Nutraceutical properties of a Tisochrysis lutea enriched diet: a 1-month study in rats

Conference Paper · December 2017

10 authors, including:

Mario Tredici
University of Florence
121 PUBLICATIONS 4,845 CITATIONS

Natascia Biondi
University of Florence
42 PUBLICATIONS 2,348 CITATIONS

Maura Lodovici
University of Florence
102 PUBLICATIONS 2,799 CITATIONS

Cristina Luceri
University of Florence
102 PUBLICATIONS 2,481 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Development of biodegradable nanocarriers for site-specific delivery of natural molecules [View project]
- Exosomal miRNAs and metastasis: what is the message? to whom is it for? [View project]

All content following this page was uploaded by Alberto Niccolai on 05 December 2017.

The user has requested enhancement of the downloaded file.
Nutraceutical properties of a *Tisochrysis lutea* enriched diet: a 1-month study in rats

Elisabetta Bigagli\(^1\), Lorenzo Cinci\(^1\), Alberto Niccoli\(^2\), Mario R. Tredici\(^2\), Liliana Rodolfi\(^2\), Natascia Biondi\(^2\), Maura Lodovici\(^1\), Mario D’Ambrosio\(^1\), Giulia Mori\(^1\), Cristina Luceri\(^1\)

\(^1\)Department of NEUROFARBA, section of Pharmacology and Toxicology, University of Florence, Italy; \(^2\)Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Italy

Abstract:
*Tisochrysis lutea* is a marine microalga, which contains bioactive compounds such as polyunsaturated fatty acids and fucoxanthin. In this 1-month study, the effects of a diet containing 20% *T. lutea* F&M-M36 were investigated in rats. No adverse effects regarding food consumption, growth or animal behavior were observed, nevertheless rats fed *T. lutea* showed a tendency to a reduction in body weight gain and a significantly higher water intake compared to controls fed a standard diet (AIN-76). The high Na\(^+\) content of the algal biomass induced a huge increase in urinary Na\(^+\) and urine production, but blood pressure, creatinine and urea blood levels as well as kidney histopathology were not suggestive of renal impairment. In rats fed the *T. lutea* diet a significant increase in HDL and decreased plasma triglycerides, with an increased excretion of fecal lipids were observed. These animals showed also a significant increase of PPAR\(_γ\) and UCP-1 and a significant reduction of APOA-1 and LPL hepatic gene expression, compared to controls. These data indicate that a diet supplemented with 20% of *T. lutea* biomass modulates the expression of genes involved in lipid metabolism, suggesting that this microalga might represent a promising source of functional foods for the prevention of dyslipidemias and associated diseases. However, the high Na\(^+\) content of the algal biomass may represent a safety issue, which must be solved before this microalga can be used in humans.