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Riassunto 

Parole chiave: carbone da legna, carbonaia, condizioni edafiche, crescita degli alberi, 

composizione floristica, diversità della vegetazione, effetti ecologici, paesaggio 

forestale, rinnovazione arborea. 

Obiettivo: Analizzare gli effetti a lungo termine determinati dalla secolare attività di 

produzione del carbone sull’ecologia ed il paesaggio forestale in area Mediterranea. 

Lo studio è articolato in modo da perseguire tre obiettivi principali: i) valutare 

l’impatto delle carbonaie sulla vegetazione arborea ed erbaceo-arbustiva in relazione 

a fattori abiotici; ii) esaminare gli effetti del suolo sulla crescita e lo sviluppo di specie 

arboree in giovane età; iii) quantificare e caratterizzare l’“eredità” lasciata da questa 

attività a livello di paesaggio forestale, attraverso un’analisi della distribuzione e della 

morfologia dei siti di produzione in zone differenti dell’Italia centrale. 

Metodi e risultati: La ricerca è stata effettuata nei tre tipi di bosco storicamente più 

utilizzati per la produzione del carbone: foreste di sclerofille, querceti termofili 

decidui e faggete. In un primo studio di tipo esplorativo è stata esaminata la 

rinnovazione arborea e la vegetazione erbaceo-arbustiva su un campione di 61 

carbonaie abbandonate da almeno 60 anni, in cui sono state anche analizzate le 

principali caratteristiche del suolo e la disponibilità di luce. Contemporaneamente si 

è condotta un’analisi sperimentale tramite la realizzazione di un “common garden” in 

cui sono state seguite la germinazione, la crescita, e la mortalità di tre specie forestali 

dominanti (Quercus ilex, Q. cerris, Fagus sylvatica) allevate su suolo di carbonaia. 

Infine, tramite censimento a terra e telerilevamento da dati LIDAR, sono state 

identificate e caratterizzate tutte le carbonaie presenti in aree campione dei tre tipi 

forestali (approccio inventariale). Dai primi due studi è emerso un chiaro effetto 

negativo delle carbonaie sull’affermazione della rinnovazione arborea, mentre è 

risultata positivamente influenzata la vegetazione del sottobosco in termini di 

diversità specifica, composizione e produttività. Tali effetti sono legati a variazioni 

delle caratteristiche del suolo e di disponibilità di luce. L’esperimento di “common 

garden” ha dimostrato che le risposte delle tre specie arboree al suolo di carbonaia 

sono diverse, in parte contrastanti o deboli. Infine, dai rilievi a terra e dalla foto-

interpretazione delle immagini telerilevate, è risultata, seppur con alcune differenze 

tra i tre tipi di bosco, una più alta densità di carbonaie ed una loro differente 

morfologia rispetto ad altri paesi europei, anche a livello di profilo del suolo, in 

relazione alla diversa metodologia ed ai diversi scopi per cui venivano realizzate.  

Conclusioni: Le carbonaie costituiscono una delle più evidenti eredità lasciate 

dall’attività umana nei boschi mediterranei ed esercitano ancora effetti significativi 
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sul sistema suolo-vegetazione, in precedenza sconosciuti. Esse rappresentano quindi 

delle “micro-isole” ecologiche di origina antropica, fino ad oggi non individuate come 

tali, che aumentano l’eterogeneità stazionale e la biodiversità dell’ambiente 

forestale. A livello di paesaggio forestale la magnitudine di tali effetti è significativa a 

causa dell’elevato numero di tali siti e della superficie complessiva da loro occupata, 

con piccole differenze fra gli ecosistemi forestali analizzati.  

Significato e impatto dello studio: Il valore dell’eredità culturale, paesaggistica ed 

ecologica lasciata da una delle più antiche forme di uso del bosco merita di essere 

conservato. La gestione forestale, specialmente nelle aree protette, dovrebbe 

considerare questo aspetto, attualmente trascurato. Infine, il presente studio 

suggerisce un contributo significativo di questi siti alla capacità di stoccaggio di 

carbonio nel suolo forestale, un aspetto che merita ulteriori ricerche. 
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Abstract 

Keywords: charcoal hearths, charcoal kilns, forest landscapes, legacy effects, forest 

recolonization, soil conditions, tree growth, species composition, vegetation 

diversity, wood charcoal. 

Aims: Analysing the long-term effects of the centennial activity of charcoal 

production on forest ecosystems of the Mediterranean area. The study is structured 

in order to achieve three main aims: i) evaluating the impact of kiln sites on the 

forest vegetation (tree, shrubs and herbaceous species) in relation to abiotic factors; 

ii) examine the effects of the charcoal-enriched kiln site soil on the early life stages of 

major forest trees; iii) quantifying and characterizing the legacy of such activity at the 

landscape level, through the analysis of the distribution and morphology of 

production sites in different environments of central Italy . 

Methods and Results: The research was carried out in three forest types traditionally 

exploited for wood charcoal production, sclerophyllous maquis, mixed oak forest and 

beech forest. In a first exploratory study, we examined tree regeneration and 

understorey vegetation on a sample of 61 kiln sites, abandoned at least 60 years ago, 

together with the main soil characteristics and light conditions. At the same time, an 

experimental work was performed by setting up a common garden to compare 

germination, growth and mortality in three major forest trees (Quercus ilex, Q. cerris, 

Fagus sylvatica) grown on soil of kiln sites and control sites. Finally, an inventory work 

was carried out in sample quadrats using field surveys and LIDAR data, to determine 

the density, size, surface and other morphological parameters of kiln sites in the 

three forest types. In the first two studies we found a negative effect of kiln sites on 

tree regeneration and forest recolonization, whereas the understorey vegetation was 

positively influenced in terms of species diversity, compositional variations and 

biomass production. These effects are related to variations in the characteristics of 

soil and light, also influenced by the kiln sites. The common garden experiment 

showed that the responses of forest trees to kiln site soil are different, in some cases 

contrasting, or weak. The inventory study showed that, compared to other European 

countries, kiln sites are denser but smaller and with different morphology, also in 

terms of soil profile, with some differences between forest types. Such differences 

are probably due to the different methods of preparation and the different purposes 

for which they were made. 

Conclusions: Charcoal kiln sites are one of the most striking legacies left by the 

millennial human activity in the Mediterranean woodlands. This study shows that 

such sites have persistent effects on the vegetation via changes in soil and light 
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conditions. Hence, they represent ecological “micro-islands” of anthropic origin that 

increase the diversity and fine-scale heterogeneity of the forest ecosystem. The 

relatively high number of these sites and their total area per unit surface suggest that 

the magnitude of their effects at the forest level may not be negligible. 

Significance and Impact of the Study: The significance of the cultural, landscape and 

ecological heritage of one of the oldest forms of forest use deserves some form of 

protection. Hence, forest management, especially in protected areas, should 

consider this aspect which is currently neglected. Finally, the present study suggests 

a significant contribution of these sites to the storage capacity of carbon in forest 

soils, an aspect that should be further investigated. 
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1.1 Legacy effects of past land uses on forests 

In the last decades, an increasing number of studies have highlighted the impact of 

historical human activities on forest ecosystems, especially coppicing, wildfires, 

controlled burning, livestock husbandry grazing and plant domestication. In central 

and northern Europe, it is well documented that these traditional land uses have 

shaped the natural ecosystems since the times of the first civilizations and still affect 

present-day soil properties (Baeten et al., 2010; Dupouey et al., 2002; Glatzel, 1991; 

Verheyen et al., 1999). Via their influence on soil characteristics, past land use forms 

have also strongly affected plant species diversity, composition and productivity of 

woodlands, especially in Mediterranean region (Arianoutsou, 2001; Bartha et al., 

2008; Blondel, 2006; Kopecký et al., 2013; Lloret and Vilà, 2003; Nocentini and Coll, 

2013). Here, the succession of civilizations that waxed and waned in the different 

countries over several millennia determined the greatest impacts on biota and 

ecosystems (Blondel, 2006). However, similar evidence exists for North America, 

despite the shorter duration of intensive human utilization of woodlands (Foster, 

1992; Fraterrigo et al., 2005).  

Hence, when trying to understand the drivers of the present-day structural, 

compositional and ecological features of woodlands communities it is of crucial 

importance to consider the long-lasting consequences of the past land uses (e.g. 

Hermy and Verheyen, 2007; Peterken et al., 2014). Nevertheless, such effects are still 

incompletely known due to their complex nature and the limited number of studies 

focusing on this topic. 

One of the most important and widespread uses of the forests in the past was the 

production of wood charcoal, whose effects are the subject of the present 

investigation. 

1.2 Wood charcoal: a long history of use 

Charcoal is the first synthetic material produced by man, as shown by the artworks of 

ca. 38.000 years ago found in some caves of southern France (Antal, 2003) and one of 

the main source of energy since the Iron age.  

During the past millennia charcoal was produced for a wide variety of purposes such 

as domestic use, industrial processes, and as a heat source for the production of 

specialized materials for agricultural and other human needs. This wide range of uses 

is described in a diversity of scientific journals, which explains a certain difficulty in 

being aware of the complete literature on this topic (Scott and Damblon, 2010).  

Wood charcoal production is one of the oldest forms of forest use, that existed since 

the Neolithic and continued for millennia (Ludemann, 2010; Montanari et al., 2000). 
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This is documented in Egypt and in the Near East from the third millennium BC (Lugli 

and Pracchia, 1995), and in the whole Mediterranean region since the Iron Age 

(Blondel, 2006). Archaeological remains show that the Etruscans produced wood 

charcoal for the smelting of iron and bronze in southern Tuscany (Mariotti Lippi et al., 

2000). In the fourth century BC Theophrastus describes the carbonization method 

and Plinius the Elder mentions the plant species suitable for the different uses of 

charcoal and the products of charcoal burning (Montanari et al., 2000). Thanks to 

Plinius, we know that the same method of charcoal production was in use until the 

middle of the last century (Baroni et al., 2011). 

In more recent times, sporadic historical information can be found in a few 

documents dating back to the late Middle Age. Technical descriptions of charcoal 

burning can be found since the 16th century (Montanari et al., 2000). Most of the 

deforestation which was carried out in the medieval time, especially in the 

Mediterranean countries, has been commonly ascribed to the increasing need of 

charcoal caused by the spread of metallurgy. A similar situation occurred probably in 

China during the Han period (206 BC to AD 220; Montanari et al., 2000). In the 

Modern age, documents on charcoal production are also mainly related to costs and 

problems of the iron and steel industry (Arrigoni et al., 1985).  

In most of the northern and central European countries, this practice was abandoned 

in the 19th century due to the rapidly increasing and widespread use of coal (Deforce 

et al., 2012). Contrastingly, in many Mediterranean regions the importance of wood 

charcoal production increased during the industrial revolution because of the lack of 

other fuel sources. In most parts of central Italy, as for example in southern Tuscany, 

the metallurgic activity was continued with the same methodology from 1377 to the 

end of the 19th century (Arrigoni et al., 1985). Since the Etruscan period, this area 

has been of utmost importance for the production of metals thanks to the iron mines 

of the Elba Island, to their proximity to the sea, and the presence of vast forested 

areas in the Tuscan Maremma. These were an inexhaustible source of all types of 

wood needed for the metallurgic production by the Etruscans. Different types of 

wood charcoal were in fact required for this activity: that made from oak wood 

(Quercus sp.), named “legno forte”, was used for the furnaces, while that made from 

the wood of Populus sp., Salix sp. and Alnus sp., named “legno dolce” was used for 

the iron foundries (Arrigoni et al., 1985; Giorgerini, 2009). 

When in 1709 Abraham Darby 1° used for the first time in England a furnace with 

'charked' coal (carbon coke) instead of lignite, in Italy there was a sort of 

“environmental issue” about the over-exploitation of forests for the production of 
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wood charcoal. Prominent academics such as Giorgio Santi and Giovanni Targioni-

Tozzetti expressed their concern about the deforestation of Maremma, pointing out 

that charcoal production was a limit for the development of agriculture and other 

types of use of forests (Arrigoni et al., 1985). The first furnace fueled with lignite was 

built in Italy in 1878 for the industry of Piombino (a major metallurgical centre on the 

coast of Tuscany; Iacoviello and Cavallini, 2013), and since that year most of the 

other Italian industries started to use this fossil fuel, then replaced by carbon coke.  

However, production of wood charcoal was such a deeply rooted practice in central 

Italy that it could not quickly disappear. In fact, it remained an important economic 

activity for many people involved in the trade of this material, which continued to be 

the major source of energy for heating and cooking, as well as for the production of 

high quality steel in small blast furnaces until the years 1950 and 1960 (S.I.L.T.E.M., 

1946). 

1.3 The production of wood charcoal 

The charcoaling process can be divided in three phases: drying phase (removal of 

moisture from the timber charge), pyrolysis phase (thermal decomposition of the 

wood to form charcoal and various waste products) and cooling phase. All three 

phases can occur at the same time throughout the charcoaling process, although the 

first phase happens primarily during the early stages of the process whilst the other 

two phases occur during the later stages (Powell, 2008). The charcoaling process was 

realized by different cultures through centuries with different scopes, but with 

similar methodology based on the building of wood kilns (Photos 1-2; pg. 153). 

Others methods have been developed but charcoal produced in kilns was always the 

most appreciated, because it maintains the 95% of fixed carbon (vs the 75% of other 

techniques), with a calorific power of 6500-7500 Kcal, a very low percentage of ash 

(less than 3%) and 6-7% of humidity (Giorgerini, 2009). 

Kilns were built on small, elliptical or circular terraces with flat surface, previously 

prepared in the forest (Deforce et al., 2012; Ludemann, 2003; Montanari et al., 2000; 

Powell, 2008). Different terms are used in the English literature for these sites, such 

as charcoal kiln sites, kiln platforms, charcoal hearths and charcoal-burning sites; in 

this study the two first terms are adopted indifferently.  

In central Italy, kiln platforms were usually prepared along footpaths on hill and 

mountain slopes (Cantiani, 1955). As this was an exhausting and time-consuming 

practice, charcoal workers mostly used the platforms left from the former cycles of 

production in a given area; hence the same were used several times, often for 

centuries (Giorgerini, 2009). 
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A short description of the traditional process of charcoal kiln building in Tuscany 

(Giorgerini, 2009), with its Italian terminology, is given below; this method is basically 

the same of that adopted in other parts of Europe and other continents.  

 

 

Figure 1. Building process of a wood kiln, showing (from above) the 

chimney (A), the kiln piled wood (B), the stacked wood (C), the hoe 

and the shovel (D) the chestnut basket (E), the rake (F) and the ladder 

(G) (pictures of Sandra Biavati, in Landi et al., 1988). 
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First, the charcoal worker made a chimney in the middle of the platform (“rocchina” 

fig. 1a) using small pieces of timber (ca. 10 cm long). The wood was then piled up 

around this chimney, giving to the whole construction the shape of a cone with a 

rounded tip and a 10/15 cm-wide hole in the middle. Big clumps collected from the 

surrounding soil (“pellicce” or “iove”) were positioned on the timber, then the pile 

was covered with a mixture of plant material (leaves, twigs, bark pieces etc.) and 

organic soil (fig. 1b). The kiln was lighted by entering pieces of ember from the 

chimney; then some holes were opened first on the top (“fumi”) and then in the 

lower part (“panchini”). On average, the cooking process was conducted at ca. 400 °C 

(Powell, 2008) and completed in four days. The charred wood was finally collected 

with special rakes (fig. 1c) (Giorgerini, 2009). Other tools used by charcoal makers 

were a lantern, two types of baskets, one for collecting (“vaglia”) and one for carrying 

the charcoal, a ladder, a hoe, a shovel, a pruning hook and a lever scale (fig. 1 a,b,c; 

Landi et al., 1988). 

The charcoal was produced in coppice stands and could be obtained from different 

sizes and pieces of timber: split wood (“carbone da spacco”), large branch pieces 

(“carbonella”), logs (“carbone da ciocchi”) and small branch pieces (“carbone in 

ramaglia”). According to the old tradition, good quality charcoal should be black but 

not too dyeing, with a good sound at the touch, not crumbly and producing a small 

flame. The oak wood charcoal (“carbone forte”) weighed 200-250 kg per m3 while 

that made from other species with softer wood (“carbone dolce”) weighed 130-180 

kg (Giorgerini, 2009). 

1.4 A glance on charcoal kiln sites in the forests of Europe 
and North America 

Production of wood charcoal was a common practice not only in Europe, but also in 

the temperate forest ecosystems of North America. Hence, charcoal kiln sites are 

found in distant parts of the world, where they have been studied from different 

points of view and for various purposes. 

Most of the studies conducted in Europe were focused on the sites of the central and 

northern countries. In the conifer-dominated woodlands of Norway, kiln sites were 

investigated using the Airborne Laser Scanning method and were found to occur with 

an average density of c. 1.2 platforms/ha. Kiln sites were prepared to produce the 

wood charcoal that was needed for iron production at the ironworks established in 

the year 1624. These were operational more or less continuously for two centuries, 

and were closed in the year 1822. Large amounts of charcoal were needed in the 

blast furnaces in order to achieve sufficiently high temperatures to get iron from ore 
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(Risbøl et al., 2013). An intensive production of wood charcoal for iron metallurgy 

also existed in Wallonia (Southern Belgium) especially between the years 1750 and 

1830 (Hardy and Dufey, 2015a). In a recent study in the woodlands of this region, 

Hardy and Dufey (2015b) recorded from one to three kiln sites per hectare, with a 

circular shape and a mean diameter of 10 m. Here, the more or less regular 

distribution of the platforms and the thickness of the soil layer rich in charcoal 

remains (ca. 35 cm) showed that the activity was continuous and widespread for a 

long period. The legacy of charcoal production in the Flemish part of Belgium was 

different. Results of a study in the Zoersel site showed a less widespread and more 

clustered distribution of the kiln sites, indicating that the practice was in use only 

during specific time intervals and not continuous. In fact, the activity was not part of 

the regular cycle of exploitation of the forest, but was related to exceptional periods 

of oversupply of wood that originated from the clearing of the coppice stands at the 

time of its transformation into grassland (Deforce et al., 2012).  

In Germany, the production of wood charcoal in kiln sites was deeply rooted both in 

the northern and southern parts of the country. In the lowlands of Brandenburg, for 

example, more than 5.000 charcoal kilns were identified in areas formerly covered by 

Pinus sylvestris-dominated woodlands (Raab et al., 2013). Despite such a high 

number, these authors suggested that charcoal production sites are probably 

underestimated in the modern, mostly agricultural landscapes of the north German 

lowlands. In this region, the high density and the large size of the kiln platforms 

suggested a large-scale charcoal production for the supply of energy to the nearby 

ironworks. Based on the age of the charcoal remains found here, it is known that the 

production was active mainly between the 17th and the 19th century, corresponding 

with the main periods of charcoal burning (Raab et. al., 2013).  

In the Baden-Württemberg region, a secular activity of charcoal burning shaped the 

landscape of the Black Forest. In this area, charcoal kiln sites occur with a 

considerable density, reaching in some cases more than 150 platforms per square 

kilometre (Ludemann, 2010). This shows a pronounced dependence of the past 

economy of south Germany on the wood fuel produced in the forest. A vivid charcoal 

production based on the local supply of wood continued in late-settled mountainous 

areas during the Middle Age, which continued until the 18th or the 19th century 

(Ludemann, 2010). 

In southern Europe, the only two studies on this topic were carried out in mountain 

areas: the Pyrenees and the Alps. In the Vallferrera site (Axial Pyrenees, north-

eastern Spain) a large number of kiln platforms (942 in an area of 925 ha) were 

discovered in mixed Pinus sylvestris-Betula pendula woodlands. This region has been 

https://it.wikipedia.org/wiki/Baden-W%C3%BCrttemberg
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affected by the metal mining and smelting industry for at least 2.000 years, with 

maximum intensities in the eighteenth and nineteenth centuries, followed by 

abandonment of the activity. Dendrochronology of the region’s woodlands and 

historical records indicate that exploitation of wood charcoal for metalworking 

affected the past vegetation in the area and impeded the development of mature 

forest (Pèlachs et al., 2009). 

Based on the study of Criscuoli et al. (2014), the Val di Pejo site in the Stelvio National 

Park (eastern Italian Alps) was subject to intensive exploitation for charcoal 

production since the 16th century. Charcoal was produced from larch stands and then 

used in the local iron industry. Production ceased only with the destruction of the 

major iron foundry in the valley (1858). In larch forests, charcoal production was 

based on extensive clear-cuts, wood chopping and downhill transportation to flat kiln 

sites with elliptical shape. The relatively large size of the sites suggested that more 

than one pile of wood was carbonized at a given time (Criscuoli et al., 2014). 

In north America, mid-Atlantic forests dominated by oak (Quercus), hickory (Carya), 

American chestnut (Castanea dentata) and pine (Pinus sp.) were broadly exploited 

for charcoal production at the time of the European settlements (Mikan and Abrams, 

1995). Throughout the 17th and 18th centuries, the request of charcoal for the iron 

furnaces was very high. The production of this material was continued also in later 

periods, although other fuels became in use especially after the civil war (Mikan and 

Abrams, 1995). Broad-leaf coppice forests of Canada were cleared at intervals of 20-

30 years and kilns were prepared on elliptical platforms of ca. 150 m2 (Mikan and 

Abrams, 1995). Kiln sites were considered valuable installations and were used 

repeatedly until the end of the charcoal iron era (Mikan and Abrams, 1995).  

1.5 The hypothesis of kiln sites as ecological “islands”  

As a legacy of the widespread and millennial practice described above, an 

indeterminable number of abandoned kiln sites remain nowadays in many European 

forests (Ludemann, 2011). According to some authors (Blondel, 2006; Nocentini and 

Coll, 2013), these sites are particularly numerous in the woodlands of the 

Mediterranean region, though no studies have attempted to analyse their actual 

density and/or distribution patterns in this area. Common experience indicates that 

they are still easily recognizable based on a combination of characteristics such as the 

flat, regular terrain (Cantiani, 1955; Ludemann et al., 2004; Montanari et al., 2000), 

the absence of superficial stones and rockiness, the alterations in colour and texture 

of the topsoil caused by the formation of thick layers (> 20 cm) rich in organic matter 

and wood charcoal remains (Criscuoli et al., 2014). Common knowledge suggests also 
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that the forest canopy is often sparser compared with the adjacent stands, at least in 

some forest types of central Italy. 

Although the wood charcoal production was ceased at least sixty years ago, the 

presence in the soil of a distinct “charcoal layer” is not surprising: it is well 

documented that the condensed aromatic structure of this material allows fragments 

to persist in soils even over millennial time-scales (Cheng et al., 2008; Wardle et al., 

2008; Zimmerman, 2010). Anthropogenic deposits of charcoal dating back to the 

Neolithic period have been documented in Germany and Italy (Cremaschi et al., 

2006; Ludemann, 2010; Schmid et al., 2002) and very old samples (> 8000 years BP) 

originating from wildfires have been found almost unaltered in forest soils in the 

Alpine region (Valese et al., 2014), north-western France (Marguerie and Hunot, 

2007), Catalonia (Castellnou and Miralles, 2009) and other areas (Pyne, 1997). Of 

particular interest is the case of the so-called “Terra Preta de Indio” in Brazil, a relict 

Anthrosols 2500 years old characterized by a high content of charcoal (Lehmann et 

al., 2004). In this soil type the input of carbonized organic matter was probably due 

to the production of charcoal in hearths realized by pre-European Amazonians, 

whereas only low amounts of charcoal were added to soils as a result of forest fires 

and slash-and-burn techniques (Glaser et al., 2002). It is noteworthy that Terra Preta 

soils have persisted over many centuries despite the prevailing humid tropical 

conditions and the consequently rapid mineralization rates (Lehmann et al., 2003; 

Scott and Damblon, 2010). 

The long-term stability of charred remains has important implications and 

applications, such as those in the field of environmental history. Several 

anthracological studies have been performed to reconstruct the past tree species 

composition of forest ecosystems through the identification of the woody taxa used 

to produce charcoal. Such application highlights the usefulness of the old kiln sites in 

monitoring the vegetation changes through time and the impact of past human 

activities on present-day ecosystems (Ludemann, 2003; Ludemann et al., 2004; 

Montanari et al., 2000; Nelle, 2003; Samojlik et al., 2013). 

The stability of wood charcoal also causes long term modifications of the soil 

properties, such as nutrient availability, water holding capacity and other chemical 

and physical characteristics. Such modifications induced by former human activities 

have been demonstrated in the case of Terra Preta soils (Glaser et al., 2002), and for 

the charcoal sites in Canada (Mikan and Abrams, 1995), central Europe (Wittig et al., 

1999) and northern Italy (Criscuoli et al., 2014).  

In recent times, the short-term effects of charcoal addition to the soil have been 

widely studied by means of the so-called “biochar” experiments in agricultural 
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systems, especially on crop yields. These studies showed that the practice causes 

various changes in the structural and functional properties of the soil, which in turn, 

are likely to have positive effects on seed germination, seedlings establishment and 

plant growth (DeLuca, 2009; Nelissen et al., 2014). According to Thomas & Gale 

(2015), biochar is even a promising practice to promote forest restoration thanks to 

the increased growth and biomass shown by various tree species under experimental 

conditions. Because of these positive effects, charcoal addition in agricultural 

systems is increasingly considered an effective way to achieve long-term carbon 

sequestration in the soil, thus mitigating the impact of climate change (Nelissen et 

al., 2015; Vaccari et al., 2011). 

In natural forest ecosystems, however, mechanisms inhibiting forest recolonization in 

abandoned kiln sites emerged from field studies conducted in North America (Mikan 

and Abrams, 1996, 1995; Young et al., 1996). Mikan and Abrams (1996) showed a 

negative effect of kiln sites on the tree regeneration, probably related to persistent 

anomalies in nutrient availability still occurring after centuries from their 

abandonment. 

Such contrasting findings show that the response of natural vegetation to 

accumulation of charcoal in the soil, and more in general to the conditions of the old 

kiln sites, is still poorly known. Hence, more studies, both observational and 

experimental, are needed to understand the long-term effects of these altered soils 

on the establishment and growth of forest trees and, more in general, woodland 

communities. A special attention should be paid to the lower forest layers and 

especially to the understorey vegetation, since herbaceous plants are often 

characterized by a high responsiveness to local site conditions and environmental 

changes (Gilliam, 2007), and because of the key contribution of this layer to the 

overall biodiversity of the forest. In most temperate woodlands, the understorey 

vegetation contains indeed the greatest part of plant diversity (Gilliam, 2007), so its 

conservation is definitely a priority.  

In Europe, only one study was conducted on this topic, which consisted in a 

phytosociological investigation of former kiln sites in beech stands of Germany 

(Wittig et al., 1999). In this investigation, the authors demonstrated an effect of kiln 

sites on the composition of the understorey vegetation, which was significantly 

different from that in the adjacent forest environment from also an ecological point 

view.  

In the above study, effect on vegetation was most probably associated with changes 

in soil conditions. Observations in the sites of central Italy suggest that variations in 

light availability can also contribute to create different environmental conditions at a 
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very local scale. As described above, canopy cover over the old kiln sites can be 

sparser since trees and shrubs are usually absent within the kiln platform perimeter. 

Variations in the light regime that can result from this small gap, if present, could, in 

turn, further influence the understorey (Axmanová et al., 2012; Härdtle et al., 2003; 

Hofmeister et al., 2009), also through complex interactions with the effects of soil. 

For these reasons, the hypothesis can be formulated that the abandoned kiln sites 

could represent small ecological “islands” sensu Stebbins (1976), i.e. areas 

characterized by a combination of environmental factors abruptly different from the 

surroundings, and consequently with distinct biotic communities. In the present case, 

it can be predicted that trees, shrubs and herbaceous vegetation are subject to rapid 

variations in composition, diversity productivity regeneration dynamics and other 

ecosystem processes, when compared with the adjacent forest environment. 

Such a hypothesis has never been tested with ad-hoc observational or experimental 

investigations, at least for the woodlands in the Mediterranean area. Moreover, 

unlike for the rest of Europe, information about the number of these potential 

ecological “islands" per unit surface are not currently available, and no exact data 

exist about their morphological characteristics and patterns of distribution. Hence, 

the magnitude of the possible ecological effects on the soil-vegetation system at the 

forest landscape level cannot be estimated. 
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1.6 Aims 

In the light of what reported above, the present research was developed for the 

following purposes: 

1) Understanding the effects of charcoal kiln sites on forest vegetation in relation 

to ecological factors (soil and light), specifically:  

a. on the diversity of woody species and tree regeneration dynamics;  

b. on the diversity, productivity and composition of the understorey vegetation. 

 

2) Assessing the influence of the charcoal-enriched soil of the old kiln sites on the 

early life stages of major forest trees, especially seed germination, seedling 

growth and mortality. 

 

3) Describing the legacy effect of charcoal production at the forest landscape level 

in central Italy, in terms of density, distribution patterns and morphology of the 

kiln sites.  

 

These topics were investigated in three distinct forest types traditionally used for 

charcoal production in the Mediterranean area (evergreen sclerophylls, 

thermophilous deciduous forests with Quercus sp., beech forests).  
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2.1 Research structure 

Three approaches were adopted for the purposes described above: Exploratory, 

Experimental and Inventory. 

The exploratory approach was adopted for the first topic, i.e. the characteristics of 

the vegetation and soil found on charcoal kiln sites compared to control sites. In this 

part of the study two papers were prepared:  

- Paper I Former charcoal kiln sites in Mediterranean forest areas: a hostile 

microhabitat for the recolonization by woody species 

- Paper II Former charcoal kiln sites as microhabitats affecting understorey 

vegetation in Mediterranean forests. 

The experimental approach was used in parallel with the previous one to tackle our 

second task. The results were reported in (provisional title):  

- Paper III: Effects of charcoal kiln soil on germination, growth and mortality of 

forest trees: results of a two-years common garden experiment. 

Finally, the legacy of charcoal production at the forest landscape level was analysed 

using the inventory approach. This resulted in:  

- Paper IV: The old charcoal kiln sites in Mediterranean forest landscapes of 

Central Italy. 

2.2 Study area 

The research was conducted in Tuscany (central Italy; fig. 2). This region is 

characterized by three major climate types following an altitudinal gradient from sea 

level to over 1.400 m: 1) meso-Mediterranean along the Tyrrhenian coast, where 

woodlands are mainly formed by evergreen sclerophylls and especially Quercus ilex; 

2) supra-Mediterranean on the hill areas in the central part of the region, largely 

covered by thermophilous mixed forests dominated by various species of deciduous 

oaks (mainly Quercus cerris, Q. petraea, Q. pubescens); 3) montane-suboceanic on 

the Apennine range and Mount Amiata covered by beech (Fagus sylvatica). Mean 

annual rainfall and temperature in the area vary from 650 mm and 15 °C respectively 

along the coast, to 1450 mm and 10.9 °C respectively on the Apennines and Mount 

Amiata (period 1961-1990, source: Servizio Meteorologico dell’Aeronautica Militare, 

http://www.meteoam.it/). The study area is characterized by a variety of 

geolithological formations and soil conditions, but cambisols are the prevalent type 

according to the Soil Atlas of Europe (European Commission, 

www.eusoils.jrc.ec.europa.eu). 

http://www.meteoam.it/
http://www.eusoils.jrc.ec.europa.eu/
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Charcoal production on these areas lasted for centuries and was abandoned at least 

60 years ago. 

 

 

Figure 2 Geographic location of the selected forest areas and the investigated charcoal 
kiln sites in Tuscany (central Italy). 
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2.2 Exploratory work (synthesis of Papers I & II): 

2.2.1 Data collection 

An extensive preliminary search and description of abandoned charcoal kiln sites was 

conducted in the representative areas of three forest types. From a pool of 154 

charcoal kiln sites, 61 were randomly selected among those that were not affected 

by recent anthropogenic or animal disturbance (e.g. photos 5-12; pp. 159-165). 

Sampling was conducted in 18 “sclerophyll” kiln sites, 22 “oak” kiln sites and 21 

“beech” kiln sites (Appendix S1 – Paper II; pp. 146-147; fig. 2). In the centre of each 

site, a 3 m x 3 m quadrat hereafter called “kiln plot” (KP; photo 4, pg. 157) was 

established. In each quadrat, trees were recorded separately for two layers: 

i) In the “established tree regeneration” layer (1.3-4 m) we recorded the number 

of plants for each woody species, either with a single or more stems, number of 

stems per stool, diameter at breast height of each stem (> 0.5 cm), and mean 

height of the stems for each stool.  

ii) In the “understorey layer” (< 1.3 m) all vascular plant species, both woody and 

herbaceous, were identified and assessed for ground cover and maximum 

height. Then the above-ground biomass of all species rooted in a wooden frame 

of 0.5 m x 0.5 m was clipped, dried and weighed. Total cover and biomass were 

used as proxies for understorey productivity. 

Next, soil core samples were collected and analysed for total C, N and pH; light 

intensity was also measured (photo 4; pg. 157). For each of the 61 kiln plots, the 

whole protocol was repeated in a control plot (CP) of the same size, established 

randomly in the stand adjacent to the kiln platform (photo 10; pg. 163). For a random 

subsample of 5 KP per forest type, the density of seedlings of the dominant species 

of Fagaceae (e.g. all oak species and beech) was measured in the understorey. 

2.2.2 Data analyses 

i) Established tree regeneration layer  

The influence of forest type, of the kiln site habitat and of the environmental 

variables (altitude, parent rock, slope aspect) on the woody species richness and on 

the structural variables (number of trees/stools, number of stems per plot, their 

basal area and mean height) was tested using a mixed model approach. 

ii) Understorey  

To evaluate the effect of kiln site habitat on productivity and diversity of the whole 

understorey vegetation at different levels (γ or total, α or plot-level and β or among-
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plots diversity), data were analysed using mixed models. Non-metric 

multidimensional scaling (NMDS) was used to visualize the understorey 

compositional differences among plots, testing differences between KP and CP with 

PERMANOVA. We performed the analysis considering all understorey species and 

woody species separately. Understorey composition was also analysed using the 

index of taxonomic distinctness Δ+ (Clarke and Warwick, 1998) and with an indicator 

species analysis (Dufrene and Legendre, 1997). Finally, the influence of plot type on 

light intensity and soil components were tested using a mixed model approach. The 

comparison between the density of seedlings of dominant tree species in subsamples 

of KP and CP was conducted with a non-parametric Mann-Whitney U test. All 

analyses were performed in R 3.1.2 (R core team, 2014). 

2.2.3 Results 

i) Established tree regeneration layer  

The number of woody species (eight trees and nine shrubs) was considerably lower in 

the kiln plots of all three forest types (fig. 3 – PAPER I, pg. 58 and photos 9-10, pg. 

163). All species in this layer were taller, denser and with a higher basal area in the 

control plots, except for beech forests (fig. 3 – PAPER I; pg. 58).  

ii) Understorey  

Regarding the woody species, significant compositional differences between KP and 

CP were found only in oak forests (fig. 3a). Species richness was always higher in KP 

compared to CP for all three forest types (fig. 3 – PAPER I; pg. 58). Concerning the 

whole understorey community, the effect of charcoal kiln habitat was also positive in 

terms of species richness and Shannon diversity (Appendix S3 – Paper II; pg. 149). 

Floristic dissimilarities between kiln plots were larger than between control plots 

(Appendix S2 – Paper II; pg. 148), and significant compositional differences between 

the two plot types occurred also in this case (fig. 3b). Graminoid species were more 

abundant in kiln plots, and 12 indicator species were found in oak forests (e.g. photo 

15; pg. 171), while Anemone nemorosa resulted an indicator for the control plots 

(photo 16; pg. 171). Cover and total biomass of the understorey were higher on KP, 

although woody biomass was not significantly different (Appendix S2 – Paper II; pg. 

148).  

Looking at soil factors, we found consistently higher values of total C, N, C:N ratio, pH 

in the kiln site habitat. The strongest difference between the two plot types was in 

total C content, which was ca. two times higher in KP; differences in N content and 

pH were less pronounced but still significant. Concerning light, PAR values were 

significantly higher in KP (more than double; Appendix S3 – Paper II; pg. 149). 
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Seedling density and height in the understorey did not significantly differ between 

kiln and control plots (Table 2-PAPER I; pg. 60).  

 

 

Figure 3 Scatterplot from NMDS based on Bray-Curtis dissimilarity index showing significant 

compositional differences in the understorey of kiln and control plots of oak forests; 

considering only woody species (A) and the whole understorey (B). pperm indicates the 

combined significance of the location and dispersion effect, based on PERMANOVA with 999 

permutations; pdisp indicates the significance of the dispersion effect. 
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2.3 Experimental work (synthesis of Paper III)  

2.3.1 Sampling design and data collection 

We selected the most representative tree species of the three forest types 

considered in this research (fig. 4): 1) the holm oak (Quercus ilex-QI) for evergreen 

sclerophyll forests; 2) the turkey oak (Q. cerris-QC) for thermophilous mixed oak 

forests; 3) the beech (Fagus sylvatica-FS) for montane forests. In autumn 2013 we 

collected the seeds of each species in a single locality, which were then sown in pots 

filled with the soil collected from a representative charcoal kiln site in the same 

localities (charcoal soil); the “control” soil was collected from a single spot in the 

adjacent stands. This allowed the set up of the common garden that was placed in 

the open spaces of the Faculty of Forestry located in the western outskirts of Firenze 

(Quaracchi; photos 17-21; pp. 173-181).  

Starting from April 2014 we monitored seed germination, growth (height), 

photosynthetic efficiency and mortality until August 2015, when below-ground and 

above-ground biomass was also determined. The photosynthetic efficiency, 

measured in terms of Chlorophyll a fluorescence (ChlF), was determined on 

subsamples of 20 randomly selected seedlings per species. For biomass 

measurements, 35 seedlings of each species were randomly collected. After 

extraction from the soil, the roots were washed and cut at the stem junction in order 

to separate the above-ground biomass. Each part of each seedling was oven-dried at 

70°C for 48 hours and then weighed. 

 

 

Figure 4 Early growth stages of seedlings of Quercus ilex (A), Q. cerris (B), F. sylvatica (C) 
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2.3.2 Data analyses 

ChlF data were used to calculate the following indices: 

- Fv/Fm =[Fm− F0]/Fm = ϕPo = TR0/ABS = maximum quantum yield of PSII 

primary photochemistry. Fv/Fm expresses the probability that an absorbed 

photon will be trapped by the PSII reaction center; 

- ΨEo, the probability of an electron to reduce the primary quinone acceptor 

and to move into the electron transport chain beyond PSII; 

- ΨRo (1-VI), the efficiency of a trapped electron to move into the electron 

transport chain, from QA− to the PSI end electron acceptors This is related to 

the reduction of PSI end-electron acceptors, such as the reduction of NADP; 

- PIABS the performance indices (PIs) measure the potential energy 

conservation of photons in the intersystem between PSII and PSI; 

- PITOT the potential energy conservation from photons absorbed by PSII to the 

reduction flux of PSI end acceptors.  

For each species all these indices and height values were averaged for each species 

for six periods: spring 2014, summer 2014, autumn 2014, winter 2014-2015, spring 

2015, summer 2015. Normal distribution and homogeneity of variance for these data 

and biomass values were tested using the Lilliefors test and Bartlett's test 

respectively. All differences between the two soil types were tested by the t or the 

Mann Whitney U test, depending on normality. All analyses were performed in R 

3.1.2 (R core team, 2014). 

2.3.3 Results 

Seed germination on charcoal soil was higher for QI, while the two other species 

showed a preference for the control soil, particularly FS (73% on control vs 57% on 

charcoal; Table 1 – PAPER III; pg. 102).  

At the end of summer 2014, mortality of QI and FS seedlings was lower on charcoal, 

while it was higher in QC, albeit differences were small. In August 2015 survival was 

always higher on charcoal; the largest difference was recorded for QI followed by QC 

and FS (Table 1 – PAPER III; pg. 102) 

In general, seedlings grew taller on charcoal soil. Differences were generally 

significant for QC. Instead, no significant differences resulted for FS. Concerning QI, 

differences were significant only in spring 2014 (Appendix 1–Paper III (pg. 150).  
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In terms of biomass, no significant differences were recorded, neither considering 

the total nor the root or the aerial parts separately. However, the root/shoot 

biomass ratio was consistently higher on charcoal soil (fig. 5 – PAPER III; pg. 105). 

The Fv/Fm parameter showed different responses in the three species. In QI it was 

generally higher on charcoal soil, with the only exception of spring 2015. The 

response was opposite for QC, which presented a significant better efficiency on 

control soil, with the exception of spring 2014. The beech presented an intermediate 

behaviour, with large differences between seasons (fig. 6 – PAPER III; pg. 106). Other 

parameters measured directly or calculated (provisionally not discussed here) are 

shown in Appendix 1–Paper III (pg. 150) together with significance levels of the 

differences. 

 

2.4 Inventory work (synthesis of Paper IV): 

2.4.1 Data collection: 

The present part of the research was conducted in the forest types used in the 

exploratory phase: “sclerophyll”, “oak” and “beech” forests. We selected three main 

areas for each forest type where charcoal production activity was continued for 

centuries and abandoned at least 60 years ago, as resulting from local historical 

documents (e.g. Landi et al. 1988) and common knowledge. These nine areas were 

distributed along a latitudinal gradient (fig. 1 – PAPER IV; pg. 116). In order to analyse 

the patterns of distribution and morphology of the kiln sites, two different 

approaches were adopted:  

i) field inventory surveys of kiln sites in three 1-ha quadrats randomly selected 

in the three areas (nine quadrats). For each kiln site the following data were 

recorded: 1) altitude, 2) slope inclination, 3) slope aspect, 3) tree species composition 

of the adjacent stands, 4) conservation status, 5) shape, 6) size, and 7) thickness of 

the charcoal-enriched soil layer.  

ii) visual inspection of images generated by high-resolution Airborne Laser 

Scanning data (ASL), in order to detect kiln sites in the same quadrats used for the 

first approach. This method was applied in two quadrats oak forests (Tatti and Val di 

Farma) and one quadrat in beech forest (Vallombrosa).  
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2.4.2 Data analyses 

i) Field inventory: the data were then analysed determining firstly the number 

of kiln platforms for each quadrat and their average density per forest type. 

Combined with the size data, this allowed to estimate their mean percentage of total 

surface per hectare in the three forest types. The mean thickness of the soil charcoal 

layer was also averaged for each forest type. Next, the effects of forest type and 

slope inclination on density, size and charcoal layer thickness were tested using two 

model structures with different combination of variables in R 3.1.2 (R core team, 

2014). Moreover the frequency of dominant species occurring in the stands next to 

the kiln sites was determined for each forest type. 

ii) ALS data: The slope map and the hillshade map were generated from a 

Digital Elevation Model (DEM). The kilns were detected visually based on the 

interpretation of the maps on the same 1-ha quadrats where field surveys were 

carried out. Then, the charcoal kilns identified in the field were used as ground-truth 

data for evaluating the “overall accuracy” of the ALS-based kiln detection method by 

direct comparison (Congalton, 1991). The TerraScan software was used for the 

preparation of the ALS datasets for the three areas (Terrasolid, 2005) and all GIS 

operations were performed with ArcGIS 10.3. 

2.4.3 Results  

i) Field inventory  

In the total area of 9 ha, we recorded 51 regularly spaced kiln sites, resulting in a 

mean density of 5.5 sites/ha. Density of kiln platforms was lower in oak-dominated 

forests (4.7), but here their overall surface proportion was higher (2.3%) due to their 

larger size. Beech forest included more numerous (6.6) but smaller platforms (fig. 3 – 

PAPER IV; pg. 121). The dominant species surrounding the kiln sites were the holm 

oak (Q. ilex) for sclerophylls, the turkey oak (Q. cerris) in oak forests and the beech 

(Fagus sylvatica) in mountain forests (fig. 4 – PAPER IV; pg. 123). Kiln platforms were 

invariably elliptical, with the shorter and longer diameter ranging from 3.8 m to 9.3 

m, and 4.6 m to 10.8 m, respectively. The charcoal-enriched soil layer was invariably 

continuous (photo 14; pg. 169), and its thickness ranged from a minimum of ca. 10 

cm to a maximum of 46 cm (Table 1 – PAPER IV; pg. 120). Thicker profiles occurred 

on the steep slopes of mostly mountain beech stands.  

ii) ASL data 

Most of the kiln sites recorded with field surveys could be detected with hillshade 

and slope image analysis. On the hillshade maps, the platforms appeared as 
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anomalous spots in the topography, sometimes as small hilly structures some of 

which showing a depressed area in the centre (fig. 5). On slope images, they 

appeared as small, dark spots areas with flat surface, mainly located along the 

altitudinal contour lines. The steeper inclination and the single-layered beech forest 

cover allowed to detect all sites in the Vallombrosa quadrat, while the lower slope 

inclination and the multiple-layered oak forest cover with dense shrub layer 

contributed to the lower accuracy in quadrats of Tatti and Val di Farma.  

 

 

Figure 5 Charcoal kiln sites on the steep slopes of quadrat in Vallombrosa forest. Hillshade image (left) 

and slope images (right). Arrows indicate two of the platforms that are visible as dark, ovoidal spots
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4.1 General discussion 

The present research allows a better understanding of the legacy effects of charcoal 

production activity in the woodlands of a Mediterranean region.  

A first striking consequence is the high density of abandoned kiln platforms, 

confirming that this activity has played a significant role in shaping the present-day 

aspect of different forest types, as reported by Nocentini and Coll (2013). In the areas 

examined, the density of kiln sites per unit surface was two- five times higher than in 

other European forest landscapes (Deforce et al., 2012; Hardy and Dufey, 2015a; 

Ludemann, 2010; Pèlachs et al., 2009; Raab et al., 2013; Risbøl et al., 2013) probably 

due to the longer time of intensive forest exploitation for wood charcoal production 

and the circumstance that this was continued until more recent times mainly due to 

the lack of other fuels. Practical issues such as the convenience of avoiding the 

transport of large amounts of firewood out of coppice woodlands often on steep and 

rough terrains may have also contributed to this intense transformation activity in 

the forest (Cantiani, 1955; Landi et al., 1988). 

Differences were also in terms of size. Kiln platforms in our study region were 

generally smaller than in the rest of Europe or in North American forests (Deforce et 

al., 2012; Ludemann, 2010; Mikan and Abrams, 1995; Raab et al., 2015; Risbøl et al., 

2013), that may be associated, at least in part, with the different purposes for which 

these were prepared. In our region, the wood fuel was not only used for iron 

metallurgy but also for to the production of energy for home heating and cooking, 

especially in the rural areas, as well for many other minor uses (S.I.L.T.E.M., 1946). 

Hence, there was a more frequent and continuous request, but usually of smaller 

amounts. 

Some differences in the density and size of the kiln sites were observed among the 

three forest types, probably associated with the geomorphology of the relative areas 

and the compositional and structural characters of the stands. In the beech forests, 

the platforms were significantly smaller and denser than in the oak forests. Most 

likely, such effects are in part due to slope inclination: the beech is usually found on 

steep mountain slopes, where it was important to reduce the distance of transport 

between the places where the stools were cut and the places where these were used 

to build the kilns. This was achieved by preparing numerous but smaller terraces 

mainly along the altitude contour lines. Because of their larger size, kiln platforms in 

the oak forests occupied a higher proportion of surface in spite of their lower density. 

Coppice stands dominated by oaks or other trees of thermophilous deciduous forests 

have a higher productivity than either beech or sclerophyll stands (Istituto 

Sperimentale per l’Assestamento Forestale e per l'Alpicoltura, 1970), which may 
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explain the need for a wider surface to transform larger amounts of wood into 

charcoal.  

On the other hand, our data also showed variations in the size and density of the kiln 

sites among areas of the same forest type. This is a likely consequence of cultural 

aspects, since local traditions and uses may have led to the establishment of slightly 

different uses in similar forest environments and without specific practical reasons. 

Considering the species which were used for producing charcoal we found no 

evidence that local people used to make a selection, probably for their similarly high 

calorific power (Hellrigl, 2006); this is in line with results from anthracological studies 

in central and southern Europe providing no evidence for the selection for certain 

taxa (Ludemann, 2003, 2010; Nelle et al., 2010; Pèlachs et al., 2009). 

In all sites examined, the “charcoal layer” in the soil profile was single, continuous 

and rich in charcoal fragments of variable size, in line with findings in the Alpine larch 

forests of Val di Pejo (Criscuoli et al., 2014). The considerable average thickness of 

this layer (23 cm) suggests that the same platforms were used repeatedly at given 

time intervals, in correspondence with the utilizations at the end of each coppice 

cycle. Without information about the age of the remains, the time of utilization of 

the same platform cannot be exactly determined. However, local documents and 

popular knowledge show that production of charcoal was deeply rooted in the local 

communities and at least centuries old. In south Tuscany, including the Marsiliana 

forest, it probably started as early as the Etruscan period, which means around the 

6th century BC (Arrigoni et al., 1985; Mariotti Lippi et al., 2002).  

Soil analysis showed that the total content of Carbon in the first 15 cm of the layer 

was on average nearly twice than in control soils. Similar evidence was obtained in 

sites of the Appalachian Mountains (Young et al., 1996), while Criscuoli et al. (2014) 

measured an even larger difference in a charcoal hearth of the eastern Alps (26.2 

kg/m2 vs. 1 kg/m2 of total C). In the latter study, as in the present one, this was 

probably related to the abundance of charcoal fragments still present in the soil 

despite their abandonment since a time interval of 50-100 years. The condensed 

aromatic structure of charcoal allows these fragments to persist over millennial time-

scales, since the rates of incorporation into the soil matrix are very slow (Cheng et al., 

2008; Lehmann and Joseph, 2009). Given such long-term stability, the considerable 

thickness of charcoal layer, and the proportion of the forest surface occupied by the 

kilns platforms (up to 2.3%), future estimations of the carbon stock capacity of the 

woodlands in our region should take into account the potentially significant 

contribution of these sites. In our study, the higher C/N ratio resulting from the 

increase in C content was not associated with soil acidification or nutrient shortage, 
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which are both potentially negative for plant growth. As found in previous studies 

(Criscuoli et al., 2014; Mikan and Abrams, 1996, 1995; Wittig et al., 1999; Young et 

al., 1996), the soil was in fact generally characterized by a higher pH and N content 

than in the adjacent stands, despite the wide differences in climate, forest type and 

parent rock material among the sites investigated. 

An important ecological factor also affected by the kiln sites was light availability. 

Despite differences between the forest types, PAR was in general higher on these 

sites as a result of the sparser canopy cover. Effect was stronger in the oak forests, in 

line with findings in deciduous forests of Canada where charcoal platforms were 

described as “well illuminated” (Mikan and Abrams, 1995). The gap effect was 

instead less evident in the holm-oak and beech forests, because of the stronger 

shading power of these trees and their tendency to expand the crown over the kiln 

site for a better interception of light. 

Variations in important factors such as soil and light determined consequent changes 

on vegetation, both in the understorey and upper forest layers. In all three examined 

ecosystems, the understorey community on the kiln platforms was considerably 

different from the adjacent forest environment, in terms of diversity, composition 

and productivity. Species richness was higher at the whole “kiln site” habitat level (γ-

diversity) as well as at the plot-scale level (α-diversity). Decreased soil acidity, 

increased nutrient content and higher light availability are in fact favourable factors 

supporting higher diversity in the herb-layer of most European forests (Axmanová et 

al., 2012; Chytry et al., 2003; Ewald, 2008; Verstraeten et al., 2013). The different 

environmental conditions also affected the floristic composition of this layer, which 

included also some transient heliophilic or intermediate shade-tolerant species. 

These rapidly originate from seed banks or seed rain as in the case of forest gaps of 

sufficient size (Decocq et al., 2004; Schumann et al., 2003) and can increase the 

richness and heterogeneity of the understorey. Worth of note is the positive effect of 

kiln sites on the species richness of woody plants (as many as 45 taxa), including trees 

and shrubs of different auto-ecology and functional traits. These were mostly present 

as 1-3 years old seedlings, while older individuals were usually lacking.  

Looking at the compositional aspect, it is relevant that differences among the kiln 

sites (β-diversity) were distinctly larger than those among the control sites. Higher 

species turn-over is probably also due to various stochastic factors leading to the 

inclusion of infrequent and non-specialist forest species, similarly to the case of 

edges in fragmented forest landscapes (Harper et al., 2005). A significant 

compositional shift also occurred for the woody species in the oak forest, where the 

gap effect was more pronounced than in the two other forest types. Small gaps have 
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positive effects on tree regeneration (Beckage et al., 2015; Poulson and Platt, 1989; 

Yamamoto, 2000), and is well documented that these can provide recruitment 

opportunities for seedlings of various tree species, with positive effects on the overall 

forest diversity (e.g. Busing and White, 1997; Platt and Strong, 1989). Our findings 

suggest therefore that kiln sites provide favourable conditions for the germination of 

seeds and the early establishment of woody species, similarly to the herbaceous 

plants. 

Considering now the taxonomic distinctness of the whole understorey community, 

this was only slightly negatively decreased compared with control sites, suggesting 

that charcoal accumulation in the soil does not have deleterious effects on the 

taxonomic evenness of the floristic assemblage. This appears remarkable since it is 

well documented that anthropogenic disturbance and different types of pollution can 

drastically reduce the taxonomic distinctness of various types of biotic communities 

(Clarke and Warwick, 1998; Stark et al., 2014). The hypothesis of kiln sites as 

“microhabitat” was also supported by the numerous indicator species that could be 

identified (12), including herbs, graminoids, shrubs and trees. The widely variable 

ecological characteristics of these species (e.g. light-demanding or shade-tolerant 

taxa with high nutrient requirements) suggest that their coexistence is better 

explained by the interaction of light and soil factors, rather than as a simple “gap” 

effect. This is in line with evidence from charcoal sites in the beech forests of south 

Germany (Wittig et al., 1999), where the composition of the understorey community 

was different mainly due to soil factors, while light was not considered as a driving 

force for the observed floristic and ecological shifts.   

Looking at productivity, it is noteworthy that values of ground cover and total 

biomass were consistently higher on the kiln sites. Increased light availability is a 

major driver for this enhanced productivity, which can in turn account for the higher 

diversity of the herb-layer, as documented in in central European forests (Axmanová 

et al., 2012; Chytry et al., 2003). At the same time, these results also show that 

charcoal accumulation or other soil factors do not have detrimental effects on the 

growth of the understory vegetation, supporting evidence from the several “biochar” 

studies which indicated an enhanced productivity in crop yields grown on soils 

amended with charcoal, even in high amounts (Sohi et al., 2010; Vaccari et al., 2011). 

On the other hand, other factors such as the zero slope inclination could be 

considered to explain the higher understorey biomass on kiln platforms. In fact, the 

flat ground morphology of these terraces is likely to favour the local concentration of 

water and nutrients especially after rainy events on hill or mountain slopes. While 

this is a plausible assumption, however, only a few studies have analysed the effect 
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of slope inclination on the herb-layer of temperate forests, and these provided no 

evidence for such a positive effect on biomass (e.g. Axmanová et al., 2012; Siccama 

et al., 1970). 

Additional evidence on the effects of kiln sites on the forest vegetation comes from 

the observation of the “established regeneration” layer of woody plants (1.3-4 m). 

Here, both γ-diversity and plot-level diversity in terms of species richness was 

significantly lower on the kiln sites in the oak and sclerophyll forests. Such a negative 

effect also emerged when considering the basic structural variables in the two latter 

forest types. Here, the number of stools and stems, the basal area and the mean 

height of the woody plants were consistently lower than in the adjacent stands. 

Remarkably, a similar detrimental influence on both species richness and structural 

variables (especially basal area) of the woody component was found in the charcoal 

platforms of south-eastern Pennsylvania (Mikan and Abrams 1995) and the 

Appalachian mountains (Young et al. 1996). Hence, available data are consistent in 

showing that the growth and development of the initially numerous trees is then 

negatively affected by some persistent factors of biotic or abiotic nature that prevent 

their access and establishment into the higher layers. These factors are ultimately 

responsible for the substantial lack of forest recolonization in the abandoned kiln 

sites, but their identification is not straightforward. 

Based on results above, neither light nor soil conditions analysed in this study can 

account for this negative effect. In fact, both types of factors appear generally 

favourable for plant growth, and doubtless light availability. Most of the soil 

characteristics are also apparently favourable, such as those reported by Mikan and 

Abrams (1996) in kiln sites after 110 years from their abandonment. Factors such as 

higher pH, cation exchange capacity, base saturation and nutrient contents cannot 

certainly explain the much delayed forest dynamics observed in these sites. 

Accumulation of charcoal itself is not likely a negative factor also in the light of 

biochar studies, which demonstrated the positive consequences of charcoal-enriched 

soils on plant productivity (DeLuca, 2009; Lehmann and Joseph, 2009; Nelissen et al., 

2012; Vaccari et al., 2011). Increase of pH, water holding capacity and nutrient 

content in charcoal-amended soil are known to support plant growth, and this led 

some authors to even suggest biochar as a promising practice to promote forest 

restoration (Thomas and Gale, 2015). Hence, some other factor should be searched 

to explain the impeded forest dynamics of the kiln sites. Among these, Mikan and 

Abram (1996) suggested the higher electrical conductivity of the charcoal hearth soil, 

since this is potentially harmful for many plants and especially seedlings. According to 

these authors, moreover, the higher content of exchangeable Ca, Mg and K can lower 

the osmotic potential of the soil solution which may cause physiological drought. In 



PhD thesis – Elisa Carrari 

- 34 - 

the study by Young et al. (1996) in the Appalachian Mountains, it was the lower P 

content in the soil of charcoal kiln sites which could negatively affect vegetation. 

Besides the above chemical and physical factors, the biotic components of the soil 

environment should also be considered. In fact, the repeated combustions and/or 

charcoal accumulation may have caused deleterious effects on the microbiological 

communities. For example, Warnock et al. (2007) showed the impact of biochar 

addition on arbuscular mycorrhizal fungi, while Wallstedt et al. (2002) reported a 

decrease in both bio-available organic carbon and nitrogen in their ectomycorrhizal 

system. Also, Gaur and Adholeya (2000) found that the biochar media limited the 

amount of available P taken up by host plants, indicating that charcoal may in some 

cases reduce the formation of mycorrhiza by decreasing nutrient availability or 

creating unfavourable nutrient ratios in soils (Wallstedt et al., 2002).  

Soil of charcoal kiln sites also share similarities with forest soils affected by fire, which 

causes strong heating and sterilization (Mikan and Abrams 1996). Indeed, forest fires 

negatively affect the diversity and richness of fungi (Longo et al., 2014), and several 

studies showed a strong impact on ectomycorrhizal formation in conifer forests (e.g. 

Dahlberg, 2002; Grogan et al., 2000; Torres and Honrubia, 1997). The same effects 

were found for arbuscular mycorrhizal fungi (Korb et al., 2004) and microbial 

communities after slash pile burning in forests (Jiménez Esquilín et al., 2007).  

Another common “sterilization” effect of fire of is the death of the buried seeds, the 

incoming seeds and the remaining vegetative structures capable of resprouting. 

According to Mikan and Abrams (1995) this may be one of the reasons for the lack of 

formation of a new stand, which can only originate only from newly deposited seeds. 

Summing up, however, the reasons for the strongly delayed forest recolonization on 

the old charcoal kiln sites are still poorly understood and require further 

investigation.  

We tried to give a contribution to this issue by means of the common garden 

experiment, whose results are still under analysis. Twenty months of regular 

observations highlighted different responses in three species with different 

ecological and functional traits grown on “natural” kiln site soil, Quercus ilex (QI), Q. 

cerris (QC) and Fagus sylvatica (FS). Such different responses were in terms of seed 

germination rate, growth and biomass accumulation and mortality.  

Germination responses were not uniform in the three species: while no clear 

differences were found in QI and QC, FS clearly preferred the control soil, where seed 

germination was c. 17% higher than in the kiln site soil. This result was in line with 

evidence from the field, where beech seedlings in the understorey had a significant 

lower frequency on the kiln platforms than in the adjacent forest. On the contrary, 

the seedlings of the two oaks were more frequent in the kiln sites, consistently with 
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the lack of a negative effect of charcoal soil on the seed germination of these species. 

Concerning QI, our results are in line with evidence from a recent experimental study 

(Reyes et al., 2015), which evidenced the insensitivity of this species to soils added 

with ash and black carbon, such as those resulting after wildfires. Looking at 

mortality, the proportion of seedlings died in the second year of the experiment was 

generally higher than in the first year, probably due to the stronger and longer 

drought of summer 2015 (data from Lamma Toscana, 

http://www.lamma.rete.toscana.it). The drought stress of the second year is 

probably associated with the larger differences of mortality rate on the two soil 

types, which surprisingly results in a positive effect of charcoal soil. These results 

seem to support evidence from observations on the Amazonian Anthrosol (Lehmann 

et al., 2003) and biochar experiments, where it was found that charcoal addition to 

the soil increases water retention capacity and structural stability (Baronti et al., 

2010; Glaser et al., 2002; Yanai et al., 2007). The possibly positive effects of charcoal 

on the survival of seedlings of forest trees observed in this study should be further 

tested in different conditions and on a wider a range of species, since it may have 

important implications for the management of forests and tree plantations under the 

predicted climate change. 

Looking at growth rates, it is noteworthy that charcoal soil had again a mostly 

positive effect. In fact, plants of QI and largely QC grown on this soil were usually 

taller than those grown on the control soil. Hence, these data support findings from 

the various biochar studies mentioned above, where plant growth was enhanced on 

soils ameliorated with charcoal. On the other hand, the total biomass data did not 

confirm these growth results. Despite the height differences, weight of the total 

biomass was not significantly higher on the charcoal soil, probably due to a wide 

variation between individual plants. Looking closer at these results, however, the 

root/shoot ratio was consistently higher for the seedlings grown on the charcoal soil, 

indicating a stronger development of the root systems in these plants. This is 

surprisingly in line with results of a similar experiment on two North American oak 

species by Mikan and Abrams (1996), who suggested that such an increased root 

development may be associated with one or more stress factor such as the 

physiological drought. However, this is apparently in contrast with the lower 

mortality observed on charcoal soil indicating that further investigation is needed to 

unravel the possible multiple effects of charcoal soil on water retention capacity and 

consequently on the root growth. 

Chlorophyll a fluorescence transients also highlighted divergent responses in the 

three taxa. Based on the index Fv/Fm, QI was characterized by a greater 

photosynthetic efficiency on the kiln site soil, while QC and FS were mainly negatively 
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influenced. The possible reasons for the reduction in photosynthetic performance in 

the seedlings of the two latter species grown on charcoal soil are various and should 

be further investigated. A decrease of the Fv/Fm index has been observed for species 

grown on substrates with shortage of nutrients (Bussotti et al., 2012), which may 

appear consistent with the hypothesis of decreased availability of P in soils of North 

America sites (Young et al., 1996). Unfortunately, little is known about the effects of 

different levels of single nutrients on photosynthesis, which are likely to vary in 

different species. In our case, the contrasting response of QI vs. QC and FS is likely 

associated with the widely diverging morphological, anatomical and ecophysiological 

traits of these species, as well as to their different sensitivity to soil conditions and 

nutrient levels. This is not surprising in view of their different edaphic requirements: 

while QI shows a broad tolerance in terms of pH and nutrients, QC grow on richer but 

not too alkaline soils and FS generally prefers even deeper substrates with high 

nutrient contents (Pignatti, 2005).  

In the evergreen oak QI, the increased Fv/Fm index on charcoal soil supports findings 

by Reyes (2015), highlighting the more resilient nature of this drought-tolerant 

Mediterranean tree in the face of several types of environmental stress. On the other 

hand, it must be highlighted that this experimental result appears somewhat 

contradictory with evidence from the field discussed above, which showed the lack of 

young trees of QI in the “established regeneration” layer. This leads to the 

assumption that factors other than soil chemistry play a role in the regeneration 

failure of even this stress-tolerant tree. These may include the impact of wild 

herbivores, the lack of formation of mycorrhizae or even the altered “natural” 

structure of the soil in the charcoal sites, all aspects that could not be tested in our 

20-months experiment. 

Overall, the work conducted in this study, combined with evidence from the existing 

literature on the topic, shows that charcoal kiln sites have strong and persisting 

effects on soil and vegetation. Developing methods for the rapid detection of these 

sites at large spatial scales is therefore important to better understand the 

magnitude of these effects at the landscape level, as well as to better exploit their 

potential contribution to more cultural, historical and archaeological issues.  

In this perspective, the use of ALS method seems promising. Our first attempt 

suggests that using only hillshade maps, Digital Elevation Models (DEMs), or Local 

Relief Models as in previous studies in northern and central Europe (Bollandsås et al., 

2012; Deforce et al., 2012; Hesse, 2010; Ludemann, 2011; Risbøl et al., 2013) may not 

be sufficient to identify the kiln platforms on hilly or mountainous areas. Instead, the 

combination of hillshade and slope images can give good results in the variable 

conditions of vegetation and terrain of our region. Accuracy was moderately high for 
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oak forest (c. 75%), and absolute for beech forests (100%), and this possibly for two 

reasons. First, the better quality of Lidar data in terms of observation point density, 

confirming the importance of such parameter for the detection of any kind of 

remains in forested areas (Bollandsås et al., 2012). Second, the fact that beech 

forests in our region usually occur on steep slopes and have a simple, single-layered 

structure mostly without shrub layers, unlike the oak forests. These factors make 

visual identification of the kiln platforms much easier and less prone to errors 

(Amable et al., 2004; Risbøl et al., 2013). To conclude, however, we support Deforce 

et al. (2012) and Ludemann (2011) in suggesting that the ALS method cannot 

completely replace the field traditional work when an absolute precision is needed, 

especially in the landscapes covered by structurally complex oak-dominated 

vegetation.  

 

4.2 Conclusions 

Overall, the present research demonstrated the existence of important legacy effects 

of the former charcoal production activity in woodlands, confirming evidence from 

previous studies in other regions but also contributing new information on aspects 

that were still largely unknown. 

Persistent alterations of soil conditions and light regime are the likely factors for the 

higher diversity and biomass of the understorey vegetation, but at the same time for 

the difficulty of woody plants to recolonize these sites. This contrasting effect on 

plants with different structure and traits results in small, persistent patches often 

with a well developed herbaceous community, but very sparse, or no shrub and 

overstorey layers. The blocked or much delayed forest dynamics in the charcoal kiln 

sites is the major character distinguishing them from “normal” forest gaps, since 

these usually support a more or less rapid succession of vegetation phases that finally 

leads to the formation of the stand. While at least some of the causes for the positive 

effects on the understorey are readily identified, e.g. higher light supply, lower soil 

acidity and larger amount of N, it remains largely obscure what are the factors 

drastically reducing the diversity and density of the woody species once they leave 

the initial “herbaceous phase” and start to grow as shrubs or trees. Although such 

factors are likely to lie in the soil environment and to act through the root system, 

results of the common garden experiment on three major forest trees did not show 

any consistent negative effects that can satisfactorily explain the almost complete 

lack of established regeneration and overstorey observed in the field. These may 

have implications for the “forest biochar” issue, and could stimulate more studies 

aiming at better understanding the long-term effects of charcoal-enriched soil on the 
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development of forest trees. In the charcoal sites, nutrient deficiencies and/or 

negative influence on the biotic components of the soil (e.g. mycorrhizae) connected 

with the repeated wood burnings can have an important role, but stochastic factors 

like destruction or damaging of the woody vegetation by animals and especially wild 

ungulates can also have a strong, direct impact. 

Whatever these factors, circumstantial evidence show that these are a persistent and 

long-lasting consequence of charcoal production continued for centuries, mostly in 

the same sites. Hence, combined evidence from the inventory, exploratory and 

experimental work support the hypothesis that kiln sites form extensive networks of 

ecological “micro-islands” of anthropic origin, which enhance the fine-scale 

heterogeneity of the forest landscape and plant diversity in different forest types.  

Concerning the magnitude of the ecological effects on soil and vegetation, this is 

clearly dependent on the density of these sites and, ultimately, on their total surface. 

Our inventory study showed that density is significantly higher than in other 

European regions and that total surface is not negligible. However, even better 

estimations are possible when rapid and effective, semi-automated methods can be 

used on larger spatial (e.g. landscape) scales, such the ALS technique. From this point 

of view, the contribution of our study was to show that the combination of hillshade 

and slope images is probably the best method to identify the kiln sites on the 

irregular terrains and often complex vegetation structures of our region.  

Using this method and, when necessary, the traditional field-based inventory will 

allow to study the kiln sites and their ecological effects at spatial scales larger than 

those considered in the present investigation, as well as to explore their potential for 

more historical-cultural or archaeological purposes. 

Inventory work would also be useful in a conservation perspective. Indeed, the old 

charcoal sites should deserve some forms of protection in the management policy of 

at least protected areas, since various factors bring a serious threat to their long-

term conservation. These include silvicultural practices such as forest track 

construction, mechanized wood extraction or recreational use by local people or eco-

tourists, all of which may cause severe damage by soil erosion, or even destruction. 

Paying more attention to these neglected sites would contribute to preserve the vivid 

testimony of one of the oldest forms of forest use throughout the world, and the 

potentiality for more environmental and historical studies on still little-known topics. 
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Abstract  

Production of wood charcoal is a traditional form of forest use that existed for 

millennia in the Mediterranean countries and vanished only in the last century. As a 

result, thousands of abandoned charcoal kiln sites are found in present-day 

woodlands. These are characterized by peculiar soil conditions caused by the 

accumulation and long-term persistence of charcoal remains, whose effect on the 

recolonization capacity of woody species is still unknown. We examined 61 sites, 

located in evergreen sclerophyllous communities and deciduous broadleaf forests 

with oaks and beech. At each site, one kiln plot (on charcoal kiln platform) and one 

control plot were established. On both plots, we examined species richness and 

composition of trees and shrubs in the understorey (<1.3 m) and in the “established 

regeneration” layer (> 1.3-4 m). In the latter, main structural parameters such as 

number of stools, number, dbh and mean height of stems were compared. The 

density of seedlings of dominant tree species in the understorey was also measured 

in a subsample of sites per forest type. On the whole, the kiln plot effect was 

stronger in oak and sclerophyll forests than in beech forests. Significant 

compositional differences were found only in the former forest type, while species 

richness was higher in the kiln plots of sclerophyll forests as well. The number of 

woody species in the established regeneration layer was considerably lower in the 

kiln plots of all three forest types. All species in this layer were taller, denser and with 

a higher basal area in control plots, except for beech forests. Seedling density and 

height in the understorey did not significantly differ between kiln and control plots. 

We conclude that charcoal kilns provide a favorable microhabitat for only the first 

regeneration stages of woody species, since their further growth is severely hindered 

by still unknown abiotic and/or biotic factors. Hence, these sites represent small but 

persistent ecological “islands” where forest recolonization is substantially lacking 

despite the long time since their abandonment. 
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Introduction 

Wood charcoal has been the first synthetic material used by man, as shown by 

artworks of ca. 38.000 years ago in caves of southern France (Antal 2003), and the 

main source of energy from the Iron Age to the 19th century (Blondel 2006). Its 

production has continued for millennia, making it one of the oldest forms of 

anthropogenic forest use in most countries of temperate regions.  

Charcoal production, based on the pyrolysis of wood, was carried out in coppice 

woodlands in special kilns covered by a mixture of soil and plant material. For this 

purpose, small areas (35-50 m2) with flat surface and usually semi-circular shape 

were prepared mainly along footpaths through hill and mountain slopes (Ludemann 

2011, WSL 2011). While in most of northern and central Europe this practice was 

abandoned in the 19th century due to the rapidly increasing and widespread use of 

coal (Deforce et al. 2012), in most Mediterranean countries the importance of wood 

charcoal production even increased during the industrial revolution because of the 

lack of other fuel sources. It generally vanished only in the 1950s, though in some 

remote mountain areas it is still in use. As a result, remnants of charcoal kiln sites are 

nowadays widespread in many forest landscapes, with a high density in especially 

coppice stands (Blondel 2006, Nocentini & Coll 2013). They are characterized by clear 

alterations of color and texture of the topsoil material due to the charred woody 

remains resulting from a century-long use (Montanari 2000, WSL 2011). In fact, the 

condensed aromatic structure of wood charcoal allows fragments and particles to 

persist in soils and other sedimentary records over millennial time-scales (Cheng et 

al. 2008, Wardle et al. 2008, Zimmerman 2010), giving an opportunity to reconstruct 

environmental history and past forest fires (Patterson et al. 1987). Anthropogenic 

deposits of charcoal dating back to the Neolithic period have been documented in 

Germany and Italy (Schmid et al. 2002, Cremaschi et al. 2006, Ludemann 2010) and 

very old samples (> 8000 years BP) originating from wildfires have been found almost 

unaltered in forest soils, allowing to use them as a proxy of human fire activity during 

the Holocene in different parts of Europe (e.g. the Alpine region, Valese et al. 2014; 

north-western France, Marguerie & Hunot 2007; Catalonia, Castellnou et al. 2009, 

and other areas, Pyne 1997). 

Several anthracological studies were aimed at reconstructing the former forest tree 

species composition through the identification of the woody taxa used to produce 

the charcoal, highlighting the usefulness of kiln sites in monitoring the vegetation 

changes through time (Montanari et al. 2000, Ludemann 2003, Nelle 2003, 

Ludemann et al. 2004, Samojlik 2013). Concerning the present-day vegetation of 

these sites, however, only a couple of studies have been carried out to date (Wittig et 
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al. 1999, Carrari et al., accepted ms), and none of them focused on the tree 

regeneration and forest recolonization processes. As a result, information about 

these aspects and the effects of the long-term persistence of charcoal in the soil on 

the development of woody species are still unknown. Successful recolonization by 

these species in charcoal platforms is expected because of the apparently favorable 

conditions such as the low degree of rockiness, the thick layer of organic matter, and 

the often higher availability of light (Carrari et al., a, ms. accepted ms ). In addition, 

evidence exists that charcoal addition to the soil (the so-called “biochar” practice) 

can have positive effects on seed germination, seedlings establishment and growth 

of woody species (DeLuca et al. 2009). According to Thomas & Gale (2015), biochar is 

even a promising practice to promote forest restoration thanks to the increased 

growth and biomass shown by various tree species. On the other hand, common 

knowledge and direct observations indicate that established and adult trees are 

mostly absent in old charcoal kiln sites, suggesting that tree regeneration is 

hampered at some stages by biotic or abiotic factors. Considering the relatively long 

time since their abandonment, such factors are likely to be persistent and may 

represent a legacy of the past forest use still affecting ecosystem functioning and 

dynamic processes at the “microhabitat” scale. 

Based on an extensive sampling in three major forest types in central Italy (Tuscany), 

located along an altitudinal gradient from the Mediterranean coast to the mountain 

belt, this work aims at describing the effects of abandoned charcoal kiln sites on tree 

regeneration and recolonization of the woody vegetation found in this habitat. 

Material and Methods 

Study area 

This study was performed in the forests of Tuscany (central Italy) in an area located 

between 42°44'16.08" and 44°3'13.02" N and between 10°29'48.90" and 

11°29'0.96"E (Fig. 1). This area (ca. 9.000 km2) covers an altitudinal gradient from 0 to 

more than 1.400 m above sea level, therefore including three main climate and forest 

types, here indicated according to the EEA classification system (European 

Environment Agency 2007): 1) meso-mediterranean evergreen forest dominated by 

Quercus ilex L. and sclerophyll shrubs, along the Tyrrhenian coast (here named 

“sclerophyll” forests); 2) supra-Mediterranean thermophilous mixed communities 

dominated by deciduous oaks (Quercus cerris L., Q. petraea (Matt.) Liebl., Q. 

pubescens Willd.); these occur on the vast hill areas in the central part of Tuscany 

(“oak” forests); 3) montane forests with beech (Fagus sylvatica L.), on the Apennine 

range (Casentino and Mugello areas) and volcanic massif of Mt. Amiata (“beech” 

forests). Mean annual rainfall and temperature in this broad area vary from 650 mm 
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and 15 °C respectively along the coast to 1.450 mm and 10.9 °C respectively on the 

Apennines (Areonautica Militare, reference period 1961-1990). The study area is 

characterized by a variety of geolithological formations and soil conditions, but 

cambisols are the most prevalent type according to the Soil Atlas of Europe 

(www.eusoils.jrc.ec.europa.eu). 

 

Figure 1. Geographic location of the forest areas and the 

investigated charcoal kiln sites in Tuscany (central Italy). 

Field sampling design and data collection 

An extensive search for abandoned charcoal kiln sites was carried out with ad-hoc 

field trips in representative areas of the three main forest types described above. The 

154 sites observed, all easily recognizable thanks to the characteristics of the ground 

surface (Ludemann 2011, 2012), were recorded with a GPS device, numbered, and 

characterized using simple descriptors such as altitude, slope, aspect, soil type and 

tree species composition of the adjacent forest stands. From this pool, 61 sites were 

randomly selected among those that were not affected by recent anthropogenic or 

animal disturbance (18 “sclerophyll“ sites, 22 “oak” sites, 21 “beech” sites; Fig. 1). 

The main geographical and environmental variables of these sites are given in Table 

1. All of them were located in “ancient forests” sensu Hermy et al. (1999), i.e. with a 

continuous cover over time and never converted into agricultural land during at least 

the past three centuries. Furthermore, all but two sites are included in protected 

areas of the Rete Natura 2000 network, Nature Reserves and National Parks. 

http://www.eusoils.jrc.ec.europa.eu/
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Charcoal production on these sites lasted for centuries and was abandoned at least 

ca. 60 years ago, while the coppice-with standards management for the production 

of firewood was abandoned in later times (ca. three coppice cycles after the last 

felling) in the oak and beech forests. In the sclerophyll forest areas, this management 

type was abandoned in more recent times or is even still in use (pers. obs.). 

In the centre of the charcoal kiln platform of each selected site, we established a 3 m 

x 3 m quadrat hereafter called “kiln plot” (KP). The relatively small size and the 

general shape of the platforms did not allow to use larger quadrats, as this would 

have resulted in a kiln-forest edge effect with likely consequences on vegetation 

composition. In each quadrat, we identified all species of tree and shrub seedlings in 

the understorey (< 1.3 m) and recorded the maximum height and ground cover 

percentage of each of these species. As “tree” we considered all woody angiosperms 

or gymnosperms belonging to Raunkiaer’s life forms Pscap (scapose phanerophyte) 

and Pcaesp (caespitose phanerophyte) (Pignatti, 1982). In addition, the density of 

regeneration of the dominant species of Fagaceae (e.g. all oak species and beech) 

was measured in a sub-sample of five randomly selected kiln sites in each forest type, 

by counting the number of individuals of each species < 1.3 m within the quadrat. 

Next, we used the 61 kiln plots (3 x 3 m) to record the number of trees/stools, 

number of stems per stool, diameter at breast height (dbh, cm) of each stem (> 0.5 

cm), and mean height of the stems for each stool for all individuals in the 

“established tree regeneration” layer (1.3-4 m).  

For each of the 61 kiln plots, the same protocol was repeated in a control plot (CP) of 

the same size, established randomly in the stand closely adjacent the kiln platform, 

e.g. at a distance of 10-20 m from the edge of the KP (depending on local 

topographic and ground conditions that often required to adjust the exact location of 

the plot); downhill locations were always excluded to avoid potential charcoal 

“contamination” by runoff. This allowed to exclude variation between kiln and 

respective control plot for major environmental variables such as altitude, parent 

rock material and slope aspect. On the contrary, other factors such as light 

availability and cover of the herbaceous layer, both potentially influencing tree 

regeneration, were often different between the two habitats (Carrari et al., accepted 

ms). 
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Table 1. Main geographical and environmental variables of the studied sites, with number of charcoal kiln (KP) and control plots (CP) for each of the examined 

forest areas.   

Forest   Lat  Long 
No. 

KP 

No.  

CP 
Forest Type* 

Altitudinal 

range* 

(m a.s.l.) 

Aspect* Parent rock material* 

      Slope 

kiln control 

Colla di Casaglia 44° 1'57"N 11°29'1"E 5 5 Beech 972-1029 SE/E/NE marl-sandstone 0 
10-

50% 

Mt. Amiata 42°52'10"N 11°35'3"E 11 11 Beech 846-1268 N/NE/E/SE/S/SW/W/NW Trachyte 0 
20-

50% 

Casentino 43°48'19"N 11°52'9"E 5 5 Beech 1040-1223 S/SE/E marl-sandstone 0 5-45% 

Volterra hills 43°25'55"N 11° 00'2"E 7 7 oaks/sclerophylls 382-967 E/SE/N/NW/NE diabase/limestone/sandstone 0 3-40% 

Fiesole hills 43°48'15"N 11°20'27"E 2 2 oaks 242-347 W/E marl-calcareous 0 3-5% 

Farma-Merse 43° 5'22"N 11°10'46"E 15 15 oaks/sclerophylls 265-511 N/NE/E/SE/S/SW/W/NW quarzitic sandstone   0 3-40% 

Mt. Leoni 42°56'27"N 11°10'58"E 5 5 sclerophylls 155-437 S/SW/-/W/E quarzitic sandstone   0 3-35% 

Magona Forest/Mt. 

Massoncello 
43°15'50"N 10°37'54"E 7 7 sclerophylls 157-201 W/NW/N/SE marl-clay/sandstone 0 3-20% 

*Variables considered in the starting mixed model as predictors for the response variables. 
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Data analysis 

All analyses were performed in R 3.1.2 (R core team, 2014). First, we calculated the 

understorey compositional differences in woody species between KP and CP for each 

forest type, using the cover-weighted Bray-Curtis dissimilarity index. Compositional 

differences were then visualized by means of non-metric multidimensional scaling 

(NMDS) (metaMDS function in the vegan package; Oksanen et al. 2013). Differences 

were tested using a permutational multivariate analysis of variance (PERMANOVA; 

adonis function in vegan package) with 999 permutations. To verify that such 

differences were related to the effect of the factor kiln/control (e.g., compositional 

dissimilarities between kiln and control plots) and not to a dispersion effect (e.g., 

dissimilarities within each of the two plot types), we tested for multivariate 

homogeneity of dispersion using betadisper (Vegan package), a multivariate 

analogue of Levene’s test for homogeneity of variances (Anderson 2001, Oksanen et 

al. 2013). 

Density of seedlings of the locally dominant tree species, all belonging to the 

Fagaceae family, was compared between KP and CP with a non-parametric Mann-

Whitney U test (wilcox.test function in the R Stats package, Chambers et al. 1992). 

We then looked at the effects of the charcoal kiln platforms on forest recolonization 

in terms of species richness (SR) at the habitat level (γ-diversity of KP and CP) and 

plot level (mean SR for KP and CP) found in the understorey and the established 

regeneration layer, separately for the three forest types.  

The influence of forest type (levels: sclerophyll, oak, beech), kiln/control (levels: KP, 

CP) and environmental variables (altitude, parent rock, slope aspect) on the woody 

species richness of the understorey and tree regeneration layer was tested using a 

mixed model approach. First, the effects of all considered variables were fitted, 

allowing for random variation across “forest areas”, in order to remove from the 

model the variance due to the spatial clustering of the plots [R-syntax: Species 

richness~ Forest type + Kiln/Control + Altitude + Parent rock + Aspect + (1 | Forest 

area), using glmer with a Poisson error distribution and loglink, from the lme4 

package (Bates et al., 2013)]. Altitude was preliminary log-transformed to fulfil the 

requirements of normality and homoscedasticity. Starting from this full model, we 

looked for model parsimony (approach according to Zuur et al. 2009). First, we 

deleted the random variation across sites while keeping the fixed effect term [R- 

syntax: Species richness~ Forest type + Kiln/Control + Altitude + Parent rock + Aspect, 

using glm from the stats package with a Poisson error distribution, log link and 

parameter estimation via maximum likelihood]. The model yielding the lowest value 

for Akaike’s Information Criterion (AIC; Akaike, 1973) was considered to be most 
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consistent with the data. Once an optimal random structure was found, we searched 

for the optimal fixed effect structure by comparing the AIC of models with the same 

random effect structure but a different fixed effect structure (here parameter values 

were maximum likelihood estimates). In case of over-dispersion, the standard errors 

were corrected using a quasi-GLM model (Zuur et al., 2009). Accordingly to Zuur et al. 

(2009) models were validated looking at response residuals (observed minus fitted 

values, also called ordinary residuals), Pearson residuals, scaled Pearson residuals 

and the deviance residuals for the optimal quasi-Poisson model.  

Using a similar mixed model approach, we tested the effects of forest type and 

kiln/control factor on seedling density in the understorey and on the structural 

variables of the established tree regeneration layer (number of trees/stools, number 

of stems per plot and their basal area and mean height). Number of trees/stools and 

number of stems were fitted using glmer with a Poisson error distribution, as for the 

species richness models. Seedling density, basal area and mean height were fitted 

allowing for random variation across “forest areas” using lmer with a Gaussian error 

distribution (lme4 package; Bates et al. 2013). In the case of seedling density we did 

not include in the model environmental factors because they did not differ in such 

parameters (Appendix 4) and we used just fixed terms; for the other variables we 

used the R-syntax: y~ Forest type + Kiln/Control + Altitude + Parent rock + Aspect + (1 

| Forest area). Furthermore, fixed effect models were tested using gls from the nlme 

package (Pinheiro et al. 2013) with a Gaussian error distribution, and parameter 

estimation was calculated with a restricted maximum likelihood. As residual spread 

changed with the levels kiln/control, we used the varIdent variance structure (nlme 

package) to weight the models by portion, allowing to achieve homogeneous 

variances (Zuur et al. 2009). 

For the optimal models selected for each variable, we calculated the R-squared (R²), 

which refers to the fraction of the total variation in the response variable explained 

by the model. For models with fixed effects only, the adjusted R² of the linear model 

was reported; for models that (also) contained random effects, a conditional R² was 

calculated according to Nakagawa and Schielzeth (2013) (MuMIn package; Bartoń 

2013), indicating the proportion of the variance explained by both the random and 

fixed effects (not yet applicable for glmer with a Poisson error distribution). 

Results 

Concerning composition of woody species in the understorey, NMDS analysis yielded 

different results for the three forest types. Significant differences between KP and CP 

were found in oak forests (pperm=0.008), where a similar level of compositional 

variation within these two plot types occurred (pdisp= 0.541; Fig. 2); the understorey 
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of beech and sclerophyll showed no compositional differences between the two plot 

types.  

In total, 45 woody species were recorded in the understorey of the 122 plots, of 

which 26 trees and 19 shrubs. Species richness was always higher in KP compared to 

CP for all three forest types (22 vs. 14 in sclerophyll forests; 28 vs. 22 in oak forests; 

13 vs. 9 in beech forests; Fig. 3). In sclerophyll forests, nine species were unique to KP 

while only one to CP; in oak forests eight species were unique to KP and two to CP; in 

beech forests, four species were unique to KP (i.e. Acer platanoides, Castanea sativa) 

and one to CP (Prunus avium) (Appendix 1).  

 

Figure 2 Scatterplot from NMDS based on Bray-Curtis 

dissimilarity index showing significant compositional 

differences of woody species in the understory of kiln and 

control plots in oak forests (pperm indicates the combined 

significance of the location and dispersion effect, based on 

PERMANOVA with 999 permutations; pdisp indicates the 

significance of the dispersion effect). 

 

The established tree regeneration layer included a total of eight tree and nine shrub 

species. The species pool was larger in CP than in KP (Fig. 3). In the of KP sclerophyll 

forests, this layer contained three woody species (present in 16.7% of the plots), 

compared to a total of seven species occurring in the total sample of CP (Appendix 1). 

In oak forests, no species were recorded in KP, while eight woody species were 

present in this layer in 72.7% of the CP plots (Appendix 2). In this forest type, species 
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richness was much lower in KP than in CP (Tab. 2). No tree species occurred in the 

established regeneration layer of KP in beech forests, while Fagus sylvatica was 

present in 14.3% of the CP (Appendix 3). 

Mixed model results showed that the random variation across the examined forest 

areas was not relevant for the richness of woody species in the two layers (Tab. 2). 

Compared to CP, species richness in the understorey of KP was slightly increased 

(+0.24), while this was strongly decreased (-2.42) in the established regeneration 

layer (Tab. 2, Fig. 3). Concerning the other variables, forest and altitude affected 

species richness of both layers (Tab. 2).  

According to the selected model, overall seedling density in the understorey was not 

affected by the habitat type (Tab. 2), in line with the non-significant differences in the 

density of each individual species resulting from the Mann-Whitney test; the only 

exception was Quercus pubescens which showed a higher density in the CP of 

sclerophyll forests (Tab. 4). 

 

Figure 3 Bar graphs with standard errors showing differences between kiln plots (KP) and control plots 

(CP) in plot-level species richness for the understorey (a), established tree regeneration layer (b), 

separately for the three forest types. The total species richness (γ) related to plot type and forest type is 

also reported above the corresponding bars. 

Concerning the structural variables in the established regeneration layer, there were 

large differences between the three forest types when considering the control plots. 
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As expected, the density of trees and shrubs in the sclerophyll and oak stands was 

considerably higher than in the beech stands. However, such difference was in 

general much reduced in the kiln plots, where there was a substantial lack of woody 

species in all three forest types. Indeed, each single variable resulted affected by the 

habitat type, though the models did not explain more than 30% of the total variation 

(Tab. 4). The number of woody stools and stems in KP was always lower than in CP 

(Fig. 4a-b); in the oak and beech forests, tree species were often nearly completely 

lacking. Similarly, the mean basal area of KP was always very low compared with CP 

(Fig. 4c), though the model for this parameter explained only 26% of the total 

variation. All species in CP were significantly taller than in KP (Fig. 4d).  

 

Figure 4 Bar graphs with standard errors showing differences between kiln plots (KP) and 

control plots (CP) in structural parameters of the established tree regeneration layer (1.30-

4 m), separately for the three forest types; a) mean number of stools per plot; b) mean 

number of stems per plot; c) mean basal area (G, cm2); d) mean height of tree stems (m). 
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Table 2. Optimal fixed-effects model structures for the woody species richness at the plot level in the understorey and 

the established regeneration layer. Models were selected based on AIC criteria (see main text for details). Values for the 

predictor variables “forest type” (levels: oaks and sclerophylls) and “plot type” (level: kiln plot) and “altitude” are 

parameter estimates (± standard error) that indicate the relative change of the response variable compared to the first 

level of the predictor variables “forest type” (level: beech) and “plot type” (level: control plot) or for a unit increment in 

“altitude” that are incorporated in the intercept. R² refers to the fraction of the variation explained by the optimal model 

structure; df: degrees of freedom.  

Species richness df R² Overdisp Intercept Forest type              Plot type Altitude1 

     
Oaks Sclerophylls Kiln 

 

Understorey 121 0.435 0.937 1.80±1.18 1.04±0.23 0.52±0.32 0.24±0.11 -0.25±0.17 

Tree regeneration 121 0.32 0.918 -2.03±0.57 2.19±0.61 2.46± 0.60 -2.42±0.47 / 

Tree density2 29 0.30  5.28±0.40 -2.14±0.55 -1.14± 0.57 / / 

1square root transformed 
 

2VarIdent variance structure has been used 
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Table 3. Optimal fixed-effects models for the structural variables in established tree regeneration layer, based on AIC selection. The random factor “forest area” was 

not significant. Values for the predictor variables “forest type” (levels: oaks and sclerophylls),“plot type” (level: control), “Aspect” (levels: E,N, NE, NW, W, S, SE, SW) 

and “altitude” are parameter estimates (± standard error) that indicate the relative change of the response variable compared to the first level of the predictor 

variables (beech, control and no exposition, respectively for forest type, plot type and aspect) or for a unit increment in “altitude” that are incorporated in the 

intercept. R² refers to the fraction of the variation explained by the optimal model structure; df: degrees of freedom; over-dispersion is shown for Poisson distribution. 

  df R² Ov Intercept Forest type 

 

Plot type Aspect Altitude2 

          oaks sclerophylls kiln E N NE NW W S SE SW   

No. 

stools 121 0.288 1.546 -0.68± 0.52 1.92±0.49 2.81±0.49 -3.04± 0.46  -0.56±0.31 -0.90±0.28 -16.3±1.10 -0.60±0.38 -1.33±0.35 -1.66±0.37  0.06±0.52 

-

0.16±0.57 / 

No. 

Stems1 121 0.294 2.837 -0.13±0.63 1.62± 0.59 2.87±0.58  -3.30±0.61 -0.24± 0.38 -0.79±0.36 -16.4±1.71 -0.11± 0.41 -1.19± 0.43 -1.05± 0.40 -0.07± 0.77 

-

0.25±0.83 / 

Basal 

area2,3 121 0.261 /  4.65±0.87 / / -3.68±0.70  -0.39±0.60  0.17±0.53   0.59±1.07  2.10±0.72  0.27±0.56  0.79±0.55  0.69±0.76 

 

1.88±0.75 

 -

0.05±0.02 

Stem 

height3 121 0.306 /  2.70±0.37 / / -1.54±0.25 / / / / / / / / 

 -

0.04±0.01 

1standard errors corrected by using a quasi-GLM model 

2square root transformed variables 

3VarIdent variance structure was used 
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Table 4. Density of seedlings of the dominant tree species in the charcoal kiln (KP) and control plots 

(CP) of the three forests types, with significance of differences (p, Mann-Whitney U test). 

Species Forest type density/plot (9 m2)  
  

  
KP CP p 

  n=5 n=5  

Quercus petraea Oak 2.50 2.83 n.s. 

Quercus ilex Oak 0.83 2.83 n.s. 

Quercus cerris Oak 4.67 7.33 n.s. 

Quercus pubescens Oak 0.50 0.50 n.s. 

Quercus ilex Sclerophylls 5.00 18.40 n.s. 

Quercus cerris Sclerophylls 0.80 0.80 n.s. 

Quercus pubescens Sclerophylls 3.00 7.00 0.041 * 

Quercus suber Sclerophylls 3.00 1.40 n.s. 

Fagus sylvatica Beech  29.00 28.20 n.s. 

 

Discussion  

By extensively sampling in three distinct forest types, this study shows that former 

charcoal kiln sites represent a peculiar microhabitat for the regeneration of woody 

species. First, our results indicate that these sites provide favourable conditions for 

the germination and early establishment of the seeds of trees and shrubs with 

different ecological requirements and functional traits. Seedlings or young individuals 

of pioneer shrubs such as Cytisus scoparius, Crataegus monogyna and Prunus spinosa 

occurred in the understorey together with those of early- successional and late-

successional trees such as Fraxinus ornus and Quercus ilex, respectively, depending 

on the forest type. In oak forests there was a higher woody species richness and a 

different species composition on the kiln sites, indicating that charcoal accumulation 

in the soil does not have detrimental effects on the diversity of trees and shrubs at 

very early development stages. The flat terrain on the kiln platform is not or only 

poorly subjected to erosion, the soil is rich in organic matter and nutrients and not 

strongly acidified, and light availability is generally higher than in the adjacent forest 

(Carrari et al., accepted ms). These factors are likely to promote seed germination 

and the initial stages of growth, suggesting that kiln sites may act similarly to small 

gaps with positive effects on regeneration (Poulson and Platt 1989, Yamamoto 2000, 

Beckage et al. 2008). It is well documented that canopy gaps can provide recruitment 
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opportunities for tree seedlings and thus increase the number of species, explaining 

why they have figured prominently in empirical and theoretical investigations of 

mechanisms that promote forest diversity (e.g. Platt & Strong 1989, Busing & White 

1997). On the other hand, a sharply reversed situation emerged about diversity in the 

established regeneration layer including all individuals between 1.3 and 4 m high. 

Here, both γ-diversity and plot-level diversity in terms of species richness was overall 

much lower on the kiln sites in oak and sclerophyll forests, clearly indicating less 

favorable conditions for trees and shrubs at later stages of development. 

A similar trend of variation emerged for the structural variables analyzed in this 

study. When looking at the density of seedlings in the understorey of the three forest 

types, this was not affected by the plot type, meaning that juvenile trees perform 

similarly well in the two situations. Above 1.3 m, however, all structural variables 

were negatively affected by the charcoal kiln habitat, where the number of stools per 

plot was much lower than in the adjacent stands in the oak and sclerophyll forests. 

Here, the woody plants were often completely lacking. 

Hence, our data show that a strong selection effect occurs in the kiln sites at some 

later development stages of the woody species, which dramatically reduces the 

number and abundance of those that are able to leave the understory and reach the 

upper layers. This effect hinders or at least slows down the recolonization of even the 

oldest kiln platforms, suggesting that pyrogenic charcoal incorporated in the soil may 

not always have such a positive influence on tree growth as recently suggested by 

authors who support the “biochar” practice to promote forest restoration (Thomas & 

Gale 2015). In our opinion, more experimental investigation is needed to address the 

long-term effect of this practice on the growth performance of forest trees. Different 

abiotic and biotic factors are likely involved in the selection effect that we observed, 

among which water availability, nutritional aspects, accumulation of toxic 

compounds due to repeated wood pile burning and interactions with biotic 

communities in the soil. Although pyrogenic charcoal is known to positively affect soil 

water holding capacity due to its porosity (Karhu et al. 2011, Yu et al. 2013), the 

actual availability of charcoal-adsorbed water to plants still needs to be assessed 

(Karhu et al. 2011). A decrease in water availability might occur in the deep soil 

layers, e.g. those explored by the root system of trees and tall shrubs as they develop 

towards the adult phase. The presence of drought-tolerant species in the overstorey 

of the charcoal sites (e.g. Fraxinus ornus, Arbutus unedo) vs. the lack of some more 

mesophytic species in the overstorey of the controls (e.g. Acer campestre, Carpinus 

betulus) may lend circumstantial support to this hypothesis. On the other hand, this 

negative effect on water availability may not occur in the topsoil layers supporting 

the young seedlings, as suggested by their similar density and diversity in the 
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understorey observed in this study. This is also in line with the higher diversity and 

biomass production of the herbaceous understorey recently found on kiln platforms 

(Carrari et al., a, ms. accepted). The nutritional effects of wood charcoal on tree 

growth are still not completely clear, although it is reported that absorption of 

phenolic compounds can favour microbial communities and thus nitrification in 

especially acid forest soils (DeLuca et al. 2009), and that the availability of some 

macro- and micronutrients is higher in charcoal hearth soils over centennial 

timescales (Criscuoli et al. 2015). On the other hand, a negative influence could occur 

indirectly via alterations of the mycorrhizal communities caused by charcoal 

accumulation and/or fire. For example, Warnock et al. (2007) showed that the 

negative impact of the biochar addition on arbuscular mycorrhizal fungi was largely 

due to nutrient effects, while Wallstedt et al. (2002) reported a decrease in both bio-

available organic carbon and nitrogen in their ectomycorrhizal system. Also, Gaur and 

Adholeya (2000) found that the biochar media limited the amount of available P 

taken up by host plants, indicating that charcoal may in some cases reduce the 

formation of mycorrhiza by decreasing nutrient availability or creating unfavourable 

nutrient ratios in soils (Wallstedt et al. 2002). Concerning fire, it is well documented 

that slash pile burning in forests alters the chemical properties of the soil and has a 

negative impact on the populations of arbuscular mycorrhizal fungi (Korb et al. 2004) 

and microbial communities (Jiménez Esquilin et al. 2007). According to Longo et al. 

(2014) fire occurrence negatively affects the diversity and richness of these fungi, in 

line with several studies showing a strong impact on ectomycorrhizal formation in 

conifer forests (e.g. Torres & Hornubia 1997, Grogan et al. 2000, Dahlberg 2002).  

Conclusions 

The extensive networks of old charcoal kiln sites in Mediterranean forests provide a 

natural experimental setting to investigate the long-term effects of wood charcoal 

accumulation in the soil on the growth and development of woody species. This work 

is the first focusing on the early recolonization processes, and showed a significant 

effect of these sites.  On one hand, they positively influenced the overall richness of 

woody species at their first stage of regeneration (e.g. in the understorey) in all three 

forest types, and especially in oak and sclerophyll forests. On the other hand, we 

found that the further growth and development of trees is negatively affected by 

some persistent factors of biotic or abiotic nature that prevent their access and 

establishment into the higher layers, thus causing a substantial lack of forest 

recolonization. Hence, although abandoned since decades or even centuries ago, 

charcoal kiln sites are still hostile microhabitats for most woody species. Further 

experimental investigation is needed to understand the direct of effects of charcoal 

soil accumulation on the growth and vitality of forest trees, as well as the effects of 
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repeated burning practice on also the mycorrhizal communities involved in the 

nutrition of trees. 
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Abstract 

Question Production of wood charcoal is an ancient form of anthropogenic forest use 

that existed for millennia in the Mediterranean countries and only vanished in the 

last century. As a result, thousands of abandoned charcoal kiln sites still occur in 

present-day woodlands. Because of peculiar light and soil properties, the 

understorey vegetation at these sites may differ from the adjacent stands. Our study 

investigated for the first time the effects of abandoned kiln sites on understorey 

vegetation diversity, composition and biomass production in Mediterranean forests. 

Location Tuscany, central Italy (42°44'16"N-44°3'13" N; 10°29'49"E-11°29'1"E). 

Methods One 3 x 3 m kiln plot on charcoal kiln area and one 3 x 3 m control plot in 

the adjacent stands were established in 59 representative sites located in three 

major forest types dominated by evergreen sclerophylls, deciduous oaks and beech. 

In each plot, diversity and composition of the understorey community were analyzed 

together with soil factors (content of C, N, C:N ratio, pH) and light conditions (PAR). A 

50 cm x 50 cm frame was randomly placed in each plot to measure biomass 

production.   

Results The charcoal kiln habitat positively affected understorey diversity and 

productivity, as well as the content of C, C:N ratio, pH and light availability. Floristic 

dissimilarities between kiln plots were larger than between control plots, and 

significant compositional differences between the two plot types occurred. 

Graminoids were more abundant on kiln plots, and 12 indicator species were found 

for this habitat in oak forests. Higher values of cover and biomass showed the lack of 

detrimental effects of wood charcoal accumulation on understorey productivity.  

Conclusions Continued wood charcoal production in Mediterranean woodlands has 

caused long-lasting effects on the understorey via persistent changes of abiotic 

factors. Hence, former kiln sites represent anthropogenic microhabitats that increase 

biodiversity and fine-scale heterogeneity of forest ecosystems. Conservation 

measures are advocated to preserve them against various external threats. 
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Introduction 

In the last decades, an increasing number of studies has highlighted the impact of 

historical human activities on forest landscapes. In central and northern Europe, it is 

well documented that various forms of traditional land use have shaped these 

ecosystems since the times of the first civilizations and still affect present-day soil 

characteristics (Glatzel 1990; Dupouey et al. 2002; Plue et al. 2008). Via their 

influence on soil properties, practices such as coppicing, controlled burning, plant 

domestication and livestock grazing, have strongly affected the diversity, 

composition and productivity of the understorey vegetation of European forests, 

especially in the Mediterranean region (Lloter & Vilà 2003; Blondel 2006; Bartha et al. 

2008; Kopecký et al. 2013). Because of the herb layer responsiveness to local site 

conditions (Gilliam 2007), understanding the present-day structural and 

compositional features of forest understories is hardly possible without taking into 

account the long-lasting effects of past land uses (Peterken & Game 1984; Hermy & 

Verheyen 2007). However, not all the effects of the former human activities on the 

understory have been investigated, and some of them still remain poorly 

understood. One of these activities is the production of wood charcoal in forests, 

which started at least with archaeometallurgy (ca. 4000 B.C.; WSL 2011) and 

continued for millennia in Europe and the Mediterranean region. Charcoal was the 

main source of energy since the Iron Age until the 19th century (Blondel 2006). Its 

production, based on the pyrolysis of wood at ca. 400 °C without oxygen, was 

realized in coppice stands in special woody kilns covered by a mixture of soil and 

plant material. For this purpose, small ovoidal terraces (30-45 m2) known as charcoal 

kiln sites or charcoal hearths were prepared along footpaths on hill and mountain 

slopes (Montanari et al. 2000; Ludemann 2003; WSL 2011). In most northern and 

central European countries this practice was abandoned in the 19th century due to 

the rapidly increasing and widespread use of coal (Deforce et al. 2012). In the 

Mediterranean region, however, the importance of wood charcoal raised during the 

industrial revolution since other fuel sources were largely lacking, and mostly 

vanished around the year 1950. In some remote mountain areas it even continued 

until today. As a result, a great number of abandoned charcoal kiln sites are 

nowadays widespread in many European forests (Ludemann 2011; 2012), and 

especially in the Mediterranean countries (Blondel 2006; Nocentini & Coll 2013). 

Their main characteristics are the flat, regular terrain and the alterations in colour 

and texture of the topsoil caused by the formation of thick layers (> 20 cm) rich in 

wood charcoal remains (Criscuoli et al. 2014).  

Wood charcoal is able to cause significant changes in various structural and 

functional properties of the soil that are important for plant growth (Nelissen et al. 
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2014), such as nutrient availability and water holding capacity (DeLuca et al. 2009; 

Criscuoli et al. 2014). Hence, the presence of charcoal remains has the potential to 

induce significant variations in the diversity, productivity and composition of the 

forest understorey. Additional effects can be caused by the often sparse canopy 

cover of the charcoal sites, which is due to the usual lack of trees and tall shrubs 

rooted inside the kiln platforms (Carrari et al., b, ms. submitted). This is likely to cause 

variations in light availability which can have, in turn, considerable effects on the 

understorey (Härdtle et al. 2003; Hofmeister et al. 2009; Axmanová 2011). 

For these reasons, abandoned kiln sites may represent small ecological “islands” 

offering a potential micro-habitat to woodland plant species with functional traits 

and requirements that differ from those of the species inhabiting the adjacent forest 

environment. Although such a hypothesis was already supported by a 

phytosociological investigation in beech stands of Germany (Wittig et al., 1999) no 

evidence still exists for the woodlands of the Mediterranean area. Compared with 

those in central Europe, these ecosystems show a higher diversity of compositional 

and structural types, which may imply different and heterogeneous responses of the 

understorey species to the charcoal kiln habitat. Accordingly, we used an extensive 

sampling in three major forest types of central Italy to address the following 

questions: 1) Do the remnants of former charcoal kiln sites affect the diversity, 

productivity and composition of the understorey in different forest ecosystems of the 

Mediterranean area ?; 2) Can this effect be explained by altered soil properties or 

light conditions?  

Materials and Methods 

Study area 

Field sampling was performed in the forests of Tuscany (central Italy) situated 

between 42°44'16"N and 44°3'13" latitude N, and 10°29'49"E and 11°29'1" longitude 

E (Fig. 1). This area is characterized by three climate types following an altitudinal 

gradient from sea level to over 1.400 m: 1) meso-Mediterranean along the 

Tyrrhenian coast, where woodlands are mainly formed by evergreen sclerophylls and 

especially Quercus ilex; 2) supra-Mediterranean on the hill areas in the central part of 

the region, largely covered by thermophilous mixed forests dominated by various 

species of deciduous oaks (mainly Quercus cerris, Q. petraea, Q. pubescens); 3) 

montane-suboceanic on the Apennine range and Mount Amiata, a continental 

“island” of volcanic origin covered by lush forests of beech (Fagus sylvatica; Selvi 

1997). These communities correspond, respectively, to forest types no. 9, 8 and 7 of 

the European Environment Agency classification (EEA 2006). Mean annual rainfall 

and temperature in the area vary from 650 mm and 15 °C respectively along the 

https://explorable.com/writing-methodology
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coast, to 1450 mm and 10.9 °C respectively on the Apennines and Mount Amiata 

(period 1961-1990, source: Servizio Meteorologico dell’Aeronautica Militare, 

http://www.meteoam.it/).  

The study area is characterized by a variety of geolithological formations and soil 

conditions, but cambisols are the prevalent type according to the Soil Atlas of Europe 

(European Commission, www.eusoils.jrc.ec.europa.eu). 

 

 

Figure 1 Geographical location of the 59 sites sampled in the study area 

(Tuscany, central Italy); the three forest types are indicated by different 

symbols. 

An extensive search for abandoned charcoal kiln sites, hereafter referred to as 

“kilns”, was carried out during ad-hoc field trips in representative stands of the three 

forest types described above (beech, oaks and sclerophylls). The 154 kilns observed 

were recorded with a GPS device and characterized using simple descriptors such as 

altitude, slope aspect, soil type, and conservation status of the understorey. From 

this pool, we selected 59 kilns where the vegetation was not affected by recent 

anthropogenic or animal disturbance, resulting in 19, 22 and 18 kilns for beech, oak 

and evergreen sclerophyll forests, respectively (Fig. 1, Appendix S1). Based on local 

http://www.meteoam.it/
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historical documents, these sites are all located in “ancient forests” sensu Hermy et 

al. (1999), i.e. with a continuous cover since at least the past three centuries. In 

addition, common knowledge by local rural people indicates that charcoal production 

on these sites continued for centuries and was abandoned at least ca. 60 years ago. 

Data collection  

In the centre of each kiln, we established a 3 m x 3 m vegetation plot (charcoal kiln 

plot, KP) inside which all vascular plant species < 1.3 m were assessed for ground 

cover percentage after their identification following Flora d’Italia (Pignatti 1982). 

Then, a wooden frame (0.5 m x 0.5 m) was randomly placed inside the KP (biomass 

plot) to clip the above-ground biomass of all species rooted inside. Woody and 

herbaceous plants (including very young tree seedlings without woody tissues) were 

kept separately. The clipped biomass was then dried for 72 hours at 40 °C and 

weighed. Total cover in the vegetation plots and dry weight of the total, herb and 

woody biomass were then used as proxies for the understorey productivity. 

At the four corners and in the centre of the KP, five soil core samples were collected 

at a depth of 15 cm using steel cylinders. The soil samples were dried and sieved 

using a 2 mm mesh size, and mixed together to obtain one composite sample per 

vegetation plot. These samples were analysed for total C, total N (Elementar 

analyser, type Vario Macro Cube in configuration CNS, with Argon as carrier gas) and 

pH (H2O). Light intensity (Photosynthetic Active Radiation, PAR) was measured at 1 m 

height above the forest floor with a light sensor reader (FieldScout, Spectrum 

Technologies, Inc., Aurora, Illinois). Measurements were taken at three points along a 

diagonal of the KP (corners and centre) and averaged for each plot.  

For each site, the protocol was repeated in a second 3 m x 3 m vegetation plot 

(control plot, CP), established randomly in the adjacent forest at a distance of 10-20 

m from the edge of the KP, excluding downhill locations to avoid potential charcoal 

“contamination” by runoff. Such a short distance between KP and its relative CP 

ensured to minimize variation of confounding site factors. Light measurements were 

performed simultaneously in KP and CP, in order to have identical weather 

conditions. In the data analyses we refer to the KP-CP pair as a single site, in which KP 

and CP represent different plot types. 

Data analysis 

All analyses were performed in R 3.1.2 (R core team 2014). We started with 

partitioning the total species pool in six growth forms: trees, shrubs, graminoids 

(including all grasses of the Poaceae family plus the species of the genera Carex and 

Luzula), ferns, vines, and herbs. Understorey diversity was quantified on different 



PhD thesis – Elisa Carrari 

- 76 - 

spatial scales. The α-diversity was calculated as the total understorey species richness 

(SR), SR within each growth form and Shannon diversity (H’) for all plots (plot-level 

results). We quantified the understorey compositional dissimilarity (β-diversity) 

between KP and CP within each site (intra-site compositional dissimilarity) using 

Lennon’s distance measure (Lennon et al. 2001; site-level results). Separately for 

each forest type we also calculated the inter-site compositional dissimilarity as the 

mean of the pairwise Lennon dissimilarities of a given plot from all other plots of the 

same plot type (plot-level results). Gamma diversity (γ) was calculated at the plot 

type level as the total SR for the pool of plots within a plot type (including therefore 

all three forest types).  

First, in order to avoid pseudoreplications determined by the irregular spatial 

distribution of the sites, the influence of plot type (KP or CP) on understorey diversity 

and productivity was tested using mixed models. For understorey SR (not 

overdispersed) the starting model was fitted with glmer function with a Poisson error 

distribution and loglink, for the other variables with lmer function with a Gaussian 

error distribution (lme4; Bates et al. 2013). For the intra-site compositional 

dissimilarity we started from the fixed structure as this response variable is measured 

between sites. The model selection of each variable followed the protocol of Zuur et 

al. (2009) where the structure yielding the lowest value for Akaike’s Information 

Criterion (AIC; Akaike 1973) was considered to be most consistent with the data. For 

models that contained random effects, a conditional R² was calculated (Nakagawa 

and Schielzeth, 2013; MuMIn package; Bartoń 2013). Moreover, parameter-specific 

p-values for each level of the predictors were calculated, using Satterthwaite 

approximation when models contained the random effect (lmerTest package). 

Next, the effect of plot type on the understorey composition was determined as the 

dissimilarity of each plot against all the other plots, first for all forest types together, 

then for each forest type, using the Lennon and Bray-Curtis distance measures based 

on presence/absence and cover data, respectively (vegdist function in vegan 

package; Oksanen et al. 2013). Non-metric multidimensional scaling (NMDS) 

(metaMDS function in vegan package; Oksanen et al. 2013) was used to visualize the 

compositional differences between plots. Differences between KP and CP were 

tested for each couple in the pooled sample and separately for forest types using 

PERMANOVA; (adonis function in vegan package; 999 permutations with strata 

=“site”; Anderson 2001; Oksanen et al. 2013). We also tested separately for 

multivariate homogeneity of dispersion using betadisper (vegan package) in order to 

distinguish between the compositional differences determined by the plot type and 

the dispersion effects within the two plot types (Anderson 2001; Warton et al. 2012). 
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Third , the index of taxonomic distinctness Δ+ (Clarke & Warwick 1998) was 

determined for each plot with the function taxondive (vegan package; Oksanen 

2013), to estimate the degree of taxonomic relatedness of the understorey species in 

the plot. The index is based on presence/absence data and is defined as the average 

taxonomic distance between any two species randomly chosen from the plot species 

pool; this distance is the length of the path connecting these two species traced 

through a hierarchical tree of classification of the species pool involved. The 

reference systems of classification used here were those of Smith et al. (2006) for 

ferns, Christenhusz et al. (2011) for gymnosperms and APG III (Haston et al. 2009) for 

angiosperms. The randomization test by Clarke & Warwick (1998) was also 

performed to obtain a confidence funnel graph against which the calculated 

distinctness values of the plots were checked. This allowed to detect possible effects 

of KP on the taxonomic distinctness and evenness of the understorey flora.  

Fourth, an indicator species analysis (Dufrêne & Legendre 1997) was performed 

(function multipatt in indicspecies package; De Cáceres 2013) to identify the species 

significantly associated with KP or CP for each forest type. 

Finally, the influence of plot type on light intensity and soil components were tested 

using the mixed model approach mentioned above.  

Results 

Diversity  

In total, 240 vascular plant species were recorded across the 118 plots. The γ-

diversity at the plot type-level was considerably higher for KP compared to CP, for all 

forest types together (Appendix S2) as well as for each type (79 vs 64, 141 vs 86, 103 

vs 48, in beech, oak and sclerophyll forests, respectively). In beech forests, 15 species 

were found only in KP vs. 14 in CP, whereas in oak and sclerophyll forests over 50 

species were exclusive to KP vs. 11 and 12 to CP.  

The optimal models for -diversity included the random site effect for the total SR, 

the Shannon diversity, and the SR of graminoids and herbs (Table 1). Kiln plots 

positively influenced the plot-level SR of all growth forms, except for ferns and vines. 

The model for the total SR explained 72% of the total variation, while that for the 

Shannon index accounted for a lower percentage (41%). This index was always higher 

in KP (Table 1; see Appendix S3 for p-values).  

Productivity 

Generally, the proxies for understorey productivity showed trends similar to those 

for diversity described above (Table 1; Appendix S3). Kiln plots had a positive 

https://explorable.com/writing-a-results-section
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influence on the total cover of the understorey, on the cover of tree seedlings, 

graminoids and ferns. The total and herbaceous biomass were also positively 

affected, while no effect on the woody biomass was observed. For all variables 

(except for shrub cover), the optimal models included the random site variation and 

explained between 35% and 70% of the total variation (Table 1). 

Composition 

Permutational analysis of variance revealed significant compositional differences 

between KP and CP within sites across all plots (p=0.001, Fig. 2), with homogeneity 

dispersion among plot types (p = 0.259). When considering the three forest types 

separately, compositional differences between KP and CP were always significant, 

especially for oak forests (pperm<0.001, Fig. 3B); in beech and sclerophyll forests 

differences were lower but still significant (0.022 and 0.029, respectively; Fig. 3A-C). 

Dispersion differences between the two plot types were not significant (Fig. 3).  

Regardless of the distance measure used, inter-site compositional variation was 

highest for KP (Table 1). This means that floristic differences were higher between KP 

than between CP. In addition, mixed model results showed that the intra-site 

compositional dissimilarity was not influenced by the forest type (Table 1), indicating 

compositional differences of the same magnitude between KP and CP in the three 

forest types (Appendix S3). 

 

Figure 2 Non-Metric Multidimensional Scaling showing understorey compositional dissimilarity 

between KP and CP using the cover-weighted Bray-Curtis distance measure; pperm indicates the 

significance of the combined effect of location and dispersion for each pair of plots (site), based on 

PERMANOVA; pdisp indicates the significance of the dispersion effect. 
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Figure 3 Non-Metric Multidimensional Scaling showing understorey compositional dissimilarity between 

KP and CP using the cover-weighted Bray-Curtis distance measure separately for beech (A), oak (B) and 

sclerophyll forests (C); pperm indicates the significance combined of the combined effect of location and 

dispersion for each pair of plots (site), based on PERMANOVA; pdisp indicates the significance of the 

dispersion effect. 

 

 

Figure 4 Taxonomic distinctness Δ+ of the understorey vegetation in kiln 

(KP) and control (CP) plots in relation to understorey species richness. The 

horizontal line shows the theoretically expected mean taxonomic 

distinctness, the 95% confidence from the randomization test is shown 

(Clarke & Warwick, 1998; see text for further details). 

 

Taxonomic distinctness (Δ+) was negatively affected by KP, although the model 

explained only a low percentage of the variation for this response variable (Table 1; 

Appendix S3). In addition, three KP and four CP in beech forests had Δ+  values that 
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significantly diverged from the theoretical expected value and above the upper 95% 

confidence, while only one KP in sclerophyll forests was below the lower limit (Fig. 4), 

indicating that the negative effect found by the optimal model was very minor. 

Indicator species analysis resulted in one indicator herb for CP in beech forests, 

Anemone nemorosa, which occurred in 52% of CP vs.10% of KP. As many as 12 

species were instead associated to KP in oak forests, most of which are of early-

successional type and have high light requirements, such as Cardamine hirsuta, 

Cytisus scoparius, Dactylis glomerata, Fraxinus ornus and Prunella vulgaris (Table 2). 

 

Table 2 Indicator species in relation to forest and plot type; frequency indicates the proportion of plots 

of the associated plot type where the species was observed. p-values from permutation test show the 

significance of the association. Ancient forest species according to Hermy et al. (1999) are indicated with 

an asterisk (*). Plant nomenclature follows Pignatti (1982). 

Forest type Plot type Indicator species Growth form Frequency (%) p 

Beech forests Control Anemone nemorosa* herb 52 0.003 

Oak forests Kiln Brachypodium sylvaticum* graminoid 41 0.005 

  Cardamine hirsuta  herb 27 0.019 

  Coronilla emerus shrub 50 0.042 

  Cytisus scoparius  shrub 41 0.046 

  Dactylis glomerata  graminoid 27 0.029 

  Fraxinus ornus tree 86 0.008 

  Luzula forsteri  graminoid 36 0.017 

  Moehringia trinervia  herb 41 0.019 

  Poa trivialis  graminoid 27 0.031 

  Prunella vulgaris  herb 23 0.047 

  Viola alba subsp. 

dehnardtii 
herb 45 0.049 

  Viola reichenbachiana*  herb 45 0.037 
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Soil and light conditions 

Mixed model results showed that total soil C and N content, C/N ratio and soil pH 

were all lower in CP (Table 1; Appendices S2 and S3). The random site effect was 

included in the optimal models for all the above variables, except C/N ratio. The 

strongest difference between the two plot types was in total C content, which was 

ca. two times higher in KP; differences in N content and pH were less pronounced but 

still significant (Appendix S2). Finally, light availability was higher in KP than in CP 

(Appendices S2 and S3), especially in oak forests (KP: 55±90, CP: 13±9; p<0.001). 

However, the high variation of PAR values accounted for the low proportion (5%) of 

total variation explained by the best model (R2=0.05; Table 1). 

 

Table 1 Optimal mixed-effects model structures relating all the response variables to the forest type and 

plot type [R-syntax: y~ Forest type + Plot type + (1 | Site)]. Values for the predictor variables, forest type 

(levels: oaks and sclerophylls) and plot type (level: charcoal plot), are parameter estimates (± standard 

error) that indicate the relative change of the response variable compared to the first level of the 

predictor variables (beech forest and control plot respectively) that is incorporated in the intercept. R² 

refers to the fraction of the variation explained by the optimal model structure (n: number of 

observations; ‘/’: predictor variable not present in optimal model structure; ‘NA‘: not applicable; § 

indicates a random effect for site). Response variables: α- diversity, calculated as species richness (SR) 

(total SR, SR of each growth form) and Shannon index; plot-level understorey total cover, cover of each 

growth form; total, herb and woody biomass; β-diversity, calculated as inter-site and intra-site 

compositional dissimilarity using Lennon (L) and Bray Curtis (BC) distance measures; plot-level 

taxonomic distinctness, soil factors (C, N, C/N, pH), and light (PAR). 
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Response variable Unit n R² Intercept Forest type Plot type 
          Oak Sclerophyll Charcoal kiln 
SR total§ 118 0.718 1.94 ± 0.10 0.45 ± 0.13 -0.003 ± 0.13 0.51 ± 0.05 
SR trees 118 0.095 0.063 ± 0.16 1.08 ± 0.17 0.41 ± 0.19 0.28 ± 0.12 
SR shrubs 118 0.156 -0.70 ± 0.23 1.24 ± 0.24 1.37 ± 0.24 0.29 ± 0.15 
SR graminoids§ 118 0.526 -0.38 ± 0.24 0.28 ± 0.26 -0.73 ± 0.32 0.98 ± 0.17 
SR ferns 118 0.109 -1.24 ± 0.30 -0.75 ± 0.51 -1.25 ± 0.65 / 
SR vines 118 0.192 -0.80 ± 0.24 1.42 ± 0.27 1.30 ± 0.28 / 
SR other herbs§ 118 0.578 1.29 ± 0.14 -0.04 ± 0.17 -0.71 ± 0.19 0.72 ± 0.09 
Shannon§ 118 0.413 1.31 ± 0.11 0.30 ± 0.14 0.10 ± 0.14 0.26 ± 0.08 
Cover all§ % 118 0.482 3.43 ± 2.24 7.86 ± 3.08 -0.95 ± 3.23 10.13 ± 1.81 
Cover trees§ % 118 0.603 0.077 ± 0.56 1.76 ± 0.73 0.65 ± 0.77 0.90 ± 0.32 
Cover shrubs % 118 0.053 0.082 ± 0.60 2.02 ± 0.82 2.27 ± 0.87 / 
Cover 

graminoids§  
% 118 0.346 1.08 ± 0.83 0.54 ± 1.04 -1.76 ± 1.09 2.70 ± 0.67 

Cover ferns§ % 118 0.527 0.24 ± 0.18 / / 0.32 ± 0.18 
Cover vines§ % 118 0.696 0.092 ± 0.33 1.13 ± 0.44 0.38 ± 0.47 / 
Cover other 

herbs§ 
% 118 0.346 1.73 ± 1.53 2.50 ± 1.89 -2.00 ± 1.99 / 

Total biomass§ (g/m²) 118 0.493 3.19 ± 2.84 8.38 ± 3.66 1.10 ± 3.84 5.04 ± 1.90 
Herb biomass§ (g/m²) 118 0.516 0.68 ± 1.21 3.35 ± 1.55 -0.45 ± 1.62 5.38 ± 0.87 
Woody biomass§ (g/m²) 118 0.483 4.70 ± 1.13 / / / 
Inter-site diss. L § 118 0.382 0.70 ± 0.02 -0.06 ± 0.02 -0.07 ± 0.02 0.05 ± 0.01 
Inter-site diss. BC § 118 0.417 0.92± 0.01 -0.05 ± 0.01 -0.04 ± 0.01 0.02 ± 0.01 
Intra-site diss. L 59 NA 0.44 ± 0.02 / / NA 
Intra-site diss. BC 59 NA 0.77± 0.03 / / NA 
Tax.distinctness + 118 0.088 69.58 ± 0.83 -2.27 ± 0.99 -3.45 ± 0.99 -1.39 ±0.82 
C§ % 118 0.688 3.57 ± 0.62 3.43 ± 0.80 2.63 ± 0.84 4.85 ± 0.43 
N§ % 118 0.66 0.42 ± 0.02 / / 0.08 ± 0.02 
C/N 118 0.717 10.45 ± 0.50 3.97 ± 0.59 4.44 ± 0.62 7.62 ± 0.49 
pH§ 118 0.841 5.36 ± 0.17 0.80 ± 0.23 0.63 ± 0.25 0.22 ± 0.06 
PAR                   μmol m2/s 118 0.05 20.75 ± 6.40 / / 24.32 ± 9.06 
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Discussion 

In all three ecosystems examined, abiotic factors and understorey vegetation in the 

charcoal kiln platforms resulted considerably different from the adjacent forest 

environment, showing that the effects of this traditional activity persist over a time 

scale of decades or even centuries.  

Soil factors and light  

A first effect was the increased total C content in the soil, probably caused by the 

abundance of charcoal fragments to a depth of 15 cm at least. These were still 

abundant in our samples, indicating slow rates of incorporation and transportation of 

charcoal C into the soil matrix. This result is supported by evidence from a slash-and-

burn experimental study in a temperate forest (Eckmeier et al. 2007) and by the 

recent finding that total C in centuries old kiln sites in Alpine forests was three times 

higher than in the adjacent stands (Criscuoli et al. 2014). The condensed aromatic 

structure of charcoal or black carbon allows fragments and particles to persist in soils 

and other sedimentary records over millennial time-scales (Cheng et al. 2008; 

Lehmann & Joseph 2009). Very old charcoal samples (>8000 years BP) originating 

from wildfires have been found almost unaltered in forest soils (Marguerie & Hunot 

2007), and anthropogenic deposits of charcoal dating back to the Neolithic period 

have been documented in Germany and Italy (Schmid et al. 2002; Cremaschi et al. 

2006, Ludemann 2010). Such long-term stability explains why biochar applications in 

agricultural systems are increasingly considered a promising practice for mitigating 

the impact of climate change by carbon sequestration (Vaccari et al. 2011; Nelissen 

et al. 2014). 

The higher C content resulted in considerably higher C/N ratio in the charcoal kiln 

platforms, but the significantly higher pH values and content of total N suggest the 

lack of detrimental effects for plant growth such as acidification and nutrient 

shortage. Our results are in line with findings in German beech forests, where the soil 

of old kiln platforms had higher pH values and supported understorey species with 

higher nutrient requirements than in the adjacent stands (Wittig et al. 1999). An 

explanatory hypothesis is that the C fraction deriving from charcoal is mostly 

biologically inert, due to the refractory structure of the latter and its poor 

accessibility when physically enveloped by soil particles (Brodowski et al. 2006). 

Increased nitrogen availability and C/N ratio without significant alteration of soil pH 

and other soil chemical properties has also recently been found in biochar field 

experiments (Nelissen et al. 2012, 2014), and nitrogen availability was also improved 

by biochar addition (DeLuca et al. 2009; Nelissen et al. 2012).  
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On the whole, light availability was positively affected by the presence of charcoal 

kilns, mainly due to the lack of adult trees and tall shrubs rooted inside the platforms 

(Carrari et al., b, ms. submitted). Difference was larger in the oak forest due to the 

relatively high amount of light transmitted by the crowns of the adult adjacent trees, 

as typical for the deciduous oak species (Bréda 2003). In the two other forest types, 

differences were smaller due to the stronger shading effect of the beech and the 

holm oak, whose crowns expand laterally and reduce the canopy discontinuity over 

the kiln platforms.  

Regardless of these differences, increased light availability in especially the oak 

forest, contributes to an additional edge/gap effect, which is known to affect 

understorey species richness and composition in most temperate woodlands (Murcia 

1995; Gálhidy et al. 2005; Gonzalez et al. 2010). 

Diversity and composition 

Decreased soil acidity, increased nutrient availability and higher light intensity are 

assumed to be favourable factors for many European forest herb species (Chytrý et 

al. 2003; Ewald 2008; Axmanová et al. 2011; Verstraeten et al. 2013), which may 

explain the higher floristic richness (γ-diversity) in the charcoal kiln habitat. Increased 

diversity also emerged at the plot-scale, where species richness and Shannon values 

were higher than in the adjacent stands. Although mean plot-scale alpha-diversity of 

the forest may have been here underestimated due to the small size of the control 

plots, this potential problem is reduced by the relatively high number of the plots and 

the relatively homogeneous distribution of the understory flora in the examined 

forests.  

The peculiar environmental conditions in terms of light and soil also affected the 

understorey composition on the kiln platforms. Differences between KP and CP are 

likely due to transient heliophilic or intermediate shade-tolerant species originating 

from seed banks or seed rain, which can establish also thanks to the reduced canopy 

cover as in the case of gaps of sufficient size (Schumann et al. 2003; Decocq et al. 

2004). Kiln plots induced compositional variations of similar magnitude in the three 

forest types, implying an equally positive effect on the richness of the total species 

pools. In addition, floristic differences among KP were distinctly larger than those 

among CP, showing the significant contribution of these habitats to the understorey 

species richness at the forest-scale level. Reasons for this floristic variability among 

kiln platforms are likely associated with various stochastic factors leading to the 

inclusion of infrequent and non-specialist forest species, similarly to the case of 

edges in fragmented forest landscapes (Harper et al. 2005). The combined effects of 

local abiotic factors and competition act as a filter on such rich species pools and 
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results in variable understorey assemblages at the plot-level, as predicted by the 

resource heterogeneity hypothesis (Ricklefs 1977; Huston 1979). Lower understorey 

heterogeneity occurs instead under the closed canopy of the stands adjacent to the 

kilns, mainly due to the smaller species pools upon which this “filter” mechanism can 

act. 

Indicator species of the kiln habitat were only found for the species-rich oak forests, 

representing four of the six growth forms considered here (all except ferns and 

vines). The relatively high Ellenberg mean value for light of these species (6.5) is in 

line with the increased mean PAR values measured in KP (Appendix S2) and the early-

successional character of some of them, such as the fast-growing shrub Cytisus 

scoparius and the pioneer tree Fraxinus ornus. On the other hand, the occurrence of 

ancient forest species (sensu Hermy et al. 1999) such as Brachypodium sylvaticum 

and Viola reichenbachiana shows that the charcoal kiln habitat can provide a suitable 

niche to also less heliophilic plants with relatively low colonization ability. The 

geophyte Anemone nemorosa resulted positively associated with CP in beech forest, 

implying a decreased frequency and abundance in the kilns, in line with evidence 

from charcoal sites in beech forests of Germany (Wittig et al. 1999). Although this 

ancient forest species is ecologically plastic and its responses to drivers change are 

difficult to predict (Baeten et al. 2010), the modified topsoil environment may be a 

reason for its reduced presence on kiln platforms since the superficial rhizome 

system is sensitive to various forms of chemical and physical alteration of the growth 

substrate (Shirreffs 1985; Philipp & Petersen 2007). 

Kiln understorey was affected also in terms of growth-forms composition. The 

canopy-gap effect induced by KP can explain the increased total proportion of 

graminoids, in line with existing evidence that these plants usually benefit from 

higher light availability (Decocq et al. 2004; Verstraeten et al. 2013). On the other 

hand, the parallel increase of herbs, among which some shade-tolerant species, and 

the non-increase of ferns suggest that soil factors specific to the kiln platforms are 

likely involved in the changes of understorey growth-forms composition. Similar 

evidence was found in German beech forests, where the shift from the graminoid-

dominated understorey of the Luzulo-Fagetum to the herb-dominated community of 

the Galio odorati-Fagetum on the kiln platforms was due to soil factors rather than to 

increased light availability (Wittig et al. 1999).  

Enhanced floristic diversity in KP was paralleled by only a very minor negative effect 

on the taxonomic distinctness of the understorey assemblage. This appears 

noteworthy, as anthropogenic disturbance and pollution often have a strong 

negative impact on the taxonomic “spread” of biotic communities in different 
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ecosystems (Stark et al. 1998; Clarke & Warwick 1998). In only one KP the taxonomic 

distinctness was below the 95% confidence limit of expected values, showing that 

charcoal accumulation in the soil does not lead to the exclusion or substantial 

reduction of the number and relative abundance of the taxonomic groups in the 

understorey community. 

Productivity 

Understory productivity was enhanced in KP, as consistently shown by ground cover 

and total and herb biomass values. Hence, the long-term presence of charcoal in the 

soil does not have detrimental effects on growth and development of the herb-layer, 

including young seedlings of woody species. Our results from forest ecosystems are 

the first ones providing circumstantial support to a number of biochar experimental 

studies in European agricultural systems, where it was demonstrated that even high 

charcoal application rates can promote crop yields (Baronti et al. 2010; Sohi et al. 

2010; Vaccari et al. 2011). Increased water availability and improved structure and 

aggregate formation in the soil (Lehmann & Joseph 2009), reduced nutrient leaching 

(Yanai et al. 2007) and nutrient availability (Rondon et al. 2007) are considered key 

factors accounting for such beneficial effects on plant growth.  

Different factors can be involved in the enhanced understory productivity on the 

kilns, among which light availability is likely an important one. The role of light for 

biomass production in the herb-layer is well documented, and this in turn, has 

positive effects on its diversity (Chytrý et al. 2003; Axmanová et al. 2011). Working in 

various types of central and eastern European deciduous forests, Mölder (2008) and 

Axmanová et al. (2011) showed that herb-layer species richness monotonically 

increases with productivity.  

Enhanced productivity on KP may also be associated with the flat ground morphology 

of these terraces, which is likely to favour the concentration of water and nutrients 

especially after rainy events. Although further studies would be helpful to better 

understand the influence of slope inclination on the understorey, available evidence 

does not support any effect on the biomass of the herb-layer in temperate forests 

(e.g. Axmanová et al. 2011; Siccama et al. 1970). 

The lack of differences between KP and CP in the woody biomass is apparently not in 

line with the higher species richness and cover of tree species on the kiln platforms, 

but is probably explained by the occurrence of only 1-2 years old seedlings whose 

above-ground parts were included in the herb biomass. 
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Conclusions  

Based on our findings, abandoned charcoal kiln sites represent stable anthropogenic 

microhabitats that can increase the diversity, productivity and compositional 

variability of different types of forest understories, via persistent changes in local soil 

and light conditions. Because of these long-lasting effects and the  multiple potential 

applications in environmental history and related fields, including soil carbon ecology 

(Montanari et al. 2000; Ludemann 2004; Ludemann et al. 2003, 2011, 2012; Schoch 

2011; Paysen 2011; Criscuoli et al. 2014), specific conservation actions should be 

considered in the forest management policy of at least protected areas. Together 

with the impact of wild ungulates, silvicultural practices such as forest track 

construction, mechanized wood extraction etc. (e.g. Ludemann 2011), or recreational 

use by local people or eco-tourists are currently the main causes of severe damage or 

even destruction of these neglected sites. Hence, their identification and inventory 

could be a first step for conservation programs in protected areas, allowing, for 

example, to design and/or modify existing tracks or footpaths in a way to leave the 

platforms unaltered. In addition, increasing the awareness of their historical 

significance and ecological role may lead to specific rules in regional laws, which 

could provide another effective tool to conserve the legacy of a vanished form of 

forest use even outside protected areas.  
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Abstract 

Charcoal production activity determined a strong legacy effect at the landscape level, 

particularly in central Italy, with a very high density of kiln sites (i.e. charcoal hearths) 

in woodlands. In previous studies we demonstrated that that they are similar to 

micro ecological islands, characterized by a well developed herbaceous community, 

but without shrub or overstorey layer. In this study, we used a common garden 

experiment in order to assess the influence of the charcoal-enriched soil of the old 

kiln sites on the early life stages of major forest trees (Quercus ilex, Q. cerris and 

Fagus sylvatica), especially seed germination, seedling growth and mortality. 

Moreover in order to monitor their vitality we measured Chlorophyll a fluorescence 

monthly. At the end of the experiment root and above ground biomass were also 

measured. On charcoal soil germination was higher only for Q. ilex. The other two 

species preferred control, especially beech. However, at the end of the experiment 

emerged a clear enhanced survivability of seedlings on charcoal, especially Q. ilex. 

Seasonally, the seedlings resulted taller on charcoal soil, but differences were 

significant only for Q. cerris. The root/shoot ratio was always higher on charcoal soil, 

but regarding biomass no significant differences were recorded, neither considering 

the total, or the root or the above ground biomass. The chlorophyll a fluorescence 

index Fv/Fm showed specie-specific trends, the evergreen species was again positively 

affected by charcoal, while the two deciduous species negatively. Considering the 

whole experiment, Q. ilex resulted positively affected by charcoal, while the two 

deciduous species presented some contrasting results. The reasons for the reduction 

in photosynthetic efficiency in the seedlings on charcoal soil should be further 

investigated. On the other hand, it must be highlighted that this experimental result 

appears somewhat contradictory with the lack of forest recolonization on kiln sites in 

forests, leading to the assumption that factors other than soil chemistry play a role in 

the regeneration failure of even this stress-tolerant tree. These may include the 

impact of wild herbivores, the lack of formation of mycorrhizae or even the altered 

“natural” structure of the soil in the charcoal sites. 
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Introduction 

Charcoal kiln sites are widespread all over Europe (e.g. Deforce et al., 2012; Hardy 

and Dufey, 2015a; Ludemann et al., 2004; Raab et al., 2013; Risbøl et al., 2013), as 

well in central Italy (Carrari et al., c, ms. in prep.). It is well documented that they are 

useful spots for archaeological studies, providing charred remains of wood that can 

be used to reconstruct the past vegetation and the history of forest exploitation 

(Deforce et al., 2012; Ludemann, 2000; Nelle, 2003). Recently, it was also found that 

charcoal kiln sites (known also as charcoal hearths) have important legacy effects on 

vegetation and soil conditions (Carrari et al., c, ms. in prep; Criscuoli et al., 2014; 

Wittig et al., 1999; Mikan and Abrams, 1995). The understorey vegetation of 

sclerophyll, oak and beech forests of the Mediterranean area resulted positively 

affected by the centennial charcoal addition in soil (Carrari et al., a, ms. accepted). On 

the abandoned kiln sites, this important component of forest ecosystems was in fact 

characterized by a higher level of α, β and γ diversity and by a higher production of 

biomass (Carrari et al., a, ms. accepted).  

The positive effect of charcoal on this component of the forest ecosystem is 

supported by numerous studies on the consequences of biochar addition in 

agricultural systems. Most of these experiments indicated positive effects of wood 

charcoal on crop yields via improved soil chemical and physical characteristics 

(Baronti et al., 2010; Sohi et al., 2010; Vaccari et al., 2011). In particular, biochar 

treatments increased water availability, improved structure and formation of soil 

aggregates (Lehmann and Joseph, 2009), reduced nutrient leaching (Yanai et al., 

2007) and enhanced nitrogen availability (DeLuca, 2009; Nelissen et al., 2012; 

Rondon et al., 2007). Besides these profitable effects on plant production, the other 

important factor in favour of biochar is due to the long-term stability of charcoal. In 

fact, this practice allows sequestration of even large amounts of carbon from the 

atmosphere, thus mitigating the impact of climate change due to the increase of CO2 

associated with the use of fossil fuels (Nelissen et al., 2015; Vaccari et al., 2011). 

On the other hand, a inhibiting mechanism on forest recolonization emerged from 

the investigation of abandoned kiln sites in North American forests with oaks and 

beech (Mikan and Abrams, 1996, 1995; Young et al., 1996), as well in sclerophyll, oak 

and beech forests of central Italy (Carrari et al., b, ms. submitted). A strong negative 

effect on the regeneration and establishment of numerous tree species emerged 

from these investigations leading to a much delayed or possibly even blocked forest 

dynamics in these sites (Carrari et al., b, ms. submitted). Most of the hypotheses 

suggested to explain these effects are related with the different soil conditions in kiln 

sites compared with those in the adjacent forest. These include the shortage of P and 
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Mn (Mikan and Abrams, 1996), a surplus of pH, Ca, K, Na and Mg (Mikan and Abrams, 

1996, 1995; Young et al., 1996) or the reduced formation of mycorrhiza (Carrari et al., 

b, ms. submitted). 

In addition, other factors have been considered, such as the sterilization of soil 

caused by the repeated combustions for charcoal production. This may lead to the 

death of buried seeds, incoming seeds and remaining vegetative structures (Mikan 

and Abrams, 1995). Finally, the high population density of ungulates, when present, 

is also a potential negative factor since these animals use the charcoal platforms as 

preferential sites for grazing (Mikan and Abrams, 1995). 

Considering the increasing importance of the biochar practice and its recent 

consideration for also forest restoration, a first important step is to understand 

whether the negative effect of charcoal kiln sites on forest regeneration is directly 

associated with the accumulation of abundant charcoal remains in the soil or it is 

due to some other external stochastic factor. As stressed by Sohi et al. (2010), in the 

absence of long-term data (other than those from the Terra Preta in Brasil), 

development of predictive certainty for the longevity and durability of plant yield 

and other effects, particularly in relation to specific crop and soil types, is a key issue. 

Predictability and certainty are required to assign a financial value to the agronomic 

value of biochar but are also essential to evaluate the environmental sustainability of 

such practice (Sohi et al., 2010).  

Hence, we used an experimental approach to analyse the initial life stages of three 

major European and Mediterranean forest trees grown on the charcoal-enriched soil 

of kiln sites abandoned ca. 60 years ago. Parameters analysed were germination rate, 

growth rate, biomass production and mortality. Moreover we used Chlorophyll a 

fluorescence transients, to investigate the response of seedlings in terms of 

photosynthetic efficiency on charcoal soil. 

Materials and methods 

STUDY SPECIES 

We selected the most representative tree species of the three main forest types 

historically used in Tuscany for charcoal production: 1) the holm oak (Quercus ilex-QI) 

for evergreen sclerophyll forests; 2) the turkey oak (Q. cerris-QC) for thermophilous 

mixed oak forests; 3) the beech (Fagus sylvatica-FS) for montane forests. These 

species were dominant and the most frequent in the forest stands adjacent to the 

kiln sites analysed in a previous study (Carrari et al., c, ms. in prep.).For each species, 

seeds were collected in autumn 2013 under a few mother trees growing in the close 

proximity of one or two charcoal sites in the respective forest type.  
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COMMON GARDEN SET-UP 

In the same area of seed sampling, a representative and well preserved charcoal kiln 

platform was selected in each forest type for the collection of soil. After removal of 

the superficial litter, this was taken with a shovel at a depth of 1-15 cm (kiln soil). The 

“control soil” was collected with the same procedure in a single spot adjacent to the 

sampled kiln site excluding downhill locations to avoid potential charcoal 

“contamination” by runoff. The two soil types were analysed for C, N, S, and pH. We 

then filled 450 pots (15x15x20 cm) with the two types of soil (75 with kiln site and 

control soil for each species, from the three respective forest types). All the pots 

were placed in the open in a homogeneous area located at 40 m a.s.l., characterized 

by a humid temperate climate, with 14.6° C of mean annual temperature and 872.6 

mm rainfall (source: Peretola meteorological station). Such conditions represent the 

mean climate condition for the three forest type. Partial shading was provided to the 

common garden by the canopy of cultivated ash trees (Fraxinus angustifolia). 

For each species, 450 seeds in good conditions were sown, placing three seeds per 

pot in a regular triangle-like design to maximize their distance. The seeds of the 

beech, which are characterized by an intermediate physiological dormancy (Baskin 

and Baskin, 2001), were sown on 25/10/2013, after 20 days of stratification at 4 C°, 

while the two oak species were sown without chilling (Turkey oak on 14/11/2013 and 

Holm oak on 21/11/2013). Seeds were watered after sowing, and then received only 

ambient rainfall, except for three emergency waterings on 6th of June, 4th of July 2014 

and on 15th of July 2015. 

 

Figure 1 A) common garden experiment with the three species Quercus ilex, Q. cerris and F. sylvatica on 

the two soil types B) dark-adaptation with leaf-clip of a seedling of F. sylvatica for Chlorophyll a 

fluorescence transients. 

DATA COLLECTION  
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The monitoring of germination, growth rate, photosynthetic efficiency and mortality 

started in April 2014 and continued until August 2015, when biomass collection was 

done for a random subsample of plants.  

The germination success of the three species was estimated as the percentage of 

seedlings established at the end of June 2014. The very few seeds germinated after 

this date were not considered for the other measurements. Similarly, mortality was 

estimated as the percentage of seedlings that were dead by the end of the first 

growing season (November 2014, hereafter indicated as M14) and of the whole 

experiment (August 2015, indicated as M15). The height of each plant was measured 

monthly from May 2014 until July 2015, together with Chlorophyll a fluorescence 

(ChlF) transients. The analysis of the fast induction curve of ChlF from PS II has been 

used to study stress physiology of trees (Pflug and Brüggemann, 2012). Such method 

is useful to evaluate rapidly the responses to high or low temperature, drought, lack 

of nutrients, salinity, pollution, etc. in forest or in controlled experiments (Bussotti et 

al., 2012). For the two deciduous species (QC and FS) fluorescence was not measured 

during the winter months (December- 2014-April 2015).  

ChlF was measured on a random sample of 20 seedlings per species on the two soil 

types, using a direct HandyPEA fluorimeter (Plant Efficiency Analyzer, Hansatech 

Instruments Ltd., Petney, Norfolk, UK) on 2 or 3 leaves (2 before June 2014) after 30 

min of sample dark-adaptation with leaf-clips. The measure was repeated each 

month on the same leaves during the same year. Leaves were changed only when 

apparently damaged or not healthy for various reasons.  

The rising fluorescence was induced by 1 s pulses of red light (650 nm, 3500 μmol m-2 

s-1) and recorded for that time, starting from 50 μs after the onset of illumination, 

with 12 bit resolution. The fluorescence induction curve  from F0 to Fm is called 

“fluorescence transient” (OJIP) and its analysis is formalized in the JIP-test (Strasser 

et al., 2000, 2004). Plotted on a logarithmic time scale, the fluorescence transients 

show a polyphasic shape. “O” refers to the initial fluorescence level, K (300 μs), J (2 to 

3 ms) and I (30 ms) are intermediate levels of the fluorescence emission, and P (500-

800 ms - 1s) is the peak level of fluorescence. The latter indicates the highest, or 

maximal, fluorescence intensity (FM) when saturating light is applied to the leaf (fig. 

2).  

The JIP-test defines the maximal (subscript “0”) energy fluxes in the energy cascade 

for the events Absorption (ABS), Trapping (TR0), Electron Transport (ET0), Dissipation 

(DI0), and Reduction of End acceptors of PSI (RE0). 
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Figure 2 Examples of ChlF “OJIP” transient measurements, comparing leaves of seedlings 

grown on charcoal soil and control soil of QI (a) QC (b) FS (c) in October 2014. O-J phase 

refers to the reduction of the primary acceptor of PSII (QA); J-I phase refers to the 

reduction of the pool of plastoquinones; I-P phase refers to the reduction of final electron 

acceptors (NADP and ferredoxin). 
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We calculated monthly the following parameters:  

- FV/Fm = [Fm− F0]/Fm = ϕPo = TR0/ABS = maximum quantum yield of PSII 

primary photochemistry. Fv/Fm expresses the probability that an absorbed 

photon will be trapped by the PSII reaction center; 

- ΨEo, the probability of an electron to reduce the primary quinone acceptor 

and to move into the electron transport chain beyond PSII; 

- ΨRo (1-VI), the efficiency of a trapped electron to move into the electron 

transport chain, from QA− to the PSI end electron acceptors This is related to 

the reduction of PSI end-electron acceptors, such as the reduction of NADP; 

- PIABS the performance indices (PIs) measure the potential energy 

conservation of photons in the intersystem between PSII and PSI; 

- PITOT the potential energy conservation from photons absorbed by PSII to the 

reduction flux of PSI end acceptors.  

At the end of the experiment (beginning of August 2015), 35 seedlings were 

randomly collected for biomass measurements. After their complete extraction from 

the pots, the roots were thoroughly washed with water, and then cut at the stem 

junction in order to separate the aboveground biomass. Each part of each seedling 

was oven-dried at 70°C for 48 hours and then weighed individually.  

The germination rate was considered as the percentage of the seedlings born by the 

end of spring 2014. For each species and soil type, growth and fluorescence 

parameters were averaged to obtain a single measure for six time intervals:  

1. spring 2014: May 

2. summer 2014: June- September 

3. autumn 2014: October-November 

4. winter 2014-2015: December-April  

5. spring 2015: May 

6. summer 2015: June-July 

Height, FV/FM, biomass and fluorescence index were tested for normal distribution 

using the Lilliefors test, and the homogeneity of variance was tested with the 

Bartlett's test.  

Differences between soil types were tested by the t test or by the Mann Whitney U 

test, according to normality test. The other fluorescence parameters are not 

https://en.wikipedia.org/wiki/Bartlett's_test
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considered in the present analysis, but mean values are reported in Appendix 1. All 

analyses were performed in R 3.1.2 (R core team, 2014). 

Results 

Germination success was lowest for QI on control soil and highest for FS on control 

soil (tab.1). 

Table 1 Percentage of germinated seeds (germination rate), of seedlings that were dead by autumn 

2014 (mortality 2014), and at the end of the experiment (mortality 2015) for the three species on the 

two soil types. 

 Q.ilex Q. cerris F. sylvatica 

 charcoal control charcoal control charcoal control 

Germination rate (%) 56.00 52.89 83.56 85.78 56.89 73.33 

Mortality 2014 (%) 0.00 1.33 1.78 0.00 2.22 4.89 

Mortality 2015 (%) 1.33 13.78 10.22 17.78 6.22 7.11 

Survived (%) 51.56 51.56 80.44 82.22 52.00 67.11 

 

The largest difference was observed for FS, where germination on charcoal soil was 

16% lower than in the control soil (tab.1; fig. 3). Seeds of QC also had a lower 

germination rate on charcoal soil, but here the difference with control was only 2.3% 

(tab.1; fig. 3). The highest germination rate on charcoal soil was recorded for QI 

(56%, tab. 1), where the percentage of non- germinated seeds was 3.3% lower than 

in the control soil (fig. 3).  

The lowest total mortality was recorded for QI and the highest for FS on control soil 

(1.3% and 6.2% respectively; tab. 1). At the end of the summer 2014 this species 

presented no mortality on charcoal soil vs 1.3% on control (tab.1) the same trend 

was recorded for FS where mortality was 2.7% lower on charcoal then on control 

(fig.3). QC presented a different behaviour with no mortality in 2014 on control and 

1.78% on charcoal (tab. 1).  

At the end of the experiment (2015) the mortality was always lower for seedlings 

grown on charcoal soil: we recorded differences of 12.5%, 7.6% and 1% respectively 

for QI, QC and FS (fig.3). 
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Figure 3 Effect of charcoal soil on seed germination (G) and 

seedling mortality at the end of the first (M14) and second 

(M15) summer. Bars indicate the percentage differences 

with respect to control soil (assumed as zero).  

 

Only minor differences between the two soil types were found regarding the growth 

of the three species, especially QC. During all 2014 seasons, seedlings of this species 

were significant taller on charcoal soil (p-values in Appendix 1), but this difference 

disappeared in 2015 (fig. 4b). The QI seedlings grown on charcoal soil were 

significantly higher compared to those on control soil in spring 2014, and this 

difference was maintained until the end of the experiment, although without 

significant differences in 2015 (fig. 4a). In the case of FS plants on control soil were 

generally smaller, but never significantly (fig. 4c). Mean height values are reported in 

Appendix 1. 
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Figure 4 Comparison of the seasonal growth of seedlings of 

Quercus ilex (a) Q. cerris (b) and F. sylvatica (c) on the two 

different soil types. 
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On the contrary, no significant differences could be found in terms of total, root or 

above-ground biomass. The total biomass of single plants was largely variable, with 

weight values ranging from 0.02 g to 6.12 g on kiln soil and from 0.13 g to 5.75 g on 

control soil. Total biomass was generally higher in QI and lower in FS (fig. 5). The 

larger difference between the two treatments was found in FS, where the above-

ground and root biomass produced on kiln soil was 22% and 24% higher than on 

control, respectively (fig. 5). In QC, despite the lack of significant differences, the root 

biomass on kiln soil was 13% higher than on control, while the above-ground biomass 

was more abundant on control soil, resulting in a very minor difference in terms of 

total biomass (fig. 5). QI showed almost no differences in terms of root biomass, 

while the above-ground biomass was 13.2% higher on control soil (fig. 5). 

 

Figure 5 Total biomass values (mean ± sd) per species and soil type. The contribute of 

above-ground and root system are shown by different colours. The ratio root/above 

ground biomass is reported on each bar. 

The Fv/Fm index presented significant differences for all three species. In QI this was 

generally higher for seedlings grown on kiln soil, and differences were significant in 

spring ’14, summer ’14, autumn ’14 and summer ’15; differences were instead not 

significant in winter ’14 and spring ’15. The response was reversed in QC, which 

presented a significant higher efficiency in seedlings grown on control soil; only in 

spring ’14 the index was higher on kiln soil. In spring ’14 and in summer ’15, FS had a 

higher value of Fv/Fm on control soil, while in summer ’14 photosynthetic efficiency 

was enhanced on charcoal soil. 
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Figure 6 Effect of charcoal soil on the ChlF index Fv/Fm in seedlings of the three 

species. The index compares the photosynthetic efficiency in spring ’14 (sp14), 

summer ’14 (su14), autumn ’14 (au14), winter (lacking for the deciduous Q. cerris 

and F. sylvatica), spring ’15 (sp15) and summer ’15 (su15). Bars indicate the 

absolute differences with respect to control soil (assumed as zero). * = p < 0.05; 

** = p < 0.001. 

 

Discussion and conclusions 

The three species considered in the present study were variously influenced by 

charoal soil for the different parameters analysed. 

Germination responses were not uniform: while no clear differences were found for 

QI and QC, FS clearly preferred the control soil, where seed germination was ca. 17% 

higher than in the charcoal soil. This result is in line with our previous field study 

(Carrari et al. b, ms. submitted), where the beech seedlings had a lower frequency on 

kiln sites compared with the adjacent forest. On the contrary, the two oaks tended to 

prefer the kiln sites, which is consistent with the lack of a negative effect of charcoal 

soil on the seed germination of these species (Carrari et al., b, ms. submitted). 

Concerning QI, our results are in line with evidence from a recent experimental study 
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(Reyes et al., 2015), which evidenced the insensitivity of QI to soils added with ash 

and black carbon, such as those resulting after wildfires. 

Looking at mortality, the proportion of seedlings died in the second year of the 

experiment was generally higher than in the first year, probably due to the stronger 

and longer drought of summer 2015 (especially in July; data from Lamma Toscana, 

http://www.lamma.rete.toscana.it). The drought stress of the second year is 

probably associated with the larger differences of mortality rate on the two soil 

types. Again, the effect of charcoal soil on QI was mostly positive: at the end of 

summer 2015 (second year of the experiment) the seedlings of this species suffered a 

mortality rate that was 12.5% higher on control soil. The same trend was observed in 

the two deciduous trees QC and FS, albeit with considerably smaller differences 

(7.6% and 0.8% respectively). These results seem to support evidence from 

observations on the Amazonian Anthrosol (Lehmann et al., 2003) and biochar 

experiments, where it was found that charcoal addition to the soil increases water 

retention capacity and structural stability (Baronti et al., 2010; Glaser et al., 2002; 

Yanai et al., 2007). The possibly positive effects of charcoal on the survival of 

seedlings of forest trees observed in this study should be further tested in different 

conditions and in wider a range of species, since it may have important implications 

for the management of forests and tree plantations under the predicted climate 

change. 

Looking at growth rates, it is noteworthy that the effect of charcoal soil was mostly 

positive. In fact, plants of the three species grown on this soil were usually taller than 

those grown on control soil; differences were especially marked for the two 

deciduous species (QC and FS). On the other hand, the total biomass data did not 

confirm these growth results. Despite the above height differences, weight of the 

total biomass was not significantly higher on the kiln soil, probably due to a high 

variation between individual plants. Looking closer at these results, however, it 

emerges that the root/shoot ratio was consistently higher for the seedlings grown on 

kiln soil, indicating a stronger development of the root systems in these plants. This is 

surprisingly in line with results of a similar experiment on two oak species by Mikan 

and Abrams (1996), suggesting that such an increased root development may be 

associated with a stress factor, such as physiological drought. 

Chlorophyll a fluorescence measurements highlighted species-specific responses in 

the three taxa. Based on the index Fv/Fm, QI was characterized by a greater 

photosynthetic efficiency on the kiln site soil, while QC and FS were mainly negatively 

influenced. This may be due to various reasons. A decrease of the Fv/Fm index has 

been observed for species grown on soils with shortage of nutrients (Bussotti et al., 
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2012), which may appear consistent with the hypothesis of decreased availability of P 

reported above (Young et al., 1996). Unfortunately, little is known about the effects 

of different levels of single nutrients on photosynthesis, which are likely to differ in 

different species. In our case, the Fv/Fm parameter suggests a divergent response to 

kiln soil in QI and the pair QC-FS, which is likely associated with the contrasting 

functional traits, ecology and leaf phenology of these species. Indeed, it is well 

documented that evergreen and deciduous species have widely diverging adaptive 

traits at morphological, anatomical and physiological level. In addition, they are 

characterized by a different edaphic ecology: while QI shows a broad tolerance in 

terms of pH and nutrients, QC avoids too alkaline soils and FS generally prefers 

substrates with high nutrient contents (Pignatti, 2005). Summing up, overall response 

to charcoal kiln soil of the two latter deciduous trees was mostly negative, but 

whether this depends on the presence of the charcoal itself or to some other factors 

linked to the repeated combustions remains unclear. The reasons for the reduction in 

photosynthetic efficiency in the seedlings on charcoal soil should be further 

investigated. In the evergreen oak QI, influence was less pronounced and partly 

positive, which highlights the more resilient nature of this drought-tolerant 

Mediterranean tree in the face of several types of environmental stress. On the other 

hand, it must be highlighted that this experimental result appears somewhat 

contradictory with evidence from observational studies (Carrari et al., a, ms. 

accepted; b, ms. submitted), which showed the lack of young trees of QI in the 

“established regeneration” layer. This leads to the assumption that factors other than 

soil chemistry play a role in the regeneration failure of even this stress-tolerant tree. 

These may include the impact of wild herbivores, the lack of formation of 

mycorrhizae or even the altered “natural” structure of the soil in the charcoal sites, 

all aspects that could not be tested in our 20-months experiment. 
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Abstract 

Production of wood charcoal is one of the earliest forms of forest use, existing since 

millennia in the Mediterranean countries and only vanished in the last century. The 

legacy of this activity are thousands of abandoned charcoal kiln platforms, in which 

soil and vegetation are deeply affected. Understanding the consequences of such 

effects at the forest-level demands a better knowledge of the density, distribution 

and morphology of these sites, as well as the influence of forest type and local 

geomorphology on them. We examined these aspects using field surveys and the 

Airborne Laser Scanning (ALS) approach in 1-ha sample quadrats, spread along an 

altitudinal gradient and located in three major forest types of Central Italy, namely 

evergreen sclerophyllous forest, oak-dominated thermophilous deciduous forest and 

montane beech forest. Density of kiln platforms was lower in oak-dominated forests, 

but here their overall surface proportion was higher due to their larger size. In beech 

forests, kiln platforms were more numerous but smaller. Density was intermediate in 

the sclerophyll forest, where the overall proportion of surface was lowest. The 

charcoal-enriched soil layer was invariably single and continuous (e.g. not interrupted 

by mineral layers). Thickness of this layer was not affected by forest type, but 

increased with slope inclination. Several features of our kiln platforms such as density 

and shape were distinct from others in Central and Northern Europe, probably 

reflecting different forest histories and purposes for which they were built. Using 

ALS, we could detect all kiln platforms in beech forest on steep slopes and 

approximately 75% of the kilns in oak forests on hilly terrain. Hence, all further 

ecologically- or archaeologically-oriented study in our region at the landscape level 

will benefit from the use of hillshade and/or slope ALS images.  
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Introduction 

Based on artworks of ca. 38.000 years ago found in the caves of southern France, it 

appears that wood charcoal has been the first synthetic material produced by man 

(Antal, 2003) and one of the main sources of energy from the Iron Age to the 19th 

century (Blondel, 2006). As such, its production is one of the oldest forms of forest 

use in the temperate regions, and was continued for millennia to satisfy the needs of 

the human populations in most European countries. Production of charcoal is based 

on the pyrolysis of wood at low temperature (ca. 440 °C) without oxygen, and was 

realized in special wood kilns covered by a mixture of soil and plant material 

(Ludemann, 2003; Powell, 2008; Deforce et al., 2012). In hill and mountains areas, 

kilns were usually prepared along footpaths in sites where it was possible to cut the 

stools in the adjacent stands and concentrate the wood in small, terrace-like 

platforms prepared for this purpose. In the Mediterranean region, various evergreen 

and deciduous tree species were used for charcoal production, such as oaks (Quercus 

cerris, Q. pubescens and others, except for Q. suber), ash (Fraxinus ornus), hop-

hornbeam (Ostrya carpinifolia) and various secondary woody species (Sorbus 

torminalis) that occur especially in thermophilous deciduous forests, such as the 

wildservice tree (Sorbus torminalis; Carrari et al., 2015). Large sclerophyllous shrubs 

such as the strawberry tree (Arbutus unedo), the heath tree (Erica arborea) and the 

green olive trees (Phyllirea sp.) were also used.  

While in most northern and central European countries the use of wood charcoal was 

abandoned in the 19th century due to the rapidly increasing and widespread use of 

coal (Deforce et al., 2012), the importance of this material in the Mediterranean 

countries even increased during the industrial revolution, as other fuel sources were 

largely lacking. Its production and use mostly vanished around the year 1950, though 

in some remote mountain area it is still in practice today.  

The main legacy of this traditional activity are thousands of abandoned charcoal kiln 

sites disseminated in present-day forests (Ludemann et al., 2004; Blondel, 2006, 

Nocentini and Coll, 2010). Thanks to the abundant charcoal remains and their 

persistence in the soil for centuries, these sites provide an opportunity for the 

reconstruction of former woodland composition and management practices on a 

stand scale, using anthracological analysis and radiocarbon dating (Ludemann, 2003; 

Ludemann et al., 2004; Nelle, 2003; Nelle et al., 2010; Pèlachs et al., 2009). However, 

this also brings along long-lasting ecological effects on the structure, composition and 

functioning of the soil and vegetation. A first important effect is the strongly 

increased amount of total carbon in the topsoil layers (Carrari et al., b, ms accepted; 

Criscuoli et al., 2014), suggesting that these sites can contribute significantly to the 
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overall capacity of carbon stock in soils at the forest-level (Criscuoli et al., 2014). 

Nutrient availability and pH are often increased, which may lead to compositional 

differences in the understorey vegetation with respect to the adjacent stands (Carrari 

et al.,b, ms accepted; Wittig et al., 1999). In addition, the process of tree 

recolonization is altered in abandoned kiln sites which may lead to long-lasting 

negative effects on forest recovery, as has been documented in Europe and Canada 

(Mikan & Abrams, 1994, 1996; Young et al., 1996; Carrari et al. a, ms accepted).  

Evaluating the magnitude of these effects and the contribution of charcoal kiln sites 

to the long-term carbon stock in the soil at the forest-level demands a better 

knowledge of their spatial distribution, density and overall surface, and of the 

thickness of the charcoal-enriched soil layer. Previous inventory studies provided 

data for Germany and the Alpine area (Hesse, 2010; Ludemann 2011), Belgium 

(Deforce et al., 2012) and Norway (Raab et al., 2015), but until now only one study 

has been performed in south Europe (Risbøl et al., 2013). Hence, little evidence exists 

for the Mediterranean region, where factors like the frequently rough 

geomorphology of hilly or mountainous areas, the often heterogeneous vegetation 

landscapes, as well as the diversity of local popular cultures and traditions have 

probably affected the spatial distribution and the morphology of the kiln sites.  

Accordingly, the aims of this work were: 1) to provide a characterization of the 

charcoal kiln sites in the forest landscapes of central Italy, and 2) to examine the 

effects of forest type and major geomorphological traits of the local territory (slope 

inclination, aspect, altitude) on the spatial distribution and morphology of these 

sites. To this purpose, we used a traditional field-based inventory and the Airborne 

Laser Scanning (ALS) method. The latter has already been successfully adopted in 

forest areas of central and northern Europe, but, to our knowledge, still not in areas 

of southern Europe. By comparing results from the field and the ALS method, it was 

possible to test the efficacy of the latter for kiln site detection in territories covered 

by dense oak forests with a multiple-layered structure and a massive shrub layer, or 

in beech forests occurring on the steep slopes of the Apennine mountain chain.  

Material and Methods 

Regional setting 

The study was performed in the forests of Tuscany (central Italy), located between 

N42°44'16"N and N44°3'13", and between E10°29'49" and E11°29'1" (Fig. 1). This 

area is characterized by three major climate and forest types, spread along an 

altitudinal gradient from sea level to over 1400 m: 1) meso-Mediterranean along the 

Tyrrhenian coast, where woodlands are mainly formed by evergreen sclerophylls and 

especially Q. ilex; 2) supra-Mediterranean on the hill systems in the central part of 
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the region, largely covered by thermophilous mixed forests dominated by various 

species of deciduous oaks (mainly Q. cerris, Q. pubescens, Q. petraea,); 3) montane-

suboceanic on the Apennine range and Mount Amiata, where beech (Fagus sylvatica) 

and mixed beech-white fir (Abies alba) forests usually occur above 900-1000 m. 

Mean annual rainfall and temperature in the study area vary from 650 mm and 15 °C 

respectively along the coast, to 1450 mm and 10.9 °C respectively on the Apennines 

and Mount Amiata (period 1961-1990, source: Servizio Meteorologico 

dell’Aeronautica Militare). The study area is characterized by a variety of 

geolithological formations and soil conditions, but cambisols are the prevalent soil 

type according to the Soil Atlas of Europe (European Commission 2006). 

For each forest type, hereafter indicated as “sclerophyll”, “oak” and “beech”, we 

selected three main areas where charcoal production activity was continued for 

centuries and abandoned about 60 years ago. This information was derived from 

local historical documents (e.g. Landi et al. 1988) and common knowledge. These 

nine areas are shown in Fig. 1 and described in Table 1. 

In order to analyse the distribution and morphology of the kiln sites, two different 

approaches were adopted: i) field inventory surveys in all the areas, and ii) visual 

inspection of images generated by high-resolution ALS data for two oak areas and 

one beech area (Fig. 1). 

 

Figure 1. Location of the selected forest areas, with indication 

of the forest type (different symbols). Areas analysed with the 

ALS method are underlined. 
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i) Field inventory 

In each forest area, we first identified the zones that were too difficult to access for 

geomorphological reasons (e.g. slope steepness, rocky outcrops, water courses) using 

1:10.000 topographic maps. Next, we randomly selected one point in the remaining 

accessible zones as the centre of a sample quadrat of one ha. In this way, nine 

quadrats (Tab. 1) were defined and localized in the field with GPS devices. In each 

quadrat all the charcoal platforms were then identified and described using the 

following variables: 1) altitude; 2) slope inclination; 3) slope aspect; 3) tree and shrub 

species  4 m high (those potentially used to produce the charcoal) occurring in a 

circle with 15 m radius external to the perimeter of the platform; 4) conservation 

status (poor, average, good) based on intensity of soil erosion, impact of human 

activities and herbivores; 5) shape; 6) size (based on major and minor diameter); and 

7) thickness of the charcoal layer, easily distinguishable from the mineral layer for the 

blackish colour and the abundance of charcoal fragments of various size (Fig. 2C).  

For each forest type, we determined the average density of kiln platforms per 

hectare, their average area proportion (using information on the kiln platform size) 

and the mean thickness of the charcoal layer. 

Next, the effects of forest type and slope inclination on density, size and charcoal 

layer thickness were tested using two model structures with different combination of 

variables in R 3.1.2 (R core team, 2014).  

First we used a generalized linear model (using glm from the stats package) to test 

the effect of the forest type, the size and slope inclination of the kiln sites on their 

density per area, with a Poisson error distribution, log link (lme4; Bates et al., 2014) 

and parameter estimation via maximum likelihood. 

Then we tested the influence of forest type and slope inclination on kiln platform size 

was tested using mixed models allowing variation between “forest areas” (random 

factor), in order to remove from the model the variance due to the spatial clustering 

of the kilns in the nine areas. The starting model was fitted with a linear mixed model 

(lmer) with a Gaussian error distribution. The model selection followed the protocol 

of Zuur et al. (2009), where the structure yielding the lowest value for Akaike’s 

Information Criterion (AIC; Akaike, 1973) was considered to be most consistent with 

the data. The same model selection was used to test the effect of forest type, kiln 

platform size, slope inclination and random effect of quadrats on the thickness of 

charcoal layer. For As models contained random effects, a conditional R² was 

calculated (Nakagawa and Schielzeth, 2010; MuMIn package; Bartoń, 2013). The 

thickness of charcoal layer was also compared between forest types using ANOVA. 
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ii) ALS 

This method was applied in two quadrats within thermophilous deciduous forest 

(Tatti and Val di Farma) and one quadrat within beech forest (Vallombrosa). In the 

two former areas, ALS surveys were performed in May 2013 using an ALS50 Leica 

Geosystems sensor. This instrument recorded four echoes per pulse, with an average 

laser point density of approximately 4 laser points per m2; the scan-angle was 60°. In 

the Vallombrosa forest, the ALS dataset was acquired in May 2015 with a RIEGL LMS-

Q680i sensor, which recorded the full waveform with an average laser point density 

of approximately 5 laser points per m2. The scan angle was 30°.  

The TerraScan software was used for the preparation of the ALS datasets (Terrasolid, 

2005). Standard pre-processing routines were first carried out to remove outlying 

pulses due to sensor errors. Then the point cloud was classified into ground and non-

ground returns on the basis of the adaptive Triangulated Irregular Network (TIN) 

model algorithm (Axelsson, 2000). Ground returns were interpolated to generate a 

TIN, which was used to calculate the ground height for each ground return. A Digital 

Elevation Model (DEM) in grid format with a geometric resolution of 1 m was 

created. Finally, a slope map (in degree) and a hillshade map were generated from 

DEM to visualize the micro-topography of the soil surface. All GIS operations were 

performed with ArcGIS 10.3. 

The slope and hillshade maps allowed to identify potential charcoal kiln platforms in 

the quadrats of the field inventory. They usually appear as small anomalies in the 

topography on the hillshade model and as flat areas in the slope model. The visual 

interpretation was performed by an independent interpreter who did not participate 

to the field inventory work and did not know the position of the kilns. Then, the 

charcoal kilns identified in the field were used as reference data for evaluating the 

overall accuracy of the ALS-based kiln detection method (Congalton, 1991). 

Results 

i) Field inventory 

The altitude range of the nine quadrats was 145-230 m, 360-470 m and 1050-1420 m 

above sea-level for sclerophyll, oak and beech forests, respectively (Tab. 1). Mean 

slope inclination was higher for the beech forest quadrats (43%) compared to the oak 

(13%) and sclerophyll forests (11%), with minor differences among quadrats. The 

sites on the steepest slopes were often provided with robust stone walls built on the 

downhill side to sustain the platform in a horizontal position (Fig. 2B). The platforms 

in the sclerophyll areas showed the poorest conservation status due to a significant 
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level of disturbance by human activities. Those in the oak and beech forests were on 

average well preserved.  

 

 

 

 

Figure 2. Charcoal kiln platforms: A) the elliptical shape and the complete lack of forest recolonization 

(beech forest, Colla di Casaglia); B) old wall made with volcanic stones to sustain the platform in the 

beech forests on the steep slopes of Mt. Amiata; C) soil profile through the nearly 30 cm thick charcoal 

layer in a kiln platform in the oak-forest of Val di Farma.  
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Table 1. Characteristics of the kiln sites in the nine examined areas (see Fig. 1 for their location); geographical coordinates refer to the central point 

of the forest area. Each value is the mean of three quadrats per area (n/ha: number of kiln sites per hectare); conservation status of the kiln sites is 

also averaged for the three quadrats. 

Forest area 

 

Latitude Longitude Forest type n/ha 
Altitude 

(m) 

Slope inclination 

(%) 

Size 

(m2) 

Thickness 

charcoal 

layer (cm) 

Conservation 

status 

Marsiliana  N43.04425° E10.80938° Sclerophylls 6 203.0 ± 7.2 5.4 ± 0.9 31.6 ± 4.3 35.3 ± 3.4 Average 

Mt. Massoncello  N42.98395° E10.49700° Sclerophylls 6 159.0 ± 14.6 32.0 ± 11.0 31.9 ± 7.1 28.0 ± 8.7 Poor 

Magona  N43.26512° E10.63603° Sclerophylls 4 225.3 ± 2.8 2.0 ± 2.4 24.9 ± 4.3 24.5 ± 5.2 Poor 

Tatti  N43.34571° E10.97231° Oaks 5 465.5 ± 5.8 6.2 ± 3.2 42.2 ± 6.4 12.8 ± 1.7 Average 

Val di Farma  N43.07237° E11.28179° Oaks 5 410.4 ± 17.4 14.0 ± 8.2 35.3 ± 5.7 29.0 ± 4.4 Good 

Castelvecchio  N43.43400° E10.99952° Oaks 5 370.5 ± 6.0 16.3 ± 16.0 55.8 ± 14.8 21.3 ± 2.6 Good 

Mt. Amiata  N42.87372° E11.59816° Beech 8 1405.0 ± 14.6 14.2 ± 5.8 26.8 ± 4.9 26.0 ± 7.4 Good 

Colla di Casaglia  N44.05045° E11.45977° Beech 6 1065.3 ± 15.9 45.8 ± 36.1 33.4 ± 8.6 37.2 ± 4.4 Good 

Vallombrosa  N43.433950° E11.342388° Beech 6 1356.8 ± 15.7 67.7 ± 16.2 22.0 ± 4.9 30.3 ± 0.5 Good 
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In total, we recorded 51 more or regularly spaced kiln sites, with a minimum of 4 

(Magona) and a maximum of 8 (Mt. Amiata) per quadrat (Tab. 1). Despite differences 

among forest types were not significant, the highest number of platforms for 

quadrats was found in beech forest, followed by scerophylls and oaks (Fig. 3A). Size 

and slope inclination had no effect on the number of platforms. 

 

Figure 3. A) Mean number of kiln sites per hectare in the three forest types (± confidence 

intervals); B) percentage of total surface covered by kiln platforms over the 1 ha quadrat. 

These were always elliptical (Fig. 2A), with the shorter and longer diameter ranging 

from 3.8 m to 9.3 m, and 4.6 m to 10.8 m, respectively. The longer diameter was 

always oriented along the altitudinal contour lines. The largest platform (ca. 56 m2), 

was recorded in an oak quadrat (Castelvecchio), while the smallest (ca. 22 m2) was in 

a beech quadrat (Vallombrosa; Tab. 1). Kiln platform size was significantly affected by 

forest type with higher values in the oak forest (on average 41 m2) followed by 

sclerophyll and beech forests (30 m2 and 27 m2, respectively) (Tab. 2). Slope 

inclination had no effect on the size. The best selected model (R2=0.703) included 

among-quadrats variation as a random factor and explained ca. 70% of the variation. 

The total surface covered by kiln platforms in the 1 ha quadrat ranged from 100 m2 

(Magona) to 253 m2 (Tatti). Based on mean size and density, the largest proportion of 

surface was found in the oak forests, where it reached 225.6 m2, followed by beech 

(183.2 m2) and sclerophylls (149.1 m2); corresponding percentage data are shown in 

Fig. 3B.  

The black charcoal layer containing fragments of woody charcoal was single and 

continuous in all sites (Fig. 2C), and its thickness ranged from 10 cm (Tatti) to 46 cm 

(Colla di Casaglia). Kilns platforms in the oak forests showed a thinner charcoal layer 

(22.4 cm on average) than in the beech forest sites (29.9 cm, p-value = 0.0058); an 

intermediate thickness was found in the sclerophyll sites (27.4 cm). However, the 
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best model structure (R2 = 0.412) revealed slope inclination instead of forest type as a 

predictor for charcoal layer thickness. The higher the slope inclination, the thicker 

the charcoal layer (Tab. 2). 

 

Table 2. Optimal random-effects model structures for response variables kiln size and charcoal layer 

thickness. Models were selected based on AIC criteria (Zuur et al., 2009). Values for the predictor 

variables “slope inclination” and “forest type” (levels: oaks and sclerophylls) and “plot type” (level: kiln 

plot) are parameter estimates (± standard error) that indicate the relative change of the response 

variable for a unit increment in “slope inclination” or compared to the first level of the predictor 

variables “forest type” (level: sclerophylls) that is incorporated in the intercept. R² refers to the fraction 

of the variation explained by the optimal model structure; df: degrees of freedom.  

Response 

variables  
df  R²  Intercept  

Slope 

inclination  
Forest type 

Random effect 

             Oaks Beech  

 

       

kiln size 51 0.703 30.53±4.74 / 11.80±6.70 -3.64±6.68  Forest area 

 
      

 

charcoal 

layer 
51 0.412 24.17±2.18 0.11±0.05 / / Forest area 

 

In total, 14 trees and shrubs  4 m were recorded in the forest around the kiln 

platforms (Fig. 4). As expected, species composition in this belt was different in the 

three forest types. Quercus ilex was the most frequent tree in the sclerophyll 

quadrats (27.5% on the total sites; Fig. 4), followed by Arbutus unedo and Erica sp. 

(mostly E. arborea); Viburnum tinus, Phyllirea spp. and the deciduous oak Quercus 

pubescens were present with a lower frequency. Quercus cerris was always present in 

the sites of the oak quadrats (29.4%, Fig. 4), while other dominant tree species such 

as Castanea sativa, Quercus petraea, Q. ilex, Populus tremula, Ostrya carpinifolia, 

Arbutus unedo, Erica arborea and Fraxinus ornus occurred with a frequency < 10% 

(i.e. ca. 1/3 of kiln sites in oak forests). In the beech quadrats, kiln sites were always 

surrounded by Fagus sylvatica, while Abies alba was present in half of the sites. 
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Figure 4. Frequency (%) of the dominant woody species in the stands adjacent to the 

kiln sites. Percentages are reported on the total number of kiln sites. 
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ii) Airborne Laser Scanning data 

Most of the kiln sites recorded with field surveys in the quadrats in Vallombrosa, Tatti 

and Val di Farma could also be detected with hillshade and slope image analysis. On 

the hillshade map (Fig. 5A), the platforms appeared as deviating spots in the 

topography, e.g. small hilly structures, sometimes with a depressed area in the 

centre. On slope images (Figs. 5B, 6A, B, C), they appeared as small, dark spots areas 

with a flat surface, mainly located along the altitudinal contour lines. These could be 

more easily distinguished on the steep slopes of the mountain area of Vallombrosa 

than in the hilly areas of Tatti and Val di Farma. The steeper inclination and the 

single-layered beech cover allowed to detect all six platforms in the Vallombrosa 

quadrat (overall accuracy = 100%), while the lower slope inclination and the multiple-

layered oak forest cover with dense shrub layer contributed to the lower accuracy in 

Tatti and Val di Farma (overall accuracy = 71% and 80%, respectively). In the former 

area (Tatti), hillshade and slope images showed 7 sites, of which two were not 

actually observed in the field (and that did not exist); in the latter area (Val di Farma) 

the ALS-based method showed 4 sites, failing to identify one site that was clearly 

observed in the field (Figs. 6A,B). 

 

 

Figure 5. Kiln sites detected on the slope map of the beech quadrat in Vallombrosa. (A) Close-up of 

hillshade and (B) slope images of the beech quadrat in Vallombrosa. Arrows indicate two of the 

platforms that are visible as dark, elliptical spots. 
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Figure 6. Kiln platforms included in the 1-ha quadrats, shown as white squares, detected on the slope maps of the oak forest areas of A) Tatti and B) Val di 

Farma C) Vallombrosa. The sites detected from visual interpretation of the maps are indicated by the small, red triangles; the small, white circles show the 

platforms that were inventoried in the field.  
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Discussion 

Field inventory data 

The density of kiln sites in our forest areas was not as high as reported in previous 

studies from the Mediterranean region, e. g. up to 40 sites per ha (Blondel, 2006). 

However, it was approximately five times higher than in other European forest 

landscapes. Around one site was detected in Norway, NW Belgium, Pyrenees, and 

Northern Germany (Deforce et al., 2012; Pèlachs et al., 2009; Raab et al., 2013; Risbøl 

et al., 2013), while the mean density in the Black Forest in SW Germany was 1.5/ha 

(Ludemann, 2010) and similarly from one to three sites were detected in Wallonia 

(Hardy and Dufey, 2015b). Such a difference is likely associated with the more 

intensive forest exploitation in the Mediterranean countries, where charcoal 

provided the energy for the everyday needs of the local populations until more 

recent times. In addition, the practical problem of carrying away large amounts of 

firewood from coppice woodlands on rough terrains has been a major reason for its 

transformation to a much lighter material directly in the forest. People of central 

Italy, especially in montane areas, preferred to spend days in the forests to produce 

charcoal than to bring heavy loads of firewood with donkeys and mules along tracks 

on steep and rocky terrains (Cantiani, 1955; Landi et al., 1988). 

While kiln platforms were always elliptical in our study, a prevalently circular shape 

has been documented in Belgium and Germany (Deforce et al., 2012; Ludemann, 

2010; Raab et al., 2013) and a variable shape was observed in Norway, with circular, 

oval, square or irregular shapes (Risbøl et al., 2013). Based on information that we 

obtained from the local people, the elliptical shape was adopted to facilitate 

collection of the charcoal from the two sides of the platform, which always extended 

along the altitude contour lines of the hill slope. Soil erosion on the downhill side can 

have accentuated the elliptical shape in some cases. Despite variations between 

forest types, the kiln sites in our study were generally also smaller than in C and N 

Europe. On average, the platforms had a mean major diameter of 7.2 m and a minor 

one of 5.5 m, resulting in a mean surface of ca. 30 m2, similarly to what was observed 

in the Pyrenean woodlands (Pèlachs et al., 2009). In more northern countries they 

ranged from 8-12 m in diameter, as in the Black forest (Ludemann, 2010), up to 18 m 

in N Germany (Raab et al., 2013), as well as in the larch forests of the Alpine region 

where they measured, on average, 94 m2 (Criscuoli et al., 2014).  

The larger size of the kiln platforms documented in the studies mentioned above may 

be associated, at least in part, with the different purpose for which these were 

prepared. In other regions, charcoal was often produced for metal processing in 

foundries (Pèlachs et al., 2009; Deforce et al., 2012; Criscuoli et al., 2014), which 
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required large amounts of fuel in specific periods. In the area, the production of such 

woody fuel was not only addressed to iron metallurgy; charcoal was also the main 

source of energy for home heating and cooking, as well for many other minor uses 

(S.I.L.T.E.M., 1946), then possibly the request was more frequent, but of smaller 

amounts. 

Related to this aspect are possibly also the differences in the distribution patterns. In 

Belgium, for example, charcoal kilns were found to be irregularly distributed in space 

and time, e.g. spatially clustered and probably linked to specific but infrequent 

events also corresponding to periods of over-supply of wood due to forest clearings 

(Deforce et al., 2012). On the contrary, the importance of wood charcoal for the 

everyday life of local people through the centuries can explain the more even spatial 

distribution of these sites in our region, and their apparently continuous use through 

time. 

In our study, size were found to be affected also by the forest type. Model results 

showed that kiln sites were significantly smaller and denser in beech forests than in 

oak forests, where they were larger but less numerous per unit surface. Most likely, 

such effects are associated with both the geomorphology of the areas where these 

woodlands occur and the compositional and structural characters of the forest 

communities. Slope inclination may be one of the factors for the indirect effects. 

Beech forests of central Italy occur in the mountain belt, usually higher than 1.000 m 

a.s.l. and often on steep slopes, as in our sample quadrats (on average 43% 

inclination). In such a condition, it was important to reduce the distance of transport 

of the wood material between the places where the stools were cut and the charcoal 

kilns. This was achieved by preparing numerous but smaller platforms mainly along 

the altitude contour lines. On the other hand, such a hypothesis was not supported 

by a significant effect of slope inclination on size and density of the kilns sites, which 

may indicate the role of other factors not included in this study, such as the length of 

the coppicing cycle and the consequently variable amount of wood produced by the 

forest. More direct effects are likely associated with the different tree species 

composition of the forest types and their consequently different levels of 

productivity. From local (Tuscan) productivity tables, the average wood volume in 

twelve-years oak coppices is 45.2 m3/ha, vs. 40.6 m3 and 35.5 m3 in, respectively, 

beech and sclerophyll stands with the same age and under similar conditions (Istituto 

Sperimentale per l’Assestamento Forestale e per l'Aplicoltura, 1970). Such 

differences in the levels of productivity contribute to explain the higher proportion of 

surface covered by the kiln sites in the more productive oak forests compared with 

beech and, even more, sclerophyllous forests.  
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On the other hand, our data also show variations in the size and total surface of the 

kiln sites among the kilns within the same quadrat. The site-random effect was in fact 

included in the model to remove among-quadrat variation. This is possibly due again 

to local differences in forest productivity but also to cultural aspects, since local 

traditions may have led to the establishment of slightly different practices in similar 

forest environments. 

In all three forest types, the different tree species currently occurring in the stands 

around the kilns are most likely the same that were used to produce the wood 

charcoal in former times. We found no evidence that local people used to make a 

selection among these species, also due to their similarly high calorific power (from 

17.78 MJ/kg in Quercus cerris to 18.84 MJ/kg in Castanea sativa; Hellrigl, 2006). 

Anthracological studies in central and southern Europe also showed that charcoal 

remains in the soil reflect the composition of the vegetation in the immediate 

surroundings, with no indications for the selection of certain taxa (Ludemann, 2003, 

2010; Nelle et al., 2010; Pèlachs et al., 2009). 

In all sites, the charcoal layer in soil was single, continuous and rich in charcoal 

fragments of variable size, and about 23 cm thick. This is a bit higher than recent 

observations from a larch forest of the eastern Italian Alps (Criscuoli et al., 2014), but 

lower than the average measured in Wallonian forests (Hardy and Dufey, 2015b). The 

considerable average thickness of this layer suggests that the same platforms were 

used repeatedly at given time intervals, in correspondence with forest utilizations at 

the end of the coppice cycles. This supports the hypothesis that charcoal kilns built 

on small, man-made terraces in hilly terrains were repeatedly used, in contrast with 

those prepared on flat terrains, that were often used only once, as for example in the 

Zoerslen forest in Belgium (Deforce et al., 2012). In our sites, the time interval 

between two consecutive utilizations of the same kiln platform was usually very short 

(6-12 years), since charcoal production for home energy required the use of young 

coppice stools of small diameter. Such a short rotation can explain the fact that the 

charcoal profile was single and continuous, in contrast to what expected for other 

sites that were repeatedly used at larger time intervals and therefore with a 

discontinuous charcoal profile.  

Repeated use of the sites on hill and mountain slopes is also supported by the 

positive effect of slope inclination on the thickness the charcoal layer, as shown by 

the best model selected for this variable. The steeper the slope on which the 

platform was placed, the harder was the work to build it, which often required to 

prepare stone walls on the downhill side to sustain the terrace in a horizontal 

position (Fig. 2B). Such an investment of time and energy was done in the 
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perspective of a repeated use of the same kiln site for long periods, which mostly 

probably resulted in the formation of a thicker charcoal profile than in the sites on 

less steep terrains. Indeed, kiln platforms on the steeper slopes of the beech forests 

showed on average a thicker charcoal profile (31.2 cm vs. 29.3 and 21 cm in 

sclerophyll and oak forest). Model results did not indicate forest type as a significant 

predictor for this variable mainly due to the large variation among the three 

sclerophyll quadrats. The six kilns of the sclerophyll quadrat in Marsiliana had a 

remarkably thick charcoal layer, despite the only moderately steep slopes of this 

area. This is possibly due to the long period of intensive human exploitation of the 

woodlands in this southern part of Tuscany that started as early as the Etruscan 

period (6th century BC, Mariotti Lippi et al., 2002). Based on local documents, 

production of charcoal was deeply rooted in the local communities and most 

probably already in use in the Iron Age. 

Based on the few available studies, the amount of total C contained in the soil of 

abandoned charcoal kiln platforms is usually considerably higher than in the soil of 

the adjacent forest environment. In sites of the same region investigated here, 

Carrari et al. (Ms accepted) found that total C was on average nearly twice than in 

control soils (10.5% vs. 5.65%), while Criscuoli et al. (2014) measured an even higher 

difference (26.2 kg/m2 vs. 1 kg/m2 of total C in the whole anthropogenic layer) in 

charcoal kilns in a larch forest of the Italian Alps. Similar evidence was obtained in 

Canada, where organic matter in charcoal kilns was 13.9% vs. 5.6% in the control soils 

(Mikan and Abrams, 1995). In the two Italian studies mentioned above, most of the C 

was in the form of carbon, whose condensed aromatic structure allows the 

fragments to persist in the soils over millennial time-scales (Cheng et al., 2008). Given 

the long-term stability of this material and the fact that it is accumulated in thick soil 

layers over a significant proportion of the forest surface (up to 2.3%), these sites will 

have to be considered in future estimations of the carbon stock capacity of the 

woodlands in our region. 

Airborne Laser Scanning (ALS) method 

The combination of hillshade and slope images derived from ALS data emerged as a 

promising approach for the detection of kiln sites in the variable conditions of 

vegetation and terrain of our region. Using only hillshade maps, Digital Elevation 

Models (DEMs), or Local Relief Models as in previous studies in N and C Europe 

(Bollandsås et al., 2012; Deforce et al., 2012; Hesse, 2010; Ludemann, 2011; Risbøl et 

al., 2013) was not sufficient to identify the kiln platforms in the case of hilly or 

mountainous areas such as those sampled here.   
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Overall detection accuracy was 100% in the case of the Vallombrosa beech forest, 

where kiln sites were unambiguously identified thanks to the lack of natural 

“morphological equivalents”, as already observed in Germany (Hesse, 2010). 

Accuracy was bit lower in the case of the two quadrats with oak-dominated 

vegetation. In one of these (Val di Farma), one kiln site inventoried in the field was 

not detected by ALS data, while in the other one (Tatti) two sites that could not be 

observed in the field were detected by this method. Reasons for the higher precision 

in the beech forest depend firstly on the higher ALS point density that was available 

for this area, compared with the two other quadrats. Indeed, Bollandsås et al. (2012) 

suggested that detection success of cultural and archaeological remains in forests 

increases with increasing density of points. Also, the steep slopes, the simpler (e.g. 

single-layered) forest structure and the lack of shrub vegetation contributed to such 

an elevated accuracy in this quadrat. In the two oak areas, the less inclined slopes 

and the structural density of the forest stands have probably limited the efficacy of 

this method, since more complex patterns of shadowing and texture result in more 

complex vegetation landscapes on irregular terrains (Amable et al., 2004). For 

example, some features created by the uprooting of large trees in points with low 

slope inclination may have caused misinterpretations (Hesse, 2010). According to 

Ludemann (2011), factors such as (1) bad conservation, by e.g. erosion, forest road 

construction, wood transport etc., (2) heterogeneities of the ground surface, or (3) 

vegetation with dense herb or shrub layer can reduce the reliability of the ALS 

method. Hence, this method cannot completely replace the field-based inventories 

when an absolute precision is needed (Deforce et al., 2012).  

Unfortunately we could not test the applicability of the method in a typical 

Mediterranean forest landscape with very dense and relatively low communities for 

evergreen, sclerophyllous trees and shrubs (the “maquis”). No ALS data were in fact 

available for the sclerophyll areas. To our knowledge, no previous studied provided 

evidence on this aspect, which therefore requires further investigation.  

Conclusions 

This study allows a better knowledge and understanding of a major legacy of the 

human activities in the forests of the Mediterranean region, and shows that some 

characters of the kiln sites in our study area differ from those in other parts of 

Europe. In the coppice woodlands of central Italy, the repeated events of wood 

charcoal production in the same sites have left thousands of small platforms more or 

less regularly spaced in the forest landscapes. As expected, geomorphological factors 

and forest type affected some of the morphological variables of the kilns platforms, 

but local traditions and practices have also contributed to this differentiation. 
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The magnitude of the effects on the soil-vegetation system at the forest level may 

not be neglected, taking into account the high average density, relative total surface, 

and amount of charcoal in the soil. The data provided here could be the basis for 

further studies focusing on the contribution of the kiln sites to the carbon stock 

capacity of forest soils in our region, an aspect that has never been considered to 

date.  

Further studies focusing on the ecological effects or the more historical, 

archaeological or anthracological aspects of the kiln sites in our region will benefit 

from the use of the ALS method. Using both hillshade and slope images is most 

appropriate in areas comparable to ours. When a slightly lower accuracy can be 

accepted, the ALS method will allow the inventorying of the sites at large spatial 

scales with various potential applications for more ecological and historical-

archaeological investigations. When a 100% detection accuracy is required, fieldwork 

will remain necessary, especially in thermophilous deciduous forests on hilly terrains.  
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Appendix 1- PAPER I: Woody species in sclerophyll forests 

Frequency and height (mean ± standard deviation of height, as maximum for trees and shrubs <1.30 m 

and mean for that one >1.30) of the species recorded in the kiln plots (KP) and charcoal plots (CP) in 

understorey and in tree regeneration layer in sclerophyll forests (18 plots). No significant differences in 

height between KP and CP were found (all p-values > 0.05, Mann-Whitney U-test, not shown).  

 

      Frequency (%)    Height (cm) 

   KP CP KP CP 

Understorey (<1.30 m) 
     

 Acer obtusatum 5.6 0.0 5.0 ± 0.0 0.0 ± 0.0 

 Arbutus unedo 11.1 5.6 2.0 ± 0.0 110.0 ± 0.0 

 Crataegus monogyna 5.6 0.0 12.0 ± 0.0 0.0 ± 0.0 

 Erica arborea 5.6 0.0 70.0 ± 0.0 0.0 ± 0.0 

 Fraxinus angustifolia 5.6 5.6 5.0 ± 0.0 5.0 ± 0.0 

 Fraxinus ornus 83.3 77.8 17.0 ± 20.4 14.9 ± 26.2 

 Juniperus communis 5.6 0.0 130.0 ± 0.0 0.0 ± 0.0 

 Laburnum anagyroides 5.6 0.0 7.0 ± 0.0 0.0 ± 0.0 

 Myrtus communis 0.0 5.6 0.0 ± 0.0 130.0 ± 0.0 

 Ostrya carpinifolia 5.6 5.6 5.0 ± 0.0 3.0 ± 0.0 

 Phillyrea angustifolia 5.6 16.7 3.0 ± 0.0 56.0 ± 36.8 

 Phillyrea latifolia 16.7 38.9 39.3 ± 33.9 60.0 ± 47.7 

 Pistacia lentiscus 5.6 0.0 20.0 ± 0.0 0.0 ± 0.0 

 Pyrus amygdaloides 5.6 0.0 7.0 ± 0.0 0.0 ± 0.0 

 Prunus spinosa 16.7 0.0 10.0 ± 4.4 0.0 ± 0.0 

 Quercus cerris 16.7 5.6 5.3 ± 0.7 8.0 ± 0.0 

 Quercus ilex 38.9 33.3 12.9 ± 13.1 39.8 ± 46.9 

 Quercus petraea 5.6 5.6 6.0 ± 0.0 12.0 ± 0.0 

 Quercus pubescens 5.6 27.8 6.0 ± 0.0 9.4 ± 3.4 

 Quercus suber 5.6 5.6 5.0 ± 0.0 4.0 ± 0.0 

 Sorbus torminalis 5.6 11.1 9.0 ± 0.0 12.5 ± 13.4 

 Ulmus minor 5.6 0.0 8.0 ± 0.0 0.0 ± 0.0 

 Viburnum tinus 44.4 38.9 12.0 ± 10.0 6.9 ± 6.4 

Tree regeneration (1.30-4 m) 
       

 Arbutus unedo 5.6 27.8 2 ± 0 3.3 ± 0.4 
 Cytisus scoparius 5.6 0.0 3 ± 0 0.0 ± 0.0 
 Erica arborea 5.6 16.7 1.5 ± 0 2.7 ± 1.0 
 Fraxinus ornus 0.0 5.6 0 ± 0 2.5 ± 1.0 
 Juniperus communis 0.0 5.6 0 ± 0 3.5 ± 0.0 
 Phillyrea latifolia 0.0 11.1 0 ± 0 2.3 ± 0.8 
 Quercus ilex 5.6 11.1 4 ± 0 4.0 ± 0.0 
 Viburnum tinus 0 11.1 0 ± 0 3.1 ± 0.4 
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Appendix 2- PAPER I: Woody species in oak forests 

Frequency and height (mean ± standard deviation of height, as maximum for trees and shrubs <1.30 m 

and mean for that one >1.30) of the species recorded in the kiln plots (KP) and charcoal plots (CP) in 

understorey and in tree regeneration layer of oak forests (22 plots). No significant differences in height 

between KP and CP were found (all p-values > 0.05, Mann-Whitney U-test, not shown). 

  Frequency (%)            Height (cm) 

 KP CP KP CP 

Understorey (<1.30 m) 
    

 Acer campestre 27.3 13.6 9.7 ± 7.0 16.0 ± 10.6 

 Acer monspessulanum 18.2 0.0 9.8 ± 7.4 0.0 ± 0.0 

 Acer obtusatum 9.1 4.5 5.0 ± 0.0 5.0 ± 0.0 

 Acer pseudoplatanus 13.6 9.1 6.3 ± 3.2 6.5 ± 2.1 

 Carpinus betulus 13.6 9.1 3.0 ± 1.0 3.0 ± 0.0 

 Cornus mas 22.7 4.5 19.0 ± 15.6 18.0 ± 0.0 

 Cornus sanguinea 4.5 4.5 90.0 ± 0.0 100.0 ± 0.0 

 Crataegus monogyna 18.2 13.6 34.8 ± 24.9 66.7 ± 58.4 

 Erica scoparia 0.0 9.1 0.0 ± 0.0 23.5 ± 12.0 

 Euonymus europaeus 9.1 18.2 19.0 ± 15.6 50.0 ± 38.5 

 Fagus sylvatica 22.7 0.0 8.6 ± 5.7 0.0 ± 0.0 

 Fraxinus ornus 86.4 86.4 25.3 ± 30.5 14.1 ± 16.2 

 Ilex aquifolium 0.0 13.6 0.0 ± 0.0 15.7 ± 10.2 

 Laburnum anagyroides 4.5 0.0 0.0 ± 0.0 0.0 ± 0.0 

 Laurus nobilis 4.5 4.5 38.0 ± 0.0 13.0 ± 0.0 

 Ostrya carpinifolia 54.5 54.5 5.3 ± 7.8 2.8 ± 1.3 

 Phillyrea latifolia 13.6 13.6 3.3 ± 1.5 58.0 ± 4.1 

 Pyrus pyraster 4.5 0.0 4.0 ± 0.0 0.0 ± 0.0 

 Prunus avium 9.1 0.0 6.0 ± 1.0 0.0 ± 0.0 

 Prunus spinosa 36.4 4.5 16.8 ± 24.2 8.0 ± 0.0 

 Quercus cerris 40.9 18.2 8.9 ± 4.4 10.5 ± 6.4 

 Quercus ilex 22.7 36.4 27.4 ± 28.5 34.6 ± 42.3 

 Quercus petraea 9.1 4.5 10.0 ± 7.1 8.0 ± 0.0 

 Quercus pubescens 9.1 9.1 10.0 ± 7.1 10.0 ± 7.1 

 Sambucus nigra 4.5 0.0 32.0 ± 0.0 0.0 ± 0.0 

 Sorbus domestica 13.6 4.5 24.7 ± 12.3 50.0 ± 0.0 

 Sorbus torminalis 36.4 18.2 12.3 ± 12.8 3.5 ± 1.7 

 Taxus baccata 4.5 0.0 3.0 ± 0.0 0.0 ± 0.0 

 Ulmus glabra 4.5 4.5 14.0 ± 0.0 32.0 ± 0.0 

 Viburnum tinus 4.5 0.0 3.0 ± 0.0 0.0 ± 0.0 
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Tree regeneration (1.30 - 4 m) 
        

 Carpinus betulus 0.0 4.5 0 ± 0 2.5 ± 0.0 

 Cornus mas 0.0 13.6 0 ± 0 3.0 ± 1.0 

 Cornus sanguinea 0.0 0.0 0 ± 0 0.0 ± 0.0 

 Crataegus monogyna 0.0 4.5 0 ± 0 2.5 ± 2.5 

 Fraxinus ornus 0.0 22.7 0 ± 0 3.3 ± 0.4 

 Ostrya carpinifolia 0.0 9.1 0 ± 0 3.2 ± 0.4 

 Quercus ilex 0.0 2.7 0 ± 0 2.5 ± 0.5 

 Sorbus domestica 0.0 0.0 0 ± 0 0.0 ± 0.0 

 Sorbus torminalis 0.0 9.1 0 ± 0 2.9 ± 0.6 

 Taxus baccata 0.0 4.5 0 ± 0 2.0 ± 2.0 
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Appendix 3- PAPER I: Woody species in beech forests 

Frequency and height (mean ± standard deviation of height, maximum for trees and shrubs <1.30 m and 

mean for that one >1.30) of the species recorded in the kiln plots (KP) and charcoal plots (CP) in 

understorey and in tree regeneration layer of beech forests (21 plots). No significant differences in 

height between KP and CP were found (all p-values > 0.05, Mann-Whitney U-test, not shown). 

 

Species 
   Frequency 

(%)  Height (cm) 

  KP   CP KP CP 

Understorey (<1.30 m) 
         Abies alba 28.6 

 
23.8 5.5 ± 2.5 5.2 ± 3 

Acer campestre 4.8 
 

4.8 6 ± 0 4 ± 0 

Acer obtusatum 4.8 
 

4.8 7 ± 0 6 ± 0 

Acer platanoides 4.8 
 

0 6 ± 0 0 ± 0 

Acer pseudoplatanus 19 
 

23.8 10.8 ± 6.2 9.8 ± 4.3 

Castanea sativa 4.8 
 

0 6 ± 0 0 ± 0 

Crataegus laevigata 4.8 
 

0 2 ± 0 0 ± 0 

Crataegus monogyna 4.8 
 

0 1 ± 0 0 ± 0 

Fagus sylvatica 23.8 
 

28.6 8.6 ± 5.7 32.2 ± 39.6 

Fraxinus ornus 14.3 
 

9.5 4.7 ± 2.3 7.5 ± 6.4 

Populus tremula 4.8 
 

4.8 18 ± 0 7 ± 0 

Prunus avium  0 
 

4.8 0 ± 0 7 ± 0 

Prunus spinosa 4.8 
 

0 5 ± 0 0 ± 0 

Quercus cerris 4.8 
 

4.8 8 ± 0 18 ± 0 

Tree regeneration  
(1.30 - 4 m)       

 

  

Fagus sylvatica 0   14.3 0 ± 0 3 ± 1.8 
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Appendix 4- PAPER I: Environmental variables for the seedling density plots  

Geographical coordinates, altitude, slope aspect and parent rock of the subsample of plots where 

seedling density was determined was with number of charcoal kiln (KP) and control plots (CP) for each 

examined forest area. 

Forest name Latitude Longitude n. KP n. CP Forest 
Type* 

Altitudinal 
range* 

Aspect* parent rock 
material* 

 
(m a.s.l.) 

Foreste 
Casentinesi 

43°48'19"
N 

11°52'9"E 5 5 beech 1040-1223 S/SE/E marl-sandstone 

Volterra hills 
43°25'55"

N 
11° 0'2"E 5 5 oaks 382-967 

E/SE/N/N
W/NE 

diabase/limestone/s
andstone 

Mt. Leoni 
42°56'27"

N 
11°10'58"

E 
5 5 sclerophylls 155-437 

S/SW/-
/W/E 

quarzitic sandstone 
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Appendix S1 - PAPER II: 
Geographic coordinates (latitude and longitude according to the reference system WGS84), main 
geographic area, specific forest name and forest type of the 59 sampled sites. Each site is identified by 
an ID number (Site ID). 

 

Site ID  Latitude  Longitude 
Altitude 

Geographic area Forest name Forest Type 
(m a.s.l.) 

BE1 44°1'56.58"N 11°29'0.96"E 972 N Apennines Colla di Casaglia Beech 

BE2  44° 2'43.32"N 11°28'4.80"E 1029 N. Apennines Colla di Casaglia Beech 

BE3  44° 3'5.76"N 11°26'32.46"E 1002 N. Apennines Colla di Casaglia Beech 

BE4  44° 3'5.46"N 11°26'18.54"E 989 N. Apennines Colla di Casaglia Beech 

BE5  44° 3'13.02"N 11°25'54.42"E 964 N. Apennines Colla di Casaglia Beech 

BE6 42°52'10.14"N 11°35'3.12"E 1226 Mt. Amiata Aia dei Venti Beech 

BE7 42°51'58.50"N 11°35'30.84"E 1211 Mt. Amiata Aia dei Venti Beech 

BE8 43°48'19.56"N 11°52'8.88"E 1116 N Apennines Badia Prataglia Beech 

BE9 43°48'30.90"N 11°52'14.28"E 1223 N Apennines Badia Prataglia Beech 

BE10 43°48'24.36"N 11°52'13.74"E 1183 N Apennines Badia Prataglia Beech 

BE11 43°48'22.50"N 11°52'10.32"E 1151 N Apennines Badia Prataglia Beech 

BE12 43°48'11.94"N 11°52'3.06"E 1040 N Apennines BadiaPrataglia Beech 

BE13 42°52'3.90"N 11°35'29.52"E 1258 Mt. Amiata Aia dei Venti Beech 

BE14 42°52'8.22"N  11°35'9.00"E 1267 Mt. Amiata Aia dei Venti Beech 

BE15 42°45'4.68"N 11°39'41.04"E 900 Mt. Amiata Monte Penna Beech 

BE16 42°44'16.08"N 11°40'14.10"E 891 Mt. Amiata Monte Penna Beech 

BE17  42°45'3.72"N 11°39'45.00"E 909 Mt. Amiata Monte Penna Beech 

BE18 42°45'27.30"N 11°39'26.76"E 846 Mt. Amiata Monte Penna Beech 

BE20 42°52'26.94"N 11°35'46.92"E 1433 Mt. Amiata AiadeiVenti Beech 

DE1  43°26'3.84"N 10°59'57.60"E 382 Colline Metallifere Castelvecchio Oak 

DE2 43°25'55.26"N  11° 0'1.80"E 383 Colline Metallifere Castelvecchio Oak 

DE3  43°26'1.62"N 11° 0'7.08"E 967 Colline Metallifere Castelvecchio Oak 

DE4 43°25'56.94"N 10°55'2.22"E 438 Colline Metallifere Montenero Oaks 

DE5 43°21'12.42"N 10°58'24.84"E 405 Colline Metallifere Berignone-Tatti Oaks 

DE6 43°20'46.44"N 10°58'20.22"E 476 Colline Metallifere Berignone-Tatti Oaks 

DE7 43°20'59.76"N 10°58'14.82"E 478 Colline Metallifere Berignone-Tatti Oaks 

DE8 43°20'45.12"N 10°57'30.78"E 506 Colline Metallifere Berignone-Tatti Oaks 

DE9 43°48'17.28"N 11°20'20.16"E 242 Florentine hills Valle Sambre Oaks 

DE10 43°48'15.34"N 11°20'27.24"E 347 Florentine hills Valle Sambre Oaks 

DE11  43° 5'21.54"N 11°10'46.02"E 319 Colline Metallifere Val di Farma Oaks 

DE12  43° 5'25.26"N  11°11'3.60"E 299 Colline Metallifere Val di Farma Oaks 

DE13  43° 5'24.03"N 11°10'51.84"E 329 Colline Metallifere Val di Farma Oaks 
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DE14  43° 4'17.94"N 11°13'50.94"E 467 Colline Metallifere Val di Farma Oaks 

DE15  43° 4'21.60"N 11°16'17.64"E 484 Colline Metallifere Val di Farma Oaks 

DE16  43° 4'19.97"N 11°16'29.19"E 511 Colline Metallifere Val di Farma Oaks 

DE17  43° 4'37.68"N 11°12'58.50"E 406 Colline Metallifere Val di Farma Oaks 

DE18  43° 4'35.94"N 11° 6'47.10"E 430 Colline Metallifere La Pietra Oaks 

DE19  43° 4'34.86"N 11° 6'49.80"E 445 Colline Metallifere La Pietra Oaks 

DE20  43° 9'11.94"N 11°13'20.46"E 265 Colline Metallifere Val di Merse Oaks 

DE21 43°13'35.10"N 11°11'30.18"E 351 Colline Metallifere Val di Merse Oaks 

DE22 43°10'28.02"N 11°12'20.64"E 438 Colline Metallifere Val di Merse Oaks 

SC1 43°25'59.52"N 11° 0'9.84"E 368 Colline Metallifere Castelvecchio Sclerophyll 

SC2 43°25'57.48"N 10°54'41.58"E 437 Colline Metallifere Montenero Sclerophyll 

SC3 43°26'11.94"N 10°54'37.56"E 321 Colline Metallifere Montenero Sclerophyll 

SC4 43°25'59.22"N 10°54'45.42"E 436 Colline Metallifere Montenero Sclerophylls 

SC5 42°56'22.80"N 11°11'15.18"E 176 Maremma Mt. Leoni Sclerophylls 

SC6 42°56'27.24"N 11°10'58.44"E 155 Maremma Mt. Leoni Sclerophylls 

SC7  42°57'5.39"N 11° 9'12.70"E 112 Maremma Mt. Leoni Sclerophylls 

SC8 42°54'44.88"N 11° 8'14.70"E 129 Maremma Mt. Leoni Sclerophylls 

SC9 42°55'20.58"N  11° 9'27.66"E 345 Maremma Mt. Leoni Sclerophylls 

SC10 43° 4'21.54"N 11°16'43.20"E 508 Colline Metallifere Val di Farma Sclerophylls 

SC11 43°16'3.84"N 10°38'22.92"E 201 Maremma Magona Sclerophylls 

SC12 43°16'2.46"N 10°37'56.88"E 197 Maremma Magona Sclerophylls 

SC13 42°59'0.90"N 10°29'47.28"E 191 Maremma Mt. Massoncello Sclerophylls 

SC14 42°59'3.18"N 10°29'48.90"E 171 Maremma Mt. Massoncello Sclerophylls 

SC15 43°15'58.08"N 10°37'44.58"E 157 Maremma Magona Sclerophylls 

SC16 43°15'50.18"N 10°37'53.71"E 171 Maremma Magona Sclerophylls 

SC17 43°16'7.74"N 10°38'3.06"E 172 Maremma Magona Sclerophylls 

SC18 42°54'50.40"N 11° 9'20.94"E 321 Maremma Mt. Leoni Sclerophylls 
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Appendix S2 - PAPER II: 

Mean values ± standard deviation of all measured and calculated understorey-related variables in 
function of plot type. SR indicates species richness; inter-site diss. and intra-site diss. indicate inter-site 
and intra-site compositional dissimilarity respectively using Lennon (L) and Bray Curtis (BC) distance 
measures; Tax. distinctness indicates distinctness (Δ+); C is the total carbon content, N, the total 
nitrogen content, C/N the ratio carbon-nitrogen; finally PAR reports values of photosynthetic active 
radiation. For each variable p-values are given in Appendix S3.  

Response variable Unit Plot type 

    Control plots         Kiln plots 

γ-diversity 

 

        132           204 

SR total 

 

8.5 ± 4.5 13.9 ± 6.7 

SR trees 

 

2.0 ± 1.3 2.6 ± 2.0 

SR shrubs 

 

1.4 ± 1.3 1.9 ± 1.5 

SR graminoids 

 

0.8 ± 1.0 2.1 ± 1.9 

SR ferns 

 

0.2 ± 0.5 0.2 ± 0.4 

SR vines 

 

1.3 ± 1.3 1.3 ± 1.1 

SR other herbs 

 

3.3 ± 2.8 6.8 ± 4.3 

Shannon-Wiener 

 

1.42 ± 0.54 1.65 ± 0.56 

Inter-site diss. L  

 

0.66 ± 0.12 0.71 ± 0.08 

Inter-site diss. BC 

 

0.90 ± 0.06 0.92 ± 0.04 

Intra-site diss L 

 

        /           / 

Intra-site diss BC 

 

       /        / 

Tax. distinctness 

 

67.7 ± 4.9 66.3 ± 4.4 

        Cover all % 6.1 ± 7.8 16.2 ± 16.0 

Cover trees % 0.9 ± 1.9 1.8 ± 3.3 

Cover shrubs % 1.5 ± 4.5 1.6 ± 3.1 

Cover graminoids % 0.7 ± 0.7 3.4 ± 5.7 

Cover ferns % 0.2 ± 0.8 0.6 ± 1.8 

Cover vines % 0.6 ± 1.3 0.7 ± 1.8 

Cover other herbs % 2.1 ± 2.8 8.1 ± 10.8 

Total biomass (g/m²) 6.6 ± 12.8 11.7 ± 15.3 

Herb biomass (g/m²) 1.79 ± 3.11 7.17 ± 8.11 

Woody biomass (g/m²) 4.86 ± 11.08 4.54 ± 9.06 

        C % 5.65 ± 2.98 10.50 ± 3.70 

N % 0.42 ± 0.21 0.50 ± 0.15 

C/N 

 

13.3 ± 2.3 20.9 ± 4.1 

pH 

 

5.85 ± 0.88 6.08 ± 0.82 

PAR                                         μmol.m2/s 20.7 ± 25.3 45.1 ± 64.8 
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Appendix S3 - PAPER II:  

Effects of forest type and plot type on response variables; p-values referred to models containing 

random effect (§) were obtained by Satterthwaite approximation, implemented in the lmerTest 

package, those referred for models with fixed effect only are calculated with the function summary. See 

main text for the explanations of response and predictor variables. 

Response variable Unit Intercept                Forest type Plot type 

      Oak Sclerophyll Charcoal 

kiln 

       

SR total§  <0.001 0.000 0.981 <0.001 

SR trees  0.695 <0.001 0.032 0.022 

SR shrubs  0.002 <0.001 <0.001 0.044 

SR graminoids§  0.115 0.275 0.022 <0.001 

SR ferns  <0.001 0.138 0.056 / 

SR vines  <0.001 <0.001 <0.001 / 

SR other herbs§  <0.001 0.795 <0.001 <0.001 

Shannon-Wiener§  <0.001 0.035 0.485 0.002 

      

Cover all§ % 0.163 0.013 0.769 <0.001 

Cover trees§ % 0.891 0.020 0.401 0.0071 

Cover shrubs % 0.001 <0.001 <0.001 / 

Cover graminoids§  % 0.200 0.606 0.113 <0.001 

Cover ferns§ % 0.184 / / 0.078 

Cover vines§ % 0.778 0.014 0.415 / 

Cover other herbs§ % 0.001 0.192 0.318 / 

Total biomass§ (g/m²) 0.266 0.026 0.775 0.010 

Herb biomass§ (g/m²) 0.578 0.035 0.783 <0.001 

Woody biomass§ (g/m²) <0.001 / / / 

     

Inter-site diss. L § <0.001 0.007 0.005 0.001 

Inter-site diss. BC § <0.001 0.000 0.008 0.014 

Intra-site diss. L 0 / / NA 

Intra-site diss. BC 0 / / NA 

Tax.distinctness + 0.002 <0.001 <0.001 0.044 

      

C§ % <0.001 <0.001 0.00286 <0.001 

N§ % <0.001 / / 0.000 

C/N  <0.001 <0.001 <0.001 <0.001 

pH§  <0.001 0.001 0.014 0.001 

PAR                   μmol m2/s 0.002 / / 0.008 
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Appendix 1- PAPER III: Mean values ± standard deviation of height and fluorescence indices considered (see pg. 101 for explanations). P-values from t test or 

Mann Whitney, depending on normality. 

      height p-lev FV/FM p-lev ΨEo p-lev          ΨRo (1-VI) p-lev PIABS      p-lev PITOT p-lev 

sp14 

QI 

C 8.53 ± 2.92 <0.001 0.800 ± 0.015 0.045 0.551 ± 0.041 0.027 27.782 ± 6.05 n.s. 0.165 ± 0.027 <0.001 12.378 ± 6.137 n.s. 

N  7.38 ± 2.13 
 

0.793 ± 0.013 
 

0.574 ± 0.049 
 

29.057 ± 10.93 
 

0.197 ± 0.071 
 

17.350 ± 28.496   

QC 

C 9.91 ± 4.31 <0.001 0.798 ± 0.019 0.020 0.558 ± 0.028 0.009 26.539 ± 6.63 n.s. 0.209 ± 0.020 <0.001 15.703 ± 3.343 0.004 

N 8.29 ± 3.36 
 

0.789 ± 0.012 
 

0.577 ± 0.037 
 

27.025 ± 6.25 
 

0.231 ± 0.017 
 

18.013 ± 3.696   

FS 

C 9.77 ± 2.30 <0.001 0.788 ± 0.012 0.049 0.548 ± 0.029 n.s. 20.486 ± 4.10 n.s. 0.149 ± 0.014 n.s. 8.234 ± 2.463 n.s. 

N 9.41 ± 2.24   0.793 ± 0.010   0.545 ± 0.023   21.714 ± 4.07   0.143 ± 0.013   7.659 ± 1.664   

su14 
QI 

C 13.06 ± 4.40 n.s. 0.810 ± 0.007 <0.001 0.614 ± 0.021 n.s. 38.513 ± 7.48 0.004 0.170 ± 0.021 0.008 16.632 ± 17.502 n.s. 

N  12.67 ± 4.29 
 

0.802 ± 0.010 
 

0.611 ± 0.033 
 

34.841 ± 6.18 
 

0.180 ± 0.015 
 

14.576 ± 3.100   

QC 

C 11.17 ± 4.80 0.030 0.800 ± 0.010 0.004 0.585 ± 0.022 n.s. 29.911 ± 4.73 <0.001 0.192 ± 0.046 0.021 14.287 ± 3.438 <0.001 

N 10.10 ± 4.67 
 

0.805 ± 0.008 
 

0.593 ± 0.023 
 

34.685 ± 5.59 
 

0.197 ± 0.024 
 

16.967 ± 3.626   

FS 

C 11.38 ± 2.29 0.015 0.777 ± 0.012 n.s. 0.572 ± 0.019 n.s. 20.273 ± 3.66 n.s. 0.142 ± 0.018 n.s. 6.781 ± 1.484 n.s. 

N 11.23 ± 2.39   0.777 ± 0.017   0.574 ± 0.024   20.665 ± 3.61   0.147 ± 0.026   7.144 ± 1.611   

au14 
QI 

C 13.93 ± 4.61 n.s. 0.808 ± 0.009 0.009 0.589 ± 0.024 n.s. 37.788 ± 6.69 n.s. 0.228 ± 0.015 n.s. 26.011 ± 4.885 n.s. 

N  13.97 ± 4.65 
 

0.805 ± 0.007 
 

0.597 ± 0.028 
 

36.660 ± 5.86 
 

0.232 ± 0.019 
 

25.031 ± 5.098   

QC 

C 11.36 ± 4.85 0.035 0.809 ± 0.005 <0.001 0.551 ± 0.032 <0.001 30.745 ± 6.28 <0.001 0.182 ± 0.020 <0.001 15.462 ± 4.012 <0.001 

N 10.41 ± 4.64 
 

0.816 ± 0.015 
 

0.572 ± 0.027 
 

40.902 ± 6.93 
 

0.206 ± 0.020 
 

23.479 ± 5.673   

FS 

C 11.73 ± 2.30 0.035 0.756 ± 0.034 0.002 0.503 ± 0.032 <0.001 17.362 ± 8.98 <0.001 0.188 ± 0.029 <0.001 11.139 ± 4.797 n.s. 

N 11.77 ± 2.23   0.737 ± 0.029   0.476 ± 0.029   11.259 ± 3.26   0.212 ± 0.051   9.856 ± 3.783   

winter 

QI 

C / 
 

/ / 0.739 ± 0.021 0.072 0.551 ± 0.037 n.s. 16.911 ± 5.04 n.s. 0.271 ± 0.029 <0.001 15.718 ± 11.102 <0.001 

N  / 
 

/ 
 

0.730 ± 0.033   0.555 ± 0.045   14.899 ± 5.26   0.453 ± 0.024   8.725 ± 3.036   

sp15 
QI 

C / 
 

/ / 0.783 ± 0.040 0.232 0.436 ± 0.065 n.s. 17.369 ± 11.10 n.s. 0.140 ± 0.028 n.s. 8.255 ± 5.601 n.s. 

N  / 
 

/ 
 

0.797 ± 0.020 
 

0.454 ± 0.076 
 

20.292 ± 15.39 
 

0.154 ± 0.040 
 

11.053 ± 11.136   

QC 

C / 
 

/ / 0.826 ± 0.009 0.032 0.526 ± 0.039 n.s. 31.666 ± 7.46 n.s. 0.174 ± 0.036 n.s. 16.176 ± 6.534 n.s. 

N / 
 

/ 
 

0.828 ± 0.008 
 

0.522 ± 0.031 
 

30.857 ± 6.27 
 

0.171 ± 0.036 
 

15.630 ± 5.910   

FS 

C / 
 

/ / 0.807 ± 0.013 n.s. 0.573 ± 0.034 <0.001 33.239 ± 6.95 <0.001 0.181 ± 0.026 <0.001 15.779 ± 5.172 <0.001 

N / 
 

/ 
 

0.805 ± 0.010   0.539 ± 0.040   28.082 ± 7.04   0.156 ± 0.030   11.760 ± 4.467   

su15 
QI 

C 20.71 ± 6.49 n.s. 0.806 ± 0.016 <0.001 0.645 ± 0.039 0.003 47.935 ± 10.32 0.002 0.178 ± 0.026 n.s. 18.586 ± 6.228 n.s. 

N  20.86 ± 7.34 
 

0.785 ± 0.069 
 

0.628 ± 0.041 
 

42.042 ± 13.40 
 

0.184 ± 0.024 
 

17.476 ± 5.783   

QC 

C 22.35 ± 7.68 n.s. 0.795 ± 0.025 <0.001 0.573 ± 0.046 n.s. 27.563 ± 8.02 n.s. 0.143 ± 0.031 n.s. 9.492 ± 4.046 n.s. 

N 21.32 ± 6.16 
 

0.810 ± 0.017 
 

0.567 ± 0.048 
 

30.153 ± 7.94 
 

0.140 ± 0.036 
 

10.290 ± 4.387   

FS 

C 20.16 ± 5.94 n.s. 0.792 ± 0.026 <0.001 0.624 ± 0.038 n.s. 36.311 ± 8.17 <0.001 0.162 ± 0.019 <0.001 12.760 ± 3.695 0.021 

N 19.25 ± 5.44   0.806 ± 0.008   0.629 ± 0.019   0.142 ± 0.02   37.801 ± 5.270   11.330 ± 3.024   
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