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ON THE STOCHASTIC LIE ALGEBRA

MANUEL GUERRA, ANDREY SARYCHEV

Abstract. We study the structure of the Lie algebra s(n,R) corre-
sponding to the so-called stochastic Lie group S(n,R). We obtain the
Levi decomposition of the Lie algebra, classify Levi factor and clas-
sify the representation of the factor in R

n. We discuss isomorphism of
S(n,R) with the group of invertible affine maps Aff (n−1,R). We prove
that s(n,R) is generated by two generic elements.

1. Stochastic Lie group and stochastic Lie algebra

Let S+
0 (n,R) denote the space of transition matrices of size n, i.e., the

space of real n×nmatrices with all entries non-negative and row sums equal
to 1.

One important motivation for the study of such matrices is their relation
to Markov processes: It is easy to see that for any Markov process X with
n possible states, the family

P (s, t) = [pi,j(s, t)]1≤i,j≤n
, 0 ≤ s ≤ t < +∞,

where pi,j(s, t) is the probability of Xt = j, conditional on Xs = i, is a
family of transition matrices such that

(1.1) Ps,t = Pu,tPs,u, ∀0 ≤ s ≤ u ≤ t < +∞.

Conversely, the Kolmogorov extension theorem (see e.g. [2], Theorem
IV.4.18), states that for every family

{

P (s, t) ∈ S+
0 (n,R)

}

0≤s≤t<+∞ satisfy-

ing (1.1), there exists a Markov process X such that pi,j(s, t) =
Pr {Xt = j|Xs = i} for every i, j ≤ n and every 0 ≤ s ≤ t < +∞.

Let S+(n,R) denote the space of nonsingular transition matrices. It is
clear that S+

0 (n,R) is a semigroup with respect to matrix multiplication,
and S+(n,R) is a subsemigroup. However, S+(n,R) is not a group, since
the inverse of a transition matrix is not, in general, a transition matrix.

The smallest group containing S+(n,R) is denoted by S(n,R). Due to
the considerations above, this is called the stochastic group [5]. It can be
shown that

S(n,R) =
{

P ∈ R
n×n : Det(P ) 6= 0, P1 = 1

}

,
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where 1 is the n-dimensional vector with all entries equal to 1. It follows
that S(n,R), provided with the topology inherited from the usual topology
of Rn×n, is a n× (n− 1) dimensional analytic Lie group.

The Lie algebra of S(n,R) is called stochastic Lie algebra, and is denoted
by s(n,R). Notice that s(n,R) is isomorphic to the tangent space of S(n,R)
at the identity

s(n,R) ∼ TIdS(n,R) =
{

A ∈ R
n×n : A1 = 0

}

,

s(n,R) is provided with the matrix commutator [A,B] = AB −BA.
We introduce the subset

s+(n,R) = {A ∈ s(n,R) : ai,j ≥ 0, ∀i 6= j} .
It is clear that s+(n,R) is not a subalgebra of s(n,R), but it is a convex
cone with nonempty interior in s(n,R). Since S+(n,R) is invariant under
the flow by ODE’s of type

Ṗt = PtA,

with A ∈ s+(n,R), it follows that S+(n,R) has nonempty interior in S(n,R).
In [1], it is stated that the Levi decomposition

(1.2) s(n,R) = l⊕ r,

has the following components:

a) The radical r is the linear subspace generated by the matrices

(1.3) R̂i = Ei(n)− En(n), i = 1, . . . , n− 1, Ẑ = Id− 1

n
Jn,

where Ei(n) are the matrices with the elements in the i-th column
equal to 1 and all other elements equal to zero, Jn is the matrix with
all elements equal to 1;

b) The Levi subalgebra l is the linear subspace of real traceless matrices
with all row and column sums equal to zero.

The result is correct but the respective proof of [1, Proposition 3.3] seems
to contain a logical gap in what regards the semisimplicity of l and the
maximality of r.

In what follows, we present an orthonormal basis for s(n,R) which has
interesting properties with respect to the Lie algebraic structure of s(n,R).
In particular, it allows for the explicit computation of the Killing form and
therefore we prove semisimplicity of l by application of Cartan criterion.
We also obtain the Dynkin diagram of l, showing that it is isomorphic to
sl(n− 1,R).

2. Basis for the Lie algebra s(n,R)

Choose an orthonormal basis v1, . . . , vn−1 of the hyperplane

Πn = {x ∈ R
n : x1 + . . . + xn = 0},
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and set v0 = 1√
n
(1, . . . , 1) ∈ R

n. Recall that for a, b ∈ R
n, the dyadic

product a⊗ b is the matrix:






a1
...
an






⊗
(

b1 · · · bn
)

=







a1b1 · · · a1bn
...

...
anb1 · · · anbn






.

The matrices

Z =
1√
n− 1

(In − v0 ⊗ v0) ,(2.1)

Ri = v0 ⊗ vi, i = 1, . . . , n− 1(2.2)

span the same linear subspace as the matrices (1.3).
We take the (n− 1)(n − 2)-dimensional linear subspace

A = span {Aij , i = 1, . . . n− 1, j = 1, . . . , n− 1, i 6= j} ,
spanned by the rank-1 matrices

(2.3) Aij = vi ⊗ vj.

Since vi ∈ Π, there holds v∗0(vi ⊗ vj) = (v0 · vi)v∗j = 0. Similarly,

(vi ⊗ vj)v0 = 0. Hence the matrices Aij have zero row and column sums.
Since Tr(vi ⊗ vj) = vi · vj = 0, the matrices Aij are traceless.

Now, consider the linear subspace

(2.4) H =

{

H =

n−1
∑

ℓ=1

γℓ(vℓ ⊗ vℓ)

∣

∣

∣

∣

∣

n−1
∑

ℓ=1

γℓ = 0

}

.

The row and column sums of each (vℓ⊗vℓ) are zero, and the trace of H ∈ H
equals

n−1
∑

ℓ=1

γℓ = 0.

We set

(2.5) l = A⊕H.

We introduce a basis of H:

(2.6) Hk =

n−1
∑

ℓ=1

γkℓ (vℓ ⊗ vℓ), k = 1, . . . , (n− 2),

where γk = (γk1 , . . . , γ
k
n−1), k = 1, . . . , (n − 2), form an orthonormal basis

for the subspace

Πn−1 =
{

x ∈ R
n−1 : x1 + . . .+ xn−1 = 0

}

.

Using the definition of dyadic product and elementary properties of the
trace, it is straightforward to check that the matrices

Z, Ri (i = 1, . . . , n− 1),

Aij (i, j = 1, . . . , n− 1, i 6= j), Hi (i = 1, . . . , n − 2)
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form an orthonormal system with respect to the matrix scalar product
〈A,B〉 = Tr(AB∗).

The following Lemma presents the multiplication table for our basis. Its
proof is accomplished by a direct computation.

Lemma 2.1. For meaningful values of the indexes i, j, k, ℓ there holds:

[Z,Ri] =
−1
n−1Ri;

[Z,Aij ] = 0;
[Z,Hi] = 0;
[Ri, Rj ] = 0;

[Ri, Aj,k] =

{

Rk, if i = j,

0, if i 6= j;

[Ri,Hj] = γ
j
iRi;

[Aij , Akℓ] =























(vi ⊗ vi)− (vj ⊗ vj) =
n−2
∑

r=1

(

γri − γrj

)

Hr, if i = ℓ, j = k,

Aiℓ, if i 6= ℓ, j = k,

−Akj, if i = ℓ, j 6= k,

0, if i 6= ℓ, j 6= k;

[Aij ,Hk] =
(

γkj − γki

)

Aij ;

[Hi,Hj ] = 0. �

Remark 2.2. Lemma 2.1 shows that the orthogonal subspaces A, H possess
remarkable properties:

1. H is a Cartan subalgebra of l.
2. [H,A] ⊂ A. The adjoint action of H on A is diagonal, for H ∈ H:

adHAij = (γi − γj)Aij .

3. [Aij , Aji] = vi ⊗ vi − vj ⊗ vj = Hij ∈ H.
4. For i 6= j, {Aij , Aji, [Aij , Aji]} spans a 3-dimensional Lie subalgebra:

[Hij , Aij ] = 2Aij , [Hij, Aji] = −2Aji.

5. For any (ij), (kℓ) the commutator [Aij , Akℓ] = adAijAkℓ is orthogo-
nal to Akℓ with respect to the matrix scalar product. �

3. Semisimplicity of l

In this section, we prove semisimplicity of l by direct computation of the
Killing form B.

Proposition 3.1. The Killing form B satisfies:

i) B(A,H) = 0,
ii) B(Hi,Hj) = 2(n− 1)〈Hi,Hj〉, for i, j = 1, . . . , n − 2,

iii) B(Aij , Akℓ) =

{

0, if (i, j) 6= (ℓ, k),

2(n − 1), if (i, j) = (ℓ, k). �

According to Cartan criterion for semisimplicity, we get
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Corollary 3.2. The Killing form B is non-degenerate and the algebra l is
semisimple. �

Proof of Proposition 3.1. (i) Take Aij , Hk from the basis of A and H, re-
spectively.

Since H is Abelian, (adAijadHk)H = 0.
Due to Lemma 2.1, for any Aℓm, adAijadHkAℓm = CadAijAℓm. By

property 5 in Remark 2.2, the last matrix is orthogonal to Aℓm and therefore
the trace of the restriction (adAi,jadHk)|A is null, and we can conclude that
B(A,H) = 0.

(ii) Choose Hk,Hℓ ∈ H. As far as (adHkadHℓ)|H = 0, we only need to
compute the trace of (adHkadHℓ)|A.

By Lemma 2.1, adHkadHℓAij = adHk(γ
ℓ
i−γℓj)Aij = (γℓi −γℓj)(γ

k
i −γkj )Aij .

Hence,

B(Hk,Hℓ) =
∑

i,j

(γℓi − γℓj)(γ
k
i − γkj ) =

=(n− 1)
∑

i

γℓiγ
k
i −

∑

i

γℓi

∑

j

γkj −
∑

j

γℓj

∑

i

γki + (n− 1)
∑

j

γℓjγ
k
j .

Since
∑

i

γki = 0, it follows that

B(Hk,Hℓ) = 2(n− 1)
∑

i

γℓi γ
k
i = 2(n− 1)〈Hk,Hℓ〉.

(iii) Pick Aij , Akℓ. For every Hm

(3.1) adAijadAkℓHm = adAij(γ
m
ℓ − γmk )Akℓ,

lies in A whenever (k, ℓ) 6= (j, i). This implies

Tr (adAijadAkℓ)|H = 0, for (k, ℓ) 6= (j, i).

To compute Tr (adAijadAkℓ)|A, notice that

〈Aαβ , adAijadAkℓAαβ〉 = v∗α (AijadAkℓAαβ − (adAkℓAαβ)Aij) vβ =

=(vα · vi)v∗j (AkℓAαβ −AαβAij) vβ − (vβ · vj)v∗α (AkℓAαβ −AαβAkℓ) vi.

Since i 6= j and k 6= ℓ, v∗jAαβAijvβ = v∗αAkℓAαβvi = 0, and therefore

〈Aαβ , adAijadAkℓAαβ〉 =
=(vj · vk)(vi · vα)(vℓ · vα) + (vi · vℓ)(vj · vβ)(vk · vβ),(3.2)

which is zero whenever (k, ℓ) 6= (j, i).
For (k, ℓ) = (j, i), the equality (3.1) and Lemma 2.1 yield

〈Hm, adAijadAjiHm〉 =(γmi − γmj )〈Hm, adAijAji〉 =
=(γmi − γmj )〈Hm, vi ⊗ vi − vj ⊗ vj〉 = (γmi − γmj )2,

and Tr (adAijadAji)|H =
n−2
∑

m=1
(γmi − γmj )2.
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To compute the last expression, let us form the matrix

(3.3) Γ =







γ11 · · · γn−2
1

...
...

γ1n−1 · · · γn−2
n−1






.

Then ΓΓ∗ is the matrix of the orthogonal projection of Rn−1 onto the sub-
space Πn−1. Take a standard basis e1, . . . , en−1 in R

n−1, and note that
ei − ej ∈ Πn−1. Then

Tr (adAijadAji)|H =
n−2
∑

m=1

(γmi − γmj )2 =

= (ei − ej)
∗ΓΓ∗(ei − ej) = (ei − ej)

∗(ei − ej) = 2.

In what regards Tr (adAijadAji)|A, then by (3.2):

〈Aαβ , adAijadAjiAαβ〉 = (vi · vα) + (vj · vβ).
Hence,

Tr (adAijadAji)|A =
∑

α, β ≤ n− 1
α 6= β

((vi · vα) + (vj · vβ)) = 2(n − 2),

and therefore Tr (adAijadAji) = 2(n − 1). �

4. Classification of the Levi subalgebra l

Now we wish to prove the following result concerning the type of the
semisimple subalgebra l.

Theorem 4.1. The Levi subalgebra l is isomorphic to the special linear Lie
algebra sl(n− 1,R). �

Proof. As stated in Remark 2.2, H is a Cartan subalgebra of l. From Lemma
2.1, we see that the nonzero characteristic functions of l with respect to H
are the linear functionals αij : H 7→ R such that

αij(Hk) = γki − γkj , for 1 ≤ k ≤ n− 2, 1 ≤ i, j ≤ n− 1, i 6= j,

and the corresponding characteristic spaces are

Aij = {tAij : t ∈ R} 1 ≤ i, j ≤ n− 1, i 6= j.

Thus, l is split as

l = H⊕
⊕

i 6=j

Aij.

Hence the set, R = {αij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, i 6= j} is a root
system of l.
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Since the Killing form restricted to H is diagonal, the dual space H∗ is
provided with the inner product uniquely defined by

〈αij, αℓ,m〉 =
n−2
∑

k=1

(

γki − γkj

)(

γkℓ − γkm

)

= (ei − ej)
∗(eℓ − em)

for every αij , αℓm ∈ R. Thus, R is isomorphic to the root system

E = {ei − ej : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, i 6= j}
on the hyperplane Πn−1. Since

eℓ − em =















m−1
∑

i=ℓ

(ei − ei+1) , if ℓ < m,

ℓ−1
∑

i=m

− (ei − ei+1) , if ℓ > m,

it follows that the set ∆ =
{

α12, α23, α34, . . . , α(n−2)(n−1)

}

is a system of
positive simple roots. Further,

〈

αi(i+1), αi(i+1)

〉

= 2 1 ≤ i ≤ n− 2,

2

〈

αi(i+1), αj(j+1)

〉

〈

αi(i+1), αi(i+1)

〉 =

{

−1 if |i− j| = 1,
0 if |i− j| > 1.

Thus, the Dynkin diagram of l is of type An−2, and therefore, l is isomorphic
to sl(n− 1,R) (see, e.g., [6, Chapter 14]). �

❝

α12

❝

α23

❝

α34

❝

α(n−3)(n−2)

❝

α(n−2)(n−1)

Figure 1. Dynkin diagram of l

5. Representation of the Levi factor l in V = R
n

Considering l as a subalgebra of the stochastic (matrix) algebra s(n,R)
defines its representation φ : l 7→ gl(n) in V = R

n. To characterize it, let
us pick the basis v0, v1, . . . , vn−1, introduced in Section 2, and consider the
matrix M ∈ R

n×n: M =
(

v0 v1 · · · vn−1

)

.
By construction, M is orthogonal and the mapping

∀y ∈ l : y 7→ M∗φ(y)M,

defines an isomorphic representation of l in V = R
n.

Note that the subspace V1 = span{v1, . . . , vn−1} is invariant under φ(l)
and therefore we get:

(5.1) ∀y ∈ l : M∗φ(y)M =

(

0 0
0 M∗

1φ(y)M1

)

,

where M1 =
(

v1 v2 · · · vn−1

)

∈ R
n×(n−1).
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The mapping

y 7→ φ1(y) = M∗
1φ(y)M1

is a faithful representation of l in V1 = R
n−1.

Formula (5.1) identifies the representation of the semisimple Levi factor l
in R

n by stochastic matrices with a direct sum of the faithful representation
φ1 in R

n−1 and the null 1-dimensional representation.
Besides

M∗
1AijM1 = ei ⊗ ej for i, j ∈ {1, 2, . . . , n− 1}, i 6= j,

M∗
1HiM1 = diag(γi) for i = 1, 2, . . . , n− 2.

Therefore φ1 maps isomorphically the Cartan subalgebra H onto the space
of traceless diagonal (n− 1)× (n− 1) matrices, while φ1(A) coincides with
the space of (n− 1)× (n− 1) matrices with vanishing diagonal.

6. Affine group and affine Lie algebra

It is noticed in [5] that the group of S(n,R) is isomorphic to the group
Aff (n − 1,R) of the affine maps S : x → Ax + B, x ∈ R

n−1. We wish
to discuss this relation, in the light of the results obtained above. We also
discuss the relation between the elements of S(n,R) and finite state space
Markov processes outlined in Section 1.

Let (Rn)∗ be the dual of R
n. As usual, elements of R

n are identified
with column vectors, and elements of (Rn)∗ are identified with row vectors.
Further, we identify any vector x = (x1, x2, . . . , xn) ∈ R

n with the function
x : i 7→ xi, with the domain Dn = {1, 2, . . . , n}, and identify any dual vector
p = (p1, p2, . . . , pn) ∈ (Rn)∗ with the (signed) measure p on the set Dn such
that p{i} = pi, for i = 1, 2, . . . , n. Thus, the product px is identified with
the integral

∫

Dn
x dp.

Each S ∈ S(n,R) can be identified either with the linear endomorphism
of Rn, S : x 7→ Sx or with the linear endomorphism of (Rn)∗, S : p 7→ pS.

Let Y be a Dn-valued Markov process and S ∈ S+(n,R) be defined by
sij = Pr {Yt = j|Ys = i} for every i, j ∈ Dn (0 ≤ s ≤ t < +∞, fixed). Then
the vector Sx is identified with the function i 7→ E [x(Yt)|Ys = i], while
the covector pS is identified with the probability law of Yt assuming the
probability law of Ys is p.

For every S ∈ S(n,R), the map p 7→ pS preserves each affine space of
the form {p ∈ (Rn)∗ : p1 = C} (C ∈ R, fixed), which is the space of signed
measures on Dn such that p(Dn) = C. Note that, {t1 : t ∈ R} is the unique
affine (linear) proper subspace of R

n which is preserved by all the maps
x 7→ Sx with S ∈ S(n,R).
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Now, consider the group of invertible affine maps S : q 7→ qA + B, q ∈
(

R
n−1
)∗
.1 The group can be identified with the subgroup A

((

R
n−1
)∗)

of
GL ((Rn)∗):

A
(

(

R
n−1
)∗)

=

{(

1 B

0 A

)∣

∣

∣

∣

A ∈ R
(n−1)×(n−1) is nonsingular

}

.

The Lie algebra a
((

R
n−1
)∗)

of A
((

R
n−1
)∗)

consists of matrices
(

0 B

0 A

)

.

Now, fix S ∈ S(n,R). By the results of Section 2, S can be written as

S = β0Z +
n−1
∑

i=1

βiRi +A,

with β0, β1, . . . , βn−1 ∈ R, A ∈ l. Taking into account that

Zv0 = 0,

Zvi =
1√
n− 1

vi, Rivj =

{

v0, if j = i,

0, if j 6= i,
for i = 1, 2, . . . , n − 1,

we get

M∗SM =

(

0 β∗

0 M∗
1AM1 +

β0√
n−1

Id

)

,

where β∗ = (β1, β2, . . . , βn−1). Thus, the similarity S 7→ M∗SM is an
isomorphism from S(n,R) into a

((

R
n−1
)∗)

. In particular, the radical of

a
((

R
n−1
)∗)

is the linear space of matrices
(

0 β∗

0 β0Id

)

, β0, β1, . . . , βn−1 ∈ R,

while the Levi subalgebra of a
((

R
n−1
)∗)

consists of matrices
(

0 0
0 A

)

, A ∈ sl(n− 1,R).

Thus, the Levi splitting of a
((

R
n−1
)∗)

corresponds to two connected Lie

subgroups of A
((

R
n−1
)∗)

: The subgroup generated by the translations and

rescalings of
(

R
n−1
)∗
, and the subgroup of orientation and volume preserving

linear transformations in
(

R
n−1
)∗
.

1The mapping

q = (q1, q2, . . . , qn−1) 7→

(

C −

n−1
∑

i=1

qi, q1, q2, . . . , qn−1

)

coordinatizes the affine subspace {p ∈ (Rn)∗ : p1 = C}.
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7. Minimal number of generators of s(n,R)

Finally we prove

Theorem 7.1. The Lie algebra s(n,R) is generated by two matrices. �

The argument in our proof is an adaptation of the argument used in [4] to
prove that every semisimple Lie algebra is generated by two elements. We
will use the following lemma:

Lemma 7.2. For every integer n ≥ 2 there is a vector γ ∈ R
n such that

a)
n
∑

i=1
γi = 0;

b) γi 6= 0, i = 1, . . . , n;
c) γi 6= γj, ∀i, j ∈ {1, . . . , n}, i 6= j;
d) γi − γj 6= γk − γℓ, ∀i, j, k, ℓ ∈ {1, . . . , n}, i 6= j, k 6= ℓ, (i, j) 6=

(k, ℓ).

For every γ satisfying (a)–(d) and every λ ∈ R \ {0}, λγ satisfies (a)–(d).
�

Proof. For n = 2, the Lemma holds with γ = (1,−1).
Suppose that the Lemma holds for some n ≥ 2, and fix γ ∈ R

n satisfying
(a)–(d). Let

γ̃ = (γ1, . . . , γn−1, γn − ε, ε) .

Since there are only finitely many values of ε such that γ̃ fails at least one
condition (a)–(d), we see that the Lemma holds for n+ 1.

The last statement in the Lemma is obvious, since the equations in con-
ditions (a)–(d) are homogeneous. �

Proof of Theorem 7.1. Pick a vector γ ∈ R
n−1 satisfying conditions (a)–(d)

of Lemma 7.2, let Γ be the matrix (3.3), and β = (β1, . . . , βn−2) = γTΓ. Let
Z,Ri, Aij ,Hi be elements of our basis of s(n,R), and consider the matrices

X = Z +

n−2
∑

k=1

βkHk, Y = R1 +
∑

i 6=j

Aij .

Using the Lemma 2.1, we obtain

adXY =[Z,R1] +
∑

i 6=j

[Z,Aij ] +
n−2
∑

k=1

βk[Hk, R1] +
n−2
∑

k=1

βk[Hk, Aij ] =

=
−1

n− 1
R1 + 0− γ1R1 +

∑

i 6=j

(γi − γj)Aij =

=−
(

1

n− 1
+ γ1

)

R1 +
∑

i 6=j

(γi − γj)Aij .
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Multiplying γ by an appropriate non zero constant we can make γ1 = −1
n−1 ,

and thus

adXY =
∑

i 6=j

(γi − γj)Aij .

Iterating, we see that

adkXY =
∑

i 6=j

(γi − γj)
kAij ∀k ∈ N.

Let m = (n− 1)(n− 2). Since

det



















1 0 0 · · · 0
0 1 1 · · · 1
0 0 γ1 − γ2 · · · γn−1 − γn−2

0 0 (γ1 − γ2)
2 · · · (γn−1 − γn−2)

2

...
...

...
...

0 0 (γ1 − γ2)
m · · · (γn−1 − γn−2)

m



















6= 0,

we see that the matrices X,Y, adXY, . . . , admXY span the same subspace
as the matrices X,R1, Aij , i, j ≤ n − 1, i 6= j, and this subspace lies in
Lie{X,Y }, the Lie algebra generated by X,Y .

By the Lemma 2.1, [R1, A1i] = Ri, for i = 1, 2, . . . , n− 1. Hence

{R2, . . . , Rn−1} ⊂ Lie{X,Y }.

Finally, also by the Lemma 2.1, [Aij , Aji] =
n−2
∑

r=1
(γri − γrj )Hr. This implies

that [A1j , Aj1], j = 2, . . . , n − 1 are n − 2 linearly independent elements of
H. Hence, H ⊂ Lie{X,Y } and Z ∈ Lie{X,Y }. �
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