ON THE STOCHASTIC LIE ALGEBRA

MANUEL GUERRA, ANDREY SARYCHEV

ABSTRACT. We study the structure of the Lie algebra $\mathfrak{s}(n,\mathbb{R})$ corresponding to the so-called stochastic Lie group $\mathcal{S}(n,\mathbb{R})$. We obtain the Levi decomposition of the Lie algebra, classify Levi factor and classify the representation of the factor in \mathbb{R}^n . We discuss isomorphism of $\mathcal{S}(n,\mathbb{R})$ with the group of invertible affine maps $Aff(n-1,\mathbb{R})$. We prove that $\mathfrak{s}(n,\mathbb{R})$ is generated by two generic elements.

1. Stochastic Lie group and stochastic Lie Algebra

Let $\mathcal{S}_0^+(n,\mathbb{R})$ denote the space of *transition matrices* of size n, i.e., the space of real $n \times n$ matrices with all entries non-negative and row sums equal to 1.

One important motivation for the study of such matrices is their relation to Markov processes: It is easy to see that for any Markov process X with n possible states, the family

$$P(s,t) = [p_{i,j}(s,t)]_{1 \le i,j \le n}, \qquad 0 \le s \le t < +\infty,$$

where $p_{i,j}(s,t)$ is the probability of $X_t = j$, conditional on $X_s = i$, is a family of transition matrices such that

(1.1)
$$P_{s,t} = P_{u,t}P_{s,u}, \qquad \forall 0 \le s \le u \le t < +\infty.$$

Conversely, the Kolmogorov extension theorem (see e.g. [2], Theorem IV.4.18), states that for every family $\{P(s,t) \in \mathcal{S}_0^+(n,\mathbb{R})\}_{0 \le s \le t < +\infty}$ satisfying (1.1), there exists a Markov process X such that $p_{i,j}(s,t) = \Pr\{X_t = j | X_s = i\}$ for every $i, j \le n$ and every $0 \le s \le t < +\infty$.

Let $\mathcal{S}^+(n, \mathbb{R})$ denote the space of *nonsingular* transition matrices. It is clear that $\mathcal{S}^+_0(n, \mathbb{R})$ is a semigroup with respect to matrix multiplication, and $\mathcal{S}^+(n, \mathbb{R})$ is a subsemigroup. However, $\mathcal{S}^+(n, \mathbb{R})$ is *not* a group, since the inverse of a transition matrix is not, in general, a transition matrix.

The smallest group containing $S^+(n, \mathbb{R})$ is denoted by $S(n, \mathbb{R})$. Due to the considerations above, this is called the *stochastic group* [5]. It can be shown that

$$\mathcal{S}(n,\mathbb{R}) = \left\{ P \in \mathbb{R}^{n \times n} : \operatorname{Det}(P) \neq 0, P\mathbf{1} = \mathbf{1} \right\},\$$

Manuel Guerra was partly supported by FCT/MEC through the project CEMAPRE UID/MULTI/00491/2013.

where **1** is the *n*-dimensional vector with all entries equal to 1. It follows that $S(n, \mathbb{R})$, provided with the topology inherited from the usual topology of $\mathbb{R}^{n \times n}$, is a $n \times (n-1)$ dimensional analytic Lie group.

The Lie algebra of $\mathcal{S}(n, \mathbb{R})$ is called *stochastic Lie algebra*, and is denoted by $\mathfrak{s}(n, \mathbb{R})$. Notice that $\mathfrak{s}(n, \mathbb{R})$ is isomorphic to the tangent space of $\mathcal{S}(n, \mathbb{R})$ at the identity

$$\mathfrak{s}(n,\mathbb{R}) \sim T_{Id}\mathcal{S}(n,\mathbb{R}) = \left\{ A \in \mathbb{R}^{n \times n} : A\mathbf{1} = 0 \right\},\$$

 $\mathfrak{s}(n,\mathbb{R})$ is provided with the matrix commutator [A,B] = AB - BA. We introduce the subset

$$\mathfrak{s}^+(n,\mathbb{R}) = \{A \in \mathfrak{s}(n,\mathbb{R}) : a_{i,j} \ge 0, \ \forall i \neq j\}.$$

It is clear that $\mathfrak{s}^+(n,\mathbb{R})$ is not a subalgebra of $\mathfrak{s}(n,\mathbb{R})$, but it is a convex cone with nonempty interior in $\mathfrak{s}(n,\mathbb{R})$. Since $\mathcal{S}^+(n,\mathbb{R})$ is invariant under the flow by ODE's of type

$$\dot{P}_t = P_t A,$$

with $A \in \mathfrak{s}^+(n, \mathbb{R})$, it follows that $\mathcal{S}^+(n, \mathbb{R})$ has nonempty interior in $\mathcal{S}(n, \mathbb{R})$. In [1], it is stated that the Levi decomposition

(1.2)
$$\mathfrak{s}(n,\mathbb{R}) = \mathfrak{l} \oplus \mathfrak{r},$$

has the following components:

a) The radical \mathfrak{r} is the linear subspace generated by the matrices

(1.3)
$$\hat{R}_i = E_i(n) - E_n(n), \quad i = 1, \dots, n-1, \qquad \hat{Z} = Id - \frac{1}{n}J_n,$$

where $E_i(n)$ are the matrices with the elements in the *i*-th column equal to 1 and all other elements equal to zero, J_n is the matrix with all elements equal to 1;

b) The Levi subalgebra l is the linear subspace of real traceless matrices with all row and column sums equal to zero.

The result is correct but the respective proof of [1, Proposition 3.3] seems to contain a logical gap in what regards the semisimplicity of l and the maximality of r.

In what follows, we present an orthonormal basis for $\mathfrak{s}(n,\mathbb{R})$ which has interesting properties with respect to the Lie algebraic structure of $\mathfrak{s}(n,\mathbb{R})$. In particular, it allows for the explicit computation of the Killing form and therefore we prove semisimplicity of \mathfrak{l} by application of Cartan criterion. We also obtain the Dynkin diagram of \mathfrak{l} , showing that it is isomorphic to $\mathfrak{sl}(n-1,\mathbb{R})$.

2. Basis for the Lie algebra $\mathfrak{s}(n,\mathbb{R})$

Choose an orthonormal basis v_1, \ldots, v_{n-1} of the hyperplane

$$\Pi_n = \{ x \in \mathbb{R}^n : x_1 + \ldots + x_n = 0 \},\$$

and set $v_0 = \frac{1}{\sqrt{n}}(1, \ldots, 1) \in \mathbb{R}^n$. Recall that for $a, b \in \mathbb{R}^n$, the dyadic product $a \otimes b$ is the matrix:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \otimes \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} a_1b_1 & \cdots & a_1b_n \\ \vdots & & \vdots \\ a_nb_1 & \cdots & a_nb_n \end{pmatrix}.$$

The matrices

(2.1)
$$Z = \frac{1}{\sqrt{n-1}} \left(I_n - v_0 \otimes v_0 \right),$$

$$(2.2) R_i = v_0 \otimes v_i, i = 1, \dots, n-1$$

span the same linear subspace as the matrices (1.3).

We take the (n-1)(n-2)-dimensional linear subspace

$$\mathcal{A} = \operatorname{span} \{ A_{ij}, \ i = 1, \dots, n-1, \ j = 1, \dots, n-1, \ i \neq j \},\$$

spanned by the rank-1 matrices

$$(2.3) A_{ij} = v_i \otimes v_j.$$

Since $v_i \in \Pi$, there holds $v_0^*(v_i \otimes v_j) = (v_0 \cdot v_i)v_j^* = 0$. Similarly, $(v_i \otimes v_j)v_0 = 0$. Hence the matrices A_{ij} have zero row and column sums. Since $\operatorname{Tr}(v_i \otimes v_j) = v_i \cdot v_j = 0$, the matrices A_{ij} are traceless.

Now, consider the linear subspace

(2.4)
$$\mathcal{H} = \left\{ H = \sum_{\ell=1}^{n-1} \gamma_{\ell} (v_{\ell} \otimes v_{\ell}) \, \middle| \, \sum_{\ell=1}^{n-1} \gamma_{\ell} = 0 \right\}.$$

The row and column sums of each $(v_{\ell} \otimes v_{\ell})$ are zero, and the trace of $H \in \mathcal{H}$ equals $\sum_{\ell=1}^{n-1} \gamma_{\ell} = 0.$

We set

$$(2.5) l = \mathcal{A} \oplus \mathcal{H}$$

We introduce a basis of \mathcal{H} :

(2.6)
$$H_k = \sum_{\ell=1}^{n-1} \gamma_{\ell}^k (v_{\ell} \otimes v_{\ell}), \qquad k = 1, \dots, (n-2),$$

where $\gamma^k = (\gamma_1^k, \dots, \gamma_{n-1}^k), \ k = 1, \dots, (n-2)$, form an orthonormal basis for the subspace

$$\Pi_{n-1} = \left\{ x \in \mathbb{R}^{n-1} : x_1 + \ldots + x_{n-1} = 0 \right\}.$$

Using the definition of dyadic product and elementary properties of the trace, it is straightforward to check that the matrices

Z,
$$R_i \ (i = 1, \dots, n-1),$$

 $A_{ij} \ (i, j = 1, \dots, n-1, i \neq j), \quad H_i \ (i = 1, \dots, n-2)$

form an orthonormal system with respect to the matrix scalar product $\langle A, B \rangle = \text{Tr}(AB^*).$

The following Lemma presents the multiplication table for our basis. Its proof is accomplished by a direct computation.

Lemma 2.1. For meaningful values of the indexes i, j, k, ℓ there holds:

$$\begin{split} & [Z, R_i] = \frac{-1}{n-1} R_i; \\ & [Z, A_{ij}] = 0; \\ & [Z, H_i] = 0; \\ & [R_i, R_j] = 0; \\ & [R_i, A_{j,k}] = \begin{cases} R_k, & \text{if } i = j, \\ 0, & \text{if } i \neq j; \end{cases} \\ & [R_i, H_j] = \gamma_i^j R_i; \\ & [R_{ij}, A_{k\ell}] = \begin{cases} (v_i \otimes v_i) - (v_j \otimes v_j) = \sum_{r=1}^{n-2} \left(\gamma_i^r - \gamma_j^r\right) H_r, & \text{if } i = \ell, j = k, \\ A_{i\ell}, & \text{if } i \neq \ell, j = k, \\ -A_{kj}, & \text{if } i = \ell, j \neq k, \\ 0, & \text{if } i \neq \ell, j \neq k; \end{cases} \\ & [A_{ij}, H_k] = \left(\gamma_j^k - \gamma_i^k\right) A_{ij}; \\ & [H_i, H_j] = 0. \ \Box \end{split}$$

Remark 2.2. Lemma 2.1 shows that the orthogonal subspaces \mathcal{A} , \mathcal{H} possess remarkable properties:

- 1. \mathcal{H} is a Cartan subalgebra of \mathfrak{l} .
- 2. $[\mathcal{H}, \mathcal{A}] \subset \mathcal{A}$. The adjoint action of \mathcal{H} on \mathcal{A} is diagonal, for $H \in \mathcal{H}$:

$$adHA_{ij} = (\gamma_i - \gamma_j)A_{ij}$$

B.
$$[A_{ij}, A_{ji}] = v_i \otimes v_i - v_j \otimes v_j = H_{ij} \in \mathcal{H}.$$

4. For $i \neq j$, $\{A_{ij}, A_{ji}, [A_{ij}, A_{ji}]\}$ spans a 3-dimensional Lie subalgebra:

 $[H_{ij}, A_{ij}] = 2A_{ij}, \quad [H_{ij}, A_{ji}] = -2A_{ji}.$

5. For any $(ij), (k\ell)$ the commutator $[A_{ij}, A_{k\ell}] = \operatorname{ad} A_{ij} A_{k\ell}$ is orthogonal to $A_{k\ell}$ with respect to the matrix scalar product. \Box

3. Semisimplicity of \mathfrak{l}

In this section, we prove semisimplicity of l by direct computation of the Killing form \mathfrak{B} .

Proposition 3.1. The Killing form \mathfrak{B} satisfies:

i) $\mathfrak{B}(\mathcal{A}, \mathcal{H}) = 0,$ ii) $\mathfrak{B}(H_i, H_j) = 2(n-1)\langle H_i, H_j \rangle, \text{ for } i, j = 1, \dots, n-2,$ iii) $\mathfrak{B}(A_{ij}, A_{k\ell}) = \begin{cases} 0, & \text{if } (i, j) \neq (\ell, k), \\ 2(n-1), & \text{if } (i, j) = (\ell, k). \end{cases}$

According to Cartan criterion for semisimplicity, we get

Corollary 3.2. The Killing form \mathfrak{B} is non-degenerate and the algebra \mathfrak{l} is semisimple. \Box

Proof of Proposition 3.1. (i) Take A_{ij} , H_k from the basis of \mathcal{A} and \mathcal{H} , respectively.

Since \mathcal{H} is Abelian, $(\mathrm{ad}A_{ij}\mathrm{ad}H_k)_{\mathcal{H}} = 0.$

Due to Lemma 2.1, for any $A_{\ell m}$, $\mathrm{ad}A_{ij}\mathrm{ad}H_kA_{\ell m} = C\mathrm{ad}A_{ij}A_{\ell m}$. By property 5 in Remark 2.2, the last matrix is orthogonal to $A_{\ell m}$ and therefore the trace of the restriction $(\mathrm{ad}A_{i,j}\mathrm{ad}H_k)|_{\mathcal{A}}$ is null, and we can conclude that $\mathfrak{B}(\mathcal{A},\mathcal{H}) = 0$.

(*ii*) Choose $H_k, H_\ell \in \mathcal{H}$. As far as $(\mathrm{ad}H_k\mathrm{ad}H_\ell)|_{\mathcal{H}} = 0$, we only need to compute the trace of $(\mathrm{ad}H_k\mathrm{ad}H_\ell)|_{\mathcal{A}}$.

By Lemma 2.1, $\operatorname{ad} H_k \operatorname{ad} H_\ell A_{ij} = \operatorname{ad} H_k(\gamma_i^\ell - \gamma_j^\ell) A_{ij} = (\gamma_i^\ell - \gamma_j^\ell)(\gamma_i^k - \gamma_j^k) A_{ij}$. Hence,

$$\mathfrak{B}(H_k, H_\ell) = \sum_{i,j} (\gamma_i^\ell - \gamma_j^\ell) (\gamma_i^k - \gamma_j^k) =$$
$$= (n-1) \sum_i \gamma_i^\ell \gamma_i^k - \sum_i \gamma_i^\ell \sum_j \gamma_j^k - \sum_j \gamma_j^\ell \sum_i \gamma_i^k + (n-1) \sum_j \gamma_j^\ell \gamma_j^k$$

Since $\sum_{i} \gamma_{i}^{k} = 0$, it follows that

$$\mathfrak{B}(H_k, H_\ell) = 2(n-1) \sum_i \gamma_i^\ell \gamma_i^k = 2(n-1) \langle H_k, H_\ell \rangle.$$

(*iii*) Pick $A_{ij}, A_{k\ell}$. For every H_m

(3.1)
$$\mathrm{ad}A_{ij}\mathrm{ad}A_{k\ell}H_m = \mathrm{ad}A_{ij}(\gamma_\ell^m - \gamma_k^m)A_{k\ell},$$

lies in \mathcal{A} whenever $(k, \ell) \neq (j, i)$. This implies

Tr $(adA_{ij}adA_{k\ell})|_{\mathcal{H}} = 0$, for $(k, \ell) \neq (j, i)$.

To compute Tr $(adA_{ij}adA_{k\ell})|_A$, notice that

$$\langle A_{\alpha\beta}, \mathrm{ad}A_{ij}\mathrm{ad}A_{k\ell}A_{\alpha\beta} \rangle = v_{\alpha}^{*} \left(A_{ij}\mathrm{ad}A_{k\ell}A_{\alpha\beta} - (\mathrm{ad}A_{k\ell}A_{\alpha\beta})A_{ij} \right) v_{\beta} = \\ = (v_{\alpha} \cdot v_{i})v_{j}^{*} \left(A_{k\ell}A_{\alpha\beta} - A_{\alpha\beta}A_{ij} \right) v_{\beta} - (v_{\beta} \cdot v_{j})v_{\alpha}^{*} \left(A_{k\ell}A_{\alpha\beta} - A_{\alpha\beta}A_{k\ell} \right) v_{i}$$

Since $i \neq j$ and $k \neq \ell$, $v_j^* A_{\alpha\beta} A_{ij} v_\beta = v_\alpha^* A_{k\ell} A_{\alpha\beta} v_i = 0$, and therefore

(3.2)
$$\langle A_{\alpha\beta}, \mathrm{ad}A_{ij}\mathrm{ad}A_{k\ell}A_{\alpha\beta} \rangle = \\ = (v_j \cdot v_k)(v_i \cdot v_\alpha)(v_\ell \cdot v_\alpha) + (v_i \cdot v_\ell)(v_j \cdot v_\beta)(v_k \cdot v_\beta),$$

which is zero whenever $(k, \ell) \neq (j, i)$.

For $(k, \ell) = (j, i)$, the equality (3.1) and Lemma 2.1 yield

m=1

$$\langle H_m, \mathrm{ad}A_{ij}\mathrm{ad}A_{ji}H_m \rangle = (\gamma_i^m - \gamma_j^m) \langle H_m, \mathrm{ad}A_{ij}A_{ji} \rangle = \\ = (\gamma_i^m - \gamma_j^m) \langle H_m, v_i \otimes v_i - v_j \otimes v_j \rangle = (\gamma_i^m - \gamma_j^m)^2 ,$$
and Tr $(\mathrm{ad}A_{ij}\mathrm{ad}A_{ji})|_{\mathcal{H}} = \sum_{i=1}^{n-2} (\gamma_i^m - \gamma_j^m)^2 .$

To compute the last expression, let us form the matrix

(3.3)
$$\Gamma = \begin{pmatrix} \gamma_1^1 & \cdots & \gamma_1^{n-2} \\ \vdots & & \vdots \\ \gamma_{n-1}^1 & \cdots & \gamma_{n-1}^{n-2} \end{pmatrix}.$$

Then $\Gamma\Gamma^*$ is the matrix of the orthogonal projection of \mathbb{R}^{n-1} onto the subspace Π_{n-1} . Take a standard basis e_1, \ldots, e_{n-1} in \mathbb{R}^{n-1} , and note that $e_i - e_j \in \Pi_{n-1}$. Then

$$\operatorname{Tr} \left(\operatorname{ad} A_{ij} \operatorname{ad} A_{ji} \right)|_{\mathcal{H}} = \sum_{m=1}^{n-2} (\gamma_i^m - \gamma_j^m)^2 = \\ = (e_i - e_j)^* \Gamma \Gamma^* (e_i - e_j) = (e_i - e_j)^* (e_i - e_j) = 2$$

In what regards Tr $(adA_{ij}adA_{ji})|_{\mathcal{A}}$, then by (3.2):

$$\langle A_{\alpha\beta}, \mathrm{ad}A_{ij}\mathrm{ad}A_{ji}A_{\alpha\beta}\rangle = (v_i \cdot v_\alpha) + (v_j \cdot v_\beta).$$

Hence,

$$\operatorname{Tr} \left(\operatorname{ad} A_{ij} \operatorname{ad} A_{ji} \right) \Big|_{\mathcal{A}} = \sum_{\substack{\alpha, \beta \leq n-1 \\ \alpha \neq \beta}} \left((v_i \cdot v_\alpha) + (v_j \cdot v_\beta) \right) = 2(n-2),$$

and therefore $\operatorname{Tr}(\mathrm{ad}A_{ij}\mathrm{ad}A_{ji}) = 2(n-1).$

4. Classification of the Levi subalgebra \mathfrak{l}

Now we wish to prove the following result concerning the type of the semisimple subalgebra $\mathfrak{l}.$

Theorem 4.1. The Levi subalgebra \mathfrak{l} is isomorphic to the special linear Lie algebra $\mathfrak{sl}(n-1,\mathbb{R})$. \Box

Proof. As stated in Remark 2.2, \mathcal{H} is a Cartan subalgebra of \mathfrak{l} . From Lemma 2.1, we see that the nonzero characteristic functions of \mathfrak{l} with respect to \mathcal{H} are the linear functionals $\alpha_{ij} : \mathcal{H} \mapsto \mathbb{R}$ such that

$$\alpha_{ij}(H_k) = \gamma_i^k - \gamma_j^k, \quad \text{for } 1 \le k \le n-2, \quad 1 \le i, j \le n-1, \quad i \ne j, j \le n-1, \quad j$$

and the corresponding characteristic spaces are

$$\mathcal{A}_{ij} = \{ tA_{ij} : t \in \mathbb{R} \} \qquad 1 \le i, j \le n - 1, \quad i \ne j.$$

Thus, \mathfrak{l} is split as

$$\mathfrak{l} = \mathcal{H} \oplus \bigoplus_{i \neq j} \mathcal{A}_{ij}.$$

Hence the set, $\mathcal{R} = \{\alpha_{ij} : 1 \leq i \leq n-1, 1 \leq j \leq n-1, i \neq j\}$ is a root system of \mathfrak{l} .

6

Since the Killing form restricted to \mathcal{H} is diagonal, the dual space \mathcal{H}^* is provided with the inner product uniquely defined by

$$\langle \alpha_{ij}, \alpha_{\ell,m} \rangle = \sum_{k=1}^{n-2} \left(\gamma_i^k - \gamma_j^k \right) \left(\gamma_\ell^k - \gamma_m^k \right) = (e_i - e_j)^* (e_\ell - e_m)$$

for every $\alpha_{ij}, \alpha_{\ell m} \in \mathcal{R}$. Thus, \mathcal{R} is isomorphic to the root system

$$\mathcal{E} = \{ e_i - e_j : 1 \le i \le n - 1, \ 1 \le j \le n - 1, \ i \ne j \}$$

on the hyperplane Π_{n-1} . Since

$$e_{\ell} - e_m = \begin{cases} \sum_{\substack{i=\ell\\\ell-1\\j=m}}^{m-1} (e_i - e_{i+1}), & \text{if } \ell < m, \\ \sum_{i=m}^{\ell-1} - (e_i - e_{i+1}), & \text{if } \ell > m, \end{cases}$$

it follows that the set $\Delta = \{\alpha_{12}, \alpha_{23}, \alpha_{34}, \dots, \alpha_{(n-2)(n-1)}\}$ is a system of positive simple roots. Further,

$$\langle \alpha_{i(i+1)}, \alpha_{i(i+1)} \rangle = 2 \qquad 1 \le i \le n-2,$$

$$2 \frac{\langle \alpha_{i(i+1)}, \alpha_{j(j+1)} \rangle}{\langle \alpha_{i(i+1)}, \alpha_{i(i+1)} \rangle} = \begin{cases} -1 & \text{if } |i-j| = 1, \\ 0 & \text{if } |i-j| > 1. \end{cases}$$

Thus, the Dynkin diagram of \mathfrak{l} is of type A_{n-2} , and therefore, \mathfrak{l} is isomorphic to $\mathfrak{sl}(n-1,\mathbb{R})$ (see, e.g., [6, Chapter 14]).

$$\overbrace{\alpha_{12}}^{\circ} \overbrace{\alpha_{23}}^{\circ} \overbrace{\alpha_{34}}^{\circ} \overbrace{\alpha_{(n-3)(n-2)}}^{\circ} \alpha_{(n-2)(n-1)}$$

FIGURE 1. Dynkin diagram of l

5. Representation of the Levi factor \mathfrak{l} in $V=\mathbb{R}^n$

Considering \mathfrak{l} as a subalgebra of the stochastic (matrix) algebra $\mathfrak{s}(n,\mathbb{R})$ defines its representation $\phi: \mathfrak{l} \mapsto \mathfrak{gl}(n)$ in $V = \mathbb{R}^n$. To characterize it, let us pick the basis $v_0, v_1, \ldots, v_{n-1}$, introduced in Section 2, and consider the matrix $M \in \mathbb{R}^{n \times n}$: $M = \begin{pmatrix} v_0 & v_1 & \cdots & v_{n-1} \end{pmatrix}$.

By construction, M is orthogonal and the mapping

$$\forall y \in \mathfrak{l} : \quad y \mapsto M^* \phi(y) M,$$

defines an isomorphic representation of \mathfrak{l} in $V = \mathbb{R}^n$.

Note that the subspace $V_1 = \text{span}\{v_1, \ldots, v_{n-1}\}$ is invariant under $\phi(\mathfrak{l})$ and therefore we get:

(5.1)
$$\forall y \in \mathfrak{l}: \quad M^* \phi(y) M = \begin{pmatrix} 0 & 0 \\ 0 & M_1^* \phi(y) M_1 \end{pmatrix},$$

where $M_1 = (v_1 | v_2 | \cdots | v_{n-1}) \in \mathbb{R}^{n \times (n-1)}$.

The mapping

$$y \mapsto \phi_1(y) = M_1^* \phi(y) M_1$$

is a faithful representation of \mathfrak{l} in $V_1 = \mathbb{R}^{n-1}$.

Formula (5.1) identifies the representation of the semisimple Levi factor \mathfrak{l} in \mathbb{R}^n by stochastic matrices with a direct sum of the faithful representation ϕ_1 in \mathbb{R}^{n-1} and the null 1-dimensional representation.

Besides

$$M_1^* A_{ij} M_1 = e_i \otimes e_j \quad \text{for } i, j \in \{1, 2, \dots, n-1\}, \ i \neq j, M_1^* H_i M_1 = \text{diag}(\gamma^i) \quad \text{for } i = 1, 2, \dots, n-2.$$

Therefore ϕ_1 maps isomorphically the Cartan subalgebra \mathcal{H} onto the space of traceless diagonal $(n-1) \times (n-1)$ matrices, while $\phi_1(\mathcal{A})$ coincides with the space of $(n-1) \times (n-1)$ matrices with vanishing diagonal.

6. Affine group and affine Lie Algebra

It is noticed in [5] that the group of $\mathcal{S}(n,\mathbb{R})$ is isomorphic to the group $Aff(n-1,\mathbb{R})$ of the affine maps $S: x \to Ax + B$, $x \in \mathbb{R}^{n-1}$. We wish to discuss this relation, in the light of the results obtained above. We also discuss the relation between the elements of $\mathcal{S}(n,\mathbb{R})$ and finite state space Markov processes outlined in Section 1.

Let $(\mathbb{R}^n)^*$ be the dual of \mathbb{R}^n . As usual, elements of \mathbb{R}^n are identified with column vectors, and elements of $(\mathbb{R}^n)^*$ are identified with row vectors. Further, we identify any vector $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ with the function $x : i \mapsto x_i$, with the domain $D_n = \{1, 2, \ldots, n\}$, and identify any dual vector $p = (p_1, p_2, \ldots, p_n) \in (\mathbb{R}^n)^*$ with the (signed) measure p on the set D_n such that $p\{i\} = p_i$, for $i = 1, 2, \ldots, n$. Thus, the product px is identified with the integral $\int_{D_n} x \, dp$.

Each $S \in \mathcal{S}(n,\mathbb{R})$ can be identified either with the linear endomorphism of \mathbb{R}^n , $S: x \mapsto Sx$ or with the linear endomorphism of $(\mathbb{R}^n)^*$, $S: p \mapsto pS$.

Let Y be a D_n -valued Markov process and $S \in S^+(n, \mathbb{R})$ be defined by $s_{ij} = \Pr\{Y_t = j | Y_s = i\}$ for every $i, j \in D_n$ $(0 \le s \le t < +\infty, \text{ fixed})$. Then the vector Sx is identified with the function $i \mapsto \mathbb{E}[x(Y_t)| Y_s = i]$, while the covector pS is identified with the probability law of Y_t assuming the probability law of Y_s is p.

For every $S \in \mathcal{S}(n, \mathbb{R})$, the map $p \mapsto pS$ preserves each affine space of the form $\{p \in (\mathbb{R}^n)^* : p\mathbf{1} = C\}$ $(C \in \mathbb{R}, \text{ fixed})$, which is the space of signed measures on D_n such that $p(D_n) = C$. Note that, $\{t\mathbf{1} : t \in \mathbb{R}\}$ is the unique affine (linear) proper subspace of \mathbb{R}^n which is preserved by all the maps $x \mapsto Sx$ with $S \in \mathcal{S}(n, \mathbb{R})$.

8

Now, consider the group of invertible affine maps $S: q \mapsto qA + B, q \in (\mathbb{R}^{n-1})^*$.¹ The group can be identified with the subgroup $\mathbf{A}((\mathbb{R}^{n-1})^*)$ of $GL((\mathbb{R}^n)^*)$:

$$\mathbf{A}\left(\left(\mathbb{R}^{n-1}\right)^*\right) = \left\{ \left(\begin{array}{cc} 1 & B\\ 0 & A \end{array}\right) \middle| A \in \mathbb{R}^{(n-1) \times (n-1)} \text{ is nonsingular} \right\}$$

The Lie algebra $\mathfrak{a}\left(\left(\mathbb{R}^{n-1}\right)^*\right)$ of $\mathbf{A}\left(\left(\mathbb{R}^{n-1}\right)^*\right)$ consists of matrices

$$\left(\begin{array}{cc} 0 & B \\ 0 & A \end{array}\right).$$

Now, fix $S \in \mathcal{S}(n, \mathbb{R})$. By the results of Section 2, S can be written as

$$S = \beta_0 Z + \sum_{i=1}^{n-1} \beta_i R_i + A,$$

with $\beta_0, \beta_1, \ldots, \beta_{n-1} \in \mathbb{R}, A \in \mathfrak{l}$. Taking into account that

$$Zv_{0} = 0,$$

$$Zv_{i} = \frac{1}{\sqrt{n-1}}v_{i}, \quad R_{i}v_{j} = \begin{cases} v_{0}, & \text{if } j = i, \\ 0, & \text{if } j \neq i, \end{cases} \quad \text{for } i = 1, 2, \dots, n-1,$$

we get

$$M^*SM = \left(\begin{array}{cc} 0 & \beta^* \\ 0 & M_1^*AM_1 + \frac{\beta_0}{\sqrt{n-1}}Id \end{array}\right),$$

where $\beta^* = (\beta_1, \beta_2, \dots, \beta_{n-1})$. Thus, the similarity $S \mapsto M^*SM$ is an isomorphism from $\mathcal{S}(n, \mathbb{R})$ into $\mathfrak{a}((\mathbb{R}^{n-1})^*)$. In particular, the radical of $\mathfrak{a}((\mathbb{R}^{n-1})^*)$ is the linear space of matrices

$$\left(\begin{array}{cc} 0 & \beta^* \\ 0 & \beta_0 Id \end{array}\right), \qquad \beta_0, \beta_1, \dots, \beta_{n-1} \in \mathbb{R},$$

while the Levi subalgebra of $\mathfrak{a}\left(\left(\mathbb{R}^{n-1}\right)^*\right)$ consists of matrices

$$\left(\begin{array}{cc} 0 & 0\\ 0 & A \end{array}\right), \qquad A \in \mathfrak{sl}(n-1,\mathbb{R}).$$

Thus, the Levi splitting of $\mathfrak{a}((\mathbb{R}^{n-1})^*)$ corresponds to two connected Lie subgroups of $\mathbf{A}((\mathbb{R}^{n-1})^*)$: The subgroup generated by the translations and rescalings of $(\mathbb{R}^{n-1})^*$, and the subgroup of orientation and volume preserving linear transformations in $(\mathbb{R}^{n-1})^*$.

$$q = (q_1, q_2, \dots, q_{n-1}) \mapsto \left(C - \sum_{i=1}^{n-1} q_i, q_1, q_2, \dots, q_{n-1}\right)$$

coordinatizes the affine subspace $\{p \in (\mathbb{R}^n)^* : p\mathbf{1} = C\}.$

¹The mapping

7. Minimal number of generators of $\mathfrak{s}(n,\mathbb{R})$

Finally we prove

Theorem 7.1. The Lie algebra $\mathfrak{s}(n,\mathbb{R})$ is generated by two matrices. \Box

The argument in our proof is an adaptation of the argument used in [4] to prove that every semisimple Lie algebra is generated by two elements. We will use the following lemma:

Lemma 7.2. For every integer $n \geq 2$ there is a vector $\gamma \in \mathbb{R}^n$ such that

a)
$$\sum_{i=1}^{n} \gamma_i = 0;$$

b)
$$\gamma_i \neq 0, \qquad i = 1, \dots, n;$$

c)
$$\gamma_i \neq \gamma_j, \qquad \forall i, j \in \{1, \dots, n\}, i \neq j;$$

d)
$$\gamma_i - \gamma_j \neq \gamma_k - \gamma_\ell, \qquad \forall i, j, k, \ell \in \{1, \dots, n\}, i \neq j, k \neq \ell, (i, j) \neq (k, \ell).$$

For every γ satisfying (a)–(d) and every $\lambda \in \mathbb{R} \setminus \{0\}$, $\lambda \gamma$ satisfies (a)–(d).

Proof. For n = 2, the Lemma holds with $\gamma = (1, -1)$.

Suppose that the Lemma holds for some $n \ge 2$, and fix $\gamma \in \mathbb{R}^n$ satisfying (a)-(d). Let

$$\tilde{\gamma} = (\gamma_1, \dots, \gamma_{n-1}, \gamma_n - \varepsilon, \varepsilon)$$

Since there are only finitely many values of ε such that $\tilde{\gamma}$ fails at least one condition (a)-(d), we see that the Lemma holds for n+1.

The last statement in the Lemma is obvious, since the equations in conditions (a)-(d) are homogeneous.

Proof of Theorem 7.1. Pick a vector $\gamma \in \mathbb{R}^{n-1}$ satisfying conditions (a)-(d) of Lemma 7.2, let Γ be the matrix (3.3), and $\beta = (\beta_1, \ldots, \beta_{n-2}) = \gamma^T \Gamma$. Let Z, R_i, A_{ij}, H_i be elements of our basis of $\mathfrak{s}(n, \mathbb{R})$, and consider the matrices

$$X = Z + \sum_{k=1}^{n-2} \beta_k H_k, \qquad Y = R_1 + \sum_{i \neq j} A_{ij}.$$

Using the Lemma 2.1, we obtain

ad
$$XY = [Z, R_1] + \sum_{i \neq j} [Z, A_{ij}] + \sum_{k=1}^{n-2} \beta_k [H_k, R_1] + \sum_{k=1}^{n-2} \beta_k [H_k, A_{ij}] =$$

$$= \frac{-1}{n-1} R_1 + 0 - \gamma_1 R_1 + \sum_{i \neq j} (\gamma_i - \gamma_j) A_{ij} =$$
$$= -\left(\frac{1}{n-1} + \gamma_1\right) R_1 + \sum_{i \neq j} (\gamma_i - \gamma_j) A_{ij}.$$

Multiplying γ by an appropriate non zero constant we can make $\gamma_1 = \frac{-1}{n-1}$, and thus

$$\operatorname{ad} XY = \sum_{i \neq j} (\gamma_i - \gamma_j) A_{ij}$$

Iterating, we see that

$$\operatorname{ad}^{k} XY = \sum_{i \neq j} (\gamma_{i} - \gamma_{j})^{k} A_{ij} \quad \forall k \in \mathbb{N}.$$

Let m = (n - 1)(n - 2). Since

$$\det \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & \gamma_1 - \gamma_2 & \cdots & \gamma_{n-1} - \gamma_{n-2} \\ 0 & 0 & (\gamma_1 - \gamma_2)^2 & \cdots & (\gamma_{n-1} - \gamma_{n-2})^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & (\gamma_1 - \gamma_2)^m & \cdots & (\gamma_{n-1} - \gamma_{n-2})^m \end{pmatrix} \neq 0,$$

we see that the matrices $X, Y, adXY, ..., ad^m XY$ span the same subspace as the matrices $X, R_1, A_{ij}, i, j \leq n - 1, i \neq j$, and this subspace lies in $\mathfrak{Lie}\{X, Y\}$, the Lie algebra generated by X, Y.

By the Lemma 2.1, $[R_1, A_{1i}] = R_i$, for i = 1, 2, ..., n - 1. Hence

$$\{R_2,\ldots,R_{n-1}\}\subset \mathfrak{Lie}\{X,Y\}.$$

Finally, also by the Lemma 2.1, $[A_{ij}, A_{ji}] = \sum_{r=1}^{n-2} (\gamma_i^r - \gamma_j^r) H_r$. This implies that $[A_{1j}, A_{j1}], j = 2, ..., n-1$ are n-2 linearly independent elements of \mathcal{H} . Hence, $\mathcal{H} \subset \mathfrak{Lie}\{X,Y\}$ and $Z \in \mathfrak{Lie}\{X,Y\}$. \Box

8. Acknowledgement

The authors are grateful to A.A.Agrachev for stimulating remarks.

References

- Anadreas Boukas, Philip Feinsilver, Anargyros Fellouris. Structure and decompositions of the linear span of generalized stochastic matrices. *Communications on Stochastic Analysis*, Vol.9, No.2 (2015). 239–250.
- 2. Erhan Çinlar. Probability and stochastics. Springer (2011).
- 3. J.E. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, New York Inc (1978).
- Masatake Kuranishi. On everywhere dense imbeddings of free groups in Lie groups. Nagoya Math. J., No.2 (1951). 63–71.
- D.G. Poole. The Stochastic Group. The Amer. Mathem. Monthly, 102 (1995). 798– 801.
- Arthur A. Sagle, Ralph E. Walde. Introduction to Lie groups and Lie algebras. Academic Press (1973).

ISEG AND CEMAPRE, ULISBOA, RUA DO QUELHAS 6, 1200-781 LISBOA, PORTUGAL, UNIVERSITY OF FLORENCE, DIMAI, V. DELLE PANDETTE 9, FIRENZE, 50127, ITALY

 $E\text{-}mail\ address:\ \texttt{mguerra@iseg.ulisboa.pt,asarychev@unifi.it}$