Materials and Infrastructures 2

Edited by
Jean-Michel Torrenti
Francesca La Torre
Materials and Infrastructures 2
Preface .. xv
Acknowledgments xix
Introduction ... xxi

Part 4. Recycling and Sustainability Issues 1

Chapter 28. Introduction to European COREPASOL
Project on Harmonizing Cold Recycling
Pavement Techniques 3
Jan VALENTIN, Jan SUDA, Zuzana FORMANOVÁ,
Konrad MOLLENHAUER, Michael ENGELS,
Fátima BATISTA and Ciaran MCNALLY

28.1. Introduction .. 3
28.2. Background of European project COREPASOL 4
 28.2.1. Objectives of the project 6
 28.2.2. Present situation on cold recycling. 6
28.3. Methods of cold-recycled asphalt specimen compaction 8
28.4. Experimental comparison of compaction methods 10
 28.4.1. Bulk density 11
 28.4.2. Indirect tensile strength 13
 28.4.3. Stiffness modulus 14
28.5. Publication policy 15
28.6. Acknowledgments 16
28.7. Bibliography 16
Chapter 29. Technical Performance and Benefits of Recycling of Reclaimed Asphalt Containing Polymer-modified Binder in Premium Surface Layers

Greet LEEGWATER, Jozef KOMAČKA, Gang LIU, Erik NIELSEN and Eva REMIŠOVA

29.1. Introduction .. 19
29.2. State of the art on recycling of polymer modified asphalt (PMA) ... 20
 29.2.1. Focus and aim of literature review 20
 29.2.2. Extraction and recovery 21
 29.2.3. Laboratory mixing .. 21
 29.2.4. Experience with utilization of RA-containing PMB in full-scale production 21
29.3. Materials ... 22
 29.3.1. RA containing polymer modification 22
 29.3.2. Binder extraction and virgin binders 22
 29.3.3. Asphalt mixes .. 23
29.4. Properties of extracted and blended binders 24
29.5. Performance of asphalt mixtures with RA containing polymer modified binder 26
29.6. Microscopy investigations of RA and asphalt mixes containing RA .. 29
29.7. Environmental and economic benefits 30
29.8. Conclusions and recommendations 31
29.9. Acknowledgments 32
29.10. Bibliography .. 32

Chapter 30. Case Study: Increasing the Percentage of Recycled Asphalt

Marjan TUŠAR and Lidija AVSENIK

30.1. Introduction .. 33
30.2. Materials and test program 34
 30.2.1. Materials ... 35
 30.2.2. Test program .. 37
30.3. Results and analysis 38
30.4. Conclusions .. 42
30.5. Bibliography .. 43
Chapter 31. Evaluation of Long-term Glass-grid Test Section using a Unique Method 45
Maciej MALISZEWSKI, Przemysław HARASIM, Dominika MALISZEWSKA and Adam ZOFKA

31.1. Introduction ... 46
31.1.1. General ... 46
31.1.2. Geosynthetic 47
31.1.3. Test section 47
31.2. Methodology ... 48
31.2.1. Theory and assumptions 48
31.2.2. FWD measurement campaign 50
31.2.3. Visual pavement description 50
31.3. Analysis ... 50
31.3.1. Presentation of deflection basin 50
31.3.2. Comparison of maximum deflections 50
31.3.3. Deflection basin indices 52
31.3.4. Radius comparison 53
31.3.5. Visual pavement description 55
31.4. Conclusions and recommendations 56
31.5. Bibliography ... 57

Chapter 32. Effect of Using of Reclaimed Asphalt and/or Lower Temperature Asphalt on the Availability of the Road Network 59
Cliff NICHOLLS, Matthew WAYMAN, Konrad MOLLENHAUER, Ciaran MCNALLY, Amir TABAKOVIĆ, Amanda GIBNEY, Aikaterini VARVERI, Sean CASSIDY, Rea SHAHMOHAMMADI and Kevin GILBERT

32.1. Introduction ... 59
32.2. Review of existing knowledge 60
32.2.1. Relevant parameters for pavement service life 60
32.2.2. Service life of low-temperature asphalt mixtures 61
32.3. Trial site .. 63
32.3.1. Need for full-size trials 63
32.3.2. Mixture design 64
32.3.3. Selection and construction of the test section ... 65
32.3.4. Reclaimed asphalt feedback 66
32.3.5. Testing ... 68
32.4. Laboratory testing 69
32.5. Assessment of lifecycle cost and carbon footprint 71
32.5.1. Assessment on a lifecycle basis 71
32.5.2. Formulation of the carbon footprint 71
Chapter 33. Brazilian Road Deterioration Test: Final Report

Gustavo Garcia OTTO, Leto Momm and Amir Mattar VALENTE

33.1. Introduction ... 75
33.2. Field analysis ... 77
33.3. Pavement deterioration analysis 78
 33.3.1. Asphalt mechanical characteristics 79
33.4. Analysis model .. 81
33.5. Results .. 82
 33.5.1. Axle interaction simulation 83
 33.5.2. Real traffic composition interaction 85
33.6. Conclusions .. 86
33.7. Acknowledgments 86
33.8. Bibliography .. 87

Part 5. Railways and Inland Navigation 89

Chapter 34. Application of Different Methods for Rehabilitation of Existing Transition Zones on Old Railway Lines ... 91

Marko VAĐIĆ, Duo LIU, Stanislav LENART and Irina STIPANOVIĆ OSLAKOVIĆ

34.1. Introduction ... 91
34.2. Transition zones 92
 34.2.1. Negative mechanisms that occur in the transition zones 93
 34.2.2. Role of transition zones 93
34.3. Case study: transition zones at the “Buna” bridge 94
 34.3.1. Technical characteristics of the track section 94
 34.3.2. Traffic data ... 95
 34.3.3. Performed geotechnical and geophysical investigation works. ... 95
34.4. Modeling ... 96
 34.4.1. Calculations with Plaxis 98
 34.4.2. Interpretation of the results 98
 34.4.3. Final design: direction towards Zagreb 99
 34.4.4. Final design: direction towards Sisak 100
Chapter 35. CAPACITY4RAIL: Toward a Resilient, Innovative and High-capacity European Railway System for 2030/2050
Laurent SCHMITT, Fabien LÉTOURNEAUX, Isabelle DE KEYZER and Paul CROMPTON

35.1. Introduction ... 105
35.2. Project objectives ... 106
35.3. Project approach ... 109
 35.3.1. Infrastructure .. 109
 35.3.2. New concepts for efficient freight systems .. 110
 35.3.3. Operations for enhanced capacity .. 111
 35.3.4. Advanced monitoring ... 112
 35.3.5. System assessment and migration to 2030/2050 .. 112
 35.4. Conclusions ... 114
 35.5. Acknowledgments ... 114

Chapter 36. Secondary Stiffness of Fastening Clips: Influence on the Behavior of the Railway Track Panel
Konstantinos GIANNAKOS

36.1. Introduction ... 115
36.2. The railway track panel .. 117
36.3. The system “railway track–railway vehicle” as an ensemble of springs and dashpots ... 118
36.4. The static stiffness coefficient of the railway track in the vertical direction ... 120
36.5. Compatibility of clip and pad ... 122
36.6. Influence of pad stiffness on the stresses on ballast ... 123
36.7. Requirements for the fastenings and pads due to their role in the track panel 123
36.8. Secondary stiffness of the fastening clip and behavior of the track panel 125
36.9. Conclusions ... 127
36.10. Bibliography .. 127
Chapter 37. A New Asset Management Approach for Inland Waterways

Markus HOFFMANN, Katrin HASELBAUER, Alexander HABERL, Ronald BLAB, Markus SIMONER, Klaus DIEPLINGER and Thomas HARTL

37.1. Overview waterway asset management .. 131
37.2. Maintenance measures and fairway availability. 132
 37.2.1. Fairway parameters and availability 132
 37.2.2. Measure overview with decision tree and impact 134
 37.2.3. Measure costs, impact and duration 135
 37.2.4. Optimization for continuous fairway parameters 136
 37.2.5. Measure program, priorities, budget and market capacity 137
37.3. Fairway availability and transport costs 138
 37.3.1. Transport development, vessel types and fairway utilization 138
 37.3.2. Impact of fairway depth on utilization of loading capacity and transport costs .. 139
 37.3.3. Utilization-based transport costs and market competition 139
 37.3.4. Transport costs and fairway availability optimization 140
37.4. Pilot implementation and first results 141
37.5. Summary and outlook .. 145
37.6. Bibliography .. 145

Chapter 38. 3D Numerical Simulation of Convoys-generated Waves and Sediment Transport in Restricted Waterways

Abdellatif OUAHSINE, Ji SHENGCHENG, Hassan SMAOUI, Philippe SERGENT and Nicolas HUYBRECHTS

38.1. Introduction .. 147
38.2. Numerical model and governing equations 148
 38.2.1. Free surface capturing ... 149
38.3. Suspended sediment transport ... 150
38.4. Boundary conditions .. 151
38.5. Computational procedures and hydrodynamical model results 152
38.6. Navigation influences on sediment transport 154
38.7. Conclusions .. 157
38.8. Bibliography .. 157
Part 6. Climate Resilient Roads ... 159

Chapter 39. Potential Impact of Climate Change on Porous Asphalt with a Focus on Winter Damage ... 161
Kyle KWIATKOWSKI, Irina STIPANOVIĆ OSLAKOVIĆ, Andreas HARTMANN and Han TER MAAT

39.1. Introduction ... 161
39.1.1. Climate change and road national authorities 162
39.1.2. Climate change adaptation and road infrastructure 164
39.2. Porous asphalt ... 164
39.2.1. PA background ... 164
39.2.2. Historical behavior of PA in winter 165
39.2.3. Temperature monitoring ... 167
39.3. Modeling of climate change impact 168
39.3.1. Infrastructure Planning Support System 169
39.3.2. Climate modeling ... 170
39.3.3. Modeling frost damage ... 171
39.4. Conclusions .. 173
39.5. Acknowledgments ... 174
39.6. Bibliography .. 174

Chapter 40. Risk Assessment of Highway Flooding in the Netherlands ... 177
Dirk PEREBOOM, Kees VAN MUISWINKEL and Thomas BLES

40.1. Introduction .. 177
40.2. Background – climate change and the mission of Rijkswaterstaat ... 178
40.3. Development of methods to investigate vulnerability and to assess risks related to climate change ... 179
40.4. Summary of the “Blue spots” study 179
40.4.1. Flooding due to failure of flood defenses 181
40.4.2. Flooding by intense rain and changing groundwater levels ... 181
40.4.3. Flooding by incapacity of storm water drainage and road surfaces ... 181
40.5. Flooding events and their frequency of occurrence 181
40.6. Consequences of flooding .. 182
40.7. Scoring effects of events ... 183
40.8. Analysis and interpretation 184
Chapter 41. Adaptation of the Road Infrastructure to Climate Change

Markus Auerbach and Carina Herrmann

41.1. Introduction .. 193
41.2. Strategies of adaptation to climate change 194
 41.2.1. The German adaptation strategy 194
 41.2.2. The strategy of the Federal Highway Research Institute, 195
41.3. The AdSVIS projects .. 198
 41.3.1. The RIVA project .. 198
 41.3.2. Comparison of meteorological parameters and grid data of climatologic prediction models ... 199
 41.3.3. Cross-linking of the AdSVIS projects 199
 41.3.4. AdSVIS server .. 199
 41.3.5. Development of climate impact models and design parameters for bridges and tunnels 199
 41.3.6. Vulnerability analysis for bridges and tunnels 200
 41.3.7. Analysis of measures to reduce the vulnerability of bridge and tunnel structures 200
 41.3.8. Development of a model for estimating landslide risk areas and development of a national hazard map 200
 41.3.9. Evaluation of the design of road drainage systems regarding climate change 200
 41.3.10. Inventory of road drainage systems in selected sections of the TEN-T 201
 41.3.11. Adaptation of pavement design for asphalt and concrete constructions 201
 41.3.12. Standardized asphalt pavements due to changing temperature boundary conditions 201
 41.3.13. Asphalt pavements and extreme temperatures 202
43.5. Conclusions ... 235
43.5.1. Outlook .. 235
43.6. Acknowledgments 236
43.7. Bibliography 236

List of Authors ... 237

Index ... 249

Contents for Volume 5A. 251
Preface

The transport sector is very much concerned about environmental adaptation and mitigation issues. Most of these are related to the objective of curbing GHG emission by 20% by 2020, alternative energy and energy savings, sustainable mobility and infrastructures, safety and security, etc. These objectives require the implementation of advanced research works, to develop new policies, and to adjust education and industrial innovations.

The theme and slogan of the Transport Research Arena held in Paris (TRA2014) were respectively: “Transport Solutions: From Research to Deployment” and “Innovate Mobility, Mobilise Innovation”. Top researchers and engineers, as well as private and public policy and decision-makers, were mobilized to identify and take the relevant steps to implement innovative solutions in transport. All surface modes were included, including walking and cycling, as well as cross modal aspects.

Policies, technologies and behaviors must be continually adapted to new constraints, such as climate change, the diminishing supply of fossil fuels, the economic crisis, the increased demand for mobility, safety and security, i.e. all the societal issues of the 21st Century. Transport infrastructures and materials, modal share, co-modality, urban planning, public transportation and mobility, safety and security, freight, logistics, ITS, energy and environment issues are the subject of extensive studies, research works and industrial innovations that are reported in this series of books.

This book is part of a set of six books called the Research for Innovative Transports set. This collection presents an update of the latest academic and applied research, case studies, best practices and user perspectives on transport carried out in Europe and worldwide. The presentations made during TRA2014 reflect on them. The TRAs are supported by the European Commission (DG-MOVE and DG-RTD), the Conference of European Road Directors (CEDR), and the modal European
platforms, ERRAC (rail), ERTRAC (road), WATERBORNE, and ALICE (freight), and also by the European Construction Technology Platform (ECTP) and the European Transport Research Alliance (ETRA).

The volumes are made up of a selection of the best papers presented at TRA2014. All papers were peer reviewed before being accepted at the conference, and were then selected by the editors for the purpose of the present collection. Each volume contains complementary academic and applied inputs provided by highly qualified researchers, experts and professionals from all around the world.

Each volume of the series covers a strategic theme of TRA2014.

Volume 1, *Energy and Environment*, presents recent research works around the triptych “transports, energy and environment” that demonstrate that vehicle technologies and fuels can still improve, but it is necessary to prepare their implementation (electro-mobility), think about new services and involve enterprises. Mitigation strategies and policies are examined under different prospective scenarios, to develop and promote alternative fuels and technologies, multi-modality and services, and optimized transport chains whilst preserving climate and the environment. Evaluation and certification methodologies are key elements for assessing air pollution, noise and vibration from road, rail and maritime transports and their impacts on the environment. Different depollution technologies and mitigation strategies are also presented.

Volume 2, *Towards Innovative Freight and Logistics*, analyzes how to optimize freight movements and logistics, introduces new vehicle concepts, points out the governance and organization issues, and proposes an assessment framework.

Volumes 3 and 4 are complementary books covering the topic of traffic management and safety.

Volume 3, *Traffic Management*, starts with a survey of data collection processes and policies and then shows how traffic modeling and simulation may resolve major problems. Traffic management, monitoring and routing tools and experience are reported and the role of traffic information is highlighted. Impact assessments are presented.

Volume 4, *Traffic Safety*, describes the main road safety policies, accident analysis and modeling. Special focus is placed on the safety of vulnerable road users. The roles of infrastructure and ITS on safety are analyzed. Finally railway safety is focused upon.
Volume 5, *Materials and Infrastructures*, split into two sub-volumes, investigating geotechnical issues, and pavement materials’ characterization, innovative materials, technologies and processes, and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are shown, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Volume 6, *Urban Mobility and Public Transport*, highlights possible innovations in order to improve transports and the quality of life in urban areas. Buses and two-wheelers could be a viable alternative in cities if they are safe and reliable. New methodologies are needed to assess urban mobility through new survey protocols, a better knowledge of user behavior or taking into account the value of travel for public transport. The interactions between urban transport and land planning are a key issue. However, these interactions have to be better assessed in order to propose scenarios for new policies.

Bernard JACOB, Chair of the TRA2014 Programme Committee

Jean-Bernard KOVARIK, Chair of the TRA2014 Management Committee

March 2016
The European Commission, DG MOVE and RTD, the Conference of European Road Directors (CEDR), the European Road Transport Research Advisory Council (ERTRAC), the European Rail Research Advisory Council (ERRAC) and the European technology platform WATERBORNE-TP are acknowledged for their support and active contribution to the Programme Committee of the TRA2014, in charge of reviewing and selecting the papers presented at the conference, which forms the main input of this volume.

The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) is acknowledged for having organized the TRA2014, in which 600 high-quality papers were presented, successfully.

Anne Beeldens, Pierre Marchal, Manuel Pereira, and Jon Krokeborg; coordinators of the topic on Materials and Infrastructure; all the other members of the Programme Committee; the reviewers who actively contributed to review and select the papers; and the authors who wrote them are acknowledged for their great job that produced the material for this volume.

Joëlle Labarrère, secretary of the Programme Committee of TRA2014, is acknowledged for her valuable help to the editors and for her support to prepare this volume.

Francesca La Torre

Professor Francesca La Torre is a Full Professor of roads, railways and airports at the University of Florence (Italy). She has been working in the field of transportation infrastructures for over 20 years. She obtained her PhD in 1998 at the University of Rome and she served as an assistant researcher at the University of
Illinois at Urbana-Champaign (USA). She is a member of the EC Horizon 2020 advisory group for “Smart, Green and Integrated Transport” and the infrastructures representative for academia in ERTRAC.

Jean-Michel Torrenti

Jean Michel Torrenti is the R&D director of the Materials and Structures Department of IFSTTAR. He is also professor at Ecole Nationale des Ponts et Chaussées. His research concerns mechanics of concrete and its coupling with durability aspects: behavior of concrete at early age, creep, leaching. It is applied to model the behavior of structures such as bridges, nuclear power plants and nuclear waste storage. He is the co-author of several books concerning concrete and concrete structures.

Bernard Jacob

Bernard Jacob, chair of the Programme Committee of TRA2014, is deputy scientific director for transport, infrastructures and safety with IFSTTAR. His research works are in bridge and road safety, traffic loads on bridges, heavy vehicles and weigh-in-motion. He has coordinated a number of European and International research projects. He is an active member in several scientific and technical committees (OECD/ITF, PIARC, TRB, etc.) and provided expertise to the European Commission. He is professor at Ecole Nationale des Travaux Publics de l’Etat and the president of the International Society for WIM (ISWIM). He has published more than 100 scientific papers and edited 10 published volumes of international projects and conference proceedings.
Introduction

The infrastructures of the future will have to be sustainable, seamless, resilient and durable, will respect the principles of circular economy and will have to be easy to monitor and manage. New technologies are currently available or under development to reduce the carbon footprint of infrastructures and to increase the overall sustainability and recyclability of transport while maintaining the utility and value of the infrastructures. However, the impact of these new solutions will only be effective once these are thoroughly disseminated and extensively deployed.

This volume presents a series of the most promising solutions and aims at disseminating them to improve the performances and efficiency of materials and infrastructures, through a choice of updated papers from the TRA2014 Conference. Selection is primarily based on a quality criterion, also taking into account the geographical diversity of papers in order to restore the originality and richness of current research.

I.1. Main findings

The papers contained in this volume demonstrate how technological solutions and new design and management methodologies can be implemented in different surface transport modes (roads, railways and waterways) to increase transport sustainability by improving infrastructures design, maintenance, recyclability and management. Both theoretical research and practical case studies explore topics such as characterization of pavements, bridges and soils, use of recycled and warm mix asphalts as well as high-performance materials to increase durability or to reduce the noise impact.
New management techniques for improving infrastructure resilience both roads and railways is a very timely topic that has been selected by the European Commission and the U.S. Department of Transportation as the subject of further Euro-American cooperation. This topic is extensively covered in this volume for a number of different transport modes.

Road infrastructures are typically “low technology” structures but timely, cost-effective and seamless monitoring is essential for the implementation of effective maintenance and management concepts. New solutions for pavement and soil characterization are being developed by implementing seamless technologies. These range from well-established techniques, such as ground penetrating radars (GPR) and weigh-in-motion (WIM) techniques, to innovative radar remote sensing techniques.

The development of new pavement materials is always a key topic for road and airport engineers and the implementation of recycled materials and warm mix asphalt will be the standard solution of the future. However, there is still a strong need for understanding the long-term performance of these materials in situ and for developing performance models that the designers can implement for adopting these technologies. This volume will help the designers and road managers interested in implementing these solutions and presents different case studies that will make the potential users feel more confident.

It is interesting to observe that infrastructure performances often conflict and therefore solutions such as porous asphalt, that can be very effective for noise reduction, is more sensitive to climatic changes due to the effect of freeze-thaw cycles.

Durability and maintenance are core issues for road researchers with the final aim in mind that the road of the future will have to be “Forever Open”. However, local authorities are often faced with the issue of effective day to day maintenance. Infrastructure research too often focuses on highly trafficked motorways or primary road networks; therefore, it is extremely important that a research effort be specifically devoted to develop guidelines for the maintenance and repair of low volume roads, which represent a large portion of the whole road networks.

Railway and road infrastructures issues are usually tackled as separate but the recent work conducted by the joint roadmap for cross-modal transport infrastructure innovation toward a performing infrastructure has recently shown that a number of infrastructure research issues are cross-modal and therefore lessons can be learned across modes. This is clearly shown in this volume in which resilience to climatic changes covers both roads and railways and integrated modes are needed to achieve a truly resilient transport system.
This volume will be of interest not only for the research community and in higher education but also for professionals in the area of infrastructure design and management as well as economic and institutional decision makers. They will find state-of-the-art studies of key research issues, new advanced methods and illustrative case studies.

Volume 5 of the *Research for Innovative Transports* set is divided into two sub-volumes containing three parts each: five parts focus on roads but cover potentially cross-modal topics dealing with materials for infrastructures, auscultation and monitoring, durability and maintenance repair, recycling and sustainability issues and climate resilient roads. One part is specifically devoted to railways and inland navigation.

Sub-volume 1 contains parts 1–3. Part 1 deals with geotechnical issues and pavement materials’ characterization. In this part researchers and practitioners can find new test methods and materials characterization techniques for non-conventional materials including recycled asphalt mixtures, warm mix asphalts but also fiber reinforced concrete materials.

Part 2 presents novel and high-tech solutions to monitor and assess pavement conditions to assist road authorities in this key management activity. These techniques include 3D mapping, remote sensing, GPR evaluation of pavement structural capacity and WIM monitoring solutions. The reader will also find a highly specialized study on integrating the electrical supply cables for public transport, for creating an electromagnetic induction field, in a prefabricated concrete slab.

Part 3 deals with the key road management issues of durability and maintenance repair. The recurrent theme of noise reduction has been tackled and designers and road authorities will be able to consider and compare the effectiveness of different solutions including non-conventional materials. Attention is also paid to noise issues in non-conventional analysis locations as level intersections in urban and rural areas. A very important issue for road managers is pothole repair. The guidelines developed in the POTHOLE project will be extremely helpful for local authorities looking for effective maintenance solutions.

Sub-volume 2 contains parts 4–6. Part 4 addresses recycling and sustainability issues, presenting case studies and full-scale tests. Asphalt recycling is a core issue for reducing the carbon footprint of transportation infrastructure. Road administrations and designers will find a very interesting overview of three transnational research projects on this topic as well as a case study from Slovenia.

Part 5 analyzes railways and inland navigation issues. New concepts for low maintenance and resilient infrastructure as well as optimizing operation and
intermodal integration within the global transport system are proposed for technicians dealing with resilient infrastructure in any transport mode. Highly specialized railway experts will find studies on clip stiffness and on new innovative solutions for transition zones between the “normal” open tracks and “rigid” track sections. Waterways researchers will find an interesting new management approach to deal with suspended sediments.

Part 6 focuses on a key infrastructure issue of the future: resilience to extreme climatic conditions. Input from three continents (Australia, Europe and North America) highlight that this global issue needs trans-national solutions. An interesting overview of two transnational projects (RIMAROCC and SWAMP) introduces the topic followed by specific solutions adopted by single countries. The effect of climatic changes on pavements is assessed to answer questions of specialized pavement engineers.

I.2. Conclusions

This volume provides an insight on research, best practices and transport policies with a focus on state-of-the-art advances in the fields of infrastructures and materials. The progress made in the implementation of new materials in pavement design as well as the evolution in the process of data collection and assessment, modeling and management, assisting academics, transport professionals, practitioners and decision makers to a better understanding of the current and future trends are demonstrated.

Future infrastructure monitoring techniques will be seamless, and this volume shows that there is a significant shift of the research world in this direction. These solutions now need to become current practices to really improve the transport system.

Reducing the infrastructure carbon footprint and increasing its resilience is possible but road managers and designers need to have design and management tools as well as case studies that will allow them to gain more confidence in the adoption of new and less impacting solutions.