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ABSTRACT 
Most of dams around the world were built before the introduction of seismic regulations, or in those regions that 
were classified as seismic at a later time. Only few new dams are now being built, so older ones, which are 
inexorably ageing, are required to fulfil a longer life expectancy, as they are a critical component of our energy 
production infrastructure. Consequently, a better understanding of the seismic risk of these structures is required. 
As no concrete gravity dams are known to have failed catastrophically during an earthquake, modelling aspects 
assume great importance to predict their collapse behaviour. 
In this paper a plane strain model of an existing gravity dam has been analysed in order to simulate the concrete 
crack development within a continuum damage framework. The study has been performed by using a nonlinear 
constitutive equation that takes into account the bounded tensile, compressive and shear strength of the material. 
The collapse behaviour of the dam has been compared with the results obtained by means of models based on the 
plasticity theory, fracture mechanics or contact elements. 
 

1 INTRODUCTION 
Dams probably were among the earliest major 

structures to be created by humans; the reservoirs 
retained by dams were key elements in water 
supply. Nowadays they are a critical component 
of our energy production infrastructure and, due 
to economic and environmental reasons, just few 
new dams are now being built. Most of the 
existing dams were built before the introduction 
of seismic regulations or in those regions that 
were classified as seismic at a later time, so a 
better understanding of their seismic behaviour is 
required. 

Seismic safety of existing dams is an issue that 
has been receiving increasing attention in many 
parts of the world during recent years. It is partly 
due to the continue increase of population at risk 
in locations downstream of major dams and also 
to the awareness that the seismic design concepts 
in use at the time most existing dams were built 
were inadequate. The hazard posed by large dams 
has been demonstrated by the failures occurred in 
many parts of the world. However, no failure of a 
concrete dam has resulted from earthquake 

excitation; in fact the only complete collapses of 
concrete dams have been due to failures in the 
foundation rock. This means that seismic failure 
modes for concrete dams are not well understood 
(Anderson et al. 1998). Several dams have been 
subjected to seismic shaking, and it is possible to 
learn from their damage.  

A significant instance of earthquake damage to 
concrete dams occurred in the 1960s for Koyna 
Dam in India. The damage was severe enough, 
but not so much to determine the uncontrolled 
water release. From the beginning, many authors 
(Chopra and Chakrabarti 1972) and (Chakrabarti 
and Chopra 1972) have come to the numerical 
simulation of the damage of this dam which has 
become the most known case study in the world. 

Nowadays, high performance computing 
capabilities allow experimenting numerical 
simulations under different hypotheses of 
material constitutive behaviour and various 
loading conditions. 

In this paper the interesting comparison among 
different models of the Koyna Dam reported in 
(Roth et al. 2015) is extended by introducing 
further approaches. More specifically, the crack 
behaviour of the vertical section of the Koyna 
Dam has been investigated under statically 
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increasing load using different models. The one is 
constituted by linear elastic blocks separated by 
frictional interfaces; the other is based on a 
nonlinear material with elastic-plastic-damage 
formulation. Furthermore, the two new models 
have been subjected to an acceleration time 
history. Results obtained have been analysed and 
discussed. 

2 COMPUTATIONAL MODELS FOR THE 
SEISMIC ASSESSMENT OF EXISTING 
CONCRETE GRAVITY DAMS 

Numerical simulation of concrete dams 
subjected to earthquake loading is a very complex 
task that includes not only the structure and its 
material properties, but also the effect of soil-
structure and reservoir-structure interaction. For 
this reason, simple but realistic material laws, 
which take into consideration seismic loading 
conditions, are required for the structural 
analysis. 

2.1 Nonlinear models for the seismic 
assessment of gravity dams 

The assumption of linear behavior may not be 
appropriate in the analysis of seismic response of 
concrete gravity dams. There are several 
approaches to model the complicated stress-strain 
behavior of concrete (Akköse and Şimşek 2010), 
some of which are based on plasticity models and 
some others on fracture mechanics. 

Elasto-plastic models (Lee and Fenves 1998) 
can overcome overstressing problems 
encountered in the linear analysis of a concrete 
dam and may predict more realistic stress 
distribution in the dam body during earthquake 
ground motion. They are considered very useful 
to determine plastic regions in concrete dams. 

Unfortunately they do not reproduce the real 
behaviour of the concrete that is usually 
employed in dam construction. In fact, during an 
earthquake, several parts of the dam may suffer 
tensile loading with subsequent crack formation; 
the safety of these structures is thus controlled by 
the tensile behaviour of the material (Brühwiler 
and Wittmann 1990). The upper cracks usually 
initiate from the upstream or downstream face of 
the dam and propagate horizontally or at an angle 
toward the opposite face. The consequence of 
cracking, if extended through the dam section, 
may lead to sliding or rotational instability of the 
separated blocks (Ghanaat 2004) (Zhu and Pekau 

2007). The rocking stability of a gravity dam with 
penetrated cracks was first studied by (Saini and 
Krishna 1974), for the highest monolith of the 
Koyna Dam. 

Traditionally, a no-tension stress criterion has 
been used in the design of concrete dams (NRC 
1990). However, microcracking is always present 
in concrete, and the acceptance of moderate 
tensile cracking that does not impair the function 
of a dam may be a realistic point of view (NRC 
1990). 

The greatest impediment to effective nonlinear 
analysis at present is the lack of knowledge about 
the real nonlinear properties of the mass concrete 
which is typically used in dams, the so called 
“dam concrete”. Due to differences in the grain 
size and in the nature of the aggregates, an 
extrapolation from common concrete to dam 
concrete cannot be made directly (Brühwiler and 
Wittmann 1990). In this regard, important efforts 
have been undertaken from the past in order to 
study, both theoretically and experimentally the 
behaviour of concrete under high loading rates 
(Topçu and Uğurlu 2007), (Wu et al. 2016). 

In recent years, the nonlinear dynamic 
response of gravity dams under earthquake 
actions including cracking of concrete has 
attracted more attention from engineers (Hariri-
Ardebili et al. 2016). 

As a rough method to account for cracking and 
its consequences on the stability of the dam is 
that to introduce predefined cracks in a Finite 
Element (FE) model, following (CFBR 2012). 

In the present work a similar model having no-
tension frictional interfaces between stacked 
linear elastic elements were proposed. The 
definition of potential failure surfaces is 
suggested by construction joints that may be 
considered as weak planes. 

2.2 Models for Concrete Cracking 
Stress and crack response of concrete dams may 
be analysed by means of many nonlinear models, 
commonly applied in most of engineering 
analysis (Pal 1976), (Ghrib and Tinawi 1995), 
(Pekau et al. 1991), (Ghaemian and Ghobarah 
1999), (Guanglun et al. 2000). 

Cracking process may be represented by 
numerous approaches that can be classified into 
two macro-categories: the geometrical approach, 
that considers the crack a geometrical entity and, 
if needed, allows updating discretization model 
with crack growth; and the non-geometrical 

SG04-94

https://www.researchgate.net/profile/Ilker_Topcu2


 

approach, which only updates the constitutive 
relationship during the propagation of cracks, the 
mesh remaining unchanged (Ingraffea 2004). 

The first one, which concerns the discrete 
cracks, contains two main groups, the linear 
elastic fracture mechanics (LEFM) and the 
nonlinear fracture mechanics (NLFM). Regarding 
the latter, there are two basic procedures of 
modelling cracks commonly used in numerical 
analysis; they are the fictitious crack model 
(FCM) presented by (Hillerborg et al. 1976) and 
the crack band model (CBM) proposed by 
(Bazant and Cedolin 1979) and (Bazant and Oh 
1983), both of which take the effects of strain 
softening into account. The FCM overcomes the 
limitation of LEFM and a nonlinear constitutive 
relation can be introduced in fracture analysis 
according to the strain-softening mechanism. 

In this regard, in (Pan et al. 2014) a general 
investigation is presented, in order to evaluate 
whether the nonlinear responses of concrete dams 
obtained from different fracture modelling 
approaches are comparable in terms of crack 
propagation and failure modes. 

The second macro-category regards the 
continuum models and includes smeared cracks 
and damage mechanics. In this category, two 
groups may be identified, the constitutive 
methods and the kinematic ones. The continuum 
damage model (CDM), belonging to the 
constitutive methods, offers the possibility to 
model areas where damage causes a multitude of 
micro-cracks that are not necessarily localized. In 
particular, in the CDM approach introduced by 
(Rashid 1968), the coalescence of one or more 
cracks in a volume will result in a deterioration of 
the stiffness and strength of this volume. The 
Extended FE Method (XFEM) approach belongs 
to the kinematic methods and describes the crack 
geometry independently of the background mesh 
by enriching the standard displacement-based FE 
approximation with some pre-knowledge of the 
physics of crack. 

The crack is represented, however, either in 
the material constitutive model or in the 
kinematic model, as an intense localization of 
strain. 

In this context, (Roth et al. 2015) proposed a 
crack model that combines the damage mechanics 
approach and the XFEM in order to predict the 
propagation of the crack path within the dam 
section. The CDM (in this case, it comes of a 
rotating anisotropic damage model) offers the 

possibility to model areas where damage causes a 
multitude of micro-cracks that are not necessarily 
localized. It can efficiently predict and 
continuously adjust crack directions during their 
evolution. The cohesive XFEM, instead, allows a 
discontinuous displacement field to be well 
represented across a localized crack. The use of 
the CDM allows any initial misprediction of the 
crack direction to be corrected as a crack grows. 

In this paper, a model constituted by nonlinear 
material with elastic-plastic-damage formulation 
is introduced. It is compared with the one 
proposed by (Roth et al. 2015) and with the 
others reported in the same work. The new 
constitutive model is presented in the following. 

2.3 A new constitutive equation for the material 
Recently, a new material model has been 

developed by generalising the constitutive 
equation of the masonry-like material (Lucchesi 
et al. 2008). 

The masonry-like material (Di Pasquale 1982) 
is a simplified model that considers masonry as 
an isotropic non-linear elastic material. It belongs 
to a class of nonlinear elastic materials that are 
incapable of withstanding tensile stresses and 
have linear elastic behaviour when subjected to 
compressive stresses. For this reason, the stress 
tensor must be negative semidefinite. The strain 
tensor is decomposed into the sum of an elastic 
part, from which the stress is linearly dependent, 
and the fracture part, that is positive semidefinite 
and belongs to the normal cone of the stress range 
in correspondence with the current stress. The 
material is moreover allowed to extend freely in 
directions of zero stress. 
The constitutive law is fully specified by the 
tensor C of the elastic moduli, assumed to be 
symmetric and positive definite, and by the stress 
range (the set of all admissible stress tensors) that 
is a closed and convex subset of the space of the 
symmetric tensors. Under these hypotheses, an 
application of the Minimum norm Theorem 
(Lucchesi et al. 2008) assures the existence and 
the uniqueness of the stress, when a strain tensor 
is given. 

Later on, this constitutive equation has been 
generalized, in order to account for a limit to the 
tensile and compressive stresses (Lucchesi et al. 
2008) and, more recently, also for a limit to the 
tangential component of the stress, proportionally 
to the normal stress component (Lucchesi et al. 
2017). In addition to tensile (fracture) and 
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compressive strains, the anelastic shear strain 
tensor has been introduced. 

In this case, the stress range has been 
modified, remaining still a closed and convex set, 
so that the material maintains all the properties of 
a “normal elastic material” (Del Piero 1989). The 
obtained material is hyperelastic with a constrain 
on the stress, but it can also be framed within the 
so-called 'deformation theory of plasticity' 
(Kachanov 1971). 
The constitutive equation has been explicitly 
deduced in the isotropic 2D and 3D cases and has 
been implemented in the FE code MADY 
(Lucchesi et al., in preparation). The program 
code now allows for two- and three-dimensional, 
static and transient dynamic analyses. 

Recently, an isotropic damage criterion is 
introduced. More specifically, when the norm of 
the fracture strain attains a defined value, the 
limit of the tensile strength and the cohesion of 
the material are diminished, according to a 
negative exponential law that depends on the 
difference between the fixed fracture strain value 
and the current one. 
This constitutive law seems suitable to describe 
the damaging of the dam concrete. In this paper, 
the material model presented above is used for 
the first time to assess the seismic behaviour of 
an existing concrete gravity dam. 

3 COMPARISON AMONG MODELS 

3.1 The benchmark model 
Koyna Dam, a 103-m-high concrete gravity 

dam in India, is a benchmark problem which has 
been widely examined by several investigators 
for evaluation of their proposed material models. 

In the case of Koyna Dam the earthquake 
forces, based on a seismic coefficient of 0.05 
uniform over the height, were expected to cause 
no tensile stresses; however, the earthquake of 
1967 caused significant cracking in the dam. The 
higher monolith of the non-overflow section 
suffered the worst damage during the earthquake, 
endangering their stability during future earth- 
quake shocks. It is believed that this exaggerated 
damage resulted from an elevator tower that 
extended 50 ft above the top of the block and 
therefore was subjected to greatly increased 
inertial forces. 

A static analysis of the Koyna Dam on cases 
of reservoir overflow was performed using 

fracture mechanics and plasticity-based models. 
The results have not been validated 
experimentally, however numerous authors have 
published numerical results using the same 
geometry and material parameters (Gioia et al. 
1992), (Bhattacharjee and Léger 1994), (Ghrib 
and Tinawi 1995) and (Cai 2007). 

In (Roth et al. 2015) a comparison among 
different models of the Koyna Dam is reported. 
For this case, the presence of unkeyed contraction 
joints enables the use of 2D plane stress models 
of individual monoliths to predict the earthquake 
response of the dam under moderate and intense 
ground motions. FE model is made of a four-
nodes quad plane stress mesh (fig. 1). An initial 
notch facing the change of slope on the 
downstream face with a depth that corresponds to 
10% of the length of the section is included in the 
model by disconnecting the nodes of the 
elements. Material properties are reported in table 
1. The value ft’ = 1.0 MPa is fairly typical for 
actual tensile tests on concretes customarily used 
in gravity dams. The model is subjected to 
gravity, hydrostatic pressure of a full reservoir 
level and overflow pressure. The water pressure 
inside the cracks is neglected. 

 
Figure 1. The Koyna Dam section: model of (Roth et al. 
2015) (left) and MADY model (right). 
Table 1. Material properties for the overflow analysis 

E  [MPa] ′cf  [MPa] ′tf  [MPa] ν  ρ  

25000 10.00 1.0 0.2 2450 

3.2 Two new models for the Koyna Dam 
Two FE plane strain models of the Koyna 

dam, having very different characteristics, have 
been developed in this work. Model A, created 
with MADY code, schematizes the dam via a 
continuum model having an elastic-plastic-
damage material; model B, created with Ansys 
r.17.2 research, represents the dam divided in 21 
stacked linear elastic elements separated by no-
tension frictional interfaces. The interfaces 
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simulate planes of weakness that may exist at lift 
joints and can be a major influence on crack 
location. 

The FE model A (Figure 1) is composed by 
658 plane four-nodes elements and 706 joints. 
The base nodes are fixed along the two directions. 

The FE model B (Figure 3) is formed instead 
by 3531 eight-nodes plane strain elements 
(element type “plane183”) having quadratic shape 
functions, and 12210 nodes. The base nodes are 
restrained along the two directions. The interfaces 
are modelled with 2733 contact no-tension 
elements (element type “CONTA172”) with 
frictional behaviour following the Mohr Coulomb 
law (Augmented Lagrange Formulation). 

In both models, the foundation is also assumed 
to be rigid, which means the dam–foundation 
interaction is neglected. 

Firstly, the two models have been subjected to 
quasi- static load conditions, caused by an 
hypothetical overflow. Results coming from both 
models have been compared with those obtained 
in the literature for the overflow analysis on the 
Koyna Dam. 

For the sake of comparison, in the overflow 
analysis material properties of model A have the 
same values adopted for the models reported in 
the literature (Table 1); in addition, the friction 
coefficient μ is set equal to 1 and the cohesion c 
to 1MPa. Cohesion values, or zero normal load 
intact shear strengths, are typically about 10% of 
static uniaxial compressive strengths based on 
direct shear tests of concrete core samples, and 
coefficients of friction are typically near 1 (NRC 
1990). Material properties of Model B have the 
same values of mass and elastic coefficients 
reported in table 1 for the linear elastic material, 
whereas friction coefficient μ of the no-tension 
interfaces is set equal 1. 

During the overflow simulations, the model 
initially undergoes its self-weight and the 
hydrostatic load is applied on the whole height of 
the dam. Afterwards, it is subjected to a step by 
step constant pressure increase of 1 cm due to 
overflow, starting from the full reservoir water 
level, up to the water height that brings the dam 
to the collapse limit state. The water uplift is 
neglected. 

Afterwards, both models have been subjected 
to a transient analysis. In this case, different 
values of material properties have been adopted. 
More specifically, in model A different cases, 
having different values of tensile strength ′tf and 
cohesion c have been considered. 

− Case 1: masonry–like material (no-tension 
elastic material). 

− Case 2: elastic-plastic damage formulation 
(ft’ = 1MPa, c = 1MPa and μ=1). 

− Case 3: elastic-plastic damage formulation 
(ft’ = 0.05 MPa, c = 0.5 MPa and μ=1). 

In model B, two different values of friction 
angle, 45° and 71°, have been adopted, 
corresponding to μ=1 e μ=3, respectively, in 
addition to the material properties previously 
defined. 

The Rayleigh damping for all cases is set by 
putting the mass proportional coefficient α equal 
to 3/s and the stiffness proportional coefficient 
equal to 4.2E-4 s. 

Finally, Westergaard added mass model is 
used to simulate the hydrodynamic effect 
(Westergaard 1933) induced by the reservoir in 
addition to the hydrostatic component. So, both 
models have been equipped by added masses, 
suitably distributed along the height of the dam. 

The dynamic excitation includes only a 
component in the horizontal plane of earthquake 
records (Figure 2). It belongs to one of the Italian 
strongest events occurred in the last 30 years, the 
earthquake of Central Italy of October 30th 2016 
(06:40:17 UTC, 6.5 MW). The duration of 
transient load is 30 s and the sampling is 5/1000 
s. The time step of the analysis ranges from 
0.0001s to 0.005s. The analysis is carried out by 
assigning to the model, in addition to the self-
weight and the hydrostatic load, the seismic 
shaking in form of volume loads. 

Also in this case, no uplift pressure is 
considered for both models. 

 
Figure 2. The acceleration time history for the transient 
analysis. 

3.3 Results of the overflow analysis 
The results of the overflow analysis conducted on 
model B (Ansys) are reported in Figure 3 in terms 
of minimum principal stresses. The deformed 
shape clearly shows an opening of the contact 
elements that is concentrated at the base of the 
neck. 

Results obtained from model A (MADY) are 
reported in Figure 4 in terms of anelastic shear 
strain. One may observe that the initiation of the 
cracking is the same in both models A and B. 
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Figure 3. The Ansys 17.2 mesh for Model B (left). Results 
of the overflow analysis of Koyna Dam in terms of 
minimum principal stresses (right). 

The crack path resulting from model A is 
compared with those given in the literature 
resulting within a small bandwidth (Figure 4). 
Unlike the other models of the literature, the 
anelastic shear strain exhibits in this case a 
bifurcation, one branch is quite horizontal and the 
second one follows the crack path of the other 
models. Anelastic shear strain may be detected 
also downstream, at the base of the neck, and 
upstream, at the base of the dam. In all cases the 
reservoir overflow increases compressive stresses 
on the downstream face of the dam and drives the 
crack downward. This shows that overturning of 
the top part of the dam is the principal 
consequence of cracking in this region. 

Anyway, it should be stressed that all the 
models taken from the literature were 
characterized by an initial notch facing the 
change of slope of the downstream face, whereas 
model A doesn’t need the definition of a weak 
area from which the fracture starts. Nevertheless, 
in this case the fracture is triggered at the same 
point, probably due to the particular geometry of 
the section. 

The response of the structure is represented by 
the overflow height versus the horizontal crest 
displacement. In Figure 5 the response of models 
A and B are shown and are put in comparison 
with those of the models cited above and reported 
in the work of (Roth et al. 2015). In particular, 
the combined model proposed in (Roth et al. 
2015) is called “Léger”, the model based on the 
plasticity theory “Gioia” (Gioia et al. 1992), those 
based on smeared cracks  “Bhattacharjee” and 
“Cai” (Bhattacharjee and Léger 1994) and (Cai 
2007), and the model based on damage 
mechanics (Ghrib and Tinawi 1995) is called 
“Ghrib”. 

The response of model A (MADY) is in 
agreement with the plasticity model of “Gioia”. 
In this latter case (Gioia et al. 1992), a perfectly 
plastic model with an associated flow rule and a 

yield surface as proposed for plain concrete by 
(Ottosen 1977) is adopted. That is, no-tension 
assumption is implemented as a special case of 
plasticity, in which the tensile yield limit tends to 
zero (the no-tension design ought to be 
considered as the limit of the plastic designs as 
the tensile yield limit tends to zero). 

The response of Model B, instead, is in 
agreement with smeared cracks models and 
damage mechanics. 

 
Figure 4. Results of the overflow analysis on Model A 
(Mady) in terms of anelastic shear strain (left), compared to 
the cracking paths obtained in the literature (right). 

 
Figure 5. Structure response under overflow in term of 
overflow vs. crest displacement. 

Both new models exhibit a lower capacity in 
respect to “Gioia”, “Léger” and “Bhattacharjee”. 
The reason can be furthermore investigated by 
both using different values of the parameters that 
are not in common with the other models and 
suitably modifying convergence settings. 

3.4 Results of the transient ground shaking 
analysis 

Transient analysis was applied for a first 
attempt to evaluate the ability of both models to 
describe the dam behaviour during earthquake. 
For model A, different values of tensile strength 
and cohesion, in relation to the three cases 
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described above, have been considered. For 
model B, two different friction angle values have 
been considered. The analysis has been carried 
out under the hypothesis of large displacements 
and the results are obtained in terms of crest 
displacements and base shear time histories. 

In the Figures 6 and 7 the response of model B 
in terms of base shear and crest displacement, 
respectively, is reported. 

 
Figure 6. Base shear resultant force - model B (friction 
angles of 45° and 71°). 

 
Figure 7. Crest displacement – Model B (friction angles of 
45° and 71°). 

As for the three MADY models, in the Figures 
8 and 9, the history of dam crest displacement 
and that of the base shear resultant force for the 
combined static and earthquake loads are shown. 
In any case, the curve for the linear elastic model 
is always reported as benchmark. 

As for the base shear values, the response of 
model B is lower than in the linear elastic case. 
The response of model A is greater than that of 
model B, but of the same order of magnitude. 
More specifically, in the case 2 of model A, 
including damage and the higher values of tensile 
and shear strength, peaks sometimes exceed the 
values of the linear elastic model. The response in 
terms of crest displacement of the three models A 
is comparable. 

 
Figure 8. Base shear force - model A. 

 
Figure 9. Crest displacement – Model A. 

The response of case 1 is the most similar to 
the elastic linear one. The response of case 2 
exhibits the greatest amplification due to the 
nonlinearity. Finally, the response of case 3, 
having the lowest tensile and shear strength, 
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shows a residual displacement due to the 
occurrence of sliding after tension damaging. 

The comparison between models A and B in 
term of base shear is hard to be carried out. 
During early shaking, the displacement values in 
models A are similar to those in models B. 
Successively, models B exhibit a residual 
displacement that attains values of an order of 
magnitude higher in respect to the case 3 of 
model A. Moreover, the different values of 
friction angle in models B do not influence the 
total amount of residual displacement, but the 
way it occurs. 
In Figures 10 and 11 the images of the deformed 
shapes of model B at different times instants, 
respectively, for friction angle of 45° and 71° are 
reported. The minimum principal stresses map is 
also shown. 

 
Figure 10. Response of model B (φ=45°) in term of 
minimum principal stress, at 9.057s (left) and at 8.789s 
(right) – deformed shape. 

 
Figure 11. Response of model B (φ=71°) in term of 
minimum principal stress, at 8.195s (left) and at 8.523s 
(right)– deformed shape. 

One can observe that cracks form near the 
change in downstream slope at both faces. 
Moreover, for lower values of friction angle, 
cracking occurs only upstream at the base of the 
neck, while, for higher values of friction angle, it 
also occurs downstream. The tendency to slide at 
the base of the neck is particularly evident in the 

downstream zone in both cases, particularly in the 
case of lower friction angle. 

As for model A, in Figure 12 the map of 
anelastic shear stress for the case 3 (low tensile 
strength) accumulated during shaking is shown. 
In Figure 13 the map of tensile fracture strain for 
the same case is reported. As in models B, the 
tendency to slide, especially at the downstream 
face near the change of slope, is evident. 
Cracking occurs at the base of the neck on both 
upstream and downstream faces, at different 
levels, as is the case of model B. 

 
Figure 12. Anelastic shear strain – Model A – case 3. 

 
Figure 13. Tensile fracture strain – Model A – case 3. 

In Figures 14 and 15 the maps of the damage 
level in terms of ratio between residual tensile 
strength and initial tensile strength are reported. 
The unitary value indicates that material is 
unchanged and 0 value means that material is 
totally damaged. In Figure 14 damage of model A 
- case 3 after the end of the shaking is shown. The 
section at the base of the neck is damaged on its 
entire length and this fact is in agreement with the 
presence of residual displacement shown in 
Figure 9. Another crack is located upstream at the 
base of the dam. 

The behaviour of model A - case 2 is different 
(Figure 15). Due to the higher values of the 
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tensile strength and cohesion of this model in 
respect to the case 3, a particular type of cracking 
occurs. Cracks firstly form at the downstream 
face, near the change in slope, and proceeds 
downward to the upstream face assuming an “S” 
shape. The section at the base of the neck is not 
entirely damaged, so the crest does not exhibit 
permanent displacements after the end of the 
shaking (Figure 9). The formation of the crack on 
the upstream face is possible only in the case of 
lower tensile strength. 

 
Figure 14. Damage level after shaking – model A, case 3. 

 
Figure 15. Damage level after shaking – model A, case 2. 

The resulting crack path is worth to be 
compared with other examples in the literature. 
As a significant example, in (Omidi et al. 2013) a 
study of the Koyna Dam is carried out by using a 
plastic-damage model, whose constitutive 
relations are fully described by Lee and Fenves 
(Lee and Fenves 1998). The crack paths obtained 
from the simulation under shaking are 
surprisingly similar to that shown by Figure 15. 

Crack paths are also well comparable with 
those obtained in (Pan et al. 2011), where a 
general evaluation of different fracture 
procedures in terms of nonlinear response and 
cracking development is performed. 

4 CONCLUSIONS 
This paper proposes two new models for the 

dam crack behaviour investigation. The first one 
is based on a continuum elastic-plastic damage 
formulation, while the second one is made up of 
stacked linear elastic blocks with no-tension 
frictional interfaces. The analyses were 
performed under both quasi - static conditions, 
caused by an hypothetical overflow, and 
earthquake excitation. 

The numerical results of overflow analysis, 
compared with other results in the literature, 
show the aptitude of the first model to reproduce 
the behaviour of other plasticity models, and the 
ability of the second model to catch the load-
displacement behaviour of the fracture mechanics 
models. 

The transient analysis demonstrates that the 
two models are both applicable to predict the 
shear load and the displacement histories of the 
Koyna Dam under earthquake conditions. The 
first one, providing only a rough crack initiation 
localization, captures the order of magnitude of 
the resultant forces history. Due to the 
constrained crack paths, it essentially fails in the 
prediction of crack propagation. The second one, 
more promising, catches more suitably the 
damage extent and the response of the structure in 
terms of displacements. From the practical point 
of view, it provides some advantages. On the one 
hand, the availability of the explicit form of the 
constitutive law, together with the tangent matrix, 
improve the convergence of the FE analysis. On 
the other hand, the direct control of the different 
types of fracture strains allows observing the 
different failure mechanisms (sliding-rocking) 
and then no failure section has to be fixed a 
priori. 

Following this first attempt, a more 
appropriate calibration of the two models is 
scheduled, in order to provide more precise 
indications. 
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