tumors, keratin, EMA, vimentin and CEA and, sometimes, hCG. Additional immunohistochemistry was adopted when required to improve the pathological diagnosis. Candidate patients to cystectomy, for reason other than large bladder tumor with radiologic imaging suggestive of bladder wall infiltration, i.e. Tis, multiple and/or recurrent non muscle invasive and patients submitted to TURBT at other centers, were excluded. Inferential statistical analysis was performed. Results: Out of 340 patients, 35 (10.3%) showed rare histotypes of bladder cancer, i.e. in 30 cases (32%) out of 94 radical cystectomies and in 5 (2%) out of 246 TURBTs. The rare histotypes were distributed as follows: squamous carcinoma 11 (31%), sarcomatoid 8 (23%), undifferentiated 6 (17%), neuroendocrine 3 (9%), micropapillary 2 (6%), adenocarcinoma 1 (3%), mixed 4 (11%). TCCB with histological rare variants showed at cystectomy considerable size (average diameter=7.7x6.7 cm; range=4.5x5-11x9 cm), while 13 (43%) were pT4 category. In 13 patients (37%), the uncommon histotype was detected at the pre-operative TURBT, while, in 22 (63%), it was recognized only in the cystectomy specimen. Regarding the correlation between TURBT and re-TUR, rare histotypes were not identified at the first TURBT in 9 patients (26%) but found at re-TURBT in 4 patients (44%) and at cystectomy in 5 patients (56%) (Figure 1). Conversely, an atypical component diagnosed at first TURBT was not confirmed by a subsequent re-TUR in only 1 patient (3%). Discussion: Although the important prognostic role of rare histologic variants of bladder cancer is well-recognized, TURBT is not standardized in relation to tumor size. Unrecognized rare histotypes might have important therapeutic implications since they are probably less responsive to neoadjuvant chemotherapy or bladder-sparing approaches, thus benefiting early cystectomy. The inaccuracy of TUR in everyday clinical practice in detecting uncommon variants could be explained by the inadequacy of sampling of large tumors. The “pre-cystectomy” TUR is often considered a limited biopsy to confirm the tumor and to demonstrate the infiltration of the muscular layer. As a matter of fact, pathologists often do not analyze a sufficient amount of tissue to identify different histological components. Standardization of the TURBT strategy, including sampling of different areas of bulky tumors, could be of clinical value.

Figure 1. Flow chart showing the correlation between TURBT, re-TUR and cystectomy.

84 PREDICTIVE FACTORS OF RESECTION TECHNIQUES DURING PARTIAL NEPHRECTOMY IN A COHORT OF “ENCLEORESECTIVE” CENTERS: INSIGHTS FROM THE SURFACE-INTERMEDIATE-BASE (SIB) MARGIN SCORE
INTERNATIONAL CONSORTIUM

Andrea Minervini1, Riccardo Campi1, Andrea Mari1, Ottavio De Cobelli2, Francesco Sanguedolce3, Christian Villeda-sandoval3, Georgios Hatzichristodoulou4, Alessandro Antonelli5, Brian Lane6, Bulet Akdogan7, Umberto Capitanio8, Martin Marszalek9, Alessandro Volpe10, Nihat Karakoyunulu11, Hans Langenhuijsen12, Tobias Klatte13, Oscar Rodriguez-faba14, Sabine Brookman-may15, Marco Roscigno16, Robert G Uzzo17, Alberto Lapini1, Marco Carini1 and Alexander Kutikov17

1Department of Urology, University of Florence, Careggi Hospital, Florence, Italy, Firenze (FI), Italy;
2Department of Urology, European Institute of Oncology (IEO), Milan, Italy;
3Department of Urology, Southmead Hospital-North Bristol NHS Trust, Bristol, U.K.;
4Department of Urology, Technical University of Munich, University Hospital Klinikum Rechts Der Isar, Munich, Germany;
5Department of Urology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy;
6Department of Urology and Andrology, Donaupital, Vienna, Austria;
7Department of Urology, Spectrum Health Cancer Center, Grand Rapids, MI, U.S.A.;
8Department of Urology, Hacettepe University, School of Medicine, Ankara, Turkey;
9Department of Urology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy;
10Department of Urology, Medical University of Vienna, Vienna, Austria;
11Department of Urology, Maggiore Della Carità Hospital, University of Eastern Piedmont, Novara, Italy;
12Department of Laparoscopy, Robotics and Endourology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands;
13Department of Urology, Medical University of Vienna, Vienna, Austria;
14Uro-Oncology Unit, Fundacio Puigvert, Barcelona, Spain;
15Department of Urology, Ludwig Maximilians University, Munich, Germany;
16Department of Urology, AO Papa Giovanni XXIII, Bergamo, Italy;
17Division of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, U.S.A.
Introduction: Detailed reporting of resection strategies (RS) and resection techniques (RT) for tumor excision during partial nephrectomy (PN) is lacking in the current literature. The aim of the study was to evaluate (i) possible correlations between patients’ and/or tumors’ characteristics and RT performed and (ii) whether the type of RT does influence perioperative outcomes after PN, harnessing the newly proposed Surface-Intermediate-Base (SIB) margin score as a standardized reporting system. Materials and Methods: After Institutional Review Board’s approval, data were prospectively collected from a cohort of 507 patients undergoing NSS at 16 high-volume Centers across the U.S. and Europe over a 6-month enrollment period. RT was classified according to the SIB score. RS was classified as “enucleative”, “enucleoresective” or “resective” according to the most prevalent RT performed in each centre’s cohort. Descriptive and comparative analyses were performed in the six enucleoresective RS centres (ERC). Results: Overall, 507 patients were finally enrolled in the study. The RT was classified as pure or hybrid enucleation (E, SIB 0-2), pure or hybrid enucleoresection (ER, SIB 3-4) and resection (R, SIB 5) in 266 (52.5%), 150 (29.6%) and 91(17.9%) patients, respectively, in the overall cohort, while in 53 (33.1%), 83 (51.9%) and 24 (15.0%) patients in the ERC. Demographic data, comorbidity scores, surgical indication and approach and PADUA score did not significantly differ between the E, ER and R groups in the ERC. Tumors >4.0 cm were 21 (40.4%), 41 (49.4%) and 4 (16.7%) in the E, ER and R groups (p>0.05), respectively. A clampless strategy was used in 19.2%, 13.2% and 8.3% of patients (p>0.05). Median warm ischemia time (WIT) was 19 (15-24), 17 (14-23) and 17 (15-21) minutes in the E, ER and R groups (p=0.02), respectively. A clampless strategy was used in 19.2%, 13.2% and 8.3% of patients (p>0.05). Median warm ischemia time (WIT) was 19 (15-24), 17 (14-23) and 17 (15-21) minutes in the E, ER and R groups (p<0.05). Surgical post-operative complications were recorded in 7.5%, 13.2% and 4.2% of patients (p=0.05). Positive surgical margin rate was 7.0%, 13.4% and 0% of patients, respectively (p>0.05). Trifecta outcome was achieved in 67.2%, 71.6% and 73.7% of patients for the E, ER and R groups (p>0.05). Discussion and Conclusions: This is the first study evaluating pre-operative predictive factors of RTs performed during PN and whether the type of RT significantly impacts on NSS outcomes using a standardized instrument of reporting. Overall, in ERC, ER represents less than 52%. ER and E are performed in a significantly higher proportion of tumors >4 cm compared to R. Relating to surgical outcomes, ER was associated with a significantly higher rate of post-operative surgical complication compared to E and R. However, Trifecta achievement was comparable among the three techniques.

85

RESECTION TECHNIQUES FOR NEPHRON SPARING SURGERY VARY: INSIGHTS FROM A PROSPECTIVELY COLLECTED MULTI-INSTITUTIONAL COHORT HARNESSING THE SURFACE-INTERMEDIATE-BASE (SIB) MARGIN SCORE (SIB INTERNATIONAL CONSORTIUM)

Andrea Minervini1, Riccardo Campi1, Andrea Mari1, Ottavio De Cobelli2, Francesco Sanguedolce3, Georgios Hatzichristodoulou4, Alessandro Antonelli5, Brian Lane6, Bulent Akdogan7, Umberto Capitano8, Martin Marszałek9, Alessandro Volpe10, Nihat Karakoyunlu11, Hans Langenhuijzen12, Tobias Klatte13, Oscar Rodriguez-Faba14, Sabine Brookman-May15, Marco Roscigno16, Robert G. Uzzo17, Alberto Lapini1, Marco Carini1 and Alexander Kutikov17

1Department of Urology, University of Florence, Careggi Hospital, Florence, Italy, Firenze (FI), Italy; 2Department of Urology, European Institute of Oncology (IEO), Milan, Italy; 3Department of Urology, Southmead Hospital-North Bristol NHS Trust, Bristol, U.K.; 4Department of Urology, Technical University of Munich, University Hospital Klinikum Rechts Der Isar, Munich, Germany; 5Department of Urology, University of Brescia, Brescia, Italy; 6Department of Urology, Spectrum Health Cancer Center, Grand Rapids, MI, U.S.A.; 7Department of Urology, Hacettepe University, School of Medicine, Ankara, Turkey; 8Department of Urology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; 9Department of Urology and Andrology, Donauspital, Vienna, Austria; 10Department of Urology, Maggiore Della Carità Hospital, University of Eastern Piedmont, Novara, Italy; 11Department of Urology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey; 12Department of Laparoscopy, Robotics and Endourology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 13Department of Urology, Medical University of Vienna, Vienna, Austria; 14Department of Urology, Fundacio Puigvert, Barcelona, Spain; 15Department of Urology, Ludwig Maximilians University, Munich, Germany; 16Department of Urology, AÖ Papa Giovanni XXIII, Bergamo, Italy; 17Division of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, U.S.A.

Introduction/Aim: Resection methodology is rarely reported in current nephron-sparing surgery (NSS) literature. Yet, a