Optimization of a new circular agriculture model for the olive-oil sector applicable to food, cosmetic and nutraceutical fields

A. Romani¹, F. Ieri¹, P. Vignolini¹, M. Campo¹, N. Mulinacci²

¹PHYTOLAB (Pharmaceutical, Cosmetic, Food supplement Technology and Analysis) - Department of DiSIA, ‘G. Parenti’, University of Florence, Via U. Schiff 6, Sesto F.no.

²Department of NEUROFARBA, Division Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto F.no.

Circular economy means an innovative strategy for optimizing the use of available resources according to which the end products of a phase of production become materials of starting for a subsequent stage, resulting to a cyclic system. This strategy, which tends to zero the production of waste, it can be advantageously applied in agro-industrial and food processes, using vegetable by-products and wastes of production for obtaining, in a sustainable way, bioactive molecules, new products and energy.

In this work we will be considered two different macro-objectives:
- The valorization of extravirgin olive oil as a nutraceutical;
- Optimization of a new circular agriculture model for the olive oil sector applicable to food sectors, cosmetic and nutraceutical.

In this study we have investigated biophenols and volatile compounds of monovarietal and blended extravirgin olive oils (EVOOs), in order to optimize both the qualitative and quantitative characteristics of oil and both the organoleptic properties. Biophenols characterization was performed by HPLC-DAD-MS technique. The unique and delicate EVOO flavor depends on the interaction of hundreds of compounds and EVOOs were also analyzed by GC-MS and 2DGC-MS. HS-SPME-GC×GC-TOF-MS analysis of the complex volatile fraction of EVOO was submitted to advanced fingerprinting analysis of 2D chromatographic data.

Another objective was to propose models of "circular economy" aimed at the production of new formulations with antioxidant and antimicrobial activity from the olive by-products and wastes such as leaves and olive residues obtained from two-phase process. After optimization of experimental and industrial solvent-free extraction processes and fractionation, the fractions have been characterized by HPLC-DAD-MS, to characterized the qualitative and quantitative presence of biophenols. The standardized fractions were used for innovative application in food, cosmetics and agricultural fields, in association with other standardized polyphenolic fractions useful as antioxidant and antimicrobial. This work is supported by TUSCANY NATURBEN project.
Local Organizing Committee
Alberto Angioni (Presidente)
Piero Addis
Pierluigi Caboni
Fabrizio Dedola
Francesco Lai
Giacomo Luigi Petretto
Giorgio A. M. Pintore
Giorgia Sarais
Carlo G. I. Tuberoso

Scientific Committee
Alberto Angioni (Presidente)
Marco Arlorio
Anna Arnoldi
Ivana Lidia Bonaccorsi
Vincenzo Brandolini
Jean Daniel Coisson
Lanfranco Conte
Maria Daglia
Arnaldo Dossena
Giacomo Dugo
Paola Dugo
Ignazio Floris
Sabrina Moret
Nadia Mulinacci
Ettore Novellino
Paolo Rapisarda
Luca Rastrelli
Patrizia Restani
Alberto Ritiemi
Mariateresa Russo
Maria Stella Simonetti
Sauro Vittori

Honor Committee
Piero Damiani
Giovanni Dugo
Vincenzo Luigi Garau
Rosangela Marchelli
Aldo Martelli
Marinella Melis
Filippo M. Pirisi
Luciana G. Favretto
Antonio Dini

www.gicasci.it