Mechanization and new technologies for the control and the sustainability of agricultural and forestry systems

PROCEEDINGS

Alghero, Italy, 29th May-1st June 2016
Ex Ospedale Santa Chiara, Bastioni Marco Polo, 77 – Alghero (SS)

www.mechtech2016.uniss.it ISBN 979-12-200-1098-6
INDEX

TOPIC 1. INNOVATIVE SOLUTIONS FOR THE MECHANIZATION OF AGRICULTURAL AND FORESTRY SYSTEMS

Marco Bietresato, Fabrizio Mazzetto
Concept of an innovative tiltable platform for the experimental test of the stability of agricultural machinery

Aldo Calcante, Roberto Oberti, Massimo Brambilla, Carlo Bisaglia
Development and tests of a variable rate system for the distribution of livestock slurry with pressurized tankers

Giovanni Chessa, Maria Caria, Filippo Gambella, Antonio Pazzona
A portable device for estimating the somatic cell count in sheep milk

Christian Frasconi, Daniele Antichi, Luisa Martelloni, Marco Fontanelli, Michele Raffaelli, Giacomo Tosti, Luigi Manfrini, Aurelio Pristeri, Simona Bosco, Michel Pirchio, Andrea Peruzzi
Techniques and machines for conservation and organic agriculture: the S.M.O.C.A. project

Giorgio Macri, Andrea R. Proto, Giuseppe Zimbalatti
Optimizing the wood supply chain in Calabria: first survey

Michele Mattetti, Giovanni Molari, Eugenio Sereni
Monitoring of the operating parameters of agricultural tractors

Danilo Monarca, Massimo Cecchini, Andrea Colantoni, Roberto Bedini, Leonardo Longo, Walter Bessone, Luciano Caruso, Giampaolo Schillaci
Evaluation of safety aspects for a small-scale machine for nuts harvesting

Roberto Oberti, Aldo Calcante, Marcello Iriti, Emanuele Tona, Massimo Marchi, Paolo Tirelli
Automatic detection of powdery mildew in grapevine: imaging approaches for accurate sensing in field conditions

Mauro Pagano, Roberto Tomason, Carla Cedrola, Mirko Guerrieri, Giulio Sperandio, Marco Fedrizzi
The open flame “pyro-disinfection” and “pyro-weeding” heat treatments for the sustainable cultivation of leafy greens

Alexandros Sotirios Anifantis, Biagio Bianchi, Simone Pascuzzi, Francesco Santoro
Evaluation of a recycling tunnel sprayers prototype for vineyard treatments in Salento-Apulia

Alexandros Sotirios Anifantis, Simone Pascuzzi, Francesco Santoro
Evaluation of a towedover-the-row harvester for super high-density olive groves
Pier Riccardo Porceddu, Sara Spitella
Proximalsensing for multispectral analysis in vineyard

Alessandro Leone, Roberto Romaniello, Antonia Tamborrino, Pasquale Catalano, Giorgio Peri
Mechanical harvest of olives using a trunk shaker: identification of optimal vibration frequency, acceleration and shaking time

Enrico Capacci, Bruno Franceschetti, Valda Rondelli
An ergonomic approach for front foldable ROPS fitted on agricultural tractors

Alessandro Sopegno, Angela Calvo, Remigio Berruto, Patrizia Busato
AMACA: AgriculturalMAchineCost Analysis app

TOPIC 2. TECHNOLOGIES FOR REDUCING THE ENVIRONMENTAL IMPACT OF AGRICULTURAL AND LIVESTOCK PRODUCTIONS

Jacopo Bacenetti, Daniela Lovarelli, Marco Fiala
Comparison among different techniques for slurry spreading: effect on the environmental performance of maize cultivation

Biagio Bianchi, Giuseppe Cavone, Elsa Carparelli, Fabrizio Simone, Pasquale Catalano
Prototype of a CO$_2$ flexible plant for cold storage and conditioning of food products

Marcello Biocca, Roberto Fanigliulo, Daniele Pochi, Pietro Gallo, Giancarlo Imperi, Daniele Bartolini
Distribution pattern of organo-mineral fertilizers in localized applications

Lenin Javier Ramirez Cando, Antonio Guiso, Paolo Spugnoli, Luciana g. Angelini, Silvia Tavarini, Roberto Matteo, Luca Lazzeri
Environmental analysis of productive chain of an oleaginous Camelina (Camelina sativa) for the production of bio products

Claudio Perone, Flavio Fucci, Pasquale Catalano, Giovanna La Fianza, Ferruccio Giametta, Lucio Brunetti
Controlled mechanical ventilation to reduce primary energy consumption in air conditioning of greenhouses

Fabrizio Gioelli, Elio Dinuccio, DaliborCuk, Luca Rollè, Paolo Balsari
Acidification of separated solid fractions: effects on ammonia emission during storage

Paolo Marucco, Paolo Balsari, Manfred Roettele, Grzegorz Doruchowski
Drift evaluation tool: a software to address farmers in the selection of spray drift mitigation measures

Paolo Marucco, Paolo Balsari
Study of the effect of a new adjuvant on spray drift measured in vineyard
Michele Pisante, Federico Pallottino, Corrado Costa, Francesca Antonucci, Marcello Biocca, Carlo Bisaglia, Paolo Menesatti

Precision and digital agriculture: the Italian panorama

TOPIC 3. MODELING AND AUTOMATION FOR PROCESS PRECISION MANAGEMENT

Roberto Beghi, Valentina Giovenzana, Raffaele Civelli, Roberto Oberti, Riccardo Guidetti

*Testing of a simplified optical system for rapid ripeness evaluation of white grape (Vitis Vinifera L.) for *Franciacorta* sparkling wine*

Giovanni Chessa, Giuseppe Todde, Maria Caria, Lelia Murgia, Filippo Gambella, Antonio Pazzona

Precision livestock farming: prototyping sensor-based applications

Donato Cillis, Andrea Pezzuolo, Francesco Marinello, Bruno Basso, Luigi Sartori

Conservative Precision Agriculture: first economic and energetic assessments within the AGRICARE project

Daniela D’Auria, Gianluca Ristorto, Fabrizio Mazzetto

Development and Preliminary Test of a Mobile Lab for the orchard crop monitoring

Antonio Dore, Maria Giovanna Molinu, Antonio Petretto, Luisella Sistu, Davide Piccirilli, Viviana Guido, Antonio Pazzona; Filippo Gambella

Comparative study on the use of a non-destructive optical sensor (multiplex3®) for the monitoring of the anthocyanins content in red berry fruits

Manuela Mancini, Andrea Pizzi, Chiara Mengarelli, Giorgio Rossini, Ester Foppa Pedretti, Giuseppe Toscano, Andrea Renzi, Daniele Duca

Energy characteristics assessment of residues by means of infrared spectroscopy

Filippo Gambella, Antonio Dore, Viviana Guido, Luisella Sistu, Davide Piccirilli, Maria Giovanna Molinu, Maria Caria, Antonio Pazzona

Application of proximal and remote sensing on precision viticulture in Sardinia (Italy) – Preliminary results

Djangsou Hagassou, Giovanni Chessa, Maria Caria, Elena Brundu, Viviana Guido, Antonio Pazzona

New statistic tools for somatic cell monitoring: a study applied to sheep milk

Luisa Martelloni, Christian Fraconi, Marco Fontanelli, Michele Raffaelli, Michel Pichio, Andrea Peruzzi

Design of an automatic machine for variable rate application of flame weeding on maize

Gianluca Ristorto, Giorgio Guglieri, Fulvia Quagliotti, Fabrizio Mazzetto

Tuning a Terrain Following Remotely Piloted Aircraft System for Crop Monitoring in Precision Agriculture
Daniele Sarri, Riccardo Lisci, Marco Rimediotti, Marco Vieri
Studies and development of a terrestrial mobile LiDAR scanning for canopy shape assessment

TOPIC 4. WORK ORGANIZATION, LOGISTICS AND QUALITY IN AGRICULTURAL AND FORESTRY SECTORS

Paolo Balsari, Paolo Marucco
The new standard method iso 22401 to classify field crop sprayers according to spray drift using an ad hoc test bench

Paolo Balsari, Gianfranco Airoldi, Elio Dinuccio
Assessments of three maize stover harvesting chains for their energetic valorization in anaerobic digestion plants

Paolo Balsari, Elio Dinuccio, Dalibor Cuk, Luca Rollè, Fabrizio Gioelli
Pre-Treatments of rice straws to increase their biogas potential

Massimo Cecchini, Danilo Monarca, Andrea Colantoni, Benedetto Baciotti, Roberto Bedini, Filippo Cossio
The impact of training on the risk perception of agricultural workers

Giovanni Chessa, Maria Caria, Giuseppe Todde, Lelia Murgia, Antonio Pazzona
Vehicle routing and scheduling problem: a software for the optimization of sheep milk collection

Lorenzo Guerrini, Ciro Degli Innocenti, Antonio Guiso, Fabio Baldi, Alessandro Parenti
Analysis of two vegetation maintenance operations in a historical park in Florence

Lorenzo Guerrini, Giulia Angeloni, Fabrizio Nistri, Paolo Spugnoli, Alessandro Parenti
Analysis and guidelines of the baking process from ancient grains flour

Giuseppe Pulina, Caterina Canalis, Cristiano Manni, Antonio Casula, Luisa Carta, Ileana Iocola, Ignazio Camarda
Using a GIS technology to plan an agroforestry sustainable system in Sardinia

Alexandros Sotirios Anifantis, Simone Pascuzzi, Francesco Santoro
Low frequency electromagnetic fields: risk assessment in an olive mill

TOPIC 5. SUSTAINABILITY OF ENERGY USES IN AGRICULTURAL AND FORESTRY SYSTEMS

Alexandros Sotirios Anifantis, Simone Pascuzzi, Francesco Santoro
Energy efficiency analysis of a hydrogen and geothermal stand-alone system for greenhouses heating
Remigio Berruto; Patrizia Busato; Amedeo Reyneri; Massimo Blandino; Alessandro Sopegno; Mario Tamagnone

Greendry: low temperature drier for drying grains and oilseeds

Davide Boscaro, Andrea Pezzuolo, Francesco Marinello, Stefano Grigolato, Luigi Sartori, **Economic and energy evaluation of mowing, harvesting and logistic solutions for the recovery of grass residues from non-cultivated areas for biogas feeding**

Elena Brundu, Giovanni Chessa, Giuseppe Todde, Djangsou Hagassou, Antonio Pazzona

Development and application of a mathematical model for energy consumption optimization in intensive swine farming

Andrea Colantoni, Massimo Cecchini, Francesco Gallucci, Alessio Ghignoli, Francesco Mazzocchi, Luca Salvati

Biochar obtained from pellet of biomass residual by pyrolytic process in batch

Andrea Colantoni, Massimo Cecchini, Leonardo Longo, Lavinia M.P. Delfanti, Ilaria Zambon, Maria Grazia Saporito, Gianluca Egidi, Pierluigi Cavalletti, Danilo Monarca

Energy recovery of hazelnut’s pruning using an Imbert gasifier prototype

Filippo Gambella, Luisella Sistu, Davide Piccirilli, Viviana Guido, Maria Caria, Giuseppe Todde, Giovanni Chessa, Antonio Pazzona

Application of 2009/127/EC and 2009/128/EC directives in Sardinia (Italy): results on spraying machines

Gubiani Rino, Pergher Gianfranco, Dell’Antonia Daniele, Cividino Sirio, Rossano Secondo, Paciotti Paolo

Adding value to vine pruning residues: an energy sustainability analysis

Antonio Guiso, Lorenzo Guerrini, Lenin Javier, Ramirez Cando, Paolo Spugnoli

Environmental and economic benefits due to substitution of traditional cooking stoves in Mozambique

Alessio Ilari, Daniele Duca, Ester Foppa Pedretti, Giuseppe Toscano

Energy and environmental analysis of chains for horticultural products belonging to I, III, IV gamma

Giuseppe Todde, Lelia Murgia, Maria Caria, Filippo Gambella, Antonio Pazzona

Evaluation of direct energy intensity and related environmental load in conventional and organic dairy farms
Studies and development of a terrestrial mobile LiDAR scanning for canopy shape assessment

Daniele Sarri, Riccardo Lisci, Marco Rimediotti, Marco Vieri – Department of Agriculture, Food production and Forestry management, Division Biosystems Engineering, University of Florence, Firenze, Italy.
Jorge Martínez Guanter, Manuel Pérez-Ruiz - Department of Aerospace Engineering and Fluids Mechanics, University of Seville, Seville, Spain.
Juan Agüera Vega - Department of Rural Engineering, University of Córdoba. Spain.
daniele.sarri@unifi.it

Abstract

Remote sensing technologies are spreading rapidly such as combination of decision support tools for farm management. Between emerging solutions, LiDAR (Light Detection and Ranging) appears like more responsive to the specific and heterogeneous demands of the agricultural sector. In this context, and in the much more general precision agriculture domain, terrestrial LiDAR may become an effective aid to the characterization and analysis of plants growth. The knowledge of such parameter is one of the constraint for the sustainable management which takes into account the sito-specific requirements and variability (growth / yield / failed areas etc.) within the production units. To this end, some preliminary tests in an experimental olive grove located in Tuscany (Italy) conducted in collaboration with the Department of Aeroespacial Ingeniería y Mecánica de Fluidos, Área de Ingeniería Agroforestal the University of Seville, were carried out. First results, achieved by comparing digital LiDAR data versus volume measurements made manually or through photogrammetric analysis, have provided substantial results and an overview of the broad potential of this technology.

Keywords VRT, scanner laser, precision agriculture, spraying

Introduction

In the European Community the orchard cultivations (apples, pears, stoned fruits, nuts, top fruits, soft fruit citrus fruits, grapes, olives, wild fruits) cover an area of 1.29 million hectares (ha) (2012 EU). The most commons fruit trees are, in terms of scale apples, oranges, peaches, small citrus fruit trees, olive and grape. Inside the olive growing, in terms of number of farms specialised in the olive oil activity, the three main producers have approximately the same share of farms. Spain, however, produces 49% of the total by value, followed by Italy with 35% and Greece with 16%. Mediterranean countries produce 95 % of the total world olive oil production estimated to be 2.4 million tonnes per year. Olive production is a significant land use in the southern Member States of the EU with important environmental, social and economic considerations. The main areas of olive oil production are in Spain (2.4 million ha), followed by Italy (1.4 million ha), Greece (1 million ha) and, outside EU, Turkey (0.5 million ha). In this context, but at the same way for the others previously mentioned, might be found a broad diversity either on growth, shape, volumes either for the specific management such us planting layout, trellis systems, cultural practies etc. . Besides this, every cultivation characterized themselves for all much the same an inside variability. Therefore, the actuation of principles of BAT best agricultural practies, promoted by EU, must be oriented to solutions which support the farm companies activities. In this context precision agriculture could provide tool and knowledge to optimize the use of inputs and raw materials in the production processes. Many are the solutions developped to achieve essential parameters correlated to physiological and/or yield responses such us nutritional condition (Quebrajo et al., 2015),
weed detection (Slaughter et al., 2008) Hydric stress (Testi et al., 2008). At the same way, a lot of studies have been carried out in order to understand the chance and criticality to coupling this devices on vary types of carriers such us aerial and grounds units. Among themselves a significantly number have been focussed on characterization of canopy structure. This because crown properties have direct relationship on plant response (yield, quality, stress) but even in management strategies (applications of pesticides, nutrients etc.). Upon the devices actually investigated in precision agriculture techniques the sensor LiDAR (Light Detection And Ranging) better known as 2D laser scanner. The LiDAR, basically made by a laser sensor, measures the distance between it and a generic target without geographical positioning reference at the platform (terrestrial or aerial) where is coupled. The operating principle is based on the time of flight of a pulse i.e. the timeframe interval needed so that a ray of light (infrared region), generated by an emitter, hit a target and its reflections are intercepted by a receiver. The values, calculated through stabilized quartz clock, allow to achieve the distance of everyone points and schematize the relative coordinate (x,y,z). The overall results is the acquisition of millions points arranged in irregular clouds that individuates exactly the target shape. These features allow to achieve, in a stationary survey, a 2D modelling of the crown shape that might be enhanced if the LiDAR is conveyed by ground units in a direction perpendicular to the ground level (Palleja et al., 2010). The set of these characteristic, together the quick management, make it a usable tool in several operative contexts ranging from environmental monitoring, the architectural survey, civil engineering and today the agricultural sector. Nevertheless, to date, there are only limited knowledges which allow LiDAR data elaboration into prescription maps and/or specific rules for devices management in order to get a variable rate treatment. One example is the chance to varying plant protection products doses and volumes rates in relation to the target volume. The generalised usage of LiDAR technologies may potentially bring many advantages and more generally toward the increasing of the economic and environmental sustainability. On these considerations, the study focuses on the issues for the development and implementation of a ground monitoring system able to manage and process data generated by terrestrial laser scanner in order to estimate the crown volume of the plants.

Material and methods

To assess the LiDAR a preliminary assembly and field tests were carried out. The olive grove was located in San Casciano Val di Pesa (43°68' N; 11°14’) Tuscany, Italy at 250 m above sea level. The olive trees were planted in 1998 and the mains cultivar were Leccino, Frantoio, Moraiolo. The orchard density was 300 tree ha\(^{-1}\) with a planting layout of 6,5 m between the rows and 5 m on the lines which were oriented north-south. The training system was with a main trunk where from one to three branches branch off, with an average canopy diameter of 3.5 m, irregularly shaped and a height of 5 m. The plot was characterized by a slope of 14% along the north-south direction and the soil management foresaw permanent natural grassing cover. The preliminary trials involved two main stages:

- Crown volume assessment through manual measurements
- Crown volume assessment through laser measurements

Then the results were finally compared to evaluate the relationship among the two techniques. The manual measurements were performed using the tree silhouette method.

This assesses the crown volume by revolutionizing areas delimited on pictures captured through a photo camera from equidistant positioning around the vertical axis in the center of the tree. The pictures were taken in twenty fixed direction, every 18° around the entire
tree circumference, centering the camera viewfinder at the middle height of the crown. In order to scale the snapshots, a topographic reference was placed in proximity the crown and furthermore, specific targets (scotch tape) were placed inside it. All of them have been dimensioned using as reference the height from the ground and the distance apart the tree’s vertical axis. Next, pictures were elaborated in the image processing software ImageJ® (National Institutes of Health, Bethesda, MD, USA).

Figure 1. Study area and scheme of the monitoring yard
Laser measurement was made up of a SICK LMS-111 LiDAR (SICK AG, Germany) coupled with a RTX-GNSS receiver Trimble BX982. The whole system was carried by an ATV at constant forwarding speed of 1.5 km/h. The sensor, with a maximum scanning angle of 270°, was vertically and oriented to the ground to create a 2D point cloud in a plane, obtaining vertical slices of the crowns. The measurement configuration was set with 0.5° angular resolution. The main output data of the sensor per scan consisted of the angle values (α), the distance (ρ) to the objects and the reflectivity. The data acquisition interface was made by LMScan Alpha V0.52 (University of Florence, Firenze, Italia) software. This is a Microsoft Visual Studio based software used to control the sensors and store data as text strings in a on-board computer. The output is a dataset (a text file (.csv)) with x-y-z vehicle coordinate (Latitude, Longitude, Altitude WGS84), time, forwarding speed, sampling frequency and the corresponding distance at relative angles. Then, after a pre-processing stage devoted to convert coordinate reference system and selection of cloud points (off-target and ground points), an application to calculate crown features based on Microsoft Visual Basic Application was developed. This is a multi-step app that allow the processing of these files to evaluate the volume enclosed by the surface scanned by the LiDAR and other linear parameters of interest for crown characterization (height, width, depth). To analyze the system a first test on a single olive tree was carried out. This was performed along on the four main directions (N-S, S-E, S-N, N-W) at the same distance (3.8 m) to the center tree axis. Afterwards the checking of positive results achieved on these step, we proceeded with some scanning test on the row.
Results and discussion

Manual measurements, performed using the tree silhouette method, have highlighted an average volume of 7.38 m³ with a standard deviation of 1.1 m³ while the laser measurements, to the same olive tree, were respectively 6.66 m³ and 6.25 m³ on two repetitions. Thus, the comparison between the two techniques provided a 9% difference in the first test and 15% in the second one, values that are in line with those achieved by comparing manual and electric methods (Miranda-Fuentes et al., 2015). Table 1 summarises all measured and calculated parameters achieved through LiDAR.

Figure 2. Trees crown profiles detected on the row with their upper and lower limits

<table>
<thead>
<tr>
<th>test</th>
<th>Olive 1</th>
<th>Olive 2</th>
<th>Olive 3</th>
<th>Olive 4</th>
<th>Olive 5</th>
<th>Olive 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.69</td>
<td>14.71</td>
<td>9.83</td>
<td>14.32</td>
<td>12.22</td>
<td>9.82</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>13.18</td>
<td>10.13</td>
<td>14.81</td>
<td>12.40</td>
<td>10.47</td>
</tr>
<tr>
<td>3</td>
<td>5.35</td>
<td>14.37</td>
<td>10.64</td>
<td>13.68</td>
<td>11.80</td>
<td>9.14</td>
</tr>
<tr>
<td>Mean</td>
<td>5.08</td>
<td>14.09</td>
<td>10.20</td>
<td>14.27</td>
<td>12.14</td>
<td>9.81</td>
</tr>
<tr>
<td>Std deviation</td>
<td>0.78</td>
<td>0.81</td>
<td>0.41</td>
<td>0.57</td>
<td>0.31</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table 1 Crown Volume achieved by laser scanner

Conclusion

The use of LiDAR technology appears a useful tool for the volume canopy assessment. The results achieved have recognised fairly good correlations with manual measurement. This is attributable mainly to the low accuracy of tree silhouette method in the detection of the protruding branches and crown irregularities, which were very common in olive trees studied. Nevertheless, additional studies will be done to improve the data management (reduction of amount and faster processing stage) in order to produce a realistically tool applicable in real operative contexts.

Reference