March 14-19, 2017
Pacific Grove, CA

Abstract Book
between November and December 2013. Out of 37 isolates, the nitrate non-utilising auxotrophs (nit mutants) complementation test revealed 20 VCGs. KVCG14 and KVCG15 had highest distribution frequency (n = 13; 10.8%) while KVCG10 and KVCG20 (n = 1; 0.8%) the least. Analyses of VCG diversity using the Shannon Index (H) showed that Nandi (H = 0.108) and Kisumu (H = 0.324) counties recorded the lowest and highest VCG diversities respectively. Results also showed that, with a few exceptions, within-county isolates were self-compatible but they were incompatible across any two adjacent counties and across all the sampled counties. Heterokaryon incompatibility in Nandi (n = 6; 67%) and Makueni (n = 3; 33%) were the greatest and least respectively. Mycotoxin detection by coconut cream agar under UV light (365 nm) revealed blue fluorescence ((57%, n = 21) aflatoxin B1) and green ((43%, n = 16) aflatoxin G1). The study further revealed L- type strains (57%; n = 21 and 7%; n = 2) respectively. The findings of the study could provide reliable information in determining biocontrol strategies to mitigate aflatoxin contamination of maize by A. flavus in the studied counties.

333F Mycobiome in Anorexia Nervosa. K. Mueller1, E. Huh1, E. Bulik-Sullivan2, H. Zhang3, Y. Wang4, C. Bulik5,6, l. Carroll7, S. Lee1,2 1) Biology, The University of Texas at San Antonio, San Antonio, TX; 2) South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX; 3) Medicine, The University of North Carolina at Chapel Hill, NC; 4) Nutrition, The University of North Carolina at Chapel Hill, NC; 5) Psychiatry, The University of North Carolina at Chapel Hill, NC.

Anorexia nervosa (AN) is a mental illness characterized by a fear of gaining body weight, which results in severe weight loss and malnutrition. Persistent malnutrition, along with anxiety as a common comorbidity, contributes to AN having the highest mortality rate of mental illnesses. Typical treatment for AN involves re-nourishment of patients, which has proven to be insufficient in treating the disease, as relapse rates after treatment reach 50%. As such, finding new treatments for AN is of great importance.

Previous studies have shown an overall lowered bacterial diversity in AN patients, as well as a significant association between the bacterial diversity of AN patients and anxiety. However, these studies have overlooked the possible role of fungal diversity in the gut. Intestinal fungi have been implicated in diseases of the gastrointestinal tract, and previous studies have shown that disruption of normal gut bacteria may lead to enteric fungal dysbiosis. It then stands to reason that the fungal gut community, as well as an interplay between the fungal and bacterial communities, also plays a role in AN associated dysbiosis.

DNAs extracted from stool samples were used to analyze mycobiota in the guts of AN patients and healthy controls (HC). Utilizing fungal specific ITS1 primers and bacterial specific 16s rDNA primers, qPCR analysis demonstrated a significant increase in number of gut fungi relative to bacteria in the undernourished phase (T1) of AN patients as compared to the post-refeeding phase (T2) of the same patients. Furthermore, an increase in C. albicans was observed upon patients undergoing the refeeding treatment, providing a specific role of this fungus in lower weight phase of AN patients. Illumina sequencing of the ITS1 amplicons was performed to examine the dynamics of fungal species present in AN patients and HC. The obtained sequence data were filtered to identify taxa via IPITS pipeline. The OTU abundance from each sample was assessed with QIIME. Measurements of alpha diversity (T1 vs T2 vs HC) with the number of species and the Chao-1 index revealed less fungal species present in the gut of AN patients compared to that of HC. This result is similar to previous studies considering lower bacterial diversity in AN. Together, these findings suggest that fungal dysbiosis in the intestines may play a part in perpetuating microbiota in AN patients. Addressing this dysbiosis may then offer new methods for the treatment of AN.

334W Nothophytophthora prov. nom., a new sister genus of Phytophthora. T. Jung1,2,3, B. Scanu4, J. Bakony5, D. Seress5, A. Durán6, E. Sanfuentes von Stowasser7, L. Schena8, S. Mosca8, P. Q. Thu9, C. N. Minh9, S. Fajardo10, M. González11, A. Pérez-Sierra11, H. Rees10, C. Maia1, M. Horta Jung1,2,3 1) Laboratory of Molecular Biotechnology and Phytopathology, Center for Mediterranean Bioresources and Food (MeditBio), University of Algarve, 8005-130 Faro, Portugal; 2) Phytophthora Research Centre, Mendel University, 613 00 Brno, Czech Republic; 3) Laboratory of Molecular Biotechnology and Phytopathology, Center for Mediterranean Bioresources and Food (MeditBio), University of Algarve, 8005-130 Faro, Portugal; 4) Phytophthora Research Centre, Mendel University, 613 00 Brno, Czech Republic; 5) Phytophthora Research and Consultancy, 83131 Nußdorf, Germany; 6) Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia (SPaVE), Università degli Studi di Sassari, 07100 Sassari, Italy; 7) Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; 8) Dipartimento di Gestione dei Sistemi Agrari e Forestali, Università Mediterranea di Reggio Calabria, Ste. Marie, Canada; 9) Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary; 10) Ontario Forest Research Institute, 7P6A 2ES Sault Ste. Marie, Canada; 11) Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; 12) Dipartimento di Giustizia dei Sistemi Agrari e Forestali, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy; 13) Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam; 14) Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom.

During various surveys of Phytophthora diversity in Europe, China and Vietnam slow growing oomycete isolates were obtained from soil samples and small streams in natural and planted forest stands. Phylogenetic analyses of ITS, β-diversity in Europe, Chile and Vietnam slow growing oomycete isolates were obtained from soil. Phytophthora sp. 89124 Reggio Calabria, Italy; 9) Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam; 3) Phytophthora Research and Consultancy, 83131 Nußdorf, Germany; 4) Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia (SPaVE), Università Mediterranea di Reggio Calabria, Ste. Marie, Canada; 5) Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary; 6) Ontario Forest Research Institute, 7P6A 2ES Sault Ste. Marie, Canada; 7) Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; 8) Dipartimento di Giustizia dei Sistemi Agrari e Forestali, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy; 9) Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam; 10) Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom.

Diversity of Phytophthora species from natural and semi-natural ecosystems in Portugal, Chile and Vietnam. T. Jung1,2,3, B. Scanu4, J. Bakony5, D. Seress5, A. Durán6, E. Sanfuentes von Stowasser7, L. Schena8, S. Mosca8, P. Q. Thu9, C. N. Minh9, S. Fajardo10, M. González11, A. Pérez-Sierra11, H. Rees10, C. Maia1, M. Horta Jung1,2,3 1) Laboratory of Molecular Biotechnology and Phytopathology, Center for Mediterranean Bioresources and Food (MeditBio), University of Algarve, 8005-130 Faro, Portugal; 2) Phytophthora Research Centre, Mendel University, 613 00 Brno, Czech Republic; 3) Phytophthora Research and Consultancy, 83131 Nußdorf, Germany; 4) Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia (SPaVE), Università Mediterranea di Reggio Calabria, Ste. Marie, Canada; 5) Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary; 6) Ontario Forest Research Institute, 7P6A 2ES Sault Ste. Marie, Canada; 7) Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; 8) Dipartimento di Giustizia dei Sistemi Agrari e Forestali, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy; 9) Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam; 10) Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom.
degli Studi di Sassari, 07100 Sassari, Italy; 5) Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary; 6) Ontario Forest Research Institute, 7P6A 2E5 Sault Ste. Marie, Canada; 7) Laboratorio di Patologia Forestale, Facoltà di Scienze Forestali e di Protezione Forestale, Università degli Studi di Sassari, 07100 Sassari, Italy; 8) Dipartimento di Scienze delle Foreste e delle Risorse della Terra, Sapienza Università di Roma, Rome, Italy; 9) Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam; 10) Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom; 11) Instituto Agroforestal Mediterráneo, Universitat Politècnica de Valencia, Edificio 3H, Camino de Vera s/n, 46022 Valencia, Spain; 12) Department of Agri-Food Production and Environmental Sciences, Plant Pathology and Entomology Division, University of Florence, Piazzale delle Cascine, 28, 50144 Florence, Italy.

Surveys of Phytophthora diversity were performed using bailing assays and direct plating of necrotic plant tissues. Isolates were identified using both classical identification and sequence analysis of ITS and cox1.

In Portugal, 68 forest stands, 12 forest nurseries, 36 river systems and 4 lagoon ecosystems were surveyed. The isolates obtained belonged to 29 known species, 3 informally designated taxa, and 1 previously unknown taxon of Phytophthora, nine new Phytophthora hybrid taxa from Clades 6 and 9, Nothophytophthora homothallica nom. prov., 1 known and 10 new Halophytophthora species, 7 known species and one new taxon of Phytophthora, and multiple Pythium species were isolated.

In Chile, the survey was performed in 13 natural forest stands and 20 forest streams located in two protected areas near Valdivia and in a temperate mountain forest in the Concepción area, and in each one planted stand of the introduced tree species Castanea sativa and Fagus sylvatica. Eight described species (including P. kemoea) and 2 previously unknown taxa of Phytophthora were isolated. In addition, a diverse array of Clade 6 hybrids, and Nothophytophthora caduca nom. prov., Nothophytophthora chlamydospora nom. prov. and Nothophytophthora valdiviana nom. prov., were obtained.

In Vietnam the survey was performed in 23 natural forest stands and 10 forest streams and rivers in temperate montane and tropical lowland regions, and in 14 rubber plantations. Sixteen described species (including P. ramorum), 3 designated taxa and 23 previously unknown taxa of Phytophthora, amongst them 9 Clade 9 hybrid taxa, were isolated. In addition, Nothophytophthora vietnamensis nom. prov. and a diverse array of known and new taxa of Phytophthora, Pythium and Elongisporangium were recovered.

The implications of these findings for plant biosecurity and the development of a deeper understanding of the evolution and adaptability of the genus Phytophthora will be discussed.