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Abstract

The construction of tensor–product surface patches with a family
of Pythagorean–hodograph (PH) isoparametric curves is investigated.
The simplest non–trivial instances, interpolating four prescribed patch
boundary curves, involve degree (5, 4) tensor–product surface patches
x(u, v) whose v = constant isoparametric curves are all spatial PH
quintics. It is shown that the construction can be reduced to solving a
novel type of quadratic quaternion equation, in which the quaternion
unknown and its conjugate exhibit left and right coefficients, while the
quadratic term has a coefficient interposed between them. A closed–
form solution for this type of equation is derived, and conditions for



the existence of solutions are identified. The surfaces incorporate three
residual scalar freedoms which can be exploited to improve the interior
shape of the patch. The implementation of the method is illustrated
through a selection of computed examples.

2010 Mathematics Subject Classification. Primary 65–XX, 53–XX.

Keywords: tensor–product surface; Coons patch; isoparametric curves;
parametric speed; Pythagorean–hodograph curves; quaternion equations.

e–mail: farouki@ucdavis.edu, pelosi@mat.uniroma2.it,
marialucia.sampoli@unisi.it, alessandra.sestini@unifi.it



1 Introduction

The most commonly–used surface form in computer–aided geometric design
is the tensor–product surface patch x(u, v) defined by a vector mapping from
the unit parameter square (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] to R

3. A typical construct
involves determining a smooth surface from four prescribed boundary curves
x(u, 0),x(u, 1),x(0, v),x(1, v) through a “transfinite interpolation” scheme
— a problem first solved by the well–known Coons patch [5, 22].

The parameterization of a surface is a necessary artifact in specifying and
analyzing its geometry. Although the isoparametric curves u = constant and
v = constant have no intrinsic geometrical significance, they are nevertheless
useful in practical applications, such as path planning for the machining or
inspection of surfaces. In the simplest cases, where x(u, v) is a ruled surface or
bilinear surface, its dependence on one or both of the parameters is linear, so
the corresponding isoparametric curves are straight lines, and the parameters
represent distance along the isoparametric curves. For higher–order surfaces,
however, the parameters have no obvious geometrical meaning.

It is impossible to parameterize any curve, other than a straight line, by
“simple” functions of its arc length [19, 20]. Nevertheless, the Pythagorean–

hodograph (PH) curves have a distinct advantage over “ordinary” polynomial
curves in this respect, since their arc lengths are simply polynomial functions
of the curve parameter [9]. Many algorithms for the construction of planar
and spatial PH curves have been developed, e.g., [13, 17, 24, 25, 27, 30, 35, 37].
The intent of the present paper is to investigate the feasibility of constructing
surface patches with Pythagorean–hodograph isoparametric curves. The ruled
and bilinear (doubly–ruled) surfaces are the simplest cases of such surfaces,
but their generalization to higher–order surfaces is a non–trivial problem —
especially under the constraint of prescribed boundary conditions.

Two different algebraic models are used in the construction of PH curves:
the complex number representation [6] for planar PH curves, and quaternion
representation [4, 11] for spatial PH curves. Since the isoparametric curves
of a surface are (in general) space curves, the quaternion form is employed in
the present study — this form is rotation–invariant [11], and subsumes the
complex–number form as a special instance. Apart from its practical value in
geometric design applications, the construction of surfaces with isoparametric
PH curves leads naturally to the study of the solutions to certain algebraic
equations in quaternion variables, with quaternion coefficients.

The focus of the present study is on surfaces that have a single family of
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isoparametric PH curves, emphasizing specifically the Coons construction of
defining such surfaces that interpolate four prescribed boundary curves. In
particular, a closed–from solution is developed for the construction of a degree
(5, 4) tensor–product patch x(u, v) in which x(u, 0), x(u, 1) are prescribed PH
quintics; x(0, v), x(1, v) are prescribed quartics; and for each fixed v ∈ (0, 1)
the curves x(u, v) are all PH quintics. The construction yields three residual
free parameters, which can be used to manipulate the interior patch shape.

The plan for the remainder of this paper is as follows. First, some facts
concerning the quaternion representation for spatial PH curves, and its use
in defining surfaces with isoparametric PH curves, are reviewed in Section 2.
The advantageous computational properties of such surfaces are then briefly
summarized in Section 3. The simplest non–trivial instance of the problem is
addressed in Section 4 — namely, the construction of a degree (5, 4) surface
patch x(u, v) with given boundary curves, whose v = constant isoparametric
curves are all PH quintics. This problem entails solving a pair of simultaneous
linear quaternion equations, and a quadratic equation in a single quaternion
variable and its conjugate, that has left, right, and intermediate quaternion
coefficients dependent upon three free parameters. The closed–form solutions
to these equations are developed in Section 5, and strategies to select the free
parameters, so as to improve the interior surface shape, are briefly discussed
in Section 6. Some computed examples, illustrating the solution procedure
and the types of surface that can be constructed, are presented in Section 7.
Finally, Section 8 summarizes the principal results of the present study, and
identifies directions for further profitable investigation.

2 Surfaces with isoparametric PH curves

A PH curve r(u) is characterized by the property that its parametric speed
σ(u) = |r′(u)| is a polynomial in the curve parameter u. The trivial instance
σ(u) = constant defines a straight line. Thus, as noted in Section 1, ruled and
bilinear surfaces trivially have isoparametric PH curves. Moreover, since the
only quadratic PH curves are degree–elevated straight lines, any biquadratic
surface with isoparametric PH curves is a degree–elevated bilinear surface.
The simplest non–trivial spatial PH curves are cubics, but to secure sufficient
design flexibility the PH quintics are generally preferred.

A spatial PH curve r(u) is generated from a quaternion1 polynomial A(u)

1Calligraphic characters such as A denote quaternions, which are regarded as consisting
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by integrating the form

r′(u) = A(u) iA∗(u) , (1)

with A∗(u) being the conjugate of A(u). At present, we confine our attention
to surfaces having a single family of isoparametric PH curves. Requiring both

families of isoparametric curves to be PH curves incurs a more severe set of
constraints, so the likelihood of obtaining non–trivial low–degree solutions,
interpolating prescribed boundary curves, is therefore much lower.

One method of generalizing (1), so as to define a surface x(u, v) with PH
curves as the v = constant isoparametric loci, is to set

xu(u, v) = f(v)A(u) iA∗(u) (2)

for some scalar polynomial f(v). Integration with respect to u yields a surface
x(u, v) of odd degree in u, but the degree in v is equal to that of f(v), which
may be freely chosen. However, this formulation is quite restrictive: it implies
that, along the u = constant isoparametric curves, the surface derivative xu

in the u–direction can vary in magnitude but not in direction — consequently,
these curves are all straight lines, and (2) defines a ruled surface.

To obtain a more flexible formulation, a bivariate quaternion polynomial
A(u, v) must be used to defined x(u, v). Consider a tensor–product surface
x(u, v) defined on (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] whose v = constant isoparametric
curves are all PH curves, constructed from the expression

xu(u, v) = A(u, v) iA∗(u, v) , (3)

where we write the bivariate quaternion polynomial A(u, v) in terms of the
Bernstein basis functions

bdk(t) =

(

d

k

)

(1 − t)d−ktk , k = 0, . . . , d

in the form

A(u, v) =

m
∑

i=0

n
∑

j=0

Aij b
m
i (u)bnj (v) . (4)

of a scalar part a and vector part a, so that A = (a,a) and a = scal(A), a = vect(A). See
Chapter 5 of [9] for a review of the quaternion algebra pertinent to the present context.
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Integrating with respect to u gives

x(u, v) = r(v) +

∫

xu(u, v) du ,

the isoparametric curve r(v) = x(0, v) being freely chosen. We assume it to
be of degree 2n, written in the form

r(v) =

2n
∑

j=0

p0j b
2n
j (v) . (5)

Using the product rule [18] for Bernstein–form polynomials, the expression
(3) becomes

A(u, v) iA∗(u, v) =

2m
∑

i=0

2n
∑

j=0

aij b
2m
i (u) b2n

j (v) , (6)

where2

aij =

min(m,i)
∑

k=max(0,i−m)

min(n,j)
∑

l=max(0,j−n)

(

m

k

)(

m

i−k

)

(

2m

i

)

(

n

l

)(

n

j−l

)

(

2n

j

) Akl iA∗

i−k,j−l (7)

for i = 0, . . . , 2m and j = 0, . . . , 2n. Hence, by the integration rule [18] for
Bernstein–form polynomials, we obtain

x(u, v) =
2m+1
∑

i=0

2n
∑

j=0

pij b
2m+1
i (u) b2n

j (v) , (8)

where the control points p0j for j = 0, . . . , 2n are freely chosen, and the
remaining control points are specified by

pij = pi−1,j +
1

2m+ 1
ai−1,j (9)

for i = 1, . . . , 2m+ 1 and j = 0, . . . , 2n. Note that the surface (8) is of odd
degree in u and even degree in v. If equal degrees in u and v are desired, one
can impose a unit degree elevation on v.

2Note that the product (3) generates a pure vector expression.
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3 Properties of isoparametric PH curves

For each fixed v ∈ [ 0, 1 ] the parametric speed of the isoparametric PH curves
is defined by

σ(u, v) = |xu(u, v)| = |A(u, v)|2 =
ds

du
, (10)

where s is arc length along a curve x(u, v) with v = constant. Since |A(u, v)|2 =
A(u, v)A∗(u, v), from (4) we obtain

σ(u, v) =

2m
∑

i=0

2n
∑

j=0

σij b
2m
i (u) b2n

j (v) , (11)

where

σij =

min(m,i)
∑

k=max(0,i−m)

min(n,j)
∑

l=max(0,j−n)

(

m

k

)(

m

i−k

)

(

2m

i

)

(

n

l

)(

n

j−l

)

(

2n

j

) Akl A∗

i−k,j−l (12)

for i = 0, . . . , 2m and j = 0, . . . , 2n. Hence, any v = constant isoparametric
curve has total arc length

S(v) =
1

2m+ 1

2n
∑

j=0

(

2m
∑

i=0

σij

)

b2n
j (v) . (13)

The fact that the parametric speed of a PH curve is a polynomial in the
curve parameter is especially advantageous in digital motion control. When
a fabrication or inspection tool is to be driven along a surface isoparametric
curve at a prescribed (constant or variable) speed V = ds/dt, it is necessary
to compute the parameter values uk of the commanded positions (reference
points) along the path at each time tk = k∆t, for a digital controller with
sampling interval ∆t. The desired values uk satisfy the equation

∫ uk

0

σ

V
du = k∆t .

The fact that σ is a polynomial in u facilitates closed–form reduction of the
integral on the left, not only for constant speed V , but also for various useful
dependencies of time, arc length, curvature, etc. [15, 16, 21]. This facilitates
the development of efficient and versatile real–time interpolator algorithms
for multi–axis computer numerical control (CNC) machines.
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Five–axis CNC machines, for example, employ two rotary axes to control
the tool orientation, in addition to the three translational axes that control
its position. For a ball–end (spherical) tool, the cutter location (CL) point
is related to the cutter contact (CC) point through a displacement equal to
the tool radius, in the surface normal direction. Traditionally, toolpaths and
feedrates for surface machining have been computed offline, and specified in
terms of CL points. However, surfaces with isoparametric PH curves can be
directly machined from the analytic surface definition, the tool feedrate being
specified directly in terms of the CC points, with the CL points computed
from the exact surface normal. This can result in significant improvements
in controlling the accuracy and smoothness of machined surfaces [31].

The bending energy of each v = constant isoparametric curve — i.e., the
integral of the squared curvature with respect to arc length — also admits a
closed–form reduction. In the present context, this can be expressed as

E(v) =

∫ 1

0

κ2(u, v) σ(u, v) du ,

with κ(u, v) = |xu(u, v)×xuu(u, v)|/σ3(u, v). The method is described in the
context of planar PH curves in [7], but readily extends to spatial PH curves.
For each v, one must compute the complex–conjugate root pairs u of σ(u, v)
in order to perform a partial–fraction decomposition of the integrand.

For each v, the isoparametric PH quintic curve x(u, v) is equipped with a
rational “adapted” orthonormal frame (e1(u, v), e2(u, v), e3(u, v)) defined by

(e1, e2, e3) =
(A iA,A jA,AkA)

|A|2 ,

and known [3] as the Euler–Rodrigues frame (ERF). Here e1 is the tangent to
the isoparametric PH curve, while e2, e3 span its normal plane. It is possible
[10, 14] to construct spatial PH curves that have rational rotation–minimizing

frames (t,u,v) — known as RRMF curves — for which t = e1 is again the
tangent, but the normal–plane vectors u,v exhibit no instantaneous rotation
about t, i.e., the frame angular velocity ω satisfies ω · t ≡ 0. Such curves are
of interest in robotics, computer animation, and swept surface constructions.

The Darboux frame (n, t,h) along a surface curve is specified [29] by the
surface normal n, curve tangent t, and tangent normal h = n× t. A line of

curvature on a surface is tangent to a principal direction of curvature at each
point. It can also be characterized by the property that the Darboux frame
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is rotation–minimizing with respect to the curve tangent along it. Hence, if
the boundary curves x(u, 0) and x(u, 1) are RRMF quintics, and the surface
is constructed such that its normal n coincides with u or v (or any constant
vector relative to them), these boundary curves will be lines of curvature [1].

More generally, it is possible to determine the rotation–minimizing frame
orientation along any spatial PH quintic in closed form [8] — even if it is not
an RRMF curve. This fact can be useful in specifying the attitude of a tool
or probe that follows an isoparametric PH curve on a surface.

4 Construction of degree (5, 4) patches

Consider the problem of fixing the boundary curves of the patch (8). The
boundary x(0, v) is just the curve (5) arising in the integration of (3), with
freely–chosen control points p0j for j = 0, . . . , 2n. From equations (7)–(9),
the boundary curves x(u, 0) and x(u, 1) can be expressed in the form

x(u, 0) =
2m+1
∑

i=0

pi0 b
2m+1
i (u) , x(u, 1) =

2m+1
∑

i=0

pi,2n b
2m+1
i (u) ,

with control points p00, . . . ,p2m+1,0 and p0,2n, . . . ,p2m+1,2n that depend only
on the coefficients A00, . . . ,Am0 and A0n, . . . ,Amn respectively, which can be
used to freely design the boundary curves x(u, 0) and x(u, 1) by, for example,
interpolation of first–order Hermite data with spatial PH quintics [13]. The
boundary curve x(1, v) then remains to be determined.

The case m = n = 1 is the simplest non–trivial instance of (6), in which
the u = constant isoparametric curves are quadratic — i.e., planar parabola
segments, while the v = constant curves are spatial PH cubics. The boundary
curve x(0, v) can be prescribed as a parabola segment through freely–chosen
control points p00,p01,p02. If the coefficients A00,A10 and A01,A11 are then
used to specify the boundary curves x(u, 0) and x(u, 1) as spatial PH cubics,
there are no remaining freedoms, and the boundary curve x(1, v) will be a
pre–determined parabola segment. Since this case is evidently too restrictive
for most design applications, we do not further pursue it here.

We focus henceforth on the case m = n = 2 of (6) — which determines,
on integrating (3), a surface patch x(u, v) whose v = constant isoparametric
curves are spatial PH quintics, and whose u = constant isoparametric curves
are “ordinary” quartics. It is shown below that, in this case, all four boundary
curves can be prescribed so as to permit a Coons–type patch construction.

7



The boundary curve x(0, v) can be freely specified as a quartic by control
points p00,p01,p02,p03,p04. If the coefficients A00,A10,A20 and A02,A12,A22

are used to construct the boundary curves x(u, 0) and x(u, 1) as first–order
spatial PH quintic Hermite interpolants [13], then A01,A11,A21 remain as
free coefficients. Of the five control points p50,p51,p52,p53,p54 specifying the
remaining boundary curve x(1, v), the patch corner points p50 and p54 have
already been determined in fixing x(u, 0) and x(u, 1). It is shown below that
the remaining free quaternions A01,A11,A21 can be used to impart assigned
positions to the control points p51,p52,p53 in closed form.

Let A00,A10,A20 and A02,A12,A22 be pre–determined by specifying the
boundaries x(u, 0) and x(u, 1) as interpolants to the first–order Hermite data

x(0, 0) = p00 , xu(0, 0) and x(1, 0) = p50 , xu(1, 0)

and
x(0, 1) = p04 , xu(0, 1) and x(1, 1) = p54 , xu(1, 1)

respectively, through the algorithms in [13]. The dependence of the remaining
three control points p51,p52,p53 on the free coefficients A01,A11,A21 can be
determined from cases j = 1, 2, 3 of (9).

The expressions for the vectors ai1, ai2, ai3 are rather involved, and can
be found in the Appendix. On substituting these expressions into (9), and
noting that vect(U iV∗) = vect(V iU∗) for any given quaternions U and V,
the coefficients A01,A11,A21 must satisfy the system of equations

vect(Ã00 iA∗

01 + Ã10 iA∗

11 + Ã20 iA∗

21) = 30 (p51 − p01) , (14)

12A01 iA∗

01 + 8A11 iA∗

11 + 12A21 iA∗

21

+ vect(12A01 iA∗

11 + 4A01 iA∗

21 + 12A11 iA∗

21)

= 90 (p52 − p02) − vect(W) , (15)

vect(Ã02 iA∗

01 + Ã12 iA∗

11 + Ã22 iA∗

21) = 30 (p53 − p03) , (16)

where




Ã00

Ã10

Ã20



 =





6 3 1
3 4 3
1 3 6









A00

A10

A20



 ,





Ã02

Ã12

Ã22



 =





6 3 1
3 4 3
1 3 6









A02

A12

A22
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and

W = Ã02 iA∗

00 + Ã12 iA∗

10 + Ã22 iA∗

20 = A02 i Ã∗

00 + A12 i Ã∗

10 + A22 i Ã∗

20

are known quaternions once A00,A10,A20 and A02,A12,A22 have been fixed
in determining the boundary curves x(u, 0) and x(u, 1).

Let B = (b,b) and C = (c, c) have free scalar parts b and c, and vector
parts b = 30 (p51 − p01) and c = 30 (p53 − p03). Then equations (14) and
(16) can be written in the form

Ã00 iA∗

01 + Ã20 iA∗

21 = B − Ã10 iA∗

11 ,

Ã02 iA∗

01 + Ã22 iA∗

21 = C − Ã12 iA∗

11 .

(17)

These simultaneous linear equations determine A∗

01 and A∗

21 in terms of A∗

11

and the parameters b and c. Setting M11 = Ã00 i, M12 = Ã20 i, M21 = Ã02 i,
M22 = Ã22 i, Y1 = B − Ã10 iA∗

11, Y2 = C − Ã12 iA∗

11, the equations can be
solved by an adaptation of Gaussian elimination to the quaternion algebra,
as described in Section 5.1. The solutions are of the form

A∗

01 = E01 −F01A∗

11 , A∗

21 = E21 − F21A∗

11 , (18)

where
E01 = N11B + N12 C , F01 = (N11Ã10 + N12Ã12) i , (19)

E21 = N21B + N22 C , F21 = (N21Ã10 + N22Ã12) i , (20)

and the known quantities N11,N12,N21,N22 are as given in Section 5.1.
If D = (d,d) has free scalar part d and vector part d = 90 (p52 − p02) −

vect(W), equation (15) can be written as

12A01 iA∗

01 + 8A11 iA∗

11 + 12A21 iA∗

21

+ 12A01 iA∗

11 + 4A01 iA∗

21 + 12A11 iA∗

21 = D .

Substituting from (18), we obtain the quadratic equation

A11 P A∗

11 + A11 Q + RA∗

11 = S , (21)

in A11, where the known quaternions P,Q,R,S are defined by

P = 12 (F∗

01 iF01 + F∗

21 iF21) + 4F∗

01 iF21 + 8 i− 12 (F∗

01 i + iF21) ,

Q = 12 i E21 − 12 (F∗

01 i E01 + F∗

21 i E21) − 4F∗

01 i E21 ,

R = 12 E∗

01 i − 12 (E∗

01 iF01 + E∗

21 iF21) − 4 E∗

01 iF21 ,

S = D − 12 (E∗

01 i E01 + E∗

21 i E21) − 4 E∗

01 i E21 . (22)

9



Note that equation (21) contains three real parameters — b = scal(B) and
c = scal(C), upon which E01and E21 depend as in (19)–(20), and d = scal(D).

Thus, the construction of a surface x(u, v) with prescribed boundaries,
whose v = constant isoparametric curves are all spatial PH quintics, has been
reduced to solving the quadratic equation (21) in the quaternion variable A11.
This equation has a closed–form solution, as described in Section 5.2 below.

5 Analysis of the quaternion equations

Because of the non–commutative quaternion product, the problem of solving
equations in quaternion variables, with quaternion coefficients, is much more
subtle than in the case of real or complex numbers. In the most general case,
incorporating arbitrary juxtapositions of the variable and coefficients, there is
no “fundamental theorem of algebra,” since equations with no solutions can
easily be constructed. Consequently, most studies consider only polynomials
in which all coefficients are to the left or right of the powers of the quaternion
variable, e.g., [23, 26, 28, 32, 33, 36]. Even in this restricted setting, unusual
features — such as the occurrence of “spherical roots” — may arise.

At present, we need to solve the simultaneous linear equations (17) in the
quaternion unknowns A∗

01 and A∗

21, and the quadratic equation (21) — with
left, right, and interposed coefficients — in the quaternion unknown A11. We
show here that both these problems admit closed–form solutions.

5.1 Simultaneous linear quaternion equations

Consider a system of two linear equations in two quaternion variables, with
quaternion coefficients:

[

M11 M12

M21 M22

] [

X1

X2

]

=

[

Y1

Y2

]

. (23)

Although the usual Gaussian elimination process does not hold, the system
still has (in general) a unique solution, which may be determined as follows.
Multiplying the first and second equations by M∗

12 and M∗

22 gives

M∗

12M11X1 + |M12|2X2 = M∗

12Y1 ,

M∗

22M21X1 + |M22|2X2 = M∗

22Y2 ,

10



from which we infer that

X2 =
M∗

12(Y1 −M11X1)

|M12|2
=

M∗

22(Y2 −M21X1)

|M22|2
.

For these two expression to be consistent, we must have

|M22|2M∗

12(Y1 −M11X1) = |M12|2M∗

22(Y2 −M21X1) ,

or

(|M12|2M∗

22M21 − |M22|2M∗

12M11)X1 = |M12|2M∗

22Y2 − |M22|2M∗

12Y1 .

By analogous arguments, we can also infer that

(|M11|2M∗

21M22 − |M21|2M∗

11M12)X2 = |M11|2M∗

21Y2 − |M21|2M∗

11Y1 .

Multiplying both sides of these equations on the left by the inverses of the
coefficients of X1 and X2, and simplifying, then gives the solution

X1 = N11Y1 + N12Y2 , X2 = N21Y1 + N22Y2 ,

where we set

N11 =
|M22|2M∗

11 −M∗

21M22M∗

12

∆
, N12 =

|M12|2M∗

21 −M∗

11M12M∗

22

∆
,

N21 =
|M21|2M∗

12 −M∗

22M21M∗

11

∆
, N22 =

|M11|2M∗

22 −M∗

12M11M∗

21

∆
.

with

∆ = |M11|2|M22|2 + |M12|2|M21|2 − 2 scal(M∗

21M22M∗

12M11) .

Note that ∆ ≥ |M11|2|M22|2 + |M12|2|M21|2−2 |M11| |M12| |M21| |M22| =
(|M11| |M22| − |M12| |M21|)2 ≥ 0. The form

[

N11 N12

N21 N22

]

can be considered the (left) inverse of the quaternion coefficient matrix in
(23). The quantity

√
∆ is known [2] as the Dieudonné determinant of the

matrix, and we must have ∆ 6= 0 for a unique solution to (23).
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5.2 Quadratic quaternion equation

The form (21) is an unusual quaternion equation, in that the linear terms
depend on both the variable and its conjugate, with coefficients on the left
and right, and the coefficient of the quadratic term is inserted between them.
By separating (21) into its 1, i, j,k components, it can be regarded as a system
of four quadratic equations in four real variables, the 1, i, j,k components of
A11. Numerical experiments show that this system can typically be solved by
Newton–Raphson iteration, but this provides no indication whether a failure
to converge is due to non–existence of solutions or to inappropriate starting
approximations. Instead, we develop here an essentially closed–form solution
procedure for equation (21) that offers greater insight into the conditions on
the coefficients P, Q, R, S ensuring the existence of solutions.

For brevity, we write the unknown A11 in (21) as A = (a, a). Similarly,
let p, q, r, s and p,q, r, s be the scalar and vector parts of P,Q,R,S. The
cases p = 0 or p = 0 identify degenerate cases of equation (21) that require
separate treatment — see [12] for a detailed analysis. To avoid long technical
diversions, we focus here on the generic case in which p 6= 0 and p 6= 0. Now
the scalar and vector parts of equation (21) can be written as

p (a2 + |a|2) − (q − r) · a + (q + r) a = s , (24)

2ApA∗ + AQ−Q∗A∗ + RA∗ −AR∗ = 2 s . (25)

Assuming that p 6= 0, equation (24) identifies A as lying on a 3–sphere in R
4

with center and radius defined by

C = − Q∗ + R
2 p

and ρ =

√

|Q∗ + R|2 + 4 ps

2 |p|
provided that

|Q∗ + R|2 + 4 ps ≥ 0 , (26)

since (24) is then equivalent to | A − C |2 = ρ2. However, if condition (26)
does not hold, equation (21) has no solution. Assuming that (26) holds, and
introducing the unit quaternion

U =
A− C
ρ

. (27)

equation (21) can be re–formulated as

U P U∗ + U Q̃ + R̃ U∗ = S̃ , (28)

12



where we define the known quaternions

Q̃ =
2 pQ−P(Q + R∗)

2 ρ p
, R̃ =

2 pR− (Q∗ + R)P
2 ρ p

,

S̃ =
1

ρ2

[

S +
|Q|2 + |R|2 + 2RQ

2 p
− (Q∗ + R)P (Q + R∗)

4 p2

]

.

Note that the scalar part of equation (28) is automatically satisfied, so we
need only consider the vector part. Now since P + P∗ = 2 p, one can verify
that R̃ = −Q̃∗, and equation (28) can be written as

U P U∗ + U Q̃ − Q̃∗ U∗ = S̃ . (29)

Furthermore, since U Q̃−Q̃∗ U∗ is a pure vector, writing S̃ = (s̃, s̃) the vector
part of equation (29) becomes

U p U∗ + U Q̃ − Q̃∗ U∗ = s̃ .

Setting

Z = U +
Q̃∗ p

|p|2 and v = s̃ +
Q̃∗ p Q̃
|p|2 , (30)

this can be further reduced to obtain the equation

Z pZ∗ = v . (31)

If p̂ = p/|p| and v̂ = v/|v| are unit vectors in the direction of the known
vectors p and v, the general solution of (31) has [13] the form

Z = z exp(φ p̂) , z =

√

|v|
|p|

p̂ + v̂

|p̂ + v̂| , (32)

where exp(φ p̂) = cosφ + sin φ p̂, the parameter φ ∈ [ 0, 2π) being chosen to
ensure that

| U |2 =

∣

∣

∣

∣

∣

Z − Q̃∗ p

|p|2

∣

∣

∣

∣

∣

2

= |Z|2 + 2
scal(Z p Q̃)

|p|2 +
|Q̃|2
|p|2 = 1 . (33)

Substituting from (32), this condition can be expanded to obtain

α sin φ + β cosφ = γ , (34)

13



where

α =
p̂ + v̂

| p̂ + v̂ | ·q̃ , β =
(p̂× v̂) · q̃ − (1 + p̂ · v̂) q̃

| p̂ + v̂ | , γ =
|p|2 − |p| |v| − |Q̃|2

2
√

|p| |v|
.

Hence, defining ψ by the relations

cosψ =
α

√

α2 + β2
, sinψ =

β
√

α2 + β2
,

we have
sin(φ+ ψ) =

γ
√

α2 + β2
.

Thus, in addition to condition (26), the values α, β, γ must satisfy

|γ| ≤
√

α2 + β2 (35)

in order for a solution to exist. When (35) is satisfied, equation (34) identifies,
in general, two distinct φ values. For each value, a corresponding solution A
(= A11) can be obtained from (27), (30), and (32).

Once equation (21) has been solved for A11, the corresponding A01 and
A21 values are determined from (18) as

A01 = E∗

01 −A11F∗

01 , A21 = E∗

21 −A11F∗

21 ,

Knowing all the coefficients Aij for 0 ≤ i, j ≤ 2, the Bézier control points of
the surface (8) can be computed from expressions (7) and (9).

6 Selection of free parameters

As observed in Section 4, the coefficients in equation (21) depend on the free
scalar parameters b = scal(B), c = scal(C), d = scal(D) through expressions
(19)–(20) and (22). Since the construction ensures precise matching of the
prescribed patch boundary curves, these free parameters influence only the
interior patch shape, and can be exploited to improve the shape. Because of
the highly non–linear nature of equation (21), it is impractical to attempt to
express the dependence of its solution, and of the geometrical properties of
the resulting surface patch, on these free parameters.
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However, by minimization of a suitable “shape functional,” an automatic
selection of the parameters can be achieved through a numerical optimization
procdure. Shape optimization with respect to free parameters is a recurring
theme in constrained–boundary surface constructions, and functionals based
on higher–order shape measures (e.g., Guassian curvature or thin–plate spline
energy) are often employed. Such measures can also be invoked in the present
context, but since the main focus of this study is on formulating and solving
the systems of quaternion equations described in Sections 4 and 5, for ease
of computation we choose to minimize a simpler measure, namely, the mean
arc length L of the v = constant isoparametric PH curves. From expression
(13) with m = n = 2, this measure can be expressed as

L =
1

25

4
∑

i=0

4
∑

j=0

σij . (36)

Consistent with the prescribed patch boundary curves, this measure favors
a “flatter” interior surface shape. Among the two possible solutions to (34)
identified at each iteration of the optimization procedure, the one that yields
the smaller L value is selected.

7 Computed examples

In each example, the quartic boundary curves x(0, v) and x(1, v) are defined
by assigning their Bézier control points p0j and p5j for j = 0, . . . , 4. The
boundary curves x(u, 0) and x(u, 1) are constructed as PH quintic Hermite
interpolants, using the CC criterion to fix the free angular parameters — see
[13, 34]. The solution is then completely specified by assigning the corner u
derivatives, a00 = xu(0, 0), a40 = xu(1, 0) and a04 = xu(0, 1), a44 = xu(1, 1).
Also, since (22) implies that the parameter d = scal(D) is equivalent to a free
choice for s = scal(S), the quantity s is always treated as a free parameter.

In the following examples, we report the results obtained by setting all
the free parameters equal to zero, and by determining them through the use
of an optimization procedure that minimizes the quantity (36). In fact we
observe that, in the considered examples, setting the free parameters to zero
always appears to produce a surface with “reasonable” shape.

The constructed surfaces are evaluated on a uniform 400×400 grid, with
the isoparametric PH curves corresponding to v = j/7 for j = 0, . . . , 7 shown
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−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1

Figure 1: The two surface patches obtained in Example 1, when the values
b = c = s = 0 are chosen for the free parameters. The corresponding values
for the shape measure (36) are L = 1.1136 (left) and L = 1.0616 (right).

in black, while the assigned quartic boundary curves x(0, v) and x(1, v) are
in blue. In some examples, in order to more clearly visualize the difference
between the constructed surfaces, they are also shown color–coded according
to the variation of the Gaussian curvature and mean curvature.

Example 1. In the first example the control points defining x(0, v) and
x(1, v) are chosen as

p00 = (0, 0,−0.1) , p50 = (1, 0, 0.1) ,
p01 = (0.1, 0.2, 0) , p51 = (1.1, 0.3, 0) ,
p02 = (0.2, 0.5, 0.2) , p52 = (1.2, 0.6,−0.2) ,
p03 = (0.1, 0.7, 0.1) , p53 = (1.1, 0.8, 0) ,
p04 = (0, 1, 0.1) , p54 = (1, 1,−0.1) ,

and the assigned corner derivatives

a00 = (0.9298, 0.2978, 0.2164) , a40 = (−0.8763,−0.4479, 0.1773) ,
a04 = (0.9686, 0.2312,−0.0915) , a44 = (−0.9298,−0.3226,−0.1773) .

For this example, when the free parameters b, c, s are set to zero, equation
(34) admits two distinct solutions, corresponding to two different quaternion
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solutions A11 of (21). The resulting surface patches are shown3 in Figure 1.
Figure 2 illustrates the surface obtained when the parameters are selected to
minimize (36) using a numerical optimization procedure.

Figure 2: The surface obtained in Example 1 through minimization of (36) —
the resulting values are b = 0.3246, c = −0.4150, s = 0.0979, and L = 1.0588.

Example 2. In the second example, the curves x(0, v) and x(1, v) are line
segments, and hence the corresponding control points are collinear, namely

p00 = (1, 0, 0) , p50 = (0.5, 0.866, 0.524) ,
p01 = (1.125, 0.125, 0.910) , p51 = (0.75, 1.116, 1.559) ,
p02 = (1.25, 0.25, 1.82) , p52 = (1.0, 1.366, 2.595) ,
p03 = (1.375, 0.375, 2.731) , p53 = (1.25, 1.616, 3.630) ,
p04 = (1.5, 0.5, 3.642) , p54 = (1.5, 1.866, 4.665) ,

while the corner derivatives are

a00 = (0, 1.0, 0.5) , a40 = (−0.866, 0.5, 0.5) ,
a04 = (0, 1.0, 0.5) , a44 = (−0.866, 0.5, 0.5) .

As in Example 1, setting all the free parameters to zero yields two different
solutions, shown in Figure 3. In order to highlight the differences between
the two surfaces, they are shown color–coded in Figure 4 according to the
variation of their Gaussian curvature and mean curvature. The solution with

3Unless otherwise noted, the color coding in the Figures indicates the surface z–height.
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Figure 3: The surfaces obtained with b = c = s = 0 in Example 2. Upper: the
given PH quintic curves x(u, 0), x(u, 1) (black) and the quartic polynomial
curves x(0, v), x(1, v) (blue), together with the surface control net (red).
Lower: the resulting surfaces with L = 1.577 (left) and L = 1.415 (right).

the smaller L value is clearly preferable. As is evident in Figure 5, a further
improvement in surface quality is obtained by selecting the free parameters
using the optimization procedure to minimize L.

Example 3. In the final example, the control points of the two boundary
quartic curves are given by

p00 = (0, 0, 0) , p50 = (2, 2, 0) ,
p01 = (0, 0, 0.25) , p51 = (2, 2, 0.25) ,
p02 = (1.667, 0, 0.5) , p52 = (2, 1.833, 0.5) ,
p03 = (0.5, 0, 0.5) , p53 = (2, 1.5, 0.75) ,
p04 = (1, 0, 1) , p54 = (2, 1, 1) ,
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−6 −5 −4 −3 −2 −1 0 1

Figure 4: The two surfaces obtained with the parameter values b = c = s = 0
in Example 2 are shown color–coded according to variation of their Gaussian
curvature (upper) and mean curvature (lower).

and the corner derivatives are

a00 = (0, 4, 0) , a40 = (4, 0, 0) ,
a04 = (0, 1, 0) , a44 = (1, 0, 0) .

In this example, equation (34) is an identity if the free parameters are zero
since then α = β = γ = 0, indicating that any φ in (32) ensures satisfaction
of equation (33). In this case, A11 is chosen as close as possible to a weighted
combination of the known quaternions A00,A10,A20 and A02,A12,A22, e.g.,
1
4
(A00 +A20 +A02 +A22). This solution, shown in Figure 6, proves to be the

same as that produced by the minimization of L.
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Figure 5: Example 2 with the optimized parameters b = 7.4794, c = 11.4533,
s = −1.4636, giving L = 1.3905. Upper: the boundary curves together
with the control net (left) and resulting surface (right). Lower: the surface
color–coded using the Gaussian curvature (left) and mean curvature (right).

8 Closure

The construction of a tensor–product surface patch x(u, v) that incorporates
a single family of isoparametric PH curves has been addressed in the simplest
context allowing all four boundary curves to be prescribed, namely, a degree
(5, 4) patch whose v = constant curves are spatial PH quintics. The problem
is reduced to the solution of a special type of quadratic quaternion equation.
A thorough analysis of this equation yields a closed–form solution procedure
and conditions for the existence of solutions. For given boundary curves, the
resulting surfaces depend on three scalar parameters, which can be exploited
to adjust the interior shape of the surface patch. The implementation of the
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Figure 6: The surface obtained in Example 3 with b = c = s = 0, yielding
the value L = 2.9132. Upper: the boundary curves together with the control
net (left) and the resulting surface (right). Lower: the surface color–coded
according to the Gaussian curvature (left) and mean curvature (right).
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method is illustrated through a selection of computed examples.
Although preliminary and exploratory in nature, the present results are

encouraging in that they elucidate an analytic solution procedure for a rather
complicated non–linear problem. Nevertheless, many issues must be resolved
in further developing this line of investigation — these include, for example,
better insight into the geometrical significance of the free parameters, and if
solutions are always possible through an appropriate choice for them; study
of the surface shape quality compared with Coons patches constructed using
“ordinary” polynomial curves; interpolating additional (e.g., surface normal)
data along the prescribed boundary curves; and exploring the possibility of
patches for which both sets of isoparametric loci are PH curves.

Appendix

The dependence of the three control points p51,p52,p53 on the free coefficients
A01,A11,A21 is determined from cases j = 1, 2, 3 of (9). In particular, from
(7) with m = n = 2 we have

ai1 =

min(2,i)
∑

k=max(0,i−2)

1
∑

l=0

(

2
k

)(

2
i−k

)

(

4
i

)

(

2
l

)(

2
1−l

)

(

4
1

) Akl iA∗

i−k,1−l ,

ai2 =

min(2,i)
∑

k=max(0,i−2)

2
∑

l=0

(

2
k

)(

2
i−k

)

(

4
i

)

(

2
l

)(

2
2−l

)

(

4
2

) Akl iA∗

i−k,2−l ,

ai3 =

min(2,i)
∑

k=max(0,i−2)

2
∑

l=1

(

2
k

)(

2
i−k

)

(

4
i

)

(

2
l

)(

2
3−l

)

(

4
3

) Akl iA∗

i−k,3−l ,
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for i = 0, . . . , 4. An explicit enumeration gives

a01 = vect(A00 iA∗

01) ,

2 a11 = vect(A00 iA∗

11 + A01 iA∗

10) ,

6 a21 = vect(A00 iA∗

21 + A01 iA∗

20 + 4A10 iA∗

11) ,

2 a31 = vect(A10 iA∗

21 + A11 iA∗

20)

a41 = vect(A20 iA∗

21) ,

3 a02 = vect(A00 iA∗

02) + 2A01 iA∗

01 ,

6 a12 = vect(A00 iA∗

12 + A02 iA∗

10 + 4A01 iA∗

11) ,

18 a22 = vect(A00 iA∗

22 + A02 iA∗

20 + 4A01 iA∗

21 + 4A10 iA∗

12) + 8A11 iA∗

11 ,

6 a32 = vect(A10 iA∗

22 + A12 iA∗

20 + 4A11 iA∗

21) ,

3 a42 = vect(A20 iA∗

22) + 2A21 iA∗

21 ,

a03 = vect(A01 iA∗

02) ,

2 a13 = vect(A01 iA∗

12 + A02 iA∗

11)

6 a23 = vect(A01 iA∗

22 + A02 iA∗

21 + 4A11 iA∗

12) ,

2 a33 = vect(A11 iA∗

22 + A12 iA∗

21)

a43 = vect(A21 iA∗

22) .
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