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Good data quality is vital for personalising plans in rehabilitation. Machine learning (ML) improves 
prognostics but integrating it with Multiple Imputation (MImp) for dealing missingness is an 
unexplored field. This work aims to provide post-stroke ambulation prognosis, integrating MImp with 
ML, and identify the prognostic influential factors. Stroke survivors in intensive rehabilitation were 
enrolled. Data on demographics, events, clinical, physiotherapy, and psycho-social assessment were 
collected. An independent ambulation at discharge, using the Functional Ambulation Category scale, 
was the outcome. After handling missingness using MImp, ML models were optimised, cross-validated, 
and tested. Interpretability techniques analysed predictor contributions. Pre-MImp, the dataset 
included 54.1% women, 79.2% ischaemic patients, median age 80.0 (interquartile range: 15.0). Post-
MImp, 368 non-ambulatory patients on 10 imputed datasets were used for training, 80 for testing. 
The random forest (the validation best-performing algorithm) obtained 75.5% aggregated balanced 
accuracy on the test set. The main predictors included modified Barthel index, Fugl-Meyer assessment/
motricity index, short physical performance battery, age, Charlson comorbidity index/cumulative 
illness rating scale, and trunk control test. This is among the first studies applying ML, together with 
MImp, to predict ambulation recovery in post-stroke rehabilitation. This pipeline reliably exploits the 
potential of incomplete datasets for healthcare prognosis, identifying relevant predictors.
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Personalised medicine represents a new frontier in healthcare. Data-driven approaches are crucial in optimising 
individualised rehabilitation pathways by providing reliable, interpretable, and patient-centric predictions1. 
Moreover, there is a pressing demand for trustworthy prognostic solutions, enabling users to understand 
and interpret automatic decisions2. However, while tools for personalised treatment decisions are becoming 
more prevalent in healthcare, their clinical validation and impact on treatment improvement remain largely 
underexplored3.

Treatment personalisation is particularly relevant in rehabilitative medicine4, where the goal is to adapt the 
rehabilitation plan to the unique needs of each patient, given the evidence of its positive effects on recovery5. 
According to Kokkotis et al.6, machine learning (ML) tools can be applied to predict long-term recovery rates 
from the earliest hours of hospitalisation after a stroke. This suggests ML can assist medical practitioners in 
deploying novel, individualised rehabilitation approaches, to enhance the quality of life for survivors and 
the overall quality of care. However, examples of technological tools that support personalised post-stroke 
rehabilitation treatments are still scarce7.

The use of ML technologies in healthcare presents pitfalls such as prediction inaccuracy, privacy vulnerabilities, 
and data scarcity that can hinder the attainment of real-life comparable results8. A critical challenge is collecting 
high-dimension and high-quality data for reliable and reproducible predictions, due to limitations in sample size 
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and data quality in real-world scenarios8. In this context, the presence of missing data may represent a significant 
technical problem9, because it can result in a loss of information, reduced sample size, bias in the results, and 
underestimated uncertainty9–11. When it is not possible to avoid missing values by optimising data collection, 
Multiple Imputation (MImp) is a suitable method for obtaining unbiased results while appropriately considering 
variability11,12. While in single imputation only one value is imputed for each missing entry, causing statistical 
analyses to overlook the uncertainty around the values which are not observed10, MImp is a statistical technique 
involving the generation of multiple plausible estimates for missing values, allowing a correct quantification of 
the uncertainty associated with missing observations in the data13.

In ML, the presence of missing data is often resolved by simply removing or exclusively filling the entries with 
a single imputation procedure13. However, the integration of MImp techniques with ML methods is possible, 
despite being rarely addressed, and may lead to superior results, enhancing prediction performance14. Pioneering 
contributions currently exist specifically addressing the use of MImp techniques in ML, exploring alternative 
procedures and their feasibility15,16. Rios et al.15 conducted an evaluation of the impact of missing values on 
the accuracy estimates of ML models, employing seven distinct methods for missing data management, such as 
the MImp method, cluster-based imputation or regression-based imputation. In this work, MImp emerged as 
a promising compromise between feasibility and accuracy, in predicting patient-specific risk of adverse cardiac 
events.

Despite the increasing prevalence of ML methods applied to stroke and ambulation recovery studies17, 
in accordance with current information no attention has been given to integrating advanced missing data 
management techniques with ML ones. Therefore, it becomes urgent to explore and evaluate methods that 
ensure the robustness and reliability of missing data handling without compromising the overall effectiveness of 
the analytical process.

This study focuses on the development of predictive models for the prognosis of stroke rehabilitation 
outcomes, based on the datasets of two multisite observational studies, prospectively and systematically 
enrolling all adults addressing intensive inpatient rehabilitation within 30 days after stroke18,19. The recovery 
of independent ambulation is a key stroke rehabilitation outcome, directly related to community mobility and 
participation20, and improved quality of life in the chronic stage of stroke, as well as a determinant of caregiver’s 
burden21. Further independent walking is a well-known top priority of stroke patients and their families, 
having a relevant impact on the patients’ social destination after discharge, and mobility. For these reasons, the 
recovery of independent ambulation can be considered one of the most relevant patient-centred outcomes, as 
also reported in the International Standard Set of Patient-Centered Outcome Measures After Stroke22. Thus, 
we focused on the recovery of independent ambulation at discharge from rehabilitation in the subset of stroke 
survivors, who ambulated independently before stroke but lost the ability after stroke. After an accurate phase of 
data pre-processing, this study integrated MImp techniques with a cross-validated ML-based predictive model. 
Then, influential predictors of ambulation outcomes were identified, by using explainable Artificial Intelligence 
(AI) techniques.

Methods
Study design and sample
This work was based on data prospectively collected on a cohort of 448 post-stroke survivors derived from 
two observational multi-site databases: RIPS18 and STRATEGY19 studies, aimed at identifying predictors of 
rehabilitation outcome within 30 days from stroke. Both studies included a core of clinical and functional 
variables assessing the domains of body structure and function, activity, and participation as potential predictors 
of post-acute stroke rehabilitation outcomes. The systematic recruitment of the patients involved all individuals 
admitted to the Intensive Rehabilitation Units (IRUs) of Fondazione Don Gnocchi (FDG) centres, in Italy. 
Specifically, RIPS enrolled 234 patients from Florence, La Spezia, Massa and Fivizzano between December 2019 
and December 2020. The STRATEGY project is still ongoing, with the enrolment of patients in 13 FDG centres 
across Italy from June 2021. This work considered 214 STRATEGY patients enrolled within July 26, 2023, in 
Florence and Milan (IRCCS “S. Maria Nascente”).

The study protocols were a-priori registered on ClinicalTrials.gov (registration number RIPS: NCT03866057, 
registration number STRATEGY: NCT05389878) and were submitted and approved by the local ethical 
committees (RIPS: Florence, 14513; La Spezia, 294/2019; Massa and Fivizzano, 68013/2019; STRATEGY: 
Florence, 19779_oss; Milan, 04_13/10/2021). All medical research involving human subjects were conducted in 
accordance with the Declaration of Helsinki.

The studies shared the same inclusion criteria:

• First-ever or recurrent ischaemic or haemorrhagic stroke diagnosed clinically and with brain imaging oc-
curred within 30 days from recruitment;

• First-ever admission to the IRU for the considered stroke;
• Age > 18 years old;
• Written informed consent.

Patients were excluded in the presence of transitory ischaemic attack and if addressed to the severe brain injury 
high-complexity rehabilitation wards due to a severe neurological condition (severe stroke with a coma lasting 
at least 24 h18,19).

Both in RIPS and STRATEGY, the integrated rehabilitation pathway (IRP) was developed based on the AHA/
ASA Stroke rehabilitation guidelines23 and on the SPREAD (Italian Stroke Guidelines) 201124. The IRP was 
defined by an interdisciplinary team, coordinated by a physiatrist. Each patient was involved in at least three 
hours of rehabilitation per day and received clinical observation and management, nurse management, and 
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physiotherapy. Speech/swallowing training, neuropsychological treatment, occupational therapy, psychological 
support, and aid advice were prescribed by the physiatrist according to the team assessment. Discharge was 
generally determined by the achievement of the previous level of independence or a functional level adequate 
to prosecute outpatient rehabilitation (most often implying the recovery of ambulation), or when the functional 
improvement reached a plateau, and no further improvement was expected25.

In the STRATEGY study, patients were assessed at admission, discharge from the IRUs, and 3 and 6-month 
follow-up after the stroke event through a telephonic interview. In for the RIPS study, they were assessed at 
admission, discharge from the IRU, and 6-month follow-up after the stroke event through in-person visit and 
telephonic interview. On both studies, the assessment addressed different domains, namely demographics, 
clinical and nursing complexity, neurological profile, functional evaluation, and neuropsychological evaluation. 
Additionally, in RIPS study, both neurophysiological and genetic assessment were included. Further details on 
the rehabilitation intervention on the patients, as well as the time points and content of the assessments, can be 
found elsewhere18,26.

Of the above-mentioned samples, only enrolled and non-ambulatory patients at baseline were retained 
for the analysis. The selection of non-ambulatory patients was performed using the Functional Ambulation 
Categories (FAC)27. The ambulation item of the modified Barthel Index (mBI) was considered when the FAC 
was missing28. Hence, patients with FAC < 4 (or mBI < 15 when missing) were considered as non-ambulating in 
class 0, and vice versa in class 1.

Measures
Despite involving multiple assessments, the timepoints considered in this study were the baseline and discharge 
from the rehabilitation stay. The selected outcome was the recovery of independent ambulation at discharge. 
The selection of non-ambulatory patients was performed with the same modalities of the sample definition, 
i.e., using the FAC scale in conjunction with the ambulation item of mBI at discharge (when the first one was 
missing). As it will be better explained in the next section, the ML model was developed considering as candidate 
predictors of the ambulation outcome a subset of independent categorical and numerical variables measured 
at admission. The predictors can be categorised as follows: demographics, description of the event, clinical 
assessment, functional profile, and psycho-social assessment. The detailed list is reported in supplementary 
material, SM, (Supplementary Table SM.1).

• Demographic predictors were age, sex, educational level, and cohabitation.
• Predictors describing the event were aetiology (ischaemic, haemorrhagic), time from the event (days), area of 

the lesion (-, supra-tentorial, sub-tentorial, both), recurrence event and the side of the lesion.
• Predictors from the cognitive and psycho-social assessment were: modified functional walking categories 

(mFWC), a worldwide used, reliable and valid tool to assess community ambulation in stroke survivors; 
the Frenchay activities index (FAI), a widely used tool to measure participation after stroke, cross-cultural-
ly adapted on an Italian stroke survivor population; the Montreal cognitive assessment (MoCA)29, a rapid 
screening instrument that assesses different cognitive domains, or, when missing, the mini mental state ex-
amination (MMSE)30, a brief screening tool that provides a quantitative assessment of cognitive impairment.

• Predictors from the physiotherapy assessment were: mBI, a clinical tool used to assess the independence level 
across various medical condition; the FAC31, a scale to assesses the level of functional ambulation in patients 
with gait limitation; the Trunk control test (TCT), used to assess four axial trunk movements in patients that 
have suffered from a neurological disorder; the short physical performance battery (SPPB), a clinical tests bat-
tery (i.e., tandem, 4 m walking test, five times sit-to stand) for evaluating lower extremity functioning in older 
persons; the modified Rankin scale (mRS), a six points-scale to measure of the degree of disability in daily life 
activities in stroke survivors or other causes of neurological disability; modified Ashworth scale-lower limbs 
(mAS_LL), the most widely accepted clinical test used to measure muscle tone on a five-points scoring; the 
lower limb sections of the motricity index or, when missing, the Fugl-Meyer assessment (MI/FMA_LL)32,33, 
two widely adopted clinical test to assess and monitor over time the performance of persons with motor dis-
ability of neurologic origin.

• Predictors from the clinical assessment were: the National Institute of Health Stoke Scale (NIHSS), used 
as quantitative measure of severity of symptoms associated with stroke; the communication disability scale 
(CDS), a rating scale that stratifies the patient’s communicative disability into five levels; the Aphasia item of 
NIHSS; the Charlson comorbidity index (CCI)34, an assessment tool designed specifically to predict long-
term mortality, or, when missing, the cumulative illness rating scale (CIRS)35, a validated multidimensional 
test commonly used as part of the comprehensive geriatric assessment; the presence of one of the following 
conditions: reduced vigilance or coma, clinical instability, acute infection, delirium, depression, dysphagia, 
malnutrition, pressure ulcers, bladder catheter, central venous catheter, pain, nose-gastric tube or percutane-
ous endoscopic gastrostomy.

Data analysis
For what concerns the model development, the analysis pipeline can be summarised in three main steps (Fig. 1): 
dataset conversion, data pre-processing, multiple imputation of missing data, and development of the ML 
prediction model.

The first step of the analysis pipeline concerned the merging and selecting process of the datasets, which 
was carried out using The MathWorks, Inc. (2023). MATLAB version: 9.14.0 (R2023a), Accessed: September 04, 
2023. https://www.mathworks.com, accessed: September 04, 2023).

Specifically, the analysis was conducted by considering both RIPS and STRATEGY within a single dataset. 
Since these were originally two separate studies, despite having in common most of the assessment domains, 
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they entail different types of variables, such as coding or nomenclature. Consequently, a data pre-processing 
merging was carried out on the two datasets. Identical variables were simply overlaid, while, for non-matching 
variables, conversions were applied based on accepted standards or clinical experience. Regarding the latter 
process, the main differences encountered between RIPS and STRATEGY content concerned the motor, the 
cognitive, and the comorbidity assessment.

Concerning the motor assessment, the scores of FMA33 for RIPS and of the MI32 for STRATEGY were 
converted in percentage of the maximum score, focusing on the motor components of FMA since the MI test 

Fig. 1. Analysis pipeline.
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only evaluates motor function. Likewise, for comorbidities, the CIRS35, in RIPS, and the CCI34, in STRATEGY, 
were converted by calculating a percentage value. In the case of CIRS, the total score was used. In the case of CCI, 
a non-weighted total score was calculated (i.e., by assigning only one point to diabetes, liver disease, and cancer/
tumour items) and then converted. Concerning the cognitive assessment, the MoCA29, in RIPS, was converted 
into the MMSE30 according to the conversion method on the raw scores of Aiello et al.36. Subsequently, the 
MMSE raw scores were adjusted by age and education level using the version from Carpinelli Mazzi et al.37.

A total number of 35 features out of the 154 available, involving the different areas of the comprehensive 
assessment of the patients (see previous section), were selected based on clinical criteria and successively used to 
define the ML algorithms. Once the merging of the two datasets was completed, the test set was extracted for the 
final assessment of methods, including only non-ambulatory patients upon admission without missing entries 
on the 35 predictors and the outcome, so that no imputation was needed on them. The test set included about 
20% of the non-ambulatory patients upon admission and the training/validation set encompassed the remaining 
80% of the data.

Missing values in the training set were imputed through a Multiple Imputation by Chained Equations (MICE) 
procedure, under the assumption of Missing At Random (MAR)13,38. Note that the MICE was performed on 
the entire set of the collected variables, not only on the 36 selected predictors, to account for all information 
available to fill in missing data. It was implemented in the R Core Team (2023). R: A Language and Environment 
for Statistical. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, using 
the mice function of the MICE package39. MICE requires the specification of predictive models on each variable 
with missing values. It was defined on each of them a Random Forest (RF) model conditional on all the other 
features. The number of MICE iterations was set to 30 and 10 imputed datasets were created. To maintain 
consistency in the imputation of variables that derived from or depended on others, steps of passive imputation 
or post-processing were applied. After excluding from the 10 imputed training sets non-ambulatory patients 
at the admission and patients with missing outcomes before MImp, a ML-based prediction was performed on 
them.

Descriptive statistics were obtained both for the merging dataset and separately for the test set and the training 
set before imputation, and on the patients excluded from the analysis, to better understand the differences 
between the included and the excluded observations. More specifically, descriptive (before MImp) and univariate 
analyses (after MImp, on each imputed dataset) were performed. Categorical variables were described in terms 
of counts and relative frequencies; continuous variables in terms of mean and standard deviation (std) or median 
and interquartile range (IQR), depending on the Kolmogorov-Smirnov test. Given the single split of the test set 
a comparison between the distributions of the selected predictors in the training and test sets was performed 
to assess whether there was a selection bias. Specifically, t-tests for continuous variables following a normal 
distribution, Kruskal-Wallis tests for numerical variables with a generic distribution, and chi-squared tests for 
categorical/binary variables were employed. Further, on the training set, univariate statistical analyses were 
conducted using Generalised Linear Regression models to investigate the association between the predictors 
and the outcome.

The model implementation was performed on Python, using the Scikit-learn library40. For each imputed 
dataset, after normalising the features, four different algorithms were trained and cross-validated: Elastic-Net 
Regularised Logistic Regression (LogReg), k-Nearest Neighbours (kNN), RF, and Support Vector Machine 
(SVM). The hyper-parameters of the models (Table 1) were optimised within imputation via a five-fold cross-
validation (CV), using Balanced Accuracy (BA) as a performance metric, to account for the fact that the outcome 
was unbalanced.

The best-performing algorithm, chosen based on the mean BA across the 5 test sets of the CV, was trained 
on the entire training set and then tested on the test set. The overall performance on the test set was assessed by 
calculating both the BA and F1 scores on the aggregate solution obtained by averaging the classification scores of 
each individual across the models selected as the best ones in the 10 imputed datasets. The performance metrics 
were also used to evaluate the reliability of ML analysis. Note that, while the 5-fold cross-validation represents 
the inner loop of the validation scheme, the analysis of the 10 imputed data sets can be considered, in a sense, 
an outer loop.

On each of the 10 models selected (one for each imputation), interpretability analysis was applied, using 
the Shap library41. The results of the interpretability analysis, in terms of predictor contributions, were at last 
aggregated by computing the mean of the Shap values estimated on each imputed dataset. On the results of the 
aggregated solution, an error analysis was also conducted to obtain a better understanding of the prediction 
mechanism of the model and evaluate the reliability of ML analysis. Specifically, a categorical variable with 
four categories was created to identify true positive, true negative, false positive, and false negative records. To 
gain a comprehensive understanding of the error evolution, a descriptive analysis of the main baseline clinical 
characteristics was conducted. Variable descriptions were provided in terms of counts and relative frequencies for 
categorical variables, while for numerical variables, the mean or median was presented along with the respective 
standard deviation (std) and interquartile range (IQR) depending on the Shapiro–Wilk test (for the reduced 
sample size). Since this variable consists of four categories, an analysis of variance (ANOVA) was employed 
for continuous variables following a normal distribution, Kruskal–Wallis tests for numerical variables with a 
generic distribution, and chi-squared tests for categorical/binary variables. The error analysis also involved the 
evaluation of the performance of the aggregated solution assuming different classification thresholds on the 
classification probability. Thresholds were defined between 25% and 75%, with a step of 5%. For each diverse 
classification F1 score, BA, sensitivity, and specificity were evaluated with respect to the actual labels.

Finally, due to the fact that MImp is not as widely used as single imputation methods in ML applications, the 
same algorithms, parameter optimisation ranges and performance metrics were used after a single imputation of 
missing values performed with kNN imputer implemented in the Scikit-learn library40 of Python. This analysis 
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is not intended as a comparison of methods, which is beyond the scope of this paper, but is intended to show how 
much the results would vary using more commonly used imputation technique.

Results
A total number of 234 and 214 patients were included in the RIPS and STRATEGY studies, respectively, enrolled 
between December 2019 and July 2023. During the pre-processing phase, the two datasets were merged into a 
single dataset of 448 patients.

After the described conversion between the RIPS and STRATEGY studies, 154 common variables were 
obtained. Subsequently, 80 non-ambulatory patients upon admission (approximately 20% of the total) and 
without missing values on any predictors and on the outcome variable, were randomly selected. A selection of 
35 predictors was also performed on the test set, involving the different areas of the comprehensive assessment 
of the patients. A total of 368 patients with the full set of 154 variables, constituting the training set, underwent 
MImp.

Descriptive statistics of the predictors for the overall, training, and test samples can be found in the in 
Supplementary Table SM.2. To provide an overall view of the solely patients entering the analyses, all ambulatory 
individuals upon admission with missing outcomes were excluded from the descriptive analysis (of both training 
and test sets), resulting in a sample size of 277, 80, and 357 observations for training, test, and merged sets, 
respectively.

After MImp, 10 imputed datasets were obtained, and the 35 predictors were selected. Then, the records in 
the training set were extracted, in terms of ambulation at admission and non-missing outcome. The dataset 
was unbalanced, with only 23% of non-walking patients at admission (with available outcomes) who regained 
ambulation upon discharge.

The variable entitled for the selection of non-ambulatory patients at admission contained 14 missing 
observations, the imputations of which ultimately led to different numbers of ambulatory and non-ambulatory 
patients in each imputed replica. The 14 patients were always imputed as non-ambulatory, except for the dataset4 
and dataset8, with 13 non-ambulatory and one ambulatory, and 12 non-ambulatory and two ambulatory 
patients, respectively.

The consequence of the selection of non-ambulatory patients with non-missing outcomes resulted in 9 
datasets of 277 observations, and 1 dataset of 276 observations (Fig. 2). The description of the included and the 
excluded patients, and the results of the univariate analyses, examining each imputed data set the relationships 
between the chosen predictor variables and the outcome are displayed in Supplementary Table SM.3 and 
Supplementary Table SM.4.

After the standardisation of the features and the optimisation of the hyperparameters, the results on the ML 
procedure reported the RF as the best-performing algorithm on the validation set (mean BA: 81.2%). Table 2 
displays the performances on the test set of each imputed dataset using the RF algorithm. Additionally, confusion 
matrices for all 10 datasets are presented in Supplementary Figure SM.1. Lastly, the aggregated solution obtained 
a BA and an F1 score on the test set of 75.7% and 69.0%, respectively (Table 2).

The features that were consistently involved in the prediction with the biggest contributions were mBI, MI/
FMA_LL and SPPB, among those that contributed transversally across the 10 imputations (Fig. 3). Supplementary 
Figure SM.2 shows the list of the 10 beeswarm plots for each imputed dataset. The results (both in aggregated, 

Classifiers Parameters Values range

Elastic-Net Regularized Logistic Regression

C
class_weight
iterations
penalty
solver

[1e-2;1e2], log = True
“balanced”
1e4
“l1”
“saga”

k-Nearest Neighbours

Algorithm
leaf_size
n_neighbours
p
weights

“auto”
[1;1e2]
[3;1e1]
2
[“uniform”]

Random Forest

Bootstrap
class_weight
criterion
max_features
min_samples_leaf
min_samples_split
n_estimators

[“True, “False”]
[“balanced”, “balanced_subsample”]
[“gini”, “entropy”]
None
[3; 14], log = True
[5; 22], log = True
[3; 20], log = True

Support Vector Machine

C
class_weight
gamma
kernel
probability

[1e-6; 1e2], log = True
[“balanced”]
[1e-5, 1e6]
[“rbf ”, “linear”]
True

Table 1. Range of hyper-parameters optimisation for each trained algorithm.
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Fig. 3, and in each imputed dataset, Supplementary Table SM.2) confirm what has been indicated by the previous 
statistical analyses, revealing that the features with the biggest contributions at admission are also associated 
with the outcome at a p-value level below 1% (Supplementary Table SM.4). Consistently identified predictors 
of good ambulation recovery included high modified Barthel Index scores, good motor function (MI/FMA_LL 
and SPPB), lower age, limited clinical complexities and good trunk control. The above-mentioned results found 
on the aggregated solution, concerning the contributions of predictors, were consistently found also across the 
results of each imputed dataset.

Fig. 2. Flow chart of the study.
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On the results of the aggregated solution, differences in the main baseline clinical characteristics among 
groups of true negative, true positive, false negative, and false positive were analysed. Statistically significant 
differences were found for the recurrence of stroke, FAC, ambulation item of the mBI, and NIHSS, mBI and 
MoCA/MMSE scores (Supplementary Table SM.5). Specifically concerning the mBI, which resulted among the 
strongest predictor with higher values contributing to the recovery of ambulation, it can be visible how false 
positive have a significantly higher median value (58.0[17.0]) if compared to the false negative ones (37.0[25.0]).

The error analysis involved the evaluation of the performance of the aggregated solution considering different 
classification thresholds on the classification probability. These analyses allowed for the identification of the 
model performance, in terms of F1 score, BA, sensitivity, and specificity, when removing the most uncertain 
cases (Fig. 4; Table 3). It is visible how performances are increasing till the threshold between 30% and 70%, 
where the retained number of observations is reducing to almost 50%.

Lastly, the analysis pipeline with the single imputation method obtained a BA of 70.0% and an F1 score of 
62.3%, with a decrease of 5.7% points in BA and 6.7 in F1 score compared to MImp.

Discussion
This study developed and cross-validated ML-based prognostic models integrated with MImp techniques for 
the prediction of independent ambulation recovery in post-stroke survivors at discharge from rehabilitation.

Missing data may represent a significant problem in health data analysis, and it is crucial to employ 
methodologies that appropriately address it42. The recognition of missing data as a potential source of 
uncertainty underscores the importance of strong methodologies, such as MImp, in healthcare research. In the 

Fig. 3. Contributions of the predictors aggregated over the imputed datasets. In panel (A), a bar plot of the 
global contributions is presented, whilst in panel (B) a beeswarm plot with patients-wise contributions is 
presented. The results are presented for the RF algorithm. Abbreviations: CCI/CIRS Charlson comorbidity 
index or cumulative illness rating scale, CDS communication disability scale, FAI Frenchay activities index, 
mBI modified Barthel index, MI/FMA_LL lower limb score at the motricity index or the Fugl-Meyer 
assessment, MoCA/MMSE Montreal cognitive assessment or mini-mental state examination, NIHSS National 
Institutes of Health Stroke Scale, SPPB short physical performance, TCT Trunk control test.

 

Datasets F1 score % BA % specificity % sensitivity %

Dataset 1 67.7 74.2 72.6 75.9

Dataset 2 70.0 76.4 80.4 72.4

Dataset 3 66.7 73.7 78.4 68.1

Dataset 4 62.7 69.5 66.7 72.4

Dataset 5 59.0 67.3 72.6 62.1

Dataset 6 63.3 71.0 76.5 65.5

Dataset 7 65.6 72.7 76.5 69.0

Dataset 8 61.5 68.8 68.6 69.0

Dataset 9 66.7 74.2 86.3 62.1

Dataset 10 67.7 74.2 72.6 72.6

Aggregated solution 69.0 75.7 82.4 69.0

Table 2. F1 score, balanced accuracy (BA), specificity, and sensitivity on each imputed dataset and the 
aggregated solution by averaging the classification scores on the best-performing algorithm (RF). Significant 
values are given in bold.
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absence of comprehensive data collection during the study’s design phase43, the application of MImp becomes 
essential. Although this work does not include evaluations of MImp performance or simulations aimed at 
verifying it, the proposal of this study of combining MImp with ML relies on solid bases. First of all, MImp is 
highly effective for dealing with missing entries, and unanimously considered the gold standard in the statistical 
domain. Additionally, even if the issue of missing data in the ML domain is much less explored, the existing 
results seem to indicate that MImp is promising. For example, Tran et al. show that integrating MImp with ML 

Fig. 4. Confusion matrix of the aggregated solution with threshold of 50% (A). In (B), BA, sensitivity, 
specificity, and rate of retained patients on the test set are proposed for different classification thresholds.
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achieves significantly better classification accuracy than other methods that employ more common imputation 
procedure. Aleryani et al. also find a similar result. A relevant issue in combining MImp with ML techniques 
concerns the pooling method, that is the method used to derive one overall result from many imputed data 
sets. Compare different approaches for pooling the multiple imputed data sets after multivariate imputation by 
chained equation (MICE), finding that combining the predictions (bagging approach), as in this work, is the best 
pooling method. It outperforms, for example, the simpler approach consisting in pooling the imputed data sets 
before applying the ML algorithms.

For both MImp and ML methods, a larger sample size enhances the precision in imputation and predictions. 
Consequently, the joint clinical and automatic strategy allowed the merge of two temporally non-overlapping 
datasets (RIPS18 and STRATEGY19), increasing the sample size, and the subsequent model interpretation 
analysis. Merging two different, though similar, datasets led to the utilisation of converted scales according to the 
minimal stroke protocol (PMIC2020)44 and possibly the introduction of a potential bias in prediction results. To 
reduce potential bias, the conversion was performed utilising normative data36, when possible, and with clinical 
support for appropriate information fitting. The application of automatic solutions after a first clinical approach 
guaranteed the interpretability of the solution developed and its results, promoting an increasing trust, usability, 
and acceptance of these solutions45. Then, an independent and complete test set enabled estimates of data that 
were not influenced by imputation, providing a clean reference for the assessment of the results.

The outcome of interest was selected on the FAC scale, given the need to measure the recovery of independent 
walking. This scale is a tool that measures ambulation ability, considering both indoor and outdoor settings, based 
on the human assistance required during walking, regardless of the use of assistive devices46. The FAC assesses 
the full spectrum of ambulation, providing essential insight for predicting the patient’s future independence. 
While in a previous study47 a fine-grained prediction of overall functional recovery in stroke patients was 
searched, choosing the modified Barthel Index score as the primary outcome, rather than using a disability 
level cut-off, in this study the focus is on independent walking, as a top priority of patients and families48. 
Indeed, the choice of a dichotomised outcomes lies in the relevance of the information that needs to be shared 
with health professionals, patients, and caregivers, of whether the patient would not achieve independence in 
ambulation, rather than attempting to establish to what extent he/she will recover ambulation22. Thus, in analogy 
with previous literature, the outcome was dichotomised based on the FAC cut-off suggested by Mehrholz et 
al.49 in FAC ≥ 4 (independent walking) and FAC < 4 (supervised or assisted walking). The outcome of this study 
paves the way to the development and external validation of ever more accurate models predicting the recovery 
of independent ambulation at discharge from intensive inpatient rehabilitation after stroke; this will enable 
clinicians to provide comprehensive responses to families and patients inquiring about the potential return to 
independence49, allowing them to anticipate the level and duration of support required after discharge from the 
hospital50.

One of the aims of this study was to achieve an analysis pipeline and prototypal solution for an effective 
clinical decision-support system for rehabilitation, aiding clinicians in delivering confident responses to patients’ 
families regarding the potential for independent walking recovery. This aligns with a similar objective seen in 
the study from Smith et al.50, where the time to walking independently after stroke (TWIST) algorithm was 
employed to predict independent walking post-stroke defined as FAC ≥ 4. The meticulous handling of missing 
data is an often-overlooked aspect50 and its omission is associated with distortion in results and underestimation 
of variability. This research aimed to address issues related to poor data management, ensuring more accurate 
predictions. This study employed advanced ML models, contributing to enhancing the accuracy of the 
outcomes13.

In comparison to the earlier study of Campagnini et al.51 on post-stroke functional recovery, targeting a 
more generic recovery outcome on a different dataset, this work focuses specifically on predicting independent 
walking ability, using the FAC with the mBI as a major predictor. Although a direct comparison is not possible, 
the achieved accuracy is slightly increased in this study with respect to the earlier one. It should be considered 
that key differences among the studies exist in terms of data content and methodology. This study results from 
a prospective data acquisition on a wider set of information, enabling a more comprehensive assessment of 
patients. The selected outcome, which is the recovery of a specific activity—ambulation—among the many 
assessed by mBI, along with a larger sample size and a greater number of independent variables encompassed in 
the current investigation, could have had a positive impact on the analytical results.

In addition to the development and cross-validation of the classifiers, an analysis of the interpretability 
of the best-performing model was also performed. More specifically, the analysis was conducted through the 
application of the Shap library41, which evaluates the weight of the feature on the prediction in a global and 

Thresholds F1 score % BA % Specificity % Sensitivity % N

50% 69.0 75.7 82.4 69.0 80

45% 73.1 78.0 82.9 73.1 67

40% 80.0 83.9 91.7 76.2 57

35% 84.2 87.1 90.0 84.2 49

30% 81.3 85.1 88.9 81.3 43

25% 88.9 92.0 91.7 92.3 37

Table 3. F1 score, balanced accuracy (BA), sensitivity, specificity and numerosity of the retained set on the test 
set for the aggregated solution with thresholds varying from 25 to 75%, with a step of 5%.
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patient-specific manner. The analysis of the weights of factors showed great importance on walking ability, 
including the mBI level, the trunk control, the communication level, and daily activity domains. Also, the lower 
limb motor functioning (MI or FMA scale) and the level of physical performance (SPPB) were significant. 
The cognitive function (MoCA combined with MMSE), age, presence of comorbidity, severity, and type 
of stroke were confirmed as predictors. This different selection of predictors underscores the significance of 
conducting a thorough and broad evaluation of patients, particularly within the rehabilitation domain. This 
assessment should encompass various domains, such as  functional, motor, cognitive, clinical history, and 
clinical complexity components (PMIC202019,20,47). Among these factors, specifically, mBI, MI/FMA, SPPB, 
age, CCI/CIRS, and TCT at baseline contributed the most to the prediction of the model. These results are in 
line with previous studies. In fact, in two retrospective studies, global functioning, age, trunk control, along with 
lower-limb motor functions were also found to be influential in the recovery of ambulation at discharge from 
rehabilitation52,53. Indeed, in another retrospective study that analysed predictors of ambulation recovery in a 
similar intensive inpatient rehabilitation setting, but in a different population (patients with hip fracture), older 
age, higher comorbidity, impaired trunk control, and lower functional status upon admission were associated 
with unfavourable outcomes54; this suggests that these factors are relevant to the recovery of ambulation in 
intensive rehabilitation after a catastrophic event, regardless of the specific clinical condition involved. Also, 
a review55 concluded that TCT and lower limb motricity seem to be the best predictors of gait recovery at 
six months after stroke. Further, the study from Guralnik et al.56 demonstrated how the SPPB performance 
measure can validly characterise older individuals for lower extremity functions, thus providing useful insights 
into the individual’s functional status. Consistently with existing literature, the primary predictors identified 
were usually the modified Barthel Index at admission, holding information on functional independence and 
basic daily activities among stroke survivors28,57. While these findings align with existing literature employing 
traditional methodologies for predicting walking ability in stroke survivors, for study repeatability it is necessary 
to report that the timing of assessments can significantly influence the performance of the prediction models on 
ambulation ability, as previously reported58.

Beyond studies applying traditional statistical methods to the prediction of the recovery of ambulation after a 
stroke, a recent narrative review investigated the role of ML in predicting central nervous systems rehabilitation 
outcomes17. Three papers included in the review, all by the same research group, explored ML methods for 
the prediction of the recovery of ambulation after stroke59–61. All considered the recovery of ambulation at six 
months after stroke, by dichotomising the FAC score, with the same cut-off suggested by Mehrholtz et al.49 and 
used in this study. None of them, however, included imputation methods in the pipeline. Kim et al.59 performed 
a retrospective study using only Magnetic Resonance Imaging (MRI) (30 days within stroke) of 221 patients with 
a corona radiata infarct undergoing post-stroke rehabilitation and used a Convolutional Neural Network (CNN) 
to predict the FAC at six months after onset. Similarly in Shin et al.60 MRI data from 1233 post-stroke patients 
were processed with the same purpose. These studies achieved 79.1%63 and 76.1% accuracy64. In both cases, 
results are reported on the validation set, lacking an independent test subset. Compared with these two studies, 
a limitation of this work might be the absence of imaging variables; however, this study still achieved comparable 
accuracies using only clinical variables, which are easily obtainable in most rehabilitation settings. In this way, 
a potentially more deployable and reproducible model than the one based on MRI scans has been proposed. 
Actually the first work published by Kim et al.61 retrospectively considered 833 consecutive stroke survivors, and 
applied deep neural network (DNN), random forest (RF) and logistic regression models (LRM) to the prediction 
of the recovery of ambulation at 6 months, based on clinical variables collected within 30 days from stroke: age, 
sex, type of stroke (ischaemic/haemorrhagic), modified Brunnstrom Classification (mBC), FAC, and Medical 
Research Council (MRC) score for muscle strength of hip flexor, knee extensor, and ankle dorsiflexor of the 
affected side. They achieved 69.3% accuracy using random forests; the availability of a larger pool of participants 
enabled them to use deep learning methods, reaching 78.7% accuracy with DNN. Despite the complexity of 
the proposed solution (three layers, 256 neurons per layer), an analysis of the interpretability was not reported.

With respect to these studies, the decision to evaluate rehabilitation outcomes at discharge rather than at 
a specific time point may be considered a limitation. Indeed, although ambulation is one of the most relevant 
goals of intensive rehabilitation, discharge may be influenced by economic and psychosocial factors that are 
at least partially independent of the motor recovery trajectory and potential56. On the other hand, when the 
outcome is collected six months after the stroke, as in the previous three studies proposing ML application for 
ambulation recovery post-stroke59-61, it may be influenced by numerous factors unrelated to rehabilitation. None 
of these studies reported information about how rehabilitation was conducted or its duration. In the ongoing 
STRATEGY study, data are being collected at a follow-up six months post-stroke, including ambulation and 
global functioning but also recording information on rehabilitation and adverse events during the same period.

According to current knowledge, this study is the first application of ML models to predict the recovery of 
ambulation in stroke patients based on a prospective dataset. This study systematically considered all post-acute 
stroke patients accessing inpatient rehabilitation, enabling predictions that are not limited to a specific type 
of stroke (excluding severe vascular brain lesions). Additionally, this work considered a comprehensive set of 
clinical variables, including comorbidity, which is often reported in stroke patients and may influence stroke 
rehabilitation outcomes62.

This study proposes an analysis pipeline, integrated of both MImp and ML, that could be transversally applied 
in diverse settings for more robust management of missing data, and thus more reliable predictions. Concerning 
the pipeline, some limitations, in the selection of the test set should be highlighted: in this work, the test set was 
by design excluded from imputation, thus its extraction was performed a priori, through single split, randomly 
selecting complete observations of non-ambulatory patients. By doing this, only a specific portion of the data 
was selected as a candidate for the test set, introducing a potential selection bias. Despite a random selection was 
performed, the test set showed statistically significant differences with respect to the training set. In particular, 
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the test set sample showed a slightly reduced stroke severity and higher functional level. This translated into 
a lower sensitivity of this work solution with respect to its specificity in identifying patients that will recover 
independent ambulation. This aspect should be considered when interpreting the ML-model prediction on new 
patients. A possible solution in future work could be to redesign the method pipeline, applying MImp within 
the cross-validation cycle.

Another interesting aspect that could be considered in future research is the introduction of automatic 
processes for data cleaning, such as the integration of multivariate cell-wise outlier detection with MImp or 
possibly the inclusion of other instrumental data among predictors, which could be beneficial for predicting 
motor functions17,50.

On the other hand, the analyses, while providing an interpretable, predictive model of ambulation recovery, 
resulted in clinical insights identifying influential factors in the recovery. Finally, according to current knowledge, 
no earlier studies applied ML models to predict ambulation recovery in post-stroke patients undergoing 
intensive rehabilitation, based on a prospective data acquisition trial. Thus, this work showed promising results 
that could support clinical decisions by assisting in the design of optimal rehabilitation programs based on 
realistic therapeutic goals.

Conclusions
This work focused on the integration of MImp techniques with ML-based predictive models to propose an 
integrated pipeline for data-driven prognostic modelling. The pipeline efficacy was verified on a clinically 
relevant problem of rehabilitation medicine which is ambulation recovery prediction in post-stroke survivors at 
discharge from inpatient rehabilitation. The method was validated using data from two prospective observational 
studies systematically recruiting patients addressing inpatient rehabilitation within 30 days from stroke onset. 
The achieved performances and identification of key predictors among a set of comprehensive easily collected 
clinical variables, applied to clinical research databases, enhance the likelihood prediction of post-stroke patients 
regaining walking ability. This provides ground for the development of a tool to support clinical decisions during 
rehabilitation. The interpretability analysis underscores the need for a comprehensive assessment of patients 
undergoing rehabilitation, using standardised and validated measures. The heightened accuracy and reliability 
of estimates provide a foundation for more informed clinical decision-making, particularly vital in the context 
of post-stroke survivor care. Lastly, this study reveals insights that should be considered in future research 
endeavours aiming to maximize information in the face of incomplete data, thereby advancing the methodology 
and reliability of prognostic studies in healthcare.
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