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Abstract. Some nonlocal boundary value problems, associated to a class
of functional di¤erence equations on unbounded domains, are considered by
means of a new approach. Their solvability is obtained by using properties
of the recessive solution to suitable half-linear di¤erence equations, a half-
linearization technique and a �xed point theorem in Fréchet spaces. The
result is applied to derive the existence of nonoscillatory solutions with initial
and �nal data. Examples and open problems complete the paper.

Keywords. p-Laplacian di¤erence equations, decaying solutions, recessive
solutions, functional equations, �xed point theorems in Frechét spaces.

1 Introduction

Consider the functional di¤erence equation

�(anj�xnj� sgn(�xn)) = �F (n; xn+q); (1)

where � > 0 is a real parameter, � > 0, q 2 f0; 1; 2g and � is the forward
di¤erence operator �xn = xn+1� xn. We assume that a = fang is a positive
sequence and F is a continuous function on N�R 7! R. Moreover, F is not
identically zero for large n, that is

supfF (k; u) : k � ng > 0 (H2)

for any n 2 N and u 2 [0; 1], and a sequence 
 = f
ng exists such that

0 � F (n; u) � 
nu�; n 2 N; u 2 [0; 1]: (H1)
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Discrete boundary value problems (BVPs), associated to equations of
type (1), have attracted considerable attention in the last years, especially
when they are examined on unbounded domains, see, e.g., [2, 4, 5, 10, 11,
18, 20], the monographies [1, 3] and references therein. Equation (1) appears
in the discretization process for searching spherically symmetric solutions of
certain nonlinear elliptic di¤erential equations with p-Laplacian, see, e.g.,
[13]. The case of noncompact domains seems to be of particular interest in
view of applications to radially symmetric solutions to PDEs on the exterior
of a ball.

For any solution x of (1) denote by x[1] its quasidi¤erence, that is

x[1]n = anj�xnj� sgn(�xn):

Our aim here is to study certain global BVPs associated to (1), which
include asymptotic boundary conditions at in�nity jointly with initial condi-
tions. Their solvability will be obtained as application of a general existence
result for solutions of (1), which are, roughly speaking, the minimal nonoscil-
latory solutions of (1). In particular, the existence of positive solutions to
(1), which satisfy one of the following boundary conditions

x1 = c > 0; xn > 0; �xn � 0; lim
n
xn = 0;

x1 = c > 0; xn > 0; �xn � 0; lim
n
x[1]n = 0

will be considered.

Several approaches can be used for treating BVPs on in�nite intervals;
beside classical ones, such as, for instance, variational methods, critical point
theory and �xed point theorems, recently new methods have been proposed,
especially as an extension of the Leray-Schauder continuation principle. The
reader can refer to [3, 6, 19, 21] for more details on this topic and to [7, 8,
15, 17, 22] for recent applications to various types of discrete BVPs.
Here we employ a general �xed point theorem for operators de�ned in

a Fréchet space, which is stated in [19]. This approach allows us to treat
in a uni�ed way the problems, independently of the presence of the delay
argument (q = 0) or the advanced one (q = 2). More precisely, the considered
BVPs are solved by considering an auxiliary BVP on the half-line, associated
to a half-linear di¤erence equation without deviating argument. This method
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does not require the explicit form of the �xed point operator, but only some
a-priori bounds. For obtaining these estimations, a crucial role is played
by the theory of recessive solutions in the half-linear case. Moreover, this
approach permit us to consider also a large variety of functional asymptotic
BVPs, like, for instance, asymptotic problems in which the initial value of
the �rst di¤erence of the solution is assigned. Finally, our results can be
easily formulated for the more general functional equation

�(anj�xnj� sgn(�xn)) = F (n; x�(n)); (2)

where � : N ! N, limn �(n) = 1, and � satis�es either �(n) � n + 1, or
�(n) � n.

We close this section by stating the quoted result from [19], in the form
that will be used for the solvability of our BVPs.
Denote by F the Fréchet space of real sequences x = fxkg, k 2 N; endowed

with the topology of uniform convergence on compact subsets of N. We recall
that a subset W � F is bounded if and only if it consists of sequences which
are equibounded on every discrete interval, i.e., if and only if there exists a
positive sequence z 2 F such that jwkj � zk for each k 2 N and w 2 W . The
following holds.

Theorem 1. Let S be a subset of F: Assume that there exists a nonempty,
closed, convex and bounded set 
 � F such that for any u 2 
 the equation

�(anj�ynj� sgn(�yn)) =
F (n; u�(n))

jun+1j� sgn(un+1)
jyn+1j� sgn(yn+1)

has a unique solution y = T (u) 2 S \ 
: If T (
) � S; then T has a �xed
point x in 
; which is solution of (1) and x 2 S.
Some notations are in order.
Denote by Ja; I1; I2 the series

Ja =
1X
j=1

�
1

aj

�1=�
;

I1 =

1X
n=1


n

� 1X
j=n+1

�
1

aj

�1=���
I2 =

1X
n=1

� 1
an

1X
k=n


k

�1=�
:
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In this paper, both cases Ja =1 and Ja <1 are considered. The notationP1
n=1 fn

P1
k=n gk means limm

Pm
n=1 fn

Pm
k=n gk; where f = ffng ; g = fgng

are nonnegative sequences.
If Ja <1, let A = fAng be the sequence

An =
1X
j=n

�
1

aj

�1=�
: (3)

The following relations between the series Ja; I1; I2 hold.

Lemma 1. (i1) If I1 <1 then Ja <1:
(i2) I1 =1 and I2 <1 if and only if Ja =1 and I2 <1:

Proof. Fixed m > 1; we have

mX
n=1


n

� mX
j=n+1

�
1

aj

�1=���
� 
1

� mX
j=2

�
1

aj

�1=���
(4)

and Claim (i1) follows. Claim (i2). A similar argument shows that if I2 <1;
then

P1
i=1 
i <1: If I1 =1; then Ja =1: The vice-versa follows from (4).
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2 Half-linear equations and recessive solutions

Consider the second order half-linear di¤erence equation

�(anj�xnj� sgn�xn) = bnjxn+1j� sgnxn+1; (5)

where b = fbkg, k 2 N; is a real sequence. When (5) is nonoscillatory, in [14]
the concept of recessive solution of (5) has been given, using a certain gener-
alized Riccati di¤erence equation. This notion is the discrete counterpart of
the one of principal solution, introduced by Leighton and Morse in studying
the qualitative behavior of solutions of second order linear di¤erential equa-
tions (see, e.g., [16]) and reads as follows. Consider the generalized Riccati
equation

�wn � bn +
�
1� S(an; wn)

�
wn = 0; (6)

where

S(an; wn) =
an

j(an)1=� + jwnj1=� sgn wnj�
sgn

�
(an)

1=� + jwnj1=� sgn wn
�
:
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According to [14], there exists a solution w1 of (6), satisfying an+w1n > 0 for
large n, with the property that, for any other solution w of (6), with an+wn >
0 in some neighborhood of 1; it holds w1n < wn in this neighborhood. Such
solution w1 is called the (eventually) minimal solution of (6) and the solution
u of (5), given by

�un =
�
jw1n j sgn(w1n )=an

�1=�
un; (7)

is called the recessive solution of (5). Clearly, the recessive solution of (5) is
determined up to a constant factor.
Now, consider the half-linear di¤erence equation

�(anj�ynj� sgn(�yn)) = Bnjyn+1j� sgn(yn+1); (8)

where
Bn � bn; n � N � 1: (9)

The following comparison result is an easy consequence of [14, Theorem 1].

Theorem 2. Assume that (8) is nonoscillatory. Let x and y be the recessive
solutions of (5) and (8), respectively, such that xn > 0; yn > 0 for n � N
and either xN � yN or �xN � �yN � 0. Then we have for any n � N

xn � yn: (10)

Proof. Since (8) is nonoscillatory, in view of (9) equation (5) is nonoscillatory
too. Let w1 and v1 be the minimal solution of the generalized Riccati
equation associated to (5) and (8), respectively. From [14, Theorem 1] and
its proof we have for n � N

w1 � v1:
Thus, in virtue of (7), we get for n � N

�xn
xn

� �yn
yn
;

which implies for n � N
xn+1
xn

� yn+1
yn

> 0:

Hence
xn+1
xN

=
nQ

k=N

xk+1
xk

�
nQ

k=N

yk+1
yk

=
yn+1
yN

;
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and (10) follows, since xN � yN .
Now, let x and y be the positive recessive solutions of (5) and (8), re-

spectively, such that �xN � �yN , and let z be the recessive solution of (5)
such that zN = yN . From the previous part of the proof, we have yn � zn for
n � N , and, in particular �yN � �zN . Since z and x are positive recessive
solutions of the same equation, there exists � > 0 such that zn = �xn for
all n 2 N. The inequality �yN � �zN = ��xN � ��yN � 0 implies that
0 < � � 1 and therefore xn � zn � yn for n � N . 2

When b is nonnegative and

sup fbk : k � ng > 0 for any n 2 N; (11)

according to [9], equation (5) is nonoscillatory and the recessive solution of
(5) can be characterized in a more expressive form. More precisely, the re-
cessive solution of (5) is, roughly speaking, the minimal solution of (5) in
a neighborhood of in�nity. Moreover, a summation characterization for the
recessive solution holds. These properties can be viewed as the discrete coun-
terpart of well-known properties of the principal solution in the continuous
case [16].

Lemma 2. Assume that b is a nonnegative sequence satisfying (11). Then
(5) is nonoscillatory. Moreover, a solution x of (5) is the recessive solution
if and only if any of the following two conditions is satis�ed.
(i1) For every solution y of (5) such that y 6= �x; � 2 R,

lim
n

xn
yn
= 0: (12)

(i2) There exists n0 � 1 such that
1X

n=n0

1

a
1=�
n xnxn+1

=1: (13)

Proof. The assertion follows from Theorem 4 and Remark 3 in [9], with
minor changes. 2

In case b is nonnegative and satis�es (11), the asymptotic behavior of
recessive solutions of (5) is described by the series

W1 =
1X
n=1

bn

� 1X
k=n

� 1

ak+1

�1=���
; W2 =

1X
n=1

� 1
an

�1=�� 1X
k=n

bk

�1=�
:
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Lemma 3. Assume that b is a nonnegative sequence satisfying (11), and
let x be the recessive solution of (5) such that x1 > 0: Then the following
statements hold:
(i1) The sequence x is positive decreasing for any n � 1, that is xn > 0;

�xn < 0 for any n � 1:
(i2) If limn xn = `x > 0; then limn x

[1]
n = 0:

(i3) We have
lim
n
xn = 0; lim

n
x[1]n = `[1]x < 0

if and only if W1 <1:
(i4) We have

lim
n
xn = `x > 0; lim

n
x[1]n = 0

if and only if W1 = 1 and W2 < 1 or, equivalently, if and only if Ja = 1
and W2 <1:

Proof. The assertion follows from [12, Theorem A, Theorems 2 and 3]. See
also [12, page 12]. 2

Remark 1. Observe that in [9, 12], the positivity of the sequence b is as-
sumed. Nevertheless, we can verify that the above Lemmas 2 and 3 continue
to hold also when b is a nonnegative sequence satisfying (11).

3 Main results

Our main results are two existence theorems for positive solutions to the
following nonlocal boundary value problem8><>:

�(anj�xnj� sgn(�xn)) = �F (n; xn+q); n 2 N

x1 = c; xn > 0;

1X
1

1

a
1=�
n xnxn+1

=1: (14)

In our approach, an important role is played by the half-linear equation

�(anj�znj� sgn(�zn)) = 0: (15)

The recessive solution z of (15), satisfying z1 = c, is the sequence

zn =

(
c if Ja =1;
cAn=Ja if Ja <1:

(16)
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Clearly, z satis�es
1X
1

1

a
1=�
n znzn+1

=1; (17)

as it follows using the equality

�
1

zn
=
��zn
zn+1zn

:

In the next two subsections, existence results are given for problem (14),
obtained by using Theorem 1 and a half-linearization approach. More pre-
cisely, the solution of (14) is obtained as �xed point of an operator, which
is de�ned via recessive solutions of a class of suitable half-linear di¤erence
equations.

3.1 Case q 2 f1; 2g
We start with the cases q 2 f1; 2g, which yields an equation without deviating
argument or with advanced argument, respectively.

Theorem 3. Fixed c 2 (0; 1], the problem (14) with q = 1; 2; has at least a
solution for every � > 0.

Proof. Let z be the recessive solutions of (15) satisfying z1 = c, and let v be
the recessive solution of

�(anj�vnj� sgn(�vn)) = �
njvn+1j� sgn vn+1; (18)

satisfying v1 = c.
In view of (H1) and (H2), the sequence f
ng satis�es

sup f
k : k � ng > 0 for any n 2 N:

Hence, from Theorem 2 and Lemma 3, the recessive solutions z and v are
positive nonincreasing and satisfy the inequality

0 < vn � zn � c:

Denote by 
 the subset of F given by


 = fu 2 F : vn � un � zn; �un � 0; for n 2 Ng : (19)
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Fixed u 2 
, consider the half-linear equation

�(anj�ynj� sgn(�yn)) = �
F (n; un+q)

u�n+1
jyn+1j� sgn(yn+1) (20)

and let T be the map which associates to every u 2 
 the recessive solution
y of (20), that is T (u) = y. Taking into account (H2) and using Lemma 2,
we have

1X
1

1

a
1=�
n ynyn+1

=1:

Thus, denoting by S the subset of F given by

S =

(
' 2 F : '1 = c;

1X
1

1

a
1=�
n 'n'n+1

=1
)
; (21)

the solution y = T (u) belongs to S: Moreover, in virtue of Lemma 3, y is
positive nonincreasing, that is �yn � 0. Since 0 < un � c for u 2 
, and
q � 1; in view of (H1) we have

0 � F (n; un+q) � 
nu�n+q � 
nu�n+1 (22)

or

0 � F (n; un+q)

u�n+1
� 
n: (23)

From Theorem 2, the inequality (23) yields vn � yn � zn. Therefore T maps

 into itself and so we have

T (u) 2 S \ 
:

To apply Theorem 1, we have to show that T (
) � S: Let �y 2 T (
): Thus,
there exists fuhg � 
, uh = fuhng, such that

�
T (uh)

	
uniformly converges to

�y on every bounded subset of N: Since 
 is closed and T (
) � 
; we obtain
�y 2 
: Hence we have for n 2 N

0 < vn � �yn � zn: (24)

In particular, being v1 = z1 = c, we obtain �y1 = c. Moreover, taking into
account that z is the positive recessive solution of (15), using (17) we get

1X
n=1

1

a
1=�
n �yn�yn+1

�
1X
n=1

1

a
1=�
n znzn+1

=1;
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that is �y 2 S: Thus, Theorem 1 assures that T has at least a �xed point
x 2 
, which is a solution of (14).

Remark 2. Theorem 3 can be easily extended, with minor changes, to the
equation (2) where � is a general advanced argument, i.e. �(n) � n+1. The
details are left to the reader. Notice that no monotonicity is assumed on the
advanced argument.

3.2 Case q = 0

Now, consider the case q = 0, which yields an equation with delay. In this
case, a slightly di¤erent approach is needed for solving the problem (14).
Indeed the argument in the proof of Theorem 3 cannot be used because for
any u 2 
 we have un+1 � un, that is 
nu�n+1 � 
nu

�
n, i.e., the inequality

(22) is not satis�ed when u is not constant. The following holds.

Theorem 4. Let q = 0. Assume that one of the following condition is
satis�ed.

(i) I1 <1 and

lim sup
n

an+1
an

<1: (25)

(ii) I1 =1 and I2 <1.

Then, �xed c 2 (0; 1], the problem8><>:
�(anj�xnj� sgn(�xn)) = �F (n; xn); n 2 N

x1 = c; xn > 0
1X
1

1

a
1=�
n xnxn+1

=1 (26)

has at least a solution for every � > 0 su¢ ciently small.

Proof. Let z be the recessive solutions of (15) satisfying z1 = c, and let 

be the set


 = fu 2 F : zn=2 � un � zn; �un � 0; for n 2 Ng :

Since z is nonincreasing, we have 0 < zn=2 � un � zn � c. For any u 2 
,
consider the half-linear equation

�(anj�ynj� sgn(�yn)) = �
F (n; un)

u�n+1
jyn+1j� sgn(yn+1); (27)
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and let y = T (u) be the recessive solution of (27) satisfying y1 = c. Hence,
in view of Lemma 2, y = T (u) 2 S, where S is the set de�ned in (21).
Now, let us show that T (
) � 
. From Theorem 2 we have yn � zn.

To prove the inequality yn � zn=2 we distinguish two cases, according to the
condition (i) or (ii) holds.
Case I). Assume that condition (i) is ful�lled. From Lemma 1 we get

Ja < 1 and, in view of (16), zn = cAn=Ja. By the discrete l�Hospital rule,
(25) implies that H > 0 exists, such that

H = sup
n

An
An+1

: (28)

In view of (H1), (H2) and Lemma 3, for any u 2 
, we get

0 <
F (n; un)

u�n+1
� 
n

� un
un+1

��
� 
n

� 2zn
zn+1

��
: (29)

Since zn=zn+1 = An=An+1, we obtain

F (n; un)

u�n+1
� 2�
n

� An
An+1

��
� 
n(2H)�: (30)

Thus, Theorem 2 yields yn � wn, where w = fwng is the recessive solution
of

�(anj�wnj� sgn(�wn)) = �(2H)�
njwn+1j� sgnwn+1; (31)

such that w1 = c. Since I1 < 1, from Lemma 3 we get limnwn = 0,
limnw

[1]
n = w

[1]
1 < 0. By summation of (31) we obtain

wn =
1X
k=n

�
1

ak

�1=� 
�w[1]1 + �(2H)�

1X
j=k


jw
�
j+1

!1=�
� An(�w[1]1)1=�:

The initial condition w1 = c gives

c =
1X
k=1

�
1

ak

�1=� 
�w[1]1 + �(2H)�

1X
j=k


jw
�
j+1

!1=�
;

and, taking into account that wn � zn, we get

c �
1X
k=1

�
1

ak

�1=� 
�w[1]1 + �(2H)�

�
c

Ja

�� 1X
j=1


jA
�
j+1

!1=�

= Ja

�
�w[1]1 + �(2H)�

�
c

Ja

��
I1

�1=�
:
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Thus �
c

Ja

��
� �w[1]1 + �(2H)�

�
c

Ja

��
I1:

Let � � �0, where
�0 =

2� � 1
22�H�I1

: (32)

Hence �(2H)�I1 < 1 and

�w[1]1 �
�
c

Ja

��
(1� �(2H)�I1) �

�
c

2Ja

��
:

Thus
yn � wn � (�w[1]1)1=�An �

c

2Ja
An =

zn
2
;

and y = T (u) 2 
.
Case II). Assume now that condition (ii) is ful�lled. Again from Lemma

1 we get Ja =1 and, in view of (16), zn � c. Therefore from (29) we obtain

F (n; un)

u�n+1
� 
n2�;

and Theorem 2 assures that yn � vn, where v = fvng is the recessive solution
of

�(anj�vnj� sgn(�vn)) = 2��
njvn+1j� sgn vn+1; (33)

such that v1 = c. Since I1 = 1 and I2 < 1, in view of Lemma 3 we have
limn vn = `v > 0; limn v

[1]
n = 0. Therefore, the summation of (33) gives

vn+1 = c� 2�1=�
nX
k=1

 
1

ak

1X
j=k


jv
�
j+1

!1=�
:

Since v is nonincreasing, we get

vn+1 � c(1� 2�1=�I2):

Thus, for every � � �1, where

�1 = (4I2)
��; (34)

we have
yn � vn � c=2 = zn=2;
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and y = T (u) 2 
.
A similar argument to that given in the proof of Theorem 3, shows that

T (
) � S. Hence, from Theorem 1, the map T has at least a �xed point in

, which is a solution of (26) for � su¢ ciently small.

Remark 3. The upper value of the parameter �, for which (26) has solution,
depends on the set 
; in which we look for the �xed point of the operator T .
In the proof of Theorem 4, we could more generally choose


 = fu 2 F : zn=B � un � zn; �un � 0; for n 2 Ng ;

where B > 1. When the assumptions (i) in Theorem 4 are satis�ed, the same
argument to the one given in the proof gives that the upper bound for � is

�0 =
B� � 1
B2�H�I1

;

where H is given in (28). An easy calculation shows that �0 attains its
maximum for B = 21=�, and �0 = (4H�I1)

�1 in this case, while with the
choice B = 2 we get (32). Similarly, when assumptions (ii) are satis�ed, the
upper bound for � is

�1 =

�
B � 1
B2I2

��
and �1 attains its maximum (34) exactly for B = 2.

Remark 4. Similarly to Remark 1, also Theorem 4 can be extended, with
minor changes, to the equation (2) where � is a delay argument, i.e. �(n) � n.
In particular, assumption (25) has to be replaced with the following one

lim sup
n

a
1=�
n+1

nX
�(n)

�
1

aj

�1=�
<1;

which implies that H1 > 0 exists, such that supnA�(n)=An+1 � H1: The
details are left to the reader. Notice that no monotonicity is assumed on the
delay argument. The case of a general deviating argument will be considered
in a forthcoming paper.
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4 Application to BVP�s

The solvability of certain BVPs associated to (1) can be easily obtained from
the general existence Theorems 3, 4 and their proofs.
For instance, let c 2 (0; 1] and consider the subsets of F :

S0 =
n
' 2 F : '1 = c; 'n > 0; �'n � 0; lim

n
'n = 0

o
;

S1 =
n
' 2 F : '1 = c; 'n > 0; �'n � 0; lim

n
'[1]n = 0

o
:

Corollary 1. Let q 2 f1; 2g and c 2 (0; 1]: The following hold.
(i1) If Ja <1, then equation (1) has at least a solution in the set S0 for

every � > 0.
(i2) If Ja = 1 and I2 < 1, then equation (1) has at least a solution in

the set S1 for every � > 0.

Proof. Claim (i1): Since Ja < 1, in view of (16), the recessive solution z
of (15) satis�es limn zn = 0. By Theorem 3 and its proof, equation (1) has a
positive solution x such that x1 = c; and �xn � 0; xn � zn for any n � 1:
Hence, x 2 S0:
Claim (i2): Let v be the recessive solution of (18). In view of Lemma 3

we have
lim
n
vn = `v > 0; lim

n
v[1]n = 0: (35)

By Theorem 3 and its proof, equation (1) has a positive solution x such that
x1 = c; and �xn � 0, xn � vn. Moreover, x is also a recessive solution of the
half-linear equation (20), with u � x: Since x is positive for n � 1, from [14,
Theorem 1] we have

v
[1]
n

v�n
� x

[1]
n

x�n
< 0; n 2 N;

or, because v is nonincreasing,

v
[1]
n

v�1
� v

[1]
n

v�n
� x

[1]
n

x�n
< 0; n 2 N:

Thus, (35) yields limn x
[1]
n = 0 and so x 2 S1:

14



Corollary 2. Let q = 0 and c 2 (0; 1]: The following hold.
(i1) If I1 <1 and (25) holds, then equation (1) has at least a solution in

the set S0 for every � 2 (0; �0], where �0 is given by (32).
(i2) If Ja = 1 and I2 < 1; then equation (1) has at least a solution in

the set S1 for every � 2 (0; �1], where �1 is given by (34).

Proof. The assertion follows from Theorem 4 and its proof, by using a
similar argument to the one given in Corollary 1.
Claim (i1): Since I1 < 1; from Lemma 1 we get Ja < 1: Thus, in view

of (16), the recessive solution z of (15) satis�es lim zn = 0. From Theorem
4 and its proof, equation (1) has a positive solution x such that x1 = c, and
�xn � 0; xn � zn for any n � 1 and � 2 (0; �0]; where �0 is given by (32):
Hence, x 2 S0:
Claim (i2): In view of Lemma 1, we have I1 =1 and I2 <1: Moreover,

since Ja =1, in view of (16), the recessive solution z is the constant sequence
zn = c: By Theorem 4 and its proof, equation (1) has a positive solution x
such that x1 = c; and �xn � 0; xn � c=2 for any n � 1: Moreover, x is also a
recessive solution of the half-linear equation (27), with u � x and � 2 (0; �1];
where �1 is given by (34): Since limn xn > 0; from Lemma 3 we get limn

x
[1]
n = 0. Hence, x 2 S1: 2

Corollaries 1, 2 can be easily extended to the case in which the boundary
conditions are one of the following.

S2 =
n
' 2 F : '1 = c; 'n > 0; �'n � 0; lim

n
'n = 0; lim

n
'[1]n = `[1]' < 0

o
;

S3 =
n
' 2 F : '1 = c; 'n > 0; �'n � 0; lim

n
'n = '1 > 0; lim

n
'[1]n = 0

o
:

Corollary 3. Let q 2 f1; 2g and c 2 (0; 1]: The following hold.
(i1) If I1 <1, then equation (1) has at least a solution in the set S2 for

every � > 0.
(i2) If I1 = 1 and I2 < 1, then equation (1) has at least a solution in

the set S3 for every � > 0.

Proof. Claim (i1): Fixed c 2 (0; 1], in view of Lemma 1, Corollary 1 and its
proof, equation (1) has at least a solution x 2 S0 for every � > 0. Moreover,
x is also a recessive solution of the half-linear equation (20), with u � x.

15



From I1 <1 and (23) we have

1X
n=1

F (n; xn+q)

x�n+1

� 1X
j=n+1

�
1

aj

�1=���
<1:

Thus, applying Lemma 3 to (20) with u � x; we get that the quasi-di¤erence
of the recessive solution of (20) tends to a nonzero limit as n ! 1 and the
assertion follows.
Claim (i2): The assertion follows from Lemma 1, Corollary 1 and its proof,

by using a similar argument to the one in Claim (i1): 2

In the case q = 0; Corollary 2 gives su¢ cient conditions for the existence
of a solution x to (1) in the set S0 or S1: A closer examination of its proofs
jointly with Lemma 3 yields limn x

[1]
n = x

[1]
1 < 0 or limn xn = x1 > 0;

according to (i1) or (i2) holds. Thus, we have the following.

Corollary 4. Let q = 0 and c 2 (0; 1]:
(i1) If I1 <1 and (16) holds, then equation (1) has at least a solution in

the set S2 for every � 2 (0; �0], where �0 is given by (32).
(i2) If Ja = 1 and I2 < 1; then equation (1) has at least a solution in

the set S3 for every � 2 (0; �1], where �1 is given by (34).

5 Examples and open problems

Independently of the convergence of Ja; equation (1) can have positive solu-
tions x such that limn xn = limn x

[1]
n = 0, as the following example illustrates.

Example 1. Consider the equation

�2xn = 2
2n+1x3n+1; (36)

It is easy to verify that x = f2�ng is a solution of (36) and

x1 = 2
�1; xn > 0; �xn � 0; lim

n
xn = lim

n
x[1]n = 0: (37)

Similarly, for the equation

�(an�xn) = bnx
3
n+1; (38)
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where

an = (n� 1)!; bn =
4(n+ 1)2(n!)3

n+ 2
;

the sequence x, where

xn =
1

2

1

n!
;

is a solution of (38) and the boundary conditions (37) are satis�ed. Moreover
for (36) we have Ja =1 and for (38) it holds Ja <1:

Thus, the existence of solutions to (1) in the set

S4 =
n
' 2 F : '1 = c; 'n > 0; �'n � 0; lim

n
'n = lim

n
'[1]n = 0

o
is an open problem. Moreover, the existence of solutions to (1) in S4 has to
be independent of the convergence of Ja; as Example 1 shows.

The following example illustrates our results.

Example 2. Consider the equation

�(n2(�xn)) = 2(2n
2 + 2n+ 1)x3n+q; q 2 f0; 1; 2g: (39)

For (39) we have Ja <1 and I1 =1: When q 2 f0; 2g; one can check that
f(�1)ng is an oscillatory solution of (39). Nevertheless, the corresponding
equation without deviating argument, that is (39) with q = 1, is nonoscil-
latory, see, e.g., [1, Lemma 5.3.1.]. Moreover, when q 2 f1; 2g, in view of
Corollary 1, equation (39) has at least a solution in the set S0 for every
c 2 (0; 1]. Hence in the advanced case (q = 2) nonoscillatory solutions,
converging to zero, coexist with oscillatory (periodic) solutions. This fact is
impossible for the corresponding equation without deviating argument.
Further, for the equation with delay (q = 0), since I1 = 1; Corollary

2 cannot be applied: Thus, when I1 = 1; can the delay equation (1) with
q = 0 admit solutions which satisfy the boundary conditions S0?

6 A further application

Our approach can be used to solve a wide range of BVPs. For example,
existence results for BVPs associated to (1), in which the initial value of the
�rst di¤erence of the solution is �xed, can be obtained.
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Now, we present the main ideas, which lead to the existence of solutions
of the nonlocal BVP8><>:

�(anj�xnj� sgn(�xn)) = �F (n; xn+q); n 2 N

�x1 = �d; xn > 0;
1X
1

1

a
1=�
n xnxn+1

=1; (40)

where d is a given positive constant. The following holds.

Theorem 5. Assume Ja <1, and let d 2 (0; 1� A2=A1] be �xed.
i) If q 2 f1; 2g, then the problem (40) has at least a solution for every

� > 0.
ii) If q = 0, assume further I1 <1 and that (25) holds. Then the problem

(40) has at least a solution for every � > 0 su¢ ciently small.

Proof. Let z be the recessive solution of (15), satisfying �z1 = �d. Notice
that the assumption Ja < 1 assures the existence of such a solution, and
zn = dAna

1=�
1 = dAn=(A1 � A2) � 1.

If q 2 f1; 2g, let v be the recessive solution of (18) satisfying �v1 =
�d. From Theorem 2 we have 0 < vn � zn � z1 = 1, n 2 N. Put 
 =
fu 2 F : vn � un � zn; �un � 0; for n 2 Ng. Thus, inequality (22) holds for
every u 2 
, and the half-linear equation (20) has a unique recessive solution
y = T (u) such that �y1 = �d. Further, in view of Lemma 2, the solution y
satis�es the boundary conditions in (40). Hence, reasoning as in the proof of
Theorem 3, we get T (
) � 
.
If q = 0, the argument is very similar. Set 
 = fu 2 F : zn=2 � un �

zn; �un � 0; for n 2 Ng. For any u 2 
, the half-linear equation (20) has
a unique recessive solution y = T (u), such that �y1 = �d. Let H be the
constant given in (28). Since inequality (30) holds, Lemma 2 assures that
yn � wn, where w is the recessive solution to (31) such that �w1 = �d.
Hence, y satis�es the conditions in (40). By summation of (31), taking into
account that wn � zn, we obtain

�w[1]1 � a1d�[1� �(2H)�I1]:

Thus, if � � �0, where �0 is given by (32), it holds

wn � (�w[1]1)1=�An � a
1=�
1 dAn

�
1� 2

� � 1
2�

�1=�
=
zn
2
;
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which implies that yn � zn=2, and T (
) � 
 follows.
A similar argument to that given in the proof of Theorem 3 leads to the

existence of a �xed point x = T (x) of the operator T in 
, which is a solution
of (40).

An immediate consequence of the above theorem is an existing result for
the solutions of (1) in the set

S5 = f' 2 F : �'1 = �d < 0; 'n > 0; �'n � 0; lim
n
'n = 0g:

Corollary 5. Let Ja <1 and d 2 (0; 1� A2=A1]. The following hold.
i) If q 2 f1; 2g, then equation (1) has at least a solution in the set S5 for

every � > 0 .
ii) If q = 0, assume further I1 < 1 and that (25) holds. Then equation

(1) has at least a solution in the set S5 for every � 2 (0; �0], with �0 given
by (32).

The proof of the above result is similar to that of Corollary 1, claim (i1).
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