2011; Khandelwal andWickström, 2016; Rezvanian
and Lockhart, 2016).

The Wavelet Transform method is a signal processing technique for analyzing a
time series containing non-stationary power at different frequencies (Daubechies,
1990). In particular, it is possible to analyze local power variations for each com-
ponent by decomposing a time series into various frequency components. Wavelet
theory uses a set of Mother Wavelets (MW), which are scaled and translated to ob-
tain a time-frequency representation of the time series.

In the next chapters, we will use the CWT Wn of a discrete sequence rn with
equal time spacing δt, which is defined as the convolution of rn with a scaled and
translated version of the MW ψ0 (Torrence and Compo, 1998):

Wn(s) =
N−1

∑
ni=0

rn · ψ
[
(ni − n)δt

s

]
,

where ψ indicates the complex conjugate of the wavelet function, s is the scale
factor, (ni − n) denotes the translation along the gait segment, and δt is the inverse
of the sampling rate.

The Mother Wavelet function(ψ0) plays a key role, it must have zero mean and
be localized both in frequency and time domains. Scaling themotherwavelet means
stretching or compressing the it through the scaling factor. Thismechanismgives in-
formation about the frequency domain. On the other hand, translation corresponds
to a shift in time and describes the Mother Wavelet’s position in the time domain.

Figure 2.2 shows the MW families used in all our experiments: Gaussian (gaus),
Morlet (morl), andMexican Hat (mexh). Let gausN indicate a gaussian wavelet with
N vanishing moments: N is related to the approximation order and smoothness of
the wavelet, so that a wavelet with N vanishing moments can approximate polyno-
mials of degree N − 1. In this dissertation, N ∈ [1, 8].

ContinuousWavelet Transform is especially suited for the analysis of the human
body acceleration magnitude signal due to its dynamic nature Torrence and Compo
(1998).

Some examples of outputs produced by the application of CWT to analyze differ-
ent human activities with different MW are shown in Figures 2.3, 2.4, and 2.5. These
outputs are called scalograms, and show variations of power over time (x-axis) at
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(a) gaus1 (b) gaus8

(c) morl (d) mexh
Figure 2.2: Wavelet families used in Continuous Wavelet Analysis.

different frequency bands (y-axis). Here, colors represent the intensity of power -
from blue (low power) to red (high power).
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Figure 2.3: Continuous Wavelet Transform scalograms obtained from the gaus1
mother wavelet applied to human activity signals.
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Figure 2.4: Continuous Wavelet Transform scalograms obtained from the morl
mother wavelet applied to human activity signals.
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Figure 2.5: Continuous Wavelet Transform scalograms obtained from the mexh
mother wavelet applied to human activity signals.



Chapter 3

Towards automated assessment of
frailty status

The chapter is organized as follows. First, Section 3.1 describes the method we pro-
posed for automatic frailty assessment based on wearable accelerometers. In Sec-
tion 3.2, the setup of the experiment, the design choices and their validation are
presented. Finally, in Section 3.3 the results achieved are presented and discussed.

3.1 The proposed method
In this section, we give a system description of themethodwe propose for automatic
frailty assessment. The flowchart of the method is shown in Figure 3.1. At a glance,
acceleration data is collected through a sensor embedded in a wearable device. Af-
ter preprocessing, acceleration samples are sent to a gait segment detection module,
whichworks by isolating sequences of consecutive gait cycles from the incoming sig-
nal trace. Once the gait segments have been detected, a subset containing the most
regular walks is selected and used for the feature extraction phase. Finally, extracted
features are used to feed a machine learning classifier which assesses whether the
bearer is a robust (R) or non-robust (NR) subject.

Data acquisition and preprocessing

Acceleration is collected at a sampling rate of 102.4 Hz. All the acceleration com-
ponents (x, y, z axes and acceleration magnitude m) are converted into g units. As
body movements typically have frequency components below 20 Hz (Antonsson
and Mann, 1985), acceleration components are passed through a second order But-
terworth low-pass filter with a cut-off frequency of 20 Hz. Filtered acceleration is
then provided to the gait segment detection module.

23
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PREPROCESSING

SEGMENTATION

SEGMENT LABELING

SIGNAL TRACE

DATA ACQUISITION

SEGMENTATION

SEGMENT LABELINGGAIT SEGMENT DETECTION

PREPROCESSING

FRAILTY STATUS ASSESSMENT

FEATURE EXTRACTION

CLASSIFICATION

Figure 3.1: Flowchart of the proposed method for frailty status assessment.

The frequency response of the filter is reported in Figure 3.2. Here, the vertical
green line corresponds to the cutoff frequency of the filter computed as follows:

w =
2 ∗ cuto f f_ f requency
sampling_ f requency

Where the sampling f requency is 102.4 Hz while the cuto f f f requency is 20 Hz, as
previously mentioned. An example of the effect of this filter on the acceleration
magnitude is reported in Figure 3.3.

Gait segment detection
As previously mentioned, a gait cycle is the sequence of events that occur during the
walking process between two consecutive heel strikes of the same foot. Henceforth,
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Figure 3.2: Frequency response of the Butterworth second-order filter used for sig-
nal filtering.

Figure 3.3: A comparison between the acceleration magnitude signal of a subject
before and after the filter applications.

we will use the term gait segment to indicate four consecutive gait cycles. In this
phase, gait segments are automatically identified by means of the walking detec-
tion algorithm described in (Cola et al., 2014), which is based on the analysis of the
acceleration magnitude signal. The number of gait cycles per gait segment (four)
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was determined empirically. According to our experiments, the selected number of
cycles is able to capture the most important information on the subject’s gait pat-
tern. At the same time, a gait segment composed of just four gait cycles will enable
the detection of such segments in home environments, where spatial characteristics
may make long walks unlikely.

The gait segment detection algorithm performs the following:

• Peak detection stage

• Gait step detection stage

• Gait segment extraction stage

Peak detection: the filtered acceleration magnitude signal is scanned for peak
detection. After filtering, the acceleration magnitude signal is scanned to detect
peaks. In particular, a sample is considered a peak if its value is greater than the
value of the next and the previous sample, but also it must be greater than the
peakth threshold. Peakth expresses the peak’s acceleration magnitude minimum val-
ues(Algorithm 1). Figure 3.4 depicts an example of a detected peak. The following
algorithm presents the peak detection stage in detail.

Algorithm 1: Subject’s peaks detection procedure
Data: Let A = {a1, a2, ..., an} be the set of subject’s acceleration magnitude,

timestamp-sorted
Result: P = {p1, p2, ..., pn} set of subject’s detected peaks
P← {};
foreach ai ∈ A do

if ai > ai−1 & ai > ai+1 & ai > peakth then
P← P || ai ;

Gait step detection: a single gait step producesmore than one peak on the accel-
eration magnitude signal trace. The step detection stage aims to group peaks that are
temporally very close to each other, associating each group to a single step. Here,
two additional thresholds are used:

• gmaxint, which expresses the maximum interval of time between two consec-
utive peaks that are related to the same step;

• gdur, that expresses the maximum duration of a group of peaks.

The algorithm works as follows: for each previously detected peak, the system
groups it with the subsequent ones if the time distance is less than gmaxint; further-
more, the algorithm checks if the time interval between the first and the last peaks of
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Figure 3.4: Example of the peaks identified by the gait segment detection algorithm.

the group is less than gdur. Hence, a gait step is detected by averaging the measures
of all the peaks belonging to that particular group. A detailed description of the gait
step detection algorithm is presented below.

Figure 3.5: Gait segment detection: an example of a detected step.

An example of a detected step can be observed in Figure 3.5. Here, the vertical
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Algorithm 2: Gait step detection algorithm
Data: Let P = {p1, p2, ..., pn} be the set of subject’s acceleration magnitude

peak instances sorted by timestamp
Result: S = {s1, s2, ..., sn} set of subject’s detected steps
S← {};
Let G = {} the detected groups of peaks;
foreach pi ∈ P do

starting_peak← pi ;
Let T = {pi} be the peaks’ group under analysis;
Let DG the G duration;
Let PS = {pi+1, pi+2, ...} the set of consecutive peaks;
foreach pj ∈ PS do

if DG > gdur or pj − pj−1 > gmaxint then
break;

T ← T || pj;
G ← G || T;

foreach gi ∈ G do
Let P = {p0, p1, ..., pn} be the set of peaks in gi;
Let TM the mean of the instants of peaks ∈ P;
Let AM the mean of the acceleration magnitude of peaks ∈ P;
step [time]← TM;
step [acceleration]← AM;
S← S || step;

bars represent a peak group’s start and end points.
Gait segment extraction: all the previously detected gait steps become the input

of the gait segment extraction stage. This stage aims to group consecutive gait steps
to form a gait segment. The number of gait steps grouped in one gait segment is
expressed by the gstepmin parameter. Moreover, an additional threshold is exploited
in order to express the maximum interval of time between two consecutive steps in
the same gait segment. For each detected gait segment, a time window between the
timestamps associated with the first and the last gait steps is extracted.

A detailed version of the gait segment extraction stage is presented below.
The action performed by the gait segment detection algorithm is independent of

the orientation of the wearable device. However, the signals extracted from sensors
positioned in different parts of the body could differ in shape or amplitude. For this
reason, it is necessary to adapt the setup operation of the algorithm to the specific
body position by tuning the thresholds used for peak-detection.

In the proposed method, the thresholds have been set as showed in Table 3.1.
To prevent anomalous segments from affecting the classifiers’ performance, a
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Algorithm 3: Subject’s segments detection algorithm
Data: S = {s1, s2, ..., sn} set of subject’s detected steps sorted by timestamp
Result: Let SP = {sp1, sp2, ..., spn} and EP = {ep1, ep2, ..., epn} be

respectively the set of starting and ending points of the subject’s
windows extracted

SP← {};
EP← {};
step_index ← 0;
Let N be the number of the subjects detected steps;
while step_index < N do

Let T = {} be the set of segments under analysis;
Let DT be the duration of the segment T;
for i← step_index to step_index + gstepmin by 1 do

T ← T || si;
if DT < stepdmax then

Let SS and ES respectively the first and last step contained in T;
SP← SP || SS[time];
EP← EP || ES[time];
step_index ← step_index + gstepmin;

else
step_index ← step_index + 1;

Name Value Meaning
peakth 1.1 g Peak Acceleration Magnitude minimum value

stepdmin 0.4 s Step minimum duration
stepdmax 0.9 s Step maximum duration
gdur 0.4 s Peak group maximum duration

gmaxint 0.25 s Max interval of time between two consecutive peak groups
gstepmin 8 s Number of gait steps included in one gait segment
Table 3.1: Summary of the thresholds used by the gait detection algorithm.

segment filtering procedure has been implemented based on autocorrelation. More
specifically, we compute unbiased autocorrelation coefficients (Moe-Nilssen and
Helbostad, 2004a) on magnitude m samples as follows:

ACk =
1

N − k

N−k

∑
i=1

ri ∗ ri+k,

where ACk represents the k-th unbiased autocorrelation coefficient; k is the consid-
ered time lag; ri represents the i-th magnitude m sample minus the average magni-
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tude of the whole gait segment; N represents the number of samples in the whole
gait segment.

Subsequently, a peak detection technique is used to find the first and the second
dominant periods of the autocorrelation function (AC_DP1 and AC_DP2), which
represent the estimated average duration of a step and average duration of a gait
cycle, respectively (Moe-Nilssen and Helbostad, 2004b). The autocorrelation coef-
ficient corresponding to the first dominant period (AC_C1) can be used to evaluate
the regularity of consecutive steps, whereas the coefficient at the second dominant
period (AC_C2) describes the regularity of consecutive gait cycles. The latter has
been exploited to discard highly irregular gait segments. In particular, for each sub-
ject:

• the subject’s gait segments are ordered in descending AC_C2 order;

• the first M segments, with the highest values of AC_C2, are selected for next
phases.

From now on, let us set M = 9.

Frailty status assessment
The M gait segments that are not discarded in the previous phase, are used as input
to Feature Extraction. Several features are computed in the time and time-frequency
domains to capture the main characteristics of the subject’s gait pattern. Features
and feature selection are described and discussed in Section 3.2.

Frailty status is assessed in a two-stage process by means of a machine learning
model. Let us define gait instance the vector of features extracted fromagait segment.
First, each of the subject’s gait instances is classified as belonging to the NR or R
class. Then, the subject is classified according to the majority voting scheme shown
in Algorithm 4.

3.2 The method’s validation criteria
In this section, we describe the validation procedure for our method. In particular,
we illustrate the experimental protocol used for building the ground-truth dataset,
the techniques for selecting the set of features to be inputted to the predictivemodel,
and how the performance of frailty status assessment is evaluated.

Participants and Experiment protocol
Adults aged 70+ years, consecutively accessing the Geriatrics outpatients clinic at
Careggi academic hospital as patients or patient’s caregivers, were assessed by geri-
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Algorithm 4: Frailty status assessment procedure
Result: Subject’s frailty status (R or NR)
Let G = {g1, . . . , gM} be the set of subject’s gait instances;
foreach gi ∈ G do

gi is classified as R or NR;
end
Let T = {t1, . . . , tM}, of length M = 9, be the set of labels assigned by the
classifier;
Let TNR be the total number of gait segments labeled as NR;
Let kNR be the non-robust parameter, and let kNR be equal to 0, 40;
threshold← ⌈M · kNR⌉;
if TNR ≥ threshold then

Subject is classified as NR;
else

Subject is classified as R;
end

atricians. After exclusion of participants who reported physical dependence in at
least one of Katz’s basic activities of daily living (BADL) (Katz et al., 1963), as well
as of those with conditions causing overt abnormalities of gait (stroke, Parkinson’s
disease, severe hip or knee osteoarthritis), 34 eligible subjects were enrolled.

The sample included 13 females (80.15 ± 6.80 years old, height 1.58 ± 0.04 m,
weight 65.19 ± 11.80 kg) and 21 males (80.05 ± 6.30 years old, height 1.72 ± 0.07
m, weight 75.43± 8.91 kg). All the participants were screened for the presence of
frailty based on Fried’s criteria (Fried et al., 2001), in order to enroll older subjects
in each of the three categories of robust, pre-frail and frail. As a result, the sample
contained 23 NR (non-rubust, including 8 frail and 15 pre-frail) subjects and 11 R
(robust) subjects.

After clinical evaluation, participants were asked to walk 60 meters at their pre-
ferred pace along a 20 meters long path, under the supervision of geriatricians. In
order to study the relevance of the sensor’s position, during the test the subjects
wore two Shimmer3 devices, one placed on the lumbar back, and the other worn
like a watch on the wrist (Figure 3.6). Shimmer3 is a wearable sensor embedding a
tri-axial accelerometer (Shimmer, 2018), whichwas used to collect acceleration sam-
ples at 102.4Hz. Sensors were positioned in the sameway for all subjects, so that the
directions of the sensor reference system with respect to the subject were consistent
throughout experiments. Nevertheless, in the case of use in an uncontrolled en-
vironment, simple calibration procedures can be implemented for both considered
on-body positions.

A signed, written consent to participate in the study was obtained from all par-
ticipants. The study was conducted in accordance with the ethical principles of the
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Figure 3.6: On-body sensors setup for frailty status assessment.

Declaration of Helsinki. Identifiable information was removed from the collected
data to ensure participant anonymity. Ethical approval for this study was obtained
from Comitato Etico Regionale per la Sperimentazione Clinica della Regione Toscana (ap-
proval n. 14834_oss of May 7, 2019).

Feature extraction
The set includes common statistical parameters used in signal processing (mean,
median, standard deviation, minimum and maximum values, interquartile range
(IQR), mean absolute deviation (MAD), root mean square (RMS), kurtosis, skew-
ness and zero-crossing rate (ZCR)), calculated on acceleration components orWavelet
coefficients.
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Table 3.2: List of extracted features in the time domain for frailty status assessment.

Feature Components

Mean x, y, z, m
Median x, y, z, m

Standard deviation x, y, z, m
Minimum value x, y, z, m
Maximum value x, y, z, m
Interquartile range x, y, z, m

Kurtosis x, y, z, m
Zero Crossing Rate x, y, z, m

Mean Absolute Deviation x, y, z, m
Root Mean Square x, y, z, m

Average Absolute Variation x, y, z, m
AC_C1 m
AC_C2 m
AC_DP1 m
AC_DP2 m
Cadence -
Duration -

Table 3.3: List of extracted features in the time-frequency domain for frailty status
assessment.

Feature Components

Mean CWT coefficients
Median CWT coefficients

Standard deviation CWT coefficients
Minimum value CWT coefficients
Maximum value CWT coefficients
Interquartile range CWT coefficients

Kurtosis CWT coefficients
Skewness CWT coefficients

In addition, we considered some other features previously used in gait analysis
and fall detection studies: the cadence, defined as the ratio between duration of the
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Table 3.4: Python Scikit-learn implementation of tested classifiers.

Model Parameters

RandomForestClassifier() n_estimators=50
GaussianNB() default parameters
LogisticRegression() penalty=’l1’, solver=’liblinear’

MLPClassifier() solver=’lbfgs’, activation=’relu’,
hidden_layer_sizes=(12)

SVC() kernel=’poly’, degree=2

gait segment and the number of performed steps, and the average absolute accelera-
tion variation (AAV), which is computed on consecutive acceleration samples (Cola
et al., 2014, 2017).

Features bringing information in the time-frequency domain were extracted by
applying the Wavelet analysis. In particular, we used the Continuous Wavelet Trans-
form (CWT) - see Chapter 2.5 - on the acceleration magnitude signal to study vari-
ations of power within gait segments. CWT is a signal processing technique used
to extract time and frequency components, by combining translation and scaling
of a special function called mother wavelet. The time-frequency representation of
the gait segment enables the possibility to study the evolution of power during the
movements related to gait.

Tables 3.2 and 3.3 list the full set of features considered in the feature extraction
phase, for time and time-frequency domains, respectively.

Feature selection and frailty status assessment
Frailty status is assessed in a two-stage process by means of a machine learning
model. In the first stage, gait instances are classified as belonging to a NR or R class.
In the second stage, the subject is classified according to a majority voting scheme
such as the one described in Algorithm 4. In order to maximise the performance
of the classifier, we evaluated five different machine learning models: Random For-
est, Gaussian naive Bayes, Logistic Regression, Multilayer Perceptron, and Support
Vector Machine. All machine learning models have been implemented by means of
the Python module Scikit-learn (Pedregosa et al., 2011). Details are shown in Table
3.4. Themodels’ parameters have been chosen empirically. If the parameters are not
given in the table, the default values have been used.

Models were tested by means of a Leave-One-Subject-Out cross-validation pro-
cedure: at each iteration, the gait instances of one subject were used as testing set,
while the gait instances of other subjects were used as training set to build a clas-
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sification model. A feature selection step was performed within the cross-validation
procedure. At each Leave-One-Subject-Out iteration, features were selected using
only the training set, so that the model was built without any test set information.
This led to a different feature set at each iteration, according to the subjects belong-
ing to the training set. The trained model was then used to classify the instances of
the left-out subject as NR or R. Finally, subject classification as NR or R was based
on the majority voting scheme. This procedure was repeated, each time leaving out
a different subject as the testing set.

As far as feature selection is concerned, we used the One Way ANalysis Of VAri-
ance (ANOVA) test between groups of features and the target. Specifically, for each
feature, the values extracted from the R and NR subjects in the training set were
compared, and the ANOVA F-statistic was computed. Features were then sorted in
descending order by F-statistic, and the best k features were selected. In this case,
k = 25.

As stated in the Introduction, one of the aims of this chapter is to show that
walk related features in the time-frequency domain, computed bymeans ofWavelet
analysis, can improve the accuracy of frailty status assessment. More precisely, we
wanted to verify if the variation of power over time, captured by CWT, could bring
valuable information for frailty status assessment purposes. To do this, we com-
pared the use of CWT-based features against a system based on frequency domain
features. Features in the frequency domain have been extracted by means of Fast
Fourier Transform (FFT). Specifically, we computed some statistics to describe the
distribution of FFT coefficients. Besides, we added the 1st_dominant_freq feature,
which represents the frequency with the highest corresponding value in FFT power
spectrum. The list of FFT-based features is shown in Table 3.5.

In summary, we performed our evaluation using (i) only time domain features,
(ii) a combination of time and time-frequency domains (i.e., CWT-based) features,
and (iii) a combination of time and frequency domains (i.e., FFT-based) features.
Therefore, the results of (i), (ii) and (iii) were compared to test our hypothesis.

From now on, let us consider NR subjects as positive and R subjects as negative
classification results. Accuracy, sensitivity and specificity have been used to evaluate
and compare performance of the classificationmodels. Accuracymeasures the ratio
between the number of correctly classified NR and R subjects and the total number
of subjects. Sensitivity, or true positive rate, measures the proportion of NR subjects
correctly identified. Specificity, also called true negative rate, measures the propor-
tion of R subjects correctly identified. In addition, Receiver Operating Characteristic
(ROC) Area Under the Curve (AUC) has been calculated for every tested model.

Finally, let us recall that all the operations described so far were performed inde-
pendently using only information extracted from the lower-back or the wrist sensor,
hereafter called LOWER BACK and WRIST approaches, respectively.
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Table 3.5: List of extracted features in the frequency domain.

Feature Components

Mean FFT coefficients
Median FFT coefficients

Standard deviation FFT coefficients
Minimum value FFT coefficients
Maximum value FFT coefficients
Interquartile range FFT coefficients

Kurtosis FFT coefficients
Skewness FFT coefficients

First dominant frequency -

3.3 Results and Discussion
In this section we report on the experiments we carried out following the validation
procedure described in Section 3.2.

Performance of frailty status assessment
Data collectedduring the campaign (Section 3.2)was used for the Leave-One-Subject-
Out cross-validation procedure of the machine-learning models (Section 3.2). Ac-
celeration signals from both the wrist and the lower-back sensors were processed to
detect gait segments (Section 3.1), from which a subset of twenty five features from
the one listed in Section 3.2 were extracted, in order to create gait instances. The
frailty status assessment scores obtained by the five chosen classifiers are summa-
rized in Tables 3.6 and 3.7, for both the LOWER BACK and the WRIST approaches,
respectively.

It is worth mentioning that experiments were conducted using features from
both sensors together. However, the results were similar to those using a single-
sensor setup. This allowed us to investigate the importance of sensor placement
and determine if either sensor was more effective in predicting frailty.

In the WRIST approach, for all three feature sets, Gaussian NB was able to clas-
sify subjects with good classification accuracy. The best scores were achieved us-
ing the combination of time domain and CWT-based features, with a ROC AUC of
0.87, 91.3% sensitivity (21 correctly classified NR participants out of 23) and 81.8%
specificity (9 correctly classified R participants out of 11). Similarly, Random Forest
achieved valuable results, with an AUC of 0.80, 95.6% sensitivity and 63.6% speci-
ficity.
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Table 3.6: Average results of frailty status assessment using a LOWER BACK sensor.
Features Model Acc. Sens. Spec. AUC

TIME DOMAIN

Gaussian NB 0.76 0.87 0.55 0.71
Random Forest 0.68 0.83 0.36 0.59
Log. Regression 0.59 0.70 0.36 0.53
ML Perceptron 0.65 0.70 0.55 0.62
SVM 0.56 0.61 0.45 0.53

TIME DOMAIN
+

CWT-BASED

Gaussian NB 0.79 0.87 0.64 0.75
Random Forest 0.76 0.87 0.55 0.71
Log. Regression 0.74 087 0.45 0.66
ML Perceptron 0.71 0.83 0.45 0.64
SVM 0.74 0.83 0.55 0.69

TIME DOMAIN
+

FFT-BASED

Gaussian NB 0.76 0.87 0.55 0.71
Random Forest 0.71 0.83 0.45 0.64
Log. Regression 0.74 0.83 0.55 0.69
ML Perceptron 0.50 0.35 0.82 0.58
SVM 0.68 0.70 0.64 0.67

Table 3.7: Average results of frailty status assessment using a WRIST sensor.
Features Model Acc. Sens. Spec. AUC

TIME DOMAIN

Gaussian NB 0.82 0.91 0.64 0.77
Random Forest 0.74 0.78 0.64 0.71
Log. Regression 0.76 0.87 0.55 0.71
ML Perceptron 0.71 0.78 0.55 0.66
SVM 0.74 0.78 0.64 0.71

TIME DOMAIN
+

CWT-BASED

Gaussian NB 0.88 0.91 0.82 0.87
Random Forest 0.85 0.96 0.64 0.80
Log. Regression 0.79 0.91 0.55 0.73
ML Perceptron 0.76 0.87 0.55 0.71
SVM 0.68 0.74 0.55 0.64

TIME DOMAIN
+

FFT-BASED

Gaussian NB 0.82 0.91 0.64 0.77
Random Forest 0.76 0.91 0.45 0.68
Log. Regression 0.71 0.83 0.45 0.64
ML Perceptron 0.53 0.48 0.64 0.56
SVM 0.74 0.78 0.64 0.71

As far as the LOWER BACK approach, Gaussian NB achieved the best perfor-
mance using features in time and time-frequency domains, with an AUC of 0.75,
87.0% sensitivity (20 correctly classifiedNR subjects out of 23) and 63.6% specificity
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(7 correctly classified R subjects out of 11).
From the results, it turns out that the wrist-worn device matched or outper-

formed the lower back-worn device for almost all the considered machine learning
models. Therefore, according to our experiments, we argue that the signal extracted
from the wrist-worn device is most effective for discriminating between NR and R
subjects. Such a result can be explained by considering the arm swing involved in
human walking, to which a wrist-worn device is more exposed. In fact, due to the
subject’s better stability, the energy produced by wider arm oscillations and wrist
rotations of a R subject is likely to be greater than that produced by a NR subject.

This information pattern can be observed in Figure 3.7, which depicts the box-
plots generated using RMS values. The RMS, computed as the area under the ac-
celeration amplitude signal, represents the energy of the signal. RMS values of gait
segments belonging to R subjects are generally higher than values computed for NR
subjects. Even though such a difference is observable in both the WRIST and the
LOWER BACK approaches, in the former the distinction is more evident. To sta-
tistically confirm the significance of RMS, we performed a one-way ANOVA test.
More precisely, RMSwas used as the dependent variable and the frailty category (R
or NR) as the independent variable. The results are shown in Table 3.8. For both
WRIST and LOWER BACK, RMS appears statistically significant in distinguishing R
and NR subjects, with a p− value < 0.001 (the p < 0.005 criterion was used to test
for statistical significance).

According to these findings, it appears that arm swing brings valuable informa-
tion in frailty status assessment. As these gait-related features can be better captured
by awrist-worn device, we can conclude that ourmethod implementation is suitable
to be embedded in a common smartwatch, thus enabling continuous assessment of
frailty without requiring the adoption of additional devices.

Table 3.8: Results obtained inANOVA statistical test, for RMS inWRIST and LOWER
BACK.

R NR p− value

WRIST 1.085± 0.291 1.047± 0.114 < 0.001
LOWER BACK 1.057± 0.037 1.043± 0.063 < 0.001

Wavelet Analysis
Asmentioned in Section 3.2, models were trained and tested using (i) only time do-
main features, (ii) time domain+CWT-based features, and (iii) time domain+FFT-
based features. This was done to investigate whether the use of acceleration features
in the time-frequency domain may improve the performance of predictive models.
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Figure 3.7: Box plot representation of the Root Mean Square computed on the accel-
eration magnitude of R vs NR signals, in both WRIST and LOWER BACK.

As hypothesized, it appears that the CWT-based approach improves the classifica-
tion task sensibly, independently of the position chosen for the sensor. Gaussian NB
proved to be the best model in frailty status assessment, for all three considered fea-
ture sets. In the case of training performed by means of time domain + CWT-based
wrist-derived features, however, an important step forward was made, with a 0.1
increase in the AUC score.

It is worth mentioning that all the features described in the previous sections
are always extracted from gait segments consisting of four gait cycles. This leads
to gait segments composed of a variable number of samples, since the length of a
gait segment depends on the subject’s cadence. Performing frequency-based fea-
tures extraction on gait segments of variable length introduces differences into the
outputs of the frequency analysis, on which the frequency-based features are com-
puted. Nevertheless, in the current study, these differences concern the frequency
band [0, 0.26]Hz, which from an in-depth analysis appears to contain nonsignificant
information for frailty status assessment. We have chosen not to report here the re-
sults of the frequency bands significance analysis, as it is beyond the scope of this
study.

Now, let us discuss why Continuous Wavelet Transform enhanced the charac-
terization of gait segments in view of the machine-learning classification of frailty
status. In particular, we argue that CWT applied to gait segments can better capture
the nature of oscillations produced by different cyclic phases involved in a subject’s
walk, such as arm motions, torso rotation and heel strike.

Let us first recall that, while the FFT only brings information about the frequency
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components of a signal, the CWT enables the study of signal power distribution in
the time-frequency domain.
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Figure 3.8: Power spectrumof theContinuousWavelet Transform in robust and non-
robust subjects.
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Figure 3.9: Power spectrum of the Fast Fourier Transform in robust and non-robust
subjects.

It worth recalling that variations of power over time can be visualized by means
of scalograms (such as the ones shown in Figure 3.8), where colors represent the in-
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tensity of power - from blue (low power) to red (high power). In Figures 3.8 and 3.9
we report the outputs of CWTandFFT analysis applied to two sample gait segments,
in the case of a R and a NR subject, respectively. Signals were recorded by the wrist
sensor (similar considerations also apply to the lower back-worn sensor). Again,
the gait segments used in this comparison are composed of 4 gait cycles. Here, red
areas of scalograms correspond to higher levels of power released during stronger
oscillations in gait, within a given frequency range (y-axis values), over a particu-
lar time interval (x-axis values). Notably, areas recurring with similar shape can be
attributed to a regular gait. In other words, they characterise a walk-related pattern
that produces regular oscillations over time. Large red areas at the boundaries of
scalograms are the result of truncation of the gait segments and do not bring any
useful information.

As can be seen in Figure 3.8a, most of the signal power released during the gait
of a R subject is within the 1.5− 3Hz frequency range, in accordance with the cor-
responding peak of the Fourier transform shown in Figure 3.9a. Notably, the scalo-
gram evidences a certain regularity in the of power released during the gait. The
same cannot be said of the gait signal produced by a NR subject, whose scalogram
is shown in Figure 3.8b. Here, even though red areas still depict a gait activity with a
similar level of associated power, it is clear that power is not released with the same
regularity. It should be noted that such a difference is not evident when comparing
the FFT pictures (e.g., Figures 3.9a vs. 3.9b).

These results suggest that a higher level of power distributed regularly along
time is associated with better stability during gait. In contrast, an irregular power
distribution over time reflects a high gait variability, whose correlation with frailty
has already been explored in previous studies. Montero-Odasso et al. demonstrated
that a high gait variability is a marker of the loss of complexity in the dynamics
of the gait pattern, and it is associated with frailty status (Montero-Odasso et al.,
2011). In our experiments, we found that a higher level of power correlates with a
more emphasized arm swing, which is also known to be positively related to “global
gait stability” (Bruijn et al., 2010). These findings are also in line with those of
Mirelman et al., who reported that aging is associated with decreased arm swing
amplitude (Mirelman et al., 2015).



Chapter 4

Wavelet-based analysis of gait for
automated frailty assessment

In this Chapter we aim to statistically analyze the output of Continuous Wavelet
Transform to improve the assessment of frailty based on gait-related parameters
derived from awrist-worn device. The chapter is organized as follows. First, Section
4.1 presents the proposed method. In Section 4.2, the the experimental design is
presented, together with the validation procedure. Finally, in Section 4.3 the results
achieved are presented and discussed.

4.1 Method
Figure 4.1 shows a schematic view of the proposed approach. A wearable device
positioned on the subject’s wrist is used for signal acquisition. After a preprocess-
ing step aimed at reducing noise, a gait segment detection technique identifies gait
segments on the whole signal trace, which are then used as input for CWT. Fi-
nally, band-based feature extraction is responsible for gathering information from
the CWT output, which is used to determine which Frequency Bands (FBs) contain
the most valuable information for frailty status assessment.

In the following we provide more detail on the techniques used throughout the
process. The experimental setup and the statistical and machine learning evalua-
tions are discussed in Section 4.2.

Data acquisition and preprocessing
Acceleration is sampled at 102.4 Hz. All the acceleration components (x, y, z axes
and acceleration magnitude m) are converted into g units. A second order Butter-
worth low-pass filter with a cut-off frequency of 20 Hz was applied to the signal,
as body movements typically have frequency components below 20 Hz (Antonsson

43
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Figure 4.1: Flowchart of the proposed method for wavelet-based analysis of gait.

and Mann, 1985). Filtered acceleration components are then provided to the gait
segment detection module.

Gait segment detection

A gait cycle is the sequence of events that occur during the walking process between
two consecutive heel strikes of the same foot (Avvenuti et al., 2018). Henceforth,
we will use the term gait segment to indicate four consecutive gait cycles. In this
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phase, gait segments are automatically identified by means of the walking detec-
tion algorithm described in (Cola et al., 2014), which is based on the analysis of the
acceleration magnitude signal.

Continuous Wavelet Transform

Wavelet analysis is applied to gait segments detected in the previous step. In partic-
ular, we use the Continuous Wavelet Transform (CWT) on the acceleration magnitude
signal to obtain a representation of the gait segment into the time-frequency do-
main, in order to study variations of power over time. CWT is a signal processing
technique for analyzing a time series containing non-stationary power at different
frequencies (Daubechies, 1990). More specifically, CWT allows us to analyze local
variations of power, by decomposing a time series into different frequency compo-
nents.

Starting with a Mother Wavelet (MW), the time-frequency representation of the
time series is obtained by a combination of scaling and translation applied to MW.
Let us call a the scale factor. Scaling a wavelet simply means stretching it (if |a| >
1) or compressing it (if |a| < 1). On the other hand, translating a wavelet means
shifting its position in time. Hence, translation and scaling describe the position of
the wavelet in time and frequency domains, respectively. In the proposed method,
we choose Morlet wavelet as the MW, since it has been proven to be the a good
choice for CWT applied to gait signals (Khandelwal and Wickström, 2016). It is
worth mentioning that, knowing the MW, scale values can be easily converted to
frequency values.

Band-based Feature Extraction

The phase discussed above produces as output a matrix MCWT of coefficients cij for
each gait segment, where i denotes the frequency value, obtained from the scale
factor, and j denotes the instant in time. Usually, this matrix of coefficients is plot-
ted through the wavelet power spectrum (or scalogram). The scalogram is the abso-
lute value of CWT plotted as a function of frequency (on a logarithmic scale on the
y-axis) and time (on the x-axis). From visual inspection, some FBs present simi-
lar characteristics among classes, whereas other FBs present distinctive patterns for
each frailty class. As already mentioned, we aim to quantitatively identify the FBs
that can best distinguish subjects according to their frailty status. To accomplish this,
we split the matrix of coefficients into several sub-matrices Ms−e, where s and e rep-
resent the lower and upper bounds of the considered FB, respectively. For instance,
M0−1 represents the sub-matrix of coefficients between 0 and 1 Hz. The studied FBs
are shown in Table 4.1.
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Table 4.1: List of studied frequency bands

Lower bound (Hz) Upper bound (Hz)

0 0.5
0.5 1.5
1.5 2.5
2.5 3.5
3.5 6
6 10
10 20

For each Ms−e a set of features is extracted, to further describe the distribution
of the wavelet coefficients in that particular FB. These includes common statistical
measures, such as minimum and maximum values, mean, median, variance, in-
terquartile range (IQR), coefficient of variation (CoV), median absolute deviation
(MAD), and skewness. Moreover, for each sub-matrix a function is built, to sum-
marize the trend of the FB wavelet coefficients in time. Henceforth, we will refer
to this as Wavelet Coefficients Evolution function WCE f . Let us consider a sub-matrix
Ms−e, defined in FB [s, e] and in time interval [t0, tmax]. WCE f (tj) is then:

WCE f (tj) =
∑e

i=s cij

N
. (4.1)

where tj is the considered instant in time - the Ms−e column index j - and N
represent the number of rows in Ms−e. In other words, for each tj ∈ [t0, tmax] we
computed the average of the coefficients in column j of Ms−e. Finally, root mean
square (RMS) of WCE f was computed as an additional feature. Let us define band-
based gait instance the vector of band-based features extracted from a gait segment

4.2 Experimental protocol

Participants and Experimental protocol
A total of 34 adults (13 females: 80.15± 6.80 years old, height 1.58± 0.04 m, weight
65.19 ± 11.80 kg; 21 males: 80.05 ± 6.30 years old, height 1.72 ± 0.07 m, weight
75.43± 8.91 kg) were assessed by geriatricians. Geriatricians used Fried’s criteria
to screen participants for the presence of frailty (Fried et al., 2001), in order to enroll
older subjects in each of the three categories of robust, pre-frail and frail. As a result,
the sample contained 8 frail (F), 15 pre-frail (PF) and 11 robust (R) subjects. After
clinical screening, participants were asked to walk 60 meters at their preferred pace,
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Table 4.2: robust vs. non-robust classification scores
Frequency Band (Hz) Subject Classification Accuracy

[0, 0.5] 0.65
[0.5, 1.5] 0.65
[1.5, 2.5] 0.77
[2.5, 3.5] 0.68
[3.5, 6] 0.68
[6, 10] 0.65
[10, 20] 0.70

under the supervision of the geriatric staff. During this experiment, subjects wore
a Shimmer3 device on their wrist, like a watch. Shimmer3 is a wearable device em-
bedding a tri-axial accelerometer (STMicro LSM303DLHC) (Shimmer, 2018), which
was used to collect acceleration samples at 102.4Hz.

Statistical analysis and Machine Learning classification

The importance of each FB for distinguishing between the three groups (F, PF and
R) was determined using One-Way ANalysis Of VAriance (ANOVA). In addition, we
performed independent samples t-tests for between-groups comparisons, in order to
inspect the differences between pairs of frailty classes: R vs PF, PF vs F and R vs F.
The p < 0.005 criterion was used to test for statistical significance.

To further compareCWTcoefficients in different FBs, we trained and tested seven
Machine Learning models, each time using only features extracted from one of the
FB shown in Table 4.1. Specifically, we implemented seven Random Forest binary
classifiers by means of the Python module Scikit-learn (Pedregosa et al., 2011), in
order to distinguish robust subjects from non-robust ones (i.e., pre-frail or frail).
We tested each model by performing Leave-One-subject-Out cross validation: at
each iteration, band-based gait instances of 33 subjects were used as training set,
while the band-based gait instances of the remaining subject formed the test set.
Then, the subject was classified according to a majority voting scheme: if more than
40% of the band-based gait instances were classified as non-robust, the subject was
classified as non-robust. Early identification of non-robust subjects (pre-frail and
frail) may enable prompt clinical intervention to delay the evolution of frailty.
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Figure 4.2: p-values computed in ANOVA: R vs PF vs F.
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Figure 4.3: p-values computed in R vs PF t-test.

4.3 Results and Discussion
In this study, we hypothesized that specific CWT frequency bands may carry valu-
able information for gait analysis aimed at frailty assessment. On the other hand,
some frequency bandsmay lower the performance in frailty assessment, and should
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Figure 4.4: p-values computed in PF vs F t-test.
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Figure 4.5: p-values computed in R vs F t-test.

not be considered. The heatmaps in Figures 4.2, 4.3, 4.4, and 4.5 show the p− values
computed in the statistical tests. Dark blue colored squares indicate statistically non-
significant features. It turns out that the features extracted in the [1.5, 2.5]Hz FB
proved to be highly significant (p < 0.001) in distinguishing subjects belonging to
the three frailty classes, both in ANOVA and t-tests. This frequency range is in line
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with the typical step frequency ofwalking (Antonsson andMann, 1985). Moreover,
among considered features, RMS of WCE f reported the lowest p, showing that the
energy of the CWT coefficients evolution signal in the [1.5, 2.5]Hz band could be
extremely valuable for frailty assessment.

Finally, we used band-based extracted features to train different random forest
classifiers, in order to further verify our hypothesis. The accuracy scores, obtained
in testing these R vs. PF or F binary classifiers, are listed in Table 4.2. Here, the
accuracy score refers to the number of correctly classified subjects, as indicated in
Section 4.2. The classifier trained with only the gait instances in the [1.5, 2.5]Hz FB
achieves the best results, in line with the result obtained from statistical testing. This
supports our initial hypothesis, as a specific FB of the CWT provides a significantly
more valuable information for frailty assessment.



Chapter 5

A Deep Learning approach for frailty
status assessment

In Chapters 3 and 4, we applied a series of signal processing and statistical tools to
analyze a set of gaits extracted from 34 subjects. We then observed how the output
of CWT can increase the performance of frailty status assessment, as the scalograms
extracted from subjects belonging to the same frailty class seem to present similar
patterns.

In this chapter, we aim to verify this hypothesis using aDeepConvolutionalNeu-
ral Network to detect these patterns in the output of ContinuousWavelet Transform.

Thewavelet scalograms obtained fromgait segments contain information in both
the time and frequency domains. Deep learning approaches that work directly on
the time domain, such as transformers and Long short-term memory, could poten-
tially be used for analyzing this data. However, in this particular study, the focus
was on studying the importance of features in the time-frequencydomain. Given the
ability of convolutional neural networks (CNN) to extract local features from their
inputs, they were considered a suitable approach for analyzing the wavelet scalo-
grams. Furthermore, previous research has shown that CNNs can effectively ana-
lyze medical data, including electroencephalograms (EEG) and MRI scans. There-
fore, we decided that using CNNs on the wavelet scalograms obtained from gait
segments extracted from an accelerometer was a viable approach for this study.

5.1 A brief introduction to Deep Convolutional
Neural Networks

Deep Learning is the field of Machine Learning characterized by multiple processing
layers - called deep layers - each extracting information from the previous layer and
computing values for the subsequent one. One of the main advantages of Deep

51
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Learning is the ability to learn hidden patterns from the input and to apply this
information to make predictions.

Our system uses a particular class of deep neural networks called Convolutional
Neural Networks (CNN). A CNN is an interleaved set of feed-forward layers that
implements convolutional filters. Each layer in the network represents a group of
artificial neurons able to originate a high-level abstract feature (Ravì et al., 2016).
Typically, a CNN includes the following layers:

Convolutional: in these layers, a kernel (i.e., a filter) is applied to detect patterns
in the input. The kernel moves along the input, and convolution is computed. Dif-
ferent kernels detect different features. Finally, an activation function will use the
convolution results to produce the layer output, called feature map. Figure 5.1 depicts
a graphic representation of the above description.

Kernel

Input

Kernel

Input

Activation
Function

Feature map

Figure 5.1: Example of a convolutional layer.

Pooling: convolutional layers generate feature maps sensitive to the features’
position. A flipped input will produce a completely different feature map. CNNs
use pooling layers to obtain a robust featuremap. These layers usemovingwindows
to summarize the information in the feature map through an aggregation function
- e.g., max, mean, or min functions. Figure 5.2 shows an example of MaxPooling.

Fully-connected (or Dense): each neuron is connected to all the neurons of the
subsequent layer. These layers detect global features by aggregating previously ex-
tracted local features.

Finally, it isworth describing anothermechanismused inCNNs: Dropout. Dropout
is a regularization technique inwhich a group of randomly selected nodes is discon-
nected from the network at each iteration. In other words, incoming and outgoing
connections are removed from the chosen neuron forcing the network to improve
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Figure 5.2: Example of a max-pooling layer.

the learning techniques. Dropout decreases the probability of suffering the over-
fitting problem in the Neural Network. An overfitted network is characterized by
high performance on the training set and lack of generalization capability, i.e., poor
performance on unseen data.

5.2 Materials and methods
This section describes the proposed method for a CNN-based frailty status assess-
ment. Figure 5.3 depicts a summarized view of the method. The dataset used in
this chapter has already been described in Chapter 3. The experimental protocol,
the worn device, the signal preprocessing techniques, and the gait detection algo-
rithm are the same. The only difference is the number of gait steps included in a
gait segment. A peculiarity of the training phase of CNNs is the need for a large
dataset to increase classification performance without running into problems such
as overfitting. Due to the limited dimension of the dataset, we decided to extract
gait segments composed of one gait cycle instead of four (two consecutive gait steps
instead of 8). In this way, we increased the dataset size by four times.

A data summary is presented in Table 5.1. For the reader’s convenience, we recall
that the sample contained 23NR (non-robust, including 8 frail and 15 pre-frail) sub-
jects and 11 R (robust) subjects. This binary classification still allows geriatricians to
identify the individuals who may need further clinical evaluation, namely pre-frail
and frail. Indeed, early identification of the latter categories enables prompt clinical
intervention, which may lead to better health outcomes for the subject.
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Figure 5.3: Flowchart of the CNN-based frailty status assessment proposedmethod.

Table 5.1: Description of the dataset used for CNN-based frailty status assessment.
Females Males

Number of subjects 13 21
Age 80.15 ± 6.80 years old 80.05±6.30 years old

Height 1.58 ± 0.04 m 1.72±0.07 m
Weight 65.19 ± 11.80 kg 75.43 ± 8.91 kg

As can be observed, the dataset’s low numerosity and unbalanced nature make
it inadequate for training deep machine learning models. To address these prob-
lems, we employed data augmentation techniques in an initial set of experiments.
Specifically, scalograms of robust subjects were horizontally flipped. This technique
involves taking a scalogram, defined as a matrix of wavelet coefficients, and gener-
ating a flipped version of the matrix where the elements in the last column repre-
sent the elements initially found in the first column, and so on. However, despite
data augmentation, the results could have beenmore satisfactory. We observed that
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generating realistic synthetic samples was not feasible, and the results did not sig-
nificantly improve the accuracy of the frailty classification model.

Figure 5.3 shows the proposed method’s flowchart.
In the following sections, we explore the signal transformation and the final clas-

sification process based on a Convolutional Neural Network.

Continuous Wavelet Transform

Figure 5.4: Example of transformation performed by Continuous Wavelet Trans-
form.

As previously mentioned, this chapter aims to verify the hypothesis that a Deep
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Convolutional Neural Network can detect frailty-related patterns in the scalograms
obtained throughContinuousWavelet Transform. For this reason, the gait segments
detected in the previous stage become the input to a CWT processing module.

A description of the CWT signal processing tool has already been presented in
Section 2.5. Figure 5.4 shows an example of transformation performed in the current
stage.

The base model: CNN for Human Activity Recognition

Table 5.2: Dataset summary after CWT.
Frailty class Total number of scalograms

Robust 1124
Non-robust 2643

Table 5.2 shows the number of scalograms available for training and testing the
CNN. Notably, the dataset is not large enough to train high-performance learners
such as convolutional networks. Therefore, there is a need to perform part of the
training phase using data from different domains. This methodology is referred to
as transfer learning (Weiss et al., 2016).

There are very few publicly available Deep Learning models trained on scalo-
grams. We thus decided to build a CNN for Human Activity Recognition (HAR)
and trained it using a set of scalograms generated by CWT applied to publicly avail-
able wrist-derived accelerometric data. This way, the base model - i.e., the pre-trained
model - was ready to extract features from scalograms for HAR aims. After, we re-
trained the last layers of the base model using the dataset described in Table 5.2 to
obtain our CNN-based frailty status classifier.

Pre-training: HumanActivityRecognition For this first phase, weused theWISDM
Smartphone and Smartwatch Activity and Biometric Dataset (Weiss et al., 2019). It
contains a high number of accelerometer-derived data extracted from a wrist-worn
sensor. Each of the 51 subjects in the dataset performed 18 activities for 3 minutes
each. During the experiment, each participant wore a smartwatch embedding an
accelerometer. This sensor was used to extract activity-related signals at a sampling
rate of 20Hz.

A general schema of the operations performed to generate the training set of our
base model is depicted in Figure 5.5. In particular, we split the acceleration magni-
tude signal into 96-sample windows - 4.8 seconds - and applied CWT to these win-
dows. We tested different mother wavelets to understand the best one for our class
of problems. A dataset summary is shown in Table 5.3. The activities in bold are the
gait-related ones - i.e., the ones used to train the base model.
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Activity Windows
Walking 2218
Jogging 2169
Stairs 2185
Sitting 2245
Standing 2281
Typing 2162

Brushing Teeth 2200
Eating Soup 2207
Eating Chips 2214
Eating Pasta 2140

Drinking from Cup 2275
Eating Sandwich 2146

Kicking (Soccer Ball) 2208
Playing Catch w/Tennis Ball 2214

Dribbling (Basketball) 2242
Writing 2269
Clapping 2200

Folding Clothes 2227
Table 5.3: Summary of the WISDM Smartphone and Smartwatch Activity and Bio-
metric Dataset.

An example of the different Continuous Wavelet Transform obtained for the dif-
ferent activities and mother wavelets can be found in Section 2.5.

Finally, Figure 5.6 shows the architecture of the base model. We used the Rectified
Linear Unit as the activation function in the hidden neurons. For the output layer
- each one related to an activity - we chose the softmax activation function, which
expresses the probability that the input belongs to that particular class.

CNN-based frailty status assessment

This chapter aims to use information obtained from CWT output to classify subjects
according to their frailty status. After completing the training phase of the base
model, we applied the CWT to the 34 subjects’ signals described in Section 3.1. We
used the resulting scalograms to re-train the base model’s last layers. In particular,
we trained a binary classifier to distinguish between robust and non-robust subjects.
First, the NR or R class is determined for each one of the subject’s scalograms. The
subject is then categorizedusing amajority voting scheme, as indicated inAlgorithm
5.

Figure 5.7 shows the re-trained layers.
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Figure 5.5: A schema of the preprocessing pipeline for the activity classification task

Algorithm 5: Subject classification procedure
Data: Let G = {g1, g2, ..., gn} be the set of subject’s scalograms
Result: Subject frailty status (R or NR)
Let P = {} the set of model’s prediction on the scalograms;
foreach gi ∈ G do

Let L be the predicted label of gi (R or NR);
P← P || gi;

Let T be the threshold -empirically selected- on the percentage of segments
classified as NR;
Let PR the number of scalograms classified as R;
Let PNR the number of scalograms classified as NR;
PP← PNR/(PR + PNR);
if PP ≥ T then

Subject is classified as NR ;
else

Subject is classified as R;
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Figure 5.6: CNN for Human Activity Recognition: the architecture
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Figure 5.7: Application of Transfer learning for frailty status assessment.
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5.3 Experiments

Leave One Subject Out Cross Validation

In order to validate our model, we applied a Leave One Subject Out Cross Valida-
tion (LOSO CV), which also represents a good choice when dealing with datasets
of signals acquired from different subjects. LOSO CV has already been described
in Section 3.2. At the beginning of each iteration, the base model is loaded and
artificial neurons are initialized with random weights. The model is then trained
and validated with a dataset composed of the windows extracted from n− 1 sub-
jects. Finally, the windows of the left-out subject are given as input to test themodel,
and the corresponding predictions are stored along with the ground truth label. At
the end of the last iteration, the system computes the model’s score by comparing
the ground truth and the predicted class for each of the scalograms present in the
dataset.

Metrics

From now on, let us consider NR subjects as positive and R subjects as negative clas-
sification results. Accuracy, sensitivity and specificity have been used to evaluate and
compare performance of the classification models. Accuracy measures the ratio be-
tween the number of correctly classified NR and R subjects and the total number of
subjects. Sensitivity, or true positive rate, measures the proportion of NR subjects
correctly identified. In the medical field, sensitivity is a crucial metric since classi-
fying as negative a subject that indeed is positive can seriously impact the subject’s
health. Specificity, also called true negative rate, measures the proportion of R sub-
jects correctly identified. In addition, f-1 score has been calculated for every tested
model.

Tensorflow

In our experiments, we used the Tensorflow API Abadi et al. (2015) for Python.
Briefly, Tensorflow is a popular library developed byGoogle for developingMachine
Learning and Deep Learning models. Particularly interesting for further improve-
ments, Tensorflow allows exporting models compatible with smartphones, smart-
watches, and constrained settings, enabling the possibility to build mobile appli-
cations. In particular, for developing the Deep Learning models proposed in this
thesis, the Keras Chollet et al. (2015) library - included in the Tensorflow API - was
used to enable the high-level development of deep neural networks.
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5.4 Results
In this section, we present the results obtained with the base model in the HAR task
and the results obtained in the frailty assessment task.

Base model results Figure 5.8 shows the accuracy score achieved in HAR for the
different mother wavelets, using different numbers of neurons in the hidden dense
layer.
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Figure 5.8: Base model accuracy score.

The morlmother wavelet is the one that performed the best in most of the cases,
achieving very good results in this first phase. For this reason, we decided to use this
model for the second phase of the proposed method, which consists of re-training
using the frailty-labeled dataset. No critical changes are achieved by changing the
number of neurons. Thus, we decided to use 25 neurons.

Frailty status assessment results Table 5.4 presents the results of the CNN-based
frailty classifier in distinguishingNR scalograms fromR ones, while Table 5.5 shows
the results for subject classification.
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In Table 5.6, the subjects incorrectly classified are reported. As we expected, the
model misclassified pre-frail subjects 9, 22, and 26, since subjects belonging to this
class seem to share patterns with both frail and robust subjects.

Subject ID Prediction Ground Truth Frailty Class
9 R NR PF
15 NR R R
22 R NR PF
26 R NR PF
27 NR R R
29 R NR F

Table 5.6: Subjects improperly classified by the CNN-based frailty classifier.

The results obtained in the subjects classification task are very promising and
suggest that CWTapplied to gait analysis could play a crucial role in frailty detection
systems. Although we used transfer learning to overcome the dataset size problem,
we note that the system still suffers from this limitation. Systems based on deep
neural networks need very large datasets to identify the distinguishing features of
the classes involved in these studies.

In chapter 3, we applied five shallow Machine Learning models for the same
classification task: RandomForest, Gaussian naive Bayes, Logistic Regression, Mul-
tilayer Perceptron, and Support Vector Machine. Gaussian naive Bayes is the one
that achieved the best performance, being able to classify subjects with a classifica-
tion accuracy of 88%, 91.3% sensitivity (21 correctly classified NR participants out
of 23), and 81.8% specificity (9 correctly classified R participants out of 11).

Let’s compare the performance of deep and shallow learning models. The score
achieved by the latter is slightly better than the one obtained with Deep Learning.
This difference can be found in the ratio between system complexity and dataset di-
mensions: in general, shallow learning performs better than Deep Learning with a
dataset characterized by limited dimensions. This shows that Deep Learning mod-
els, although they are very complex and have produced great results on some prob-
lems, are not universally better than Shallow Learning ones. Deep Learning meth-
ods often require large amounts of training data and high computational cost. In
many cases, simpler ML models, such as the ones we used in Chapter 3, actually
perform better.





Chapter 6

Automated, ecologic assessment of
frailty using a wrist-worn device

In this Chapter, we study and discuss the potential of unobtrusive, wearable de-
vices in objectively assessing frailty through unsupervisedmonitoring in real-world
settings. The chapter is organized as follows: Section 6.1 presents the method we
suggested for automatic frailty assessment based on wearable accelerometers. The
experiment’s setup, design decisions, and validation are discussed in Section 6.2.
Finally, the achieved results are presented in Sections 6.3.

6.1 The proposed method
Figure 6.1 depicts the method’s flowchart. In a nutshell, 24-hour acceleration data
are collected through a sensor embedded in a wrist-worn wearable device. After
preprocessing, the acceleration trace is sent to a segmentation module and split into
10-second segments. These segments are labeled according to their content: gait,
other motor activity, or rest. Other motor activities and gait segments are used in
the evaluation of the subject activity level (SAL). Furthermore, a subset containing
the gait segments with the highest level of signal energy is used for the feature ex-
traction phase. Finally, the extracted features are fed into the training phase of a
Machine Learning classifier for the assessment of the frailty status. Specifically, the
SAL and the result of theMachine Learning classification are used to assess whether
the subject is robust (R) or nonrobust (NR).

Data acquisition and preprocessing
The acceleration components (x, y, z axes) are collected through thewearable device
at a sampling rate of 102.4 Hz and converted into g units. Afterwards, the acceler-
ation magnitude m is computed by means of the formula m =

√
x2 + y2 + z2. As

67
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Figure 6.1: Flowchart of the proposed method for ecologic assessment of frailty us-
ing a wrist-worn device.

highlighted by the authors in (Antonsson and Mann, 1985), body movements typi-
cally have frequency components below 20 Hz. Hence, a second-order Butterworth
low-pass filter with a cut-off frequency of 20 Hz is applied to all the acceleration
components. The signal trace is now ready for the segmentation module.
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Segmentation
In order to improve our system’s generalization, we split the signal trace into seg-
ments of fixed duration. This allowedus to increase the dataset size and identify crit-
ical frailty-related features in small-sized segments. The duration was determined
empirically. In detail, since the segments are given as input to a gait detection al-
gorithm and the frailty status is mainly identified based on gait characteristics, the
choice of duration has to respect the following requirements:

• even the shorter segments must allow capturing gait instances that accurately
document the walking pattern of the subject and its regularity;

• given the limited space usually available in the home environment, walks are
usually composed of a limited number of steps. Therefore, excessive dura-
tion of the segments might lead to incorporating other activities, together with
gaits. This would result in a decline in the performance of frailty status classi-
fication.

According to our experiments, the best trade-off to optimize the classificationwould
be duration = 10s. From now on, we will refer to the output of the segmentation
phase with 10s segments.

Segment labeling
Several researchers have stated the importance of human activity levels in assessing
different clinical conditions. In this chapter, we evaluate the subjects’ activeness
by exploring the nature of their 10s segments. In particular, we apply a two-stage
algorithm to analyze the content of each 10s segment and discriminate them among
gait, other motor activity, and rest. Other motor activities and gait segments are
then used to evaluate the subject’s activity level. More details are presented and
discussed in Section 6.1.

In the first stage, gait segments are automatically identified through the gait de-
tection algorithm developed in (Cola et al., 2014) and adapted in (Minici et al.,
2021). The algorithm is based on the analysis of the acceleration magnitude sig-
nal to detect gait cycles in the segment, where a gait cycle is the sequence of events
that occur during two consecutive heel strikes of the same foot. A segment is labeled
as gait segment if it contains at least four consecutive gait cycles. Otherwise, all those
segments that remain unlabeled would be moved to the next stage.

In the second stage of the segment labeling algorithm, other motor activities are
identified by means of the standard deviation of the acceleration magnitude. A seg-
ment is labeled as other motor activity if the standard deviation value is higher than
a threshold determined experimentally threshold_movement. All the remaining seg-
ments are labeled as rest segments and discarded from the system.
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Subject Activity Level
Objectively measured physical activity and sedentary behavior are associated with
frailty in community-dwelling older adults. Prior understanding of this relationship
relied on self-reported, subjective measures of physical activity, which are often bi-
ased (Tolley et al., 2021). In our study, we introduce the Subject Activity Level (SAL)
parameter to assess this relationship in an objective fashion. In particular, we aim
to use this information, related to the whole day (24 hours), along with the gait
characteristics, which relate to a very limited time interval instead.

After labeling all the segments identified in a subject, we then compute the per-
centage of daytime spent walking, performing other motor activities, or resting. Let
GS, OMAS, and RS be the number of 10s segments labeled as gait segments, other
motor activity segments, and rest segments, respectively. Let TS be the total number of
10s segments identified in a subject. We will have:

GL =
GS
TS

OMAL =
OMAS

TS

RL =
RS
TS

where GL, OMAL, and RL are the subject’s gait level, other motor activities level,
and rest level, respectively. It is worth noting that GL + OMAL + RL = 1.

The SAL is calculated as:

SAL = (1− α)OMAL + αGL, (6.1)

where α is a parameter to weight GL and OMAL. In particular, we hypothesized
that the importance of GL and OMAL can vary with different experimental setups
and diseases. Therefore, the introduction of the alpha parameter allows us to study
the activity that most influences a particular clinical condition in order to maximize
the performance of the evaluation system. The study of alpha in our frailty status
assessment system is provided in Section 6.2.

Frailty status assessment
In this phase, the SAL and gait segments are used to determine the frailty status
of the subject. The design of the frailty status assessment algorithm is depicted in
Figure 6.2. Frailty status is assigned in a two-stage process. In the first stage, the class
assignment is based only on SAL; thus, we refer to activity-based classification. When
SAL alone cannot provide a reliable prediction of the subject’s class, classification is
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Figure 6.2: Two-stage frailty status assessment.

based on the second stage, which relies on a Machine Learning (ML) model: ML-
based classification.

In the first stage based on SAL, we assume that a subject with a high SAL is
more likely to belong to the R class, as frailty is associated with low levels of activ-
ity throughout the day. Hence, a subject with a low SAL value exhibits sedentary
behavior and is more likely to belong to NR. Let ALR and ALNR be the threshold
values to assign the R and NR classes to a subject, respectively.

SAL ≤ ALNR → subject_class = NR

SAL ≥ ALR → subject_class = R

otherwise→ ML− based classi f ication

More details on threshold estimation are presented in Section 6.2.
TheML-based classification module is a slightly modified version of what we al-

ready proposed in (Minici et al., 2021). The walks performed by subjects during the
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day might have very different patterns, and this may introduce noise in the training
phase of the Machine Learning model. To address this potential problem, we apply
an initial filtering step in which only the gaits with the highest signal energy level
are selected. Specifically, gait segments are sorted according to their AAV value,
from highest to lowest. Notably, AAV is positively correlated with the signal’s en-
ergy level. From this sorted list, only the first M gait segments are selected, while
the others are discarded.

The retained M gait segments are used as inputs to the feature extraction pro-
cess. Here, the most relevant aspects of the subject’s gait pattern are captured by
features computed in the time and time-frequency domains. Features and the fea-
ture selection procedure are described and discussed in Section 6.2.

Finally, a Machine Learning model is used to assess the frailty status. Let us
define gait instance the vector of features derived from a gait segment. First, the NR
or R class is determined for each one of the subject’s gait instances. The subject is
then categorized using a majority voting scheme, as indicated in Algorithm 6.

Algorithm 6:ML-based classification algorithm
Result: Subject’s frailty status (R or NR)
Let G = {g1, . . . , gM} be the set of subject’s gait instances;
foreach gi ∈ G do

gi is classified as R or NR;
end
Let T = {t1, . . . , tM}, be the set of labels assigned by the classifier;
Let TNR be the total number of gait segments labeled as NR;
Let kNR be the non-robust parameter;
threshold← ⌈M · kNR⌉;
if TNR ≥ threshold then

Subject is classified as NR;
else

Subject is classified as R;
end

The kNR parameter was determined empirically. More details are presented in
Section 6.2.

6.2 The method’s validation criteria
In this section, we discuss the validation process of the proposed method, along
with the characteristics of the experimental setup. In particular, we describe the
subjects’ inclusion procedure, the technology adopted during data collection, the
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study of parameters and thresholds used in the process, and finally, the evaluation
of frailty status assessment performance.

Participants
We enrolled adults aged 70+ admitted after accessing the Geriatrics outpatients
clinic at Careggi academic hospital as patients or patients’ caregivers. Subjects re-
porting physical dependence in at least one of Katz’s basic activities of daily living
(BADL) (Katz et al., 1963), as well as those with conditions causing overt abnor-
malities of gait (stroke, Parkinson’s disease, severe hip or knee osteoarthritis) were
excluded.

A total of 35 eligible subjects were included in the study, consisting of 14 females
(78.86± 5.55 years old, height 1.61± 0.07 m, weight 68.50± 12.56 kg) and 21 males
(80.00± 5.82 years old, height 1.70± 0.05 m, weight 77.81± 13.76 kg).

The study was conducted in accordance with the ethical principles of the Dec-
laration of Helsinki and was approved by the Local Ethics CommitteeComitato Etico
Regionale per la Sperimentazione Clinica della Regione Toscana (approval n. 14834_oss
of May 7, 2019). A signed, written consent to participate in the study was obtained
from all participants. Identifiable information was removed from the collected data
to ensure participant anonymity.

Clinical assessment and experimental setup
The presence of frailty in participants was assessed, based on Fried’s criteria, by
measuring the following dimensions:

1. unintentional weight loss of 4.5 kg or more in the previous year;

2. low energy, identified through the CES-D (Center of Epidemiologic Studies
Depression Scale) (Orme et al., 1986);

3. low physical activity defined thanks to the Physical Activity Questionnaire for
the Elderly (PASE) (Schuit et al., 1997);

4. slowness, defined by the speedmeasured over a distance of 4.5 m and normal-
ized for height and gender;

5. weakness, meaning reduced hand-grip strength in the dominant hand.

A subject was considered robust, pre-frail or frail if positive for three or more di-
mensions, one or two dimensions, or negative for all dimensions, respectively.

As a result, the sample contained 19 NR (non-robust, including 7 frail and 12
pre-frail) subjects and 16 R (robust) subjects.
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After clinical evaluation, subjects were asked to wear a Shimmer3 device on their
wrists for a period of 24 hours, duringwhich participants led their usual lives. Shim-
mer3 is awearable device embedding a tri-axial accelerometer (STMicro LSM303DLHC)
(Shimmer, 2018), which was used to collect acceleration samples at 102.4Hz. At
the end of 24 hours, the subject returned to the clinic, and the sensor data were
downloaded through the Shimmer Consensys software. We performed all further
analysis on the signal on Python 3.9 notebooks, specifically created on Jupyter Lab
(Granger and Pérez, 2021).

Subject Activity Level
As mentioned in Section 6.1, we introduced a measure that quantifies the level of
activity of the subject during the day: the SAL value. In addition, as showed in
Equation 6.1, we included in the SAL formula an α parameter that depends on the
study context. In order to maximize the performance of our frailty status assess-
ment in a home context, we tested all possible α values in the range [0, 1], with an
increment of 0.05. Specifically, we performed a dual investigation:

1. α-based statistical analysis of SAL;

2. α-based performance evaluation of the system.

In the first analysis, we aimed to identify the value of α that maximized the sta-
tistical significance of SAL in distinguishing between NR and R subjects. To this
purpose, an independent two-sample t-test has been performed to compare the dis-
tributions of SAL values of R vs. NR subjects. The aim was to find the α which
minimized the p-value in the latter comparison.

In the second analysis, we studied the performance of the entire frailty status
assessment system as α varied, intending to identify the alpha that maximized R
vs. NR classification scores. The results of this dual investigation are presented in
Section 6.3.

Feature extraction
Aspreviouslymentioned, the gait segments identified in the segment labeling phase
become the input to a feature extraction process. Here, a vector of features is com-
puted from the gait segment’s signal, including common statistical parameters used
in signal processing (mean, median, standard deviation, minimum and maximum
values, interquartile range (IQR),mean absolute deviation (MAD), rootmean square
(RMS), kurtosis, skewness and zero-crossing rate (ZCR)), calculated on accelera-
tion components or Wavelet coefficients. Furthermore, two quantities previously
used in gait analysis and fall detection studies are computed: the cadence, defined
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Table 6.1: List of extracted features in the time domain for ecologic assessment of
frailty using a wrist-worn device.

Feature Components

Mean x, y, z, m
Median x, y, z, m

Standard deviation x, y, z, m
Minimum value x, y, z, m
Maximum value x, y, z, m
Interquartile range x, y, z, m

Kurtosis x, y, z, m
Zero Crossing Rate x, y, z, m

Mean Absolute Deviation x, y, z, m
Root Mean Square x, y, z, m

Average Absolute Variation x, y, z, m
Cadence -
Duration -

as the ratio between the duration of the gait segment and the number of performed
steps, and the average absolute acceleration variation (AAV), which is computed on
consecutive acceleration samples (Cola et al., 2014, 2017).

The importance of walk-related wavelet features for frailty status assessment has
already been shown in (Minici et al., 2021). In particular, we use the Continuous
Wavelet Transform (CWT) on the acceleration magnitude signal to obtain a represen-
tation of the gait segment into the time-frequency domain. CWT is a signal process-
ing technique to analyze a time series containing non-stationary power at different
frequencies (Daubechies, 1990). More specifically, CWT allows the analysis of local
variations of power by decomposing a time series into different frequency compo-
nents.

The list of features included in the gait instance, for time and time-frequency do-
mains, are shown in Tables 6.1 and 6.2, respectively.

Testing of the sensor-based frailty status assessment
A Leave-One-Subject-Out cross-validation (LOSO CV) procedure was used to test
the frailty status assessment algorithm: at each iteration, the data (SAL and gait
instances) of one subject were used as the testing set, while the data of other subjects
were used as the training set. Besides, SAL values of the training set were used, at
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Table 6.2: List of extracted features in the time-frequency domain for ecologic as-
sessment of frailty using a wrist-worn device.

Feature Components

Mean CWT coefficients
Median CWT coefficients

Standard deviation CWT coefficients
Minimum value CWT coefficients
Maximum value CWT coefficients
Interquartile range CWT coefficients

Kurtosis CWT coefficients
Skewness CWT coefficients

each iteration, to compute the ALNR and ALR thresholds introduced in Section 6.1.
After finding the α that maximized the statistical significance of SAL, we compared
the distributions of activity levels of R and NR subjects. From this comparison, we
decided to assign to ALNR the 25th percentile value of NR SALs, while we assigned
to ALR the 75th percentile of R SALs. More details on the above are provided in
Section 6.3.

Three different Machine Learning models have been evaluated in the ML-based
classification module: Random Forest, Gaussian naive Bayes, and Logistic Regres-
sion. All the classifiers have been implemented by means of the Python module
Scikit-learn (Pedregosa et al., 2011).

In the ML-based classification module, a feature selection step was performed
within the cross-validation procedure. Specifically, at each Leave-One-Subject-Out
iteration, we applied a feature selection algorithm based on the One Way ANaly-
sis Of VAriance (ANOVA) test to the training set. This algorithm computed the
ANOVA F-statistic using values extracted from the R and NR subjects in the train-
ing set for each feature. Features were then sorted in descending order by F-statistic,
and the best k features were selected. In this case, k = 35. The ML model was then
trained using only the selected features of the training set and tested on the left-out
subject.

From now on, let us consider NR subjects as positive and R subjects as negative
classification results. We used accuracy, sensitivity and specificity scores to evaluate
performance of the classification models. In particular, the accuracy score measures
the ratio between the number of correctly classified NR and R subjects and the total
number of subjects. Sensitivity, or true positive rate, measures the proportion of
NR subjects that are correctly identified. On the other hand, the specificity score,
also called the true negative rate, measures the proportion of R subjects correctly
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identified. In addition, Receiver Operating Characteristic (ROC) Area Under the Curve
(AUC) has been computed for each model.

6.3 Results and Discussion
The results obtained from the experiments described in Section 6.2 are now shown
and discussed. First, we analyze the SAL and how we assigned the value to the
α parameter. Next, we turn to the presentation of the results of the frailty status
assessment algorithm.

Subject Activity Level
As already described in Section 6.2, we performed the following investigations on
the α parameter of the SAL formula:

1. α-based statistical analysis of SAL;

2. α-based performance evaluation of the system.
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Figure 6.3: Results obtained in the α-based statistical analysis of the Subject Activity
Level.

Figures 6.3 and 6.4 summarize the results of steps 1 and 2 of our α-based exper-
iments, respectively. On the x-axis of the graph depicted in Figure 6.3, we find the
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Figure 6.4: Results obtained in the α-based performance evaluation of the system.

alpha parameter of the SAL, while on the y-axis, we have the p-value calculated by
the statistical t-test R SAL vs. NR SAL. It is important to remember how a lower
p-value corresponds to a higher statistical significance of the SAL in distinguishing
between R and NR subjects. In Figure 6.4, we again find alpha on the x-axis, but,
in this case, the accuracy of the frailty status assessment algorithm is displayed on
the y-axis. In other words, we can observe how the classification score of the system
varies as alpha varies.

From the statistical analysis, we can notice how the highest statistical significance
of SAL has been obtained for α values included in the range [0.4, 0.6]. Confirming
this, the accuracy values of the frailty status assessment algorithm in the same in-
terval are very positive, with a maximum of 0.91 for α = 0.6.

Referring to the SAL formula we developed - SAL = (1− α)ML + αGL - choos-
ing an α value in the above range means giving similar importance to walking and
general movements performed during the day. On a quantitative level, it is indeed
essential to consider all activities carried out by older adults, even those in which
the person stands still without walking. Let us not forget that the dataset was col-
lected during the COVID-19 pandemic. Thus, older subjects spent less time outside,
and the actions performed were restricted to home environments. In other words,
wemay have recorded a limited number of walking intervals and other movements.
That said, robust subjects may still have had a higher activity level than non-robust
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Figure 6.5: Box plot representation of the Subject Activity Level computed from the
R and NR subjects.

subjects, which in the case of our study, are captured by an almost equally balanced
SAL.

In light of what we obtained from our investigation, we assigned α = 0.6, and
the SAL formula became as follows:

SAL = 0.4ML + 0.6GL,

Before presenting the results of the frailty status assessment algorithm, let us
end the discussion regarding the SAL by examining howwe selected the ALNR and
ALR thresholds. Figure 6.5 shows the box plots generated by SAL values of NR and
R subjects. From a simple observation of the plot, we note that all R subjects have
a SAL greater than the first quartile of NR SALs. Likewise, all NR subjects have a
SAL lower than the third quartile of R SALs. For this reason, we decided to assign
to ALNR and ALR these two values, computed from the R and NR subjects in the
training set, at each LOSO CV iteration. This way, the evaluation procedure and the
results obtained were kept valid.

Frailty status assessment
We collected data from 35 older adults over a 24-hour time interval, during which
the subjects lived their everyday lives. The data were then used throughout the
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Table 6.3: Average results of the frailty status assessment algorithm.

Classifier Acc. Sens. Spec. AUC

Gaussian Naïve Bayes 0.91 0.94 0.88 0.91
Random Forest 0.77 0.68 0.88 0.78
Logistic Regression 0.74 0.74 0.75 0.74

process described in the 6.1 section. The frailty status assessment algorithm was
adapted to the study context by tuning the parameters and thresholds defined in
the 6.2 section. Finally, we tested the entire system through a LOSO CV procedure.
Table 6.3 summarizes the results obtained for all three classifiers tested.

The Gaussian Naïve Bayes model performed substantially better than the other
two models, classifying subjects with an accuracy score of 91% (32 correctly clas-
sified participants out of 35). In addition, the algorithm recognized 18 out of 19
NR subjects (94% sensitivity score) and 14 out of 16 R subjects (88% specificity
score). The Random Forest model achieved higher accuracy than Logistic Regres-
sion, though it achieved a lower sensitivity score, which is a crucial indicator in
healthcare-related applications (low sensitivity leads to false negatives, i.e., frail pa-
tients are missed by the system). The latter model had the worst classification per-
formance, although the scores were very balanced.

These results bring several positive aspects to consider, in line with the aims dis-
cussed in the Introduction. First, we verified what was already shown in (Minici
et al., 2021). However, unlike the previous study, we collected sensor-derived sig-
nals in an unsupervised setting, and still the results were remarkable. This achieve-
ment further supports the hypothesis that sensor-based gait biomarkers, in combi-
nation with a Machine Learning-based algorithm, may enable a practical approach
to continuous frailty status monitoring.

Second, this chapter confirmed the wrist as an excellent body position for col-
lecting frailty-related accelerometer signals. Other researchers have explored the
use of sensors to monitor frail patients. However, the procedures used were less
practical, as sensors were attached to a t-shirt or to the user’s lower back employing
special belts. Compared to these previous experiences, a wrist-worn device is more
convenient and unobtrusive. This might improve the compliance of older adults
asked to wear a device for an extended time interval. Again, our results represent a
significant step towards the feasibility of automated frailty status assessment.

It is important to consider howwell individuals in each frailty category tolerated
remote patient monitoring (RPM) assessments and technology. They were able to
complete the assessments and use the technology without any significant issues or
discomfort. This suggests that wrist-based RPM assessments may be well-tolerated
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among individuals with varying levels of frailty.
Finally, in Chapter 1, we mentioned the correlation between frailty and physical

activity and discussed how this correlation is often studied through self-reported
questionnaires. In our study, we defined the objective measure SAL and used this
index jointly with the ML-based classification module. Our goal was to combine a
quantitative measure that collects information about the subject’s entire day with
a qualitative measure that finds specific gait-related details in short time intervals.
The achieved results support the validity of this approach and the correlation be-
tween a sedentary life and frailty condition. Again, these findings could represent
a further step toward improving monitoring systems aimed at frailty status assess-
ment.





Chapter 7

Conclusions

In this dissertation, we explored the use of wearable sensors combined with math-
ematical models and artificial intelligence tools for frailty identification.

First, we investigated the use of wearable sensors to analyze gait and identify
pre-frail and frail subjects. To this purpose, gait segments from 34 older adults
were detected by using twowearable devices, placed at the subject’s wrist and lower
back. These traces were then independently analyzed, in time and time-frequency
domains. Five different machine learning models were tested for the classification
task: Random Forest, Gaussian naive Bayes, Logistic Regression, Multilayer Percep-
tron and Support Vector Machine. The best performance was achieved by Gaussian
naive Bayes (91.3% sensitivity and 81.8% specificity) using a combination of time
and time-frequency domains features extracted from a wrist sensor-derived signal.
Interestingly, the wrist-worn sensor achieved substantially better classification ac-
curacy than the lower-back-worn sensor, indicating arm motion as a distinctive ele-
ment between robust and frail subjects. Continuous Wavelet Analysis was used to
include information about the distribution of power in the time-frequency domain,
that allowed us to capture gait regularity and achieve better classification perfor-
mance. The results demonstrated that unobtrusive wearable devices may enable an
effective approach in continuousmonitoring of humanwalking, and represent a sig-
nificant step towards the feasibility of automated frailty status assessment based on
machine-learning. Also, from the application point of view, a wrist-worn based im-
plementation of the proposedmethodmay foster user adoption of wearable devices
for early detection of the frailty syndrome, as itmay be embedded into a smartwatch.

Secondly, we analyzed the output of the Continuous Wavelet Transform applied
to the acceleration during gait, in order to identify the most useful CWT-based fre-
quency bands (FB) for frailty identification. To this purpose, the gait traces pre-
viously collected from the 34 older adults were used. A time-frequency domain
representation of these traces was then obtained by means of CWT. Features were
computed on seven different frequency bands of the CWT. Statistical differences be-
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tween the features of the three groups (i.e., robust, pre-frail, frail) were analyzed
using ANOVA and t-tests. In addition, the feature sets were used to train and test
seven different random forest classifiers. The best performance was achieved by the
classifier trained with the gait instances of [1.5, 2.5]Hz FB, which also represents the
most statistically significant FB for distinguishing subjects according to their frailty
status. These results suggested that features extracted in [1.5, 2.5]Hz band may im-
prove the performance of frailty status assessment models, as they contain statisti-
cally significant frailty-related information.

Next, we used a Deep Convolutional Neural Network to further analyze the out-
put of Continuous Wavelet Transform, since the scalograms extracted from subjects
belonging to the same frailty class seem to present similar patterns. In particular,
CWT was applied to the signal traces extracted during a walk activity of 34 older
adults, producing scalograms as output. A Convolutional Neural Network was
trained in two different stages, by applying a Transfer Learning strategy. We trained
a base model for Human Activity Recognition purposes based on the scalograms
obtained from a public dataset. A second-stage training was then performed on the
last layers of the CNN, this time for frailty status classification using the scalograms
extracted from the 34 subjects. The results demonstrated that Deep Learning-based
systems might represent an effective approach to the frailty classification task, al-
though they did not improve the scores previously achieved using shallow learning
models.

Finally, we explored the use of in-home collected wearable-derived signals for
frailty status assessment. To this aim, 24-hour acceleration traces were extracted
from 35 subjects aged 70+ using a wrist-worn device. We processed these signals
and trained a frailty status assessment algorithm based on subjects’ activity levels
and Machine Learning classification models. We tested three Machine Learning
classifiers: Random Forest, Gaussian naive Bayes, and Logistic Regression. The best
performance was achieved with the Gaussian naive Bayes used as the classifier in
the ML-based module (94% sensitivity and 88% specificity). These findings gain
relevance if one considers that participants wore the device at the wrist. A wrist-
worn device is more practical and can increase the compliance of older adults to
use wearable devices for continuous monitoring of their clinical condition. Indeed,
the proposed algorithm may be integrated into a commercial smartwatch. Finally,
we demonstrated how the subjects’ activity levels could characterize robust and
non-robust subjects. We combined an objectively measured quantity with Machine
Learning-derived outcomes to classify subjects according to their frailty status. This
helped improve the achieved scores, highlighting the correlation between activity
level and frailty.
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7.1 Limitations and Future Work
The limited number of subjects involved in the experiments represents a limitation
of this thesis. A second limitation is that we contrasted robust with non-robust sub-
jects, whereas we could not reproduce the original three-level classification of frailty
status. In future work, we plan to expand the dataset in order to test the generaliz-
ability of our Machine Learning models in a larger and more diverse sample. This
would also consent to distinguish between pre-frail and frail individuals.

Evenwith these limitations, our results demonstrate that sensor-based gait biomark-
ers and a Machine Learning-based algorithm represent a suitable and valid ap-
proach for automated, ecologic assessment of frailty status monitoring. From a fu-
ture perspective, itmight be envisioned that this approachwould eventually consent
also long-term monitoring of older persons in their homes to detect early deviation
from robustness towards frailty.





Appendix A

Ph.D. Internship at Novartis Institutes
for BioMedical Research

As part of the Smart Computing Ph.D. program, I was a Ph.D. candidate at the No-
vartis Institutes for BioMedical Research in Basel (Switzerland). I worked as a data
scientist in Translational Medicine, Biomarker Development, Quantitative Sciences
and Innovation. The work focused on mobile medical devices, very large multi-
variate clinical datasets, and real-world data. In particular, I was involved in two
different projects. The first project had the goal to select the key gait parameters, ex-
tracted by a network of accelerometers, in the motor-cognitive interference in dual
task paradigm. This project directly informed the company research conducted on
diseases affected by cognitive decline. The second project aimed to explore the im-
portance of physical activity metrics obtained from several wearable devices as pre-
dictor of changes and treatment efficacy in different clinical conditions.
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Publications

Journal papers
1. D.Minici, G. Cola, A. Giordano, S. Antoci, E. Girardi, M. Di Bari, M. Avvenuti,

“Towards automated assessment of frailty status using a wrist-worn device”,
IEEE Journal of Biomedical and Health Informatics, pages: 1013–1022, 2021.
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization, writing - original draft, writing - review & editing.

2. M.G.C.A. Cimino, D. Minici, M. Monaco, S. Petrocchi, G. Vaglini, “A hyper-
heuristic methodology for coordinating swarms of robots in target search”,
Computers and Electrical Engineering, pages: 107420, 2021.
Candidate’s contributions: investigation, simulation, methodology, software,
validation, writing - review & editing.

Peer reviewed conference papers
1. D.Minici, G. Cola, A. Giordano, S. Antoci, E. Girardi, M. Di Bari, M. Avvenuti,

“Wavelet-based analysis of gait for automated frailty assessment with a wrist-
worndevice”, 2021 IEEE 17th International Conference onWearable and Implantable
Body Sensor Networks (BSN), pages: 1–4, 2021.
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization, writing - original draft, writing - review & editing.
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Papers under review
1. D. Minici, G. Cola, G. Perfetti, S. Espinoza Tofalos, M. Di Bari, M. Avvenuti,

“Automated, ecologic assessment of frailty using a wrist-worn device”, IEEE
Journal of Biomedical and Health Informatics, 2022.
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization, writing - original draft, writing - review & editing.

Other
1. D.Minici, G. Cola, A. Giordano, S. Antoci, E. Girardi, M. Di Bari, M. Avvenuti,

“Sensor-based assessment of gait to evaluate frailty status in older adults: pre-
liminary data from the WeSPA study.”, 6th Italian Conference on ICT for Smart
Cities and Communities (I-CiTies 2020).
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization, writing - original draft, writing - review & editing, conference pre-
sentation.

2. D.Minici, A. Giordano, G. Cola, S. Antoci, E. Girardi, M. Di Bari, M. Avvenuti,
“Wearable-Sensors based Personalized Assessment (WeSPA) of frailty: pre-
liminary findings”, 2020 European Geriatric Medicine Society EuGMS.
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization.

3. D.Minici, G. Perfetti, S. Espinoza Tofalos, G. Cola, I. Ambrosino, M. Avvenuti,
M. Di Bari, “Sensori indossabili per lo screening della fragilità nell’anziano: il
progetto WeSPA” 2022 Congresso Nazionale della Società Italiana di Gerontologia e
Geriatria SIGG.
Candidate’s contributions: conceptualization, sensor preparation, data ex-
traction and analysis, investigation, methodology, software, validation, visu-
alization.
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