Tri-plane cardiac imaging using multi-line transmission on a spiral array: a feasibility study

Alessandro Ramalli1,2, Pedro Santos3, Piero Tortoli2, Jan D’hooge1
1Lab. on Cardiovascular Imaging & Dynamics, Dept. of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
2Department of Information Engineering, University of Florence, Florence, Italy

Abstract—The assessment of regional cardiac function requires imaging all segments of the left ventricle. Since full 3D echocardiography remains limited in space-time resolution, tri-plane imaging has been proposed as an intermediate solution to alleviate such problem. Although its time resolution was further improved by a multi-line transmission (MLT) scheme, its implementation resulted impractical since it requires a fully wired 32×32 array. The aim of this study was therefore to test the feasibility of MLT-based tri-plane imaging using a 2D array with low element count.

A spiral array (SA) was designed based on a 32×32 full array (FA); both SA and FA were simulated in Field II and their performance compared in terms of 3D one-way pressure fields when used in tri-plane imaging modality. Both probes performed similarly in terms of lateral resolution (2.4 mm) and depth of field (>37 mm) but, as expected, the SA presented lower sensitivity (-13.7dB) and worse grating-lobe level (+5.6dB); correspondingly, SA reduces the image contrast ratio (-9.2dB) and contrast-to-noise ratio (-20%). On the other hand, the SA slightly improved the speckle signal-to-noise ratio (+7%) thus increasing the homogeneity of the background region. In conclusion, despite an unavoidable loss in image quality, tri-plane imaging using MLT using a SA seems feasible.

Keywords—Spiral array, high frame rate, cardiac imaging, multiplane imaging.

I. INTRODUCTION

Echocardiography, among the other imaging modalities, is appreciated for its bedside applicability, temporal resolution, real-time operation, low cost and absence of ionizing radiation. Although 2D ultrasound (US) imaging is still the most used modality, 3D echocardiography has recently matured as a clinical imaging technique and it is currently implemented in the flagship scanners of some US companies. However, morphological and functional characterization of the heart of an individual patient using the current 3D technology remains limited [1]–[3]. Indeed, variability of most of the quantitative measurements remains high, due to the relatively low spatio-temporal resolution obtained with conventional acquisition schemes, which require spatial stitching of several sub volumes recorded from different cardiac cycles and synchronized through the electrocardiogram (ECG) signal.

As full 3D echocardiography is limited in space-time resolution, tri-plane imaging, e.g. the simultaneous imaging of three cross-sections of the heart, has been proposed. In addition, its time resolution was further improved by a multi-line transmission (MLT) scheme [4]–[6], i.e. a high frame rate imaging method, that exploits the simultaneous transmission of multiple focused beams along different directions to increase the frame rate by a factor equal to the number of MLT beams [7]–[9]. However, the implementation of MLT tri-plane imaging, as proposed in [5], is still impractical: it requires fully sampled matrix arrays that should include thousands of small elements, which makes impractical the implementation of the entire ultrasound system, i.e. probe, connection cable, and scanner [10]. A solution to reduce this problem is represented by sparse array probes [11]–[16]; this approach directly reduces the number of transducers by reducing the array sampling while optimizing the position of each single transducer element.

Therefore, the aim of this study was to test the feasibility of MLT-based tri-plane imaging using a 2D array with low element count (<256). Hereby, a spiral array was designed based on a 32×32 full array; both the arrays were simulated in Field II [17], [18] and their performance compared in terms of 3D one-way pressure fields and tri-plane imaging capability.

Fig. 1 Layout of the arrays. Top: in gray, the elements belonging to the full-array (FA) only; in red, the elements belonging to both the full-array and the spiral-array (SA). Bottom: the ungridded, uniform, 10mm-wide spiral with 200 seeds that was adapted on FA to obtain SA.

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 786027 (ACOUSTIC project).

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI: 10.1109/ULTSYM.2018.8580143
The paper is organized as follows: section II presents the full array layout as well as the design method used for the spiral array; moreover, it presents the setups for the one-way field and tri-plane imaging simulations; section III shows simulation results and compares the performance of the two arrays; section IV concludes the paper.

II. MATERIALS & METHODS

A. System and arrays

The High channel Density Programmable ULtrasoniD System based on consumer Electronics (HD-PULSE) [19] is a modular, scalable, generic and fully programmable ultrasound platform. The system has 256 independent channels in both transmission and reception, connected to 1:4 multiplexers to control 2D matrix array transducer having up to 1024 elements.

The full-array (FA) was simulated based on the characteristics of the 2D matrix array (Vernon S.A., Tours, France) available at the Lab. on Cardiovascular Imaging & Dynamics. It consists of 32 (x-axis) by 35 (y-axis) elements (3 MHz, 300 µm pitch, 70% bandwidth), but on the y-direction one row every nine is not connected, hence the total number of elements is 1024 [20], [21], see Fig. 1 for the actual active layout.

A spiral array (SA) was designed based on the gridded layout of FA and considering the characteristics of the multiplexer, i.e. considering that each channel of the system is assigned to one group of 4 consecutive elements along the y-direction. The design was based on an ungridded, uniform, 10mm-wide spiral with 200 seeds [14], see Fig. 1 bottom for its ideal layout. The elements belonging to SA (Fig. 1 top) were selected among those of FA, by activating the available elements whose positions were closest to the ideal positions of the ungridded spiral.

B. Simulations & performance metrics

1) One-way fields

Three-dimensional one-way fields radiated by FA and SA were simulated by Field II. For each array, 81 steering angles were simulated, i.e. the combinations of 9 uniformly spaced angles between -40° and 40° in both elevation and azimuth planes. The emitted pressure was simulated in a $151 \times 151 \times 61$-point matrix, corresponding to a $100 \times 100 \times 40$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.

A numerical phantom was developed for assessment of the imaging performance; it consisted of a uniform distribution of scatterers in a $80 \times 80 \times 30$ mm3 box containing a 10-mm wide, spherical, anechoic inclusion. The density of scatterers was fixed at 2000 scatterers per cm3 and the phantom was centered at (0, 0, 40 mm). The imaging performance was then quantified by contrast ratio (CR), contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (sSNR), defined as follows:

$$l_b(n) = 1 + \left\{ \left(\frac{(b-1) \cdot nL}{nMLT} \right) + n - 1 \right\} \% nL$$

where $\lfloor \cdot \rfloor$ is the round to the closest integer operator and $\%$ is the modulus operator.
where \(\mu_{S_{ROI}} \) and \(\mu_{C_{ROI}} \) are the average amplitude values in \(S_{ROI} \) and \(C_{ROI} \) (Fig. 5), respectively, while \(\sigma_{S_{ROI}} \) and \(\sigma_{C_{ROI}} \) represent the standard deviations.

A second numeric phantom, mimicking the left-ventricle, was also exploited to qualitatively assess the feasibility of tri-plane cardiac imaging. The position and amplitude of the scatterers were extracted from an open access database [22]; it is based on an electromechanical model and on a novel technique to compute scattering amplitudes so as to ensure realistic speckle patterns and image appearance.

III. RESULTS

A. One-way fields

Fig. 4 and TABLE I summarize the comparison between SA and FA in terms of one-way field characteristics. SA and FA featured equivalent lateral resolution (2.4 mm) and DoF (37 vs 38 mm), but the gridded spiral presented worse GLL that were on average 5.6dB higher than those of the full-array. However, SA had a more uniform performance over the entire volume of interest, i.e. at all steering angles, since it showed a narrower standard deviation on GLL (0.9dB vs 3.7dB).

Nevertheless, the limited number of elements of SA (200 vs 1024) impacted on the sensitivity that dropped by 13.7dB (37 vs 38 mm), but the gridded spiral presented worse GLL (−24.6±3.7 vs −22.6dB) and to a 20% lower CNR (3.86 vs 4.82), as summarized in TABLE II. Qualitatively, the poorer contrast achieved with the SA corresponded to a reduction of the image dynamic range. Indeed, the anechoic inclusions shown on the right panels in Fig. 5 are filled in gray. On the other hand, the SA showed a marginal 7% improvement of sSNR (1.81 vs 1.68), thus a higher homogeneity of the background region.

B. MLT Tri-plane imaging

Fig. 5 shows the simulated tri-plane images obtained from the anechoic cyst phantom. It highlights that, for both the probes, the images obtained on the 3 different planes are comparable. However, as previously shown in Fig. 4 and TABLE I, SA produced higher GLLs than FA; on the final tri-plane images, they corresponded to a 9.2dB lower CR (13.4dB vs 22.6dB) and to a 20% lower CNR (3.86 vs 4.82), as summarized in TABLE II. Qualitatively, the poorer contrast achieved with the SA corresponded to a reduction of the image dynamic range. Indeed, the anechoic inclusions shown on the right panels in Fig. 5 are filled in gray. On the other hand, the SA showed a marginal 7% improvement of sSNR (1.81 vs 1.68), thus a higher homogeneity of the background region.

Fig. 6 shows the simulated tri-plane images obtained in a more realistic scenario, i.e. on the left ventricle phantom. Qualitatively, it confirms that the quality obtained with SA is poorer compared to that obtained with FA; however, although stronger artifacts appear, especially inside the blood pool at the very first depths of interest, the walls of the left ventricle preserve sufficient contrast.

IV. CONCLUSION

In this work, we presented a feasibility study for MLT tri-plane cardiac imaging based on a sparse array. Simulations were conducted to compare the performance of a 1024-element, fully sampled, gridded array with a 200-element spiral array. We showed that, despite an unavoidable loss in image quality and sensitivity, due to a significant reduction of the number of elements (−80%), tri-plane imaging using MLT on a SA seems feasible. This would enable volumetric functional analysis of the heart using a system with low element and channel count.

REFERENCES

Fig. 5 Simulated tri-plane images of the numerical phantom obtained with both the FA (left) and the SA (right), reconstructed at different rotational angles 0° (red), 90° (green) and 45° (blue), respectively. In the top left panel, SROI and CROI indicate the regions of interest used to estimate the CNR, CR, and sSNR.

Fig. 6 Tri-plane images of the left ventricle phantom, obtained with FA (left) and SA (right).