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Abstract

Molecular dynamics simulations have been performed to compute the solvation free

energy and the octanol/water partition coefficients for a challenging set of selected

organic molecules, characterized by the simultaneous presence of functional groups

coarsely spanning a large portion of the chemical space in drug-like compounds and, in

many cases, by a complex conformational landscape (2-propoxyethanol, acetylsalicylic

acid, cyclohexanamine, dialifor, ketoprofen, nitralin, profluralin, terbacil). OPLS-AA

and GAFF2 parameterizations of the organic molecules and of 1-octanol have been

done via the web-based automatic parameter generators, LigParGen [Dodda et al.

Nucl. Acids Res. 2017; 121, 3864] and PrimaDORAC [Procacci, J. Chem. Inf. Model.

2017; 57, 1240], respectively. For the water solvent, three popular three-point sites

models, TIP3P, SPCE and OPC3, were tested. Solvation free energies in water and 1-

octanol are evaluated using a recently developed non equilibrium alchemical technology
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[Procacci et al. J. Chem. Theory Comput. 2014; 10, 2813]. Extensive and accurate

simulations including all possible combinations of organic molecule, solvent and solvent

model, allowed to assess the accuracy with regard to solvation free energies of the latest

release of two widespread force fields, OPLS and GAFF. The collected data are relevant

in the evaluation of the predictive power of these classical force fields (and of the related

support software for automated parameterization) with regard to binding free energies

in drug-receptor system for industrial applications.

Introduction

In silico profiling and characterization of potentially active compounds for pharmaceutical

applications is probably one of the most challenging ongoing cooperative project in modern

computational chemistry, involving an intense effort from both the academia and industrial

players (see for example the worldwide DR31–3 blind challenges launched on a yearly basis

and sponsored by important industrial partners). In recent years, exploiting the tumultuous

growth and availability of computer power at affordable economical costs, several advanced

computational techniques and tools, running on massively parallel high performing com-

puting platforms (HPC), have been devised for the prediction of binding free energies in

drug design and discovery projects.4–9 Many of these modern computational technologies

rely on a realistic representation of the biological target, based on the so-called all-atom

model, whereby all the players in the system, including solvent molecules, proteins, sub-

strates and drugs, interact via an atom-based potential function including two-body non

bonded terms and up to four-body valence terms, ideally parameterizing the ground state

Born-Oppenheimer multidimensional surface spanned by the many-body system in standard

conditions. At the heart of this complex parameterization, which is common to traditional

docking, molecular mechanics (MM) approaches as well as to Molecular Dynamics (MD)

advanced techniques, are the so-called general force fields,10–12 i.e. representational and,

in principle, transferable protocols for the atom-atom interactions of any kind of molecular
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system acting as a drug or as a substrate in biologically relevant applications.

In this paper we analyze the performances of the latest variant of two of the most im-

portant force fields currently developed for pharmaceutical relevant molecules, namely the

Optimized Potentials for Liquid Simulation (OPLS-AA11) and the General AMBER Force

Field (GAFF213). The assessment is done using a well established benchmark based on

the calculations of the solvation free energies. The parameterizations of the selected solute

molecules is provided by the recently developed web-based automatic parameter generators,

LigParGen14 for OPLS-AA and PrimaDORAC15 for GAFF2.

The centrality of accurate solvation free energies in computational drug design can be

easily grasped by considering that the binding free energy of drug-like molecule towards

a protein target may be viewed16–18 as the difference in the solvation free energies of the

compound when embedded in two distinct environments, i.e. in the bulk solvent and in the

protein hydrophobic pocket hosting the bound drug.

For our assessment, we have selected eight organic molecules, taken from the database

commendably compiled by Mobley et al,19 which are not usually employed in the training

sets for force field refinement,11 either due to their chemical complexity (with the simultane-

ous presence of disparate chemical moieties) or because of their intrinsic enhanced flexibility

spanning competitive meta-stable conformational states. For these molecules, accurate ex-

perimental data are available19–21 as well as theoretical data on hydration free energies done

using older versions of the GAFF force field.19

The other key aspect in solvation free energy evaluation concerns of course the solvent

and solute-solvent interaction model. In this regard, the accurate modeling of explicit water

solvent is indeed a crucial ingredient in any computational all-atoms approach of biological

systems. A reliable water model must be, at the same time, simple enough to be compu-

tationally affordable and capable of reproducing the key chemical-physical properties of the

liquid, such as the dielectric screening and mass density, that are crucial in the thermody-

namic balance of the non covalent association in condensed phases. In this paper we have
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used, in combination with the two cited general force fields, three commonly adopted simple

three sites water models, namely the Transferable Inter-molecular Potential with 3 Point

(TIP3P)22 which accurately reproduces the dielectric constant at 300 K underestimating the

density of liquid, the SPCE (Extended Simple Point Charge23), producing a correct den-

sity and a somewhat lower dielectric constant, and finally the recently developed OPC3 or

3-point Optimal Point Charge model24 (see Table 1 further on).

Behavior of the force fields when the selected molecules are immersed in an hydropho-

bic environment has been assessed using, as a representative solvent, 1-octanol. Solvation

properties in this solvent are frequently determined for predicting the tendency of the com-

pounds to cross biological membranes.20 For the modeling of liquid 1-octanol in standard

conditions with GAFF2 and OPLS-AA, we have adopted the corresponding PrimaDORAC

and LigParGen generated parameterizations.

We have performed extensive molecular dynamics simulations of all possible 64 combina-

tions of organic molecule, general force fields, solvent (water/octanol) and water model. The

methodology for computing the solvation free energies is based on the recently developed

fast switching annihilation (FSAM) method.25,26 The approach is in essence a nonequilibrium

(NE) variant of the Free Energy perturbation27 (FEP) or Thermodynamic integration28 (TI)

traditional equilibrium technologies for alchemical16 free energy calculations. NE alchemy

computes the free energy in three distinct and consecutive computational tasks: in the first

task, the fully coupled end state of the system is canonically sampled using the Hamilto-

nian Replica Exchange method (HREM).29 In the second task, starting from the canonical

states sampled in the preceding task, a swarm of fast and independent (non communicating)

NE annihilation trajectories are launched in parallel, producing eventually an annihilation

work distribution. In the third task, the work distribution obtained in the second step is

used to evaluate the corresponding free energy exploiting the Crooks theorem for normal

distribution30,31 or for Gaussian mixtures.32 As such, NE alchemy is specifically tailored

for an efficient implementation on modern HPC facilities with non uniform memory access,
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based on a multilevel parallelism allowing to produce, for the system under scrutiny, a total

simulation of 0.3 µs in few tens of minutes.33

This paper is organized as follows. In Section 2, we provide the methodological details of

each of the computational steps involved in NE alchemy. In Section 3, results for solvation

energies for the eight selected molecules using the OPLS-AA and GAFF2 force fields and

the OPC3, SPCE and TIP3P water models are presented and critically analyzed in terms

of correlation coefficients and mean unsigned errors between experimental and theoretical

data. Conclusive remarks are finally discussed in Section 4.

Methods

In Figure 1, we show the set of eight organic molecules that were selected in order to compute

the solvation free energies for all possible combinations of force field and solvent model (six

for the hydration energies and two for the solvation energy in 1-octanol).

Figure 1: Selected set of molecules

Some of the selected molecules (nitralin, profluralin, terbacil, dialifor) are characterized
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by the simultaneous presence of functional groups spanning a large portion of the chemical

space in drug-like compounds and virtually all of them exhibit, to some extent, a challenging

conformational landscape (e.g. boat/chair conformational distribution in cyclohexanamine,

incidence of intramolecular H-bond in acetylsalicylic acid and 2-propoxyethanol, and, in

most cases, abundance of rotable bonds and competitive conformations). In the develop-

ment of general force fields, transferable atomic types and charge evaluation protocols, like

the 1.14*CM1A and 1.14*CM1A-LBCC11 or the AM1/BCC,34 are refined using restricted

sets of molecules, usually indicated as the training sets, typically including a single spe-

cific chemical moiety (e.g. halogen, carboxy, amino, amide etc.) in combination with a

relatively simple common molecular scaffolds (e.g. phenyl, naphtyl, butyl etc.).11,13 As the

selected eight molecules were not, in general, included in the training set used for OPLS-

AA11or GAFF2,35 the computation of their solvation free energies constitutes a significant

challenge for a quantitative assessment of the accuracy of these force field. For all the se-

lected molecules, experimental data of the hydration free energies19 and of the octanol/water

partition coefficients (LogP)21 have been reported.

General setup of the simulations

The OPLS-AA and GAFF2 parameterization of the molecules of Figure 1 have been done

by using the automatic web-based parameter generators LigParGen14 and PrimaDORAC,15

respectively. These software tools typically provide, upon input of the molecular structure

and net charge, the topological and parameter files needed in MM or MD simulations. These

files are often given in various format so that they can be used directly as input files for

common simulation packages.12,33,36,37 For LigParGen, the SMILES38 files were used as input

with the default setup. For PrimaDORAC, the default setup provided by the web interface

was used by uploading the canonical OpenBabel39 generated PDB file from the SMILES

file. In the Supporting Information, the full archive of the LigParGen and PrimaDORAC

generated topological and parameter files for the eight selected molecules is provided as a
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compressed archive (file tpgprm.zip).

The parameterization of the explicit water solvent in hydration free energy calculations is

done using the TIP3P,22 OPC324 and SPCE23 three-point site models. The salient chemical-

physical properties of these three models for liquid water have been extensively reported

elsewhere23,24 and are summarized in Table 1. Although still not commonly adopted with

respect to TIP3P and SPCE, the OPC3 model appears to reproduce with greater accu-

racy the chemical-physical properties of the liquid that are crucial in hydration free energy

calculations, namely the mass density and the dielectric constant.

Table 1: TIP3P, SPCE and OPC3 water model main characteristics: q(e) hydrogen charge;
µ dipole moment; l O-H Bond length; θ HÔH Angle; σ, ε Lennard-Jones oxygen-oxygen
potential parameters; ρ density at P=1 atm and T=298 K; εdiel dielectric constant at P=1
atm and T=298 K (data taken from Ref.24)

model q (e) µ (D) l (Å) θ (◦) σ (Å) ε (kJ/mol) ρ (g/cm3) εdiel

TIP3P 0.417 2.35 0.9572 104.52 3.15061 0.6364 0.980 94
SPCE 0.4238 2.35 1.0 109.47 3.166 0.65 0.994 68
OPC3 0.447585 2.43 0.97888 109.47 3.17427 0.68369 0.995 78

For the parameterization of 1-octanol as a solvent, we have adopted the corresponding

PrimaDORAC (for GAFF2) and LigParGen (for OPLS-AA) parameterizations. Solvent

(water and 1-octanol) topological and parameter files are reported in the archive tpgprm.zip

provided in the Supplementary Information.

All solute molecules were considered in their neutral form including those with acid car-

boxylic or basic amino moieties. In fact, experimental hydration free energies and LogP

coefficients are normally referred to the un-ionized species. Solvation free energy were eval-

uated by dissolving the selected solutes in about 1000 water molecules or 125 molecules of

octanol in a cubic MD box. All simulations were done in the NPT isothermal-isobaric ensem-

ble, yielding a mean side-length around 32-33 Å in both water and 1-octanol. The external

pressure was set to 1 atm using a Parrinello-Rahman Lagrangian40 with isotropic stress

tensor while temperature was held constant at 300 K using three Nosé Hoover-thermostats
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coupled to the translational degrees of freedom of the systems and to the rotational/internal

motions of the solute and of the solvent. The equations of motion were integrated using

a multiple time-step r-RESPA scheme41 with a potential subdivision specifically tuned for

bio-molecular systems in the NPT ensemble.40,42 The long range cut-off for Lennard-Jones

interactions was set to 13 Å in all cases. Long range electrostatic were treated using the

Smooth Particle Mesh Ewald method,43 with an α parameter of 0.37 Å−1, a grid spacing

in the direct lattice of about 1 Å and a fourth order B-spline interpolation for the grid-

ded charge array. All calculations were done using the program ORAC.33 The ORAC code,

including the source, can be freely downloaded from the site http://www.chim.unifi.it/orac.

Fast Switching annihilation method (FSAM) for the hydration free

energy

The theoretical background of the FSAM (or FSDAM, Fast Switching double annihilation

method) alchemical methodology has been thoroughly described elsewhere.25,26,33,44–47 Here

we briefly summarize the salient technical aspects of FSAM as long as solvation free energy

calculations are concerned.

As outlined in the Introduction, the method can be divided in two main computational

stages and one straightforward post-analysis step. First, the canonical conformational states

of the solvated, fully coupled solute are sampled using Hamiltonian Replica Exchange with

torsional tempering (HREM-TT stage).48,49 In the second step, starting from these initial

states, the solute is rapidly annihilated in a swarm of independent NE trajectories producing

eventually an annihilation work distribution. Finally, the character of the work distribution

is examined using standard normality tests, like the Anderson Darling test50–52 (ADT) and

the solvation free energy is recovered by exploiting the Crooks theorem53 for normal distri-

bution30,31 or, in case of ADT failure, for mixture of normal distributions.32

The scaling protocol in the HREM-TT equilibrium stage is illustrated in the left panel of

Figure 2 where we show, as an example, the distribution of the torsional energy, referred to
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Figure 2: Left panel: Distribution of the torsional energy in GAFF2 Dialifor in OPC3 water
in the H-REM torsional tempering simulation; in the inset three representative walkers in
the GE space are shown. Right panel: Time record of the work during one hundred fast
(300 ps) non equilibrium annihilation trajectories of GAFF2 Dialifor in OPC3 water.

dialifor in OPC3 water, in each of the eight replicas. Exchanges are attempted every large

time steps54 (15 fs). In water, torsional tempering involves only the solute with the hottest

‘”torsional temperature” corresponding to 3000 K (lowest scaling factor of 0.1). The overlap

of contiguous (unscaled) torsional energy distributions in water is substantial yielding an

acceptance ratio above 50%. In octanol, torsional tempering involves the solute and the

solvent as well. In this case, in order to have a significant acceptance ratio49 with 8 replicas,

the maximum torsional temperature is reduced to 1000 K (lowest scaling factor of 0.3). The

HREM-TT simulation lasted, in all 64 cases, about 8 ns (target replica), hence producing a

total simulation time of 4 µs circa. The whole calculation required about 60000 core hours

(mean parallel job size of 500-600 cores) running mostly on the A1-Broadwell partition at

the CINECA HPC,55 and was completed in few wall clock days with normal HPC workload.

In the right panel of Figure 2, the second computational step of FSAM in a represen-

tative case is demonstrated by reporting the annihilation work during the progress of the

λ alchemical solute decoupling coordinate for a swarm of NE trajectories. The number of

NE trajectories is 532 for all 64 possible FSAM simulations. In water, the annihilation time

(λ = 1) is set to τ = 300 ps while in octanol we set τ = 600 ps. These two different annihila-
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tion rates are a consequence of the different behavior of the dissipation in the NE alchemical

decoupling in the two solvents. The dissipated work Wd = 〈W 〉 − ∆G, for Gaussian work

distributions, can be straightforwardly estimated56 from the variance, i.e. Wdiss = 1
2
βσ2.

As shown in the Supporting Information (Table S1 and Table S3), the selected annihila-

tion times produce similar mean dissipation in the two solvents. On the other hand, these

annihilations times (as also shown in Figure S9 of the Supporting information where the

behavior of the NE work was analyzed as a function of the annihilation time τ) allow to

obtain accurate estimate of the hydration free energies.25 The annihilation protocol of the τ

lasting NE processes was common to all 64 FSAM simulations and stipulates that the elec-

trostatic interactions between the solute and the environment are linearly brought to zero

at t = τ/2, while the Lennard-Jones interactions are switched off in the range τ/2 < t < τ

using a soft-core Beutler potential57 regularization as λ is approaching to one.

The FSAM-NE stage produced a total simulation time of 10 µs circa. The whole calcu-

lation required about 102000 core hours (mean parallel job size of about 3000 cores) running

on the A1-Broadwell partition at the CINECA HPC55 and on the CRESCO6 cluster,58,59

and was completed in few tens of wall-clock hours with normal HPC workload.

In the example reported in the right panel of Figure 2, we can see that the alchemical

work rapidly grows during the discharging process; then it continues to grow reaching a

maximum when approximately half of the Lennard-Jones interactions had been switched off.

From now on, with solvent filling the volume left free by the annihilating solute, there is a

substantial energy gain corresponding to minus the work to form the cavity in the solvent.

This trend in the annihilation work is common to all molecules, irrespective of the solvent

and force field combination.

Gaussian mixture free energy estimates

In principle, the collection of NE work values acquired in the FSAM stage (Figure 2, right

panel) could be used to estimate the solvation free energy via the Jarzysnki exponential
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average,60 namely e−β∆G = 〈e−βW 〉. Exponential averages, on the other hand, critically

depend on values sampled in left tail of the distribution, i.e. a statistics that is both in-

herently noisy and biased, even if the spread of the work data is only moderately larger

than kBT .30,61–63 Actually, if the work distribution is normal or is given by a mixture of

normal components, an unbiased and accurate estimate can be straightforwardly derived by

exploiting the Crooks theorem.30,31,46,47 The character of the distribution can be instantly47

assessed by performing the Anderson-Darling test50 for normality. The latter is defined via

the quantity A2 =
∑n

i=1
2i−1
n

[ln(Φ(wi) + ln(1−Φ(wn+1−i)], where Φ is the Gaussian cumula-

tive distribution function with sample mean and variance and wi are the work values sorted

in ascending order. Among the plethora of normality tests,52,64 in recent FSDAM studies,46,47

the ADT was chosen precisely for its sensitivity to the tails.64 In case of a positive ADT,

the Crooks theorem allows to straightforwardly recover31 the solvation free energy from the

mean and variance of the distribution as

∆G = 〈W 〉 − 1

2
βσ2 (1)

If the ADT fails, a mixture of Ng normal components is assumed, with Ng being deter-

mined by examining the third (skewness) and fourth (kurtosis) standardized moments of

the distribution,47 namely Ng = 2 if either skewness or kurtosis are present and Ng = 3 if

both are present. The parameters of the Ng mixture are determined using the Expectation-

Maximization (EM) algorithm.65 Exploiting again the Crooks theorem, the solvation free

energy can be evaluated as32,46,47

∆G = −RT ln

[
Ng∑
i

wie
−β(µi− 1

2
β(σ2

i )

]
(2)

where µi, σi are the mean and variance of the i-th component of the mixture (determined

via EM) and with the weights satisfying
∑

iwi = 1. In the Figure 3, we show two examples

of work distribution obtained in the fast annihilation stage of the solute. The distributions
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Figure 3: Left panel: Work distribution for cyclohexanamine with GAFF2. Right panel:
Work distribution for 2-propoxyethanol with OPLS-AA. The critical value of ADT at the
level α = 0.05 is 0.752.51

on the left (cyclohexanamine in water with GAFF2) are all Gaussian according to the ADT.

Those on the right (2-propoxyethanol in water with OPLS-AA) are visibly non symmet-

ric largely failing the ADT. The OPLS-AA/TIP3P distribution, for example, according to

the moments reported in Table S2 of the Supporting Information, is positively skewed and

exhibits a marked platykurtic behavior. Full data on all the computed 64 work distribu-

tions, including mean, variance, skewness, kurtosis and A2 for each combination in water

and octanol, are provided in the Supporting Information (section “Work distribution data”).

Errors on the solvation free energies, Eq. 1 or Eq. 2, can be straightforwardly computed

using bootstrap with re-sampling.66 The work distributions in water were found normal in

33 cases out of 48 (see Table S1 in the Supporting Information). In 1-octanol all work dis-

tributions are found normal, except for that of 2-propoxy-ethanol using the OPLS-AA force

field (Table S3 in the Supporting Information).
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Results and Discussion

Conformational analysis in water from the REM equilibrium stage

The conformational landscape and entropy of a flexible drug-like compound in bulk water is

a key property in shaping its affinity for a target protein. Since the drug is in general frozen

in one single conformation when bound to the protein, the conformational entropy loss upon

binding always constitutes a penalty for the binding affinity.18 In Table 2, we have reported

the mean gyration radius (MGR) for the selected molecules sampled at the target state in

the H-REM simulation using all possible force field/water model combination. Expectedly,

for a given force field, MGR’s are quite insensitive to the adopted water model.

Table 2: Mean gyration radius (MGR) (in Å) in water solution for the selected set of
molecules using the combination OPLS/GAFF force fields and OPC3/SPCE/TIP3P three
site water model. The Im (in u.m.a. see text) entries refer to the molecular charge strength.

GAFF2 OPLS-AA
Im MGR Im MGR

OPC3 SPCE TIP3P OPC3 SPCE TIP3P
2pro 0.042 2.55± 0.10 2.54± 0.10 2.55± 0.10 0.046 2.60± 0.12 2.63± 0.11 2.59± 0.12
acet 0.143 2.92± 0.04 2.91± 0.04 2.92± 0.04 0.088 3.01± 0.04 3.01± 0.04 3.01± 0.04
cycl 0.023 2.17± 0.04 2.18± 0.04 2.18± 0.04 0.075 2.11± 0.02 2.13± 0.05 2.11± 0.02
dial 0.095 4.01± 0.27 4.00± 0.22 4.07± 0.27 0.287 4.58± 0.15 4.55± 0.13 4.59± 0.15
keto 0.075 3.76± 0.17 3.74± 0.17 3.77± 0.18 0.054 3.80± 0.17 3.81± 0.18 3.79± 0.17
nitr 0.127 3.82± 0.07 3.82± 0.07 3.81± 0.06 0.155 3.79± 0.06 3.81± 0.06 3.81± 0.06
prof 0.061 3.57± 0.07 3.58± 0.06 3.57± 0.07 0.095 3.56± 0.06 3.57± 0.06 3.57± 0.06
terb 0.069 3.08± 0.02 3.08± 0.02 3.08± 0.02 0.142 3.09± 0.02 3.09± 0.02 3.09± 0.02

Quite surprisingly, on the other hand, OPLS-AA and GAFF2 yield, in some cases, MGR’s

that are somewhat different due to a correspondingly different conformational behavior. If for

acetylsalicylic acid and 2-propoxyethanol, OPLS-AA and GAFF2 exhibit deviations in the

MGR of the order of 2%-3%, for dialifor OPLS-AA produces a MGR that is more than 10%

higher than that obtained with GAFF2, largely exceeding the corresponding fluctuations.

Further details on the conformational landscape are provided in the Supporting Information.
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As shown in Figure S1, for example, in 2-propoxyethanol, the intramolecular H-bond involv-

ing the oxy moiety is shorter and stronger in GAFF2. In acetylsalicylic acid (Figure S2),

OPLS-AA strongly disfavors, with respect to GAFF2, the formation of the intramolecular

H-bond between the oxy oxygen and the proton of the carboxy group. In dialifor (Figure

S4), the extended structure, with the propoxy far from the isoindol moiety, is by far the

more stable conformer according to OPLS-AA, while GAFF2 predicts equal stability for the

bend and extended structures. These different conformational behavior in water can be in

part explained by evaluating the molecular charge strength, Im = 1
n

∑n
i=1 q

2
i according to the

two force fields (see Table 2). In dialifor, OPLS-AA has a much larger Im, hence favoring

the hydration of the highly charged atoms on the PO2S2 group and disfavoring structures

stabilized by intrasolute hydrophobic interactions. For acetylsalicilic acid, the situation is

reversed with the polar oxygen and hydrogen atoms bearing a higher charge in GAFF2,

hence stabilizing the intramolecular hydrogen bond. The higher stability of the H-bond in

GAFF2 for 2-propoxyethanol is likely due to the van der Waals modeling as the charges on

O and H atoms are similar in the two force fields.

Discharging and dispersive-repulsive contributions to the solvation

free energies

As it can be seen in the example of Figure 2 (right), the annihilation work of the solute

can divided in two components, namely a steadily growing discharging work, when the

atomic charges on the molecule are brought to zero at λ = 0.5, and a dispersive-repulsive

annihilation work, when also the solute-solvent Lennard-Jones interaction are switched off

at λ = 1. Correspondingly, using either Eq. 1 or Eq. 2 depending on the character of

the corresponding distributions, one can compute a discharging and a dispersive-repulsive

contribution to the solvation free energy, ∆Gq(λ = 0.5) and ∆GLJ = ∆G−∆Gq, respectively.

Water. In Figure 4 we show the correlation plot of ∆Gq (left) and ∆GLJ (right) for the

two force fields using the three water model. The discharging free energy, ∆Gq (left panel),
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is remarkably insensitive to the adopted water model. OPLS-AA and GAFF2 data, on the

other hand, do not appear to be strongly correlated (R2 = 0.69). In four cases, in particular,

OPLS-AA produces a ∆Gq significantly higher than that of GAFF2 (cycl, dial, prof); in one

case (terbacil), ∆Gq is larger with GAFF2. For cyclohexanamine, dialifor and profluralin

these discrepancies can be explained with the larger charge strength Im (see Table 2) in

OPLS-AA. For terbacil, while Im is sensibly higher with OPLS-AA, the OPLS-AA charges

on the solvent exposed carbonyl oxygen atom are smaller with respect to those of GAFF2,

very likely indicating that these atomic charges play the major role in the hydration of the

molecule.

Figure 4: Correlation diagram OPLS-AA/GAFF2 for the discharging and dispersive-
repulsive contributions (see text) to the hydration free energies using OPC3, SPCE and
TIP3P water models. The overall Pearson correlation coefficient OPLS2/GAFF, R2, along
with slope and intercept of the best fitting line, a, b are also reported

As to the dispersive-repulsive contribution, ∆GLJ (right panel), the two force fields pre-

dict a negative sign and yield highly correlated results. There are in this case significant

differences in the ∆GLJ depending on the adopted water model. ∆GLJ values for TIP3P in

particular, while preserving the strong correlation between the two OPLS-AA and GAFF2

force fields, are noticeably less negative with respect to those obtained with the OPC3 and
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SPCE models. This is likely to be ascribed to the lower mass density exhibited by the TIP3P

model (see Table 1) that correspondingly brings about a smaller energy gain when filling the

solute cavity.

Figure 5: Correlation diagram OPLS-AA/GAFF2 for the discharging and dispersive-
repulsive contributions (see text) to the solvation free energies in 1-octanol. The overall
Pearson correlation coefficient OPLS2/GAFF, R2, along with slope and intercept of the best
fitting line, a, b are also reported

1-Octanol. In Figure 5, we show the OPLS-AA/GAFF correlation diagram for ∆Gq

and ∆GLJ in 1-octanol. The pattern is similar to that observed in water. Also in the

case of 1-octanol, we observe a strong OPLS-AA/GAFF2 correlation for dispersive-repulsive

contribution, ∆GLJ, and a weaker correlation for the discharging free energy ∆Gq. As

observed in water, also in 1-octanol OPLS-AA yields, with respect to GAFF2, a larger ∆Gq

for cyclohexanamine, dialifor and profluralin and smaller one for terbacil. Contrarily to what

happens in water, ∆GLJ is positive in 1-octanol, with the negative cavity work not being able

to compensate the free energy loss involved in switching off the Lennard-Jones interactions.

In general OPLS-AA and GAFF2 produce similar results for ∆GLJ, with the higher values

observed for the more bulky molecules.

The comparison of the discharging and dispersive-repulsive component of the solvation
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free energies in water and 1-octanol can provide valuable clues for a rationalization of the

binding affinity of a small molecule for a protein target. As stated in the introduction, the

binding free energy can be viewed as the difference of the solvation energy of the solute

in two environment, namely that surrounding the solute in the bound state with a marked

hydrophobic character, and the bulk water. According to Figure 4(left) and Figure 5(left),

in bulk water, the discharging free energy ∆Gq for any given solute molecule is substan-

tially larger than the corresponding ∆Gq in the mostly hydrophobic solvent 1-octanol. The

dispersive-repulsive free energy ∆GLJ, on the other hand, has an opposite behavior, being

substantially larger in 1-octanol with respect to water (where is negative in all cases) for all

solutes (see Figure 4, right panel and Figure 5, right panel). The differences ∆∆GLJ and

∆∆Gq for the water/1-octanol environments have hence, in general, opposite signs. The

same situation can occur33,45,46 in shaping the protein-drug dissociation free energy, that, in

the case of binding driven by hydrophobic interactions, results from a differences between a

positive solute dispersive-repulsive contribution ∆∆GLJ = ∆GLJ bound −∆GLJ bulk favoring

the binding and by a negative contribution due to the discharging process of the solute,

namely ∆∆Gq = ∆Gq bound −∆Gq bulk.

Solvation free energy

In Table 3 we report the calculated hydration free energies of the eight selected molecules,

using the GAFF2 and OPLS-AA general force fields in combination with the OPC3, SPCE

and TIP3P models. Free energy estimates have been done using Eq. 1 or Eq. 2, depending

on the number of normal components in the work distribution. Full details of the work

distributions (including ADT, mean, variance, skewness and kurtosis) are reported in Tables

S1 and S2 of the Supporting Information.
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Table 3: Solvation free energies (kcal mol−1) in water obtained with OPLS-AA and GAFF2
in combination with the three water models OPC3,SPCE, TIP3P. Ng is the number of normal
components in the corresponding work distribution. For ∆Gcalc, when Ng = 1 and Ng > 1 ,
Eq. 1 and Eq. 2 are used, respectively. The error has been calculated using bootstrap with
resampling.66 The experimental values for the hydration free energies (kcal mol−1) are taken
from Ref.19

GAFF

Molecule
OPC3 SPCE TIP3P

∆Gcalc. Ng ∆Gcalc. Ng ∆Gcalc. Ng ∆Gexp

2pro. -2.96 ±0.13 1 -3.00 ±0.14 2 -3.24 ±0.59 3 -6.40±0.60
acet. -9.29 ±0.27 1 -9.37 ±0.24 2 -10.02 ±0.13 1 -9.94±0.18
cycl. 0.44 ±0.09 1 0.41 ±0.09 1 0.06 ±0.07 1 -4.59±0.60
dial. -11.96 ±0.22 1 -11.04 ±0.65 2 -12.67 ±0.20 1 -5.74±1.93
keto. -10.49 ±0.44 2 -10.28 ±0.44 2 -10.54 ±0.57 2 -10.78±0.18
nitr. -11.64 ±0.21 1 -11.75 ±0.21 1 -12.72 ±0.12 1 -7.98±1.93
prof. -3.49 ±0.23 1 -3.46 ±0.18 1 -4.79 ±0.13 1 -2.45±1.37
terb. -15.64 ±0.16 1 -15.40 ±0.98 2 -15.23 ±0.11 1 -11.14±1.93

OPLS

Molecule
OPC3 SPCE TIP3P

∆Gcalc. Ng ∆Gcalc. Ng ∆Gcalc. Ng ∆Gexp

2pro. -3.53 ±0.17 2 -3.46 ±0.18 2 -3.52 ±0.09 2 -6.40±0.60
acet. -10.66 ±0.31 2 -10.66 ±0.18 3 -11.35 ±0.25 2 -9.94±0.18
cycl. -4.37 ±0.11 1 -4.40 ±0.09 1 -4.15 ±0.06 1 -4.59±0.60
dial. -23.55 ±0.43 1 -23.47 ±0.43 1 -24.03 ±0.18 2 -5.74±1.93
keto. -10.75 ±0.19 1 -10.77 ±0.13 1 -11.78 ±0.09 1 -10.78±0.18
nitr. -12.98 ±0.25 1 -13.13 ±0.14 1 -14.13 ± 0.10 1 -7.98±1.93
prof. -7.12 ±0.28 1 -7.62 ±0.21 1 -8.49 ±0.13 1 -2.45±1.37
terb. -10.94 ±0.18 1 -10.97 ±0.12 1 -11.33 ±0.08 1 -11.14±1.93

In the Figure 6, the calculated free energies of Table 3 are reported against the experi-

mental data.
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Figure 6: Left panel: correlation diagram for calculated (GAFF2) and experimental solvation
free energies in water. Right panel: same with OPLS-AA. The green squares refer to the
calculated hydration free energies reported in Ref.19 done with GAFF1 and FEP. The gray
shaded area includes the points with computed free energies differing by less than 2.5 kcal
mol−1 with respect to the experimental data. For methodological (FSAM) errors on the
computed data see Table 3.

We first notice that the main differences in the computed values are due to the force fields,

with the adopted water model having a limited impact on the hydration free energgy. If we

compute the R2 Pearson coefficient, the slope a and the intercept b of the regression line for

the OPLS-AA and GAFF2 datasets, we find in fact similar results for all three water model,

namely R2 = 0.69, a = 0.79, b = −4.04 for OPC3, R2 = 0.66, a = 0.76, b = −4.48 for SPCE

and R2 = 0.74, a = 0.89, b = −3.41 for TIP3P. The TIP3P model, in most cases, predicts

a slightly lower hydration free energy. This is due to the systematic underestimation of the

solute cavity work (see Figure 4, right panel) induced by the lower density of the TIP3P

liquid in standard conditions (see Table 1).

The agreement with experimental data, although acceptable, is somewhat below expec-

tations for both OPLS-AA and GAFF2 force fields.

GAFF2/SPCE, on the overall, seems to perform slightly better than all other combi-

nations as far as the mean unsigned error (MUE) and the correlation coefficient R2 are
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concerned. For cyclohexanamine, however, the predicted values of the GAFF/SPCE combi-

nation is nearly 5 kcal mol−1 off the experimental counterpart and in only three cases (prof,

keto, acet) GAFF2/SPCE or GAFF2/OPC3 exhibits hydration free energy differing by less

than 1 kcal with respect to the experimental value. Also the improvement with respect to

GAFF1 (green square in Figure 6) is moderate, with definitely better results for keto and

dialifor, but with degradation in other cases, such as cyclohexanamine.

The MUE and R2 for the OPLS-AA are strongly affected by the predicted hydration free

energy for dialifor which is nearly 20 kcal off the experimental value. This is due, as we

have seen in Figure 4, to a much larger ∆Gq contribution in OPLS-AA dialifor with respect

to GAFF2. If we eliminate the outlier dialifor, OPLS-AA MUE improves substantially,

declining below 2 kcal mol−1 in combination with the OPC3 model. OPLS-AA/OPC3 has

five compounds within the 2.5 kcal band, while GAFF/SPCE has only four. Since the OPLS-

AA/GAFF2 ∆GLJ dispersive-repulsive contribution are strongly correlated (see Figure 4

right), it follows that the underestimation and overestimation of the hydration free energy

in cyclohexanamine (GAFF2) and in dialifor (OPLS-AA), respectively, is entirely due to

the modeling of the atomic charges. OPLS-AA has higher charge strength with respect to

GAFF2 for both cyclohexanamine and dialifor (see Table 2 and see the tpgprm provided as

Supporting Information). However, if a large Im on the amine group appears to be beneficial

for cyclohexanamine, the large Im, especially for the SO2P2 group, in OPLS-AA dialifor

produces unrealistic values of the hydration free energy.

In Table 4 we conclude this section by reporting the computed solvation free energies

in 1-octanol of the eight molecules using the GAFF2 and OPLS-AA parameterization. The

table include the ADT A2 value and the number of components of the work distributions in

1-octanol (reported in the Figure 7 further on).
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Table 4: Solvation free energies (kcal mol−1) in 1-octanol obtained with OPLS-AA and
GAFF2. The error has been calculated using bootstrap with resampling.66

GAFF OPLS
mol ∆G A2 Ng ∆G A2 Ng

2pro -4.82± 0.15 0.22 1 -4.73 ± 0.09 4.47 2
acet -11.44± 0.34 0.37 1 -11.58 ± 0.41 0.57 1
cycl -4.36± 0.11 0.47 1 -5.46 ± 0.13 0.15 1
dial -20.07± 0.42 0.52 1 -25.47 ± 0.85 0.39 1
keto -15.12± 0.50 0.15 1 -16.34 ± 0.41 0.39 1
nitr -19.79± 0.50 0.23 1 -18.83 ± 0.44 0.30 1
prof -14.12± 0.26 0.27 1 -14.95 ± 0.32 0.51 1
terb -18.64± 0.40 0.64 1 -16.79 ± 0.28 0.27 1

For this mostly hydrophobic solvent, OPLS-AA, GAFF2 appears to deliver similar values

of the solvation free energies. The OPLS-AA/GAFF2 Pearson correlation coefficient yields

R2 = 0.95 with slope and intercept given by a = 1.04 and b = 0.10, respectively.

Partition coefficients

Previous results have shown that the adopted water model has a limited impact on the

hydration free energies. OPC3 and SPCE turned out to perform slightly better than TIP3P

for both OPLS-AA and GAFF2 (see Table 4). In computing the partition coefficient we

have hence selected the hydration free energies obtained with the OPC3 water model for

both OPLS-AA and GAFF2.
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Figure 7: Work distribution for the annihilation of the solute in water (red color) and
1-octanol (blue color) using OPLS-AA (right panel) and GAFF2 (left panel). The param-
eterization of the solvent molecule in 1-octanol is provided by the GAFF2 and OPLS-AA
automatic parameter generators, PrimaDORAC and LigParGen, respectively. For water,
the OPC3 model was used in both cases.

Figure 7 collects the work distributions obtained in the annihilation of the eight solute

molecules in 1-octanol (blue color) and in OPC3 water, using either OPLS-AA or GAFF.

We can see, in general, that the solvation free energy is higher in 1-octanol than in OPC3

water for both force fields, translating in positive o/w partition coefficients. The latter can

be in fact defined as

LogP = −∆Goct −∆Gopc3

RT ln 10
(3)

The LogP coefficients for the eight solutes and the two force fields are collected in Table 5.

The reported errors are given by (RT ln 10)−1 times the sum of the bootstrap errors on ∆Goct

and ∆Gopc3 (see Table 4 and Table 3, respectively). The experimental LogP are taken, in

all cases, from the PUBCHEM database.21 For nitralin, experimental LogP is unavailable

and the xLogp3 value67 is used. The two force fields correctly predict positive LogP for
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all solutes. In general, discrepancies with respect to the experimental data appears to be

less important with respect to those observed for the hydration free energy (see Table 3 and

Figure 4), apparently showing a compensation error effect when evaluating ∆∆G differences.

Table 5: Computed and experimental21 LogP partition coefficient for the eight selected
molecules using GAFF2 and OPLS-AA. The water solvent model used in the computed
LogP is OPC3 for both OPLS-AA and GAFF2.

mol LogP LogP(Exp)
GAFF OPLS

2pro 1.36± 0.20 0.88± 0.19 0.08
acet 1.57± 0.44 0.67± 0.53 1.19
cycl 3.50± 0.14 0.80± 0.17 1.49
dial 5.92± 0.46 1.40± 0.93 4.89
keto 3.38± 0.68 4.08± 0.44 3.12
nitr 5.95± 0.52 4.27± 0.51 3.7
prof 7.76± 0.36 5.72± 0.44 5.58
terb 2.19± 0.41 4.27± 0.33 1.89

The comparison of computed and experimental LogP can be best appreciated in Figure

8 that somehow represents a summa of our study. On the overall, again GAFF2 appears to

perform better than OPLS-AA. However, the MUE and R2 values of the latter force filed are

strongly affected by the single LogP value of dialifor. We recall that the ∆Gopc3 for dialifor

was found to differ by nearly 20 kcal mol−1 with respect to the experimental hydration free

energy, due to an excessive charge molecular strength, Im. Error compensation in dialifor

OPLS-AA, while correctly producing a positive LogP, was apparently unable to recover the

experimental outcome, yielding an underestimation of LogP by more than 3 units. If we

eliminate the outlier dialifor, OPLS-AA MUE drops below 1 units. As shown in the Figure

8, remarkably OPLS-AA has six molecules (2pro, acet, cycl, keto, nitr, prof) yielding a ∆∆G

differing by less than 1 kcal mol−1 with respect to the experimental value. GAFF2, on the

other hand, has 5 molecules (2pro, acet, terb, keto, dialifor) yielding differences between

experimental and computed values of less than 1.5 kcal mol−1.
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Figure 8: Correlation diagram of computed and experimental LogP o/w partition coefficient.
Experimental LogP value are taken from the PUBCHEM database.21 For Nitralin, only the
XLogp3 value is provided in PUBCHEM. For data points within the shaded band, the water
octanol solvation free energy difference is within 1 kcal mol−1 of the experimental value.

The relatively low MUE’s for the two force fields translate into ∆∆G mean unsigned

errors of less than 1.5 kcal mol−1 which is indeed a remarkable accuracy for parameterizations

based on transferable and general force field and that were automatically generated. In this

regard, it should be stressed that LogP, or equivalently ∆∆G values, are especially relevant

for binding free energy calculations in drug-receptor systems.

Conclusion

In this paper we have computed the hydration free energies and the octanol/water partition

coefficients for eight selected organic molecules characterized by a complex conformational

landscape and/or by the presence of disparate chemical moieties. Computation have been

done using the two popular general force fields OPLS and GAFF, in their recently released
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variants (OPLS-AA, GAFF2). Parameterization of each of the eight molecules was gener-

ated automatically using LigParGen14 for OPLS-AA and PrimaDORAC15 for GAFF2. The

hydration free energies were evaluated using three different water models (OPC3, SPCE and

TIP3P), hence producing a total of 48 calculations. 1-octanol was modeled using LigParGen

(OPLS-AA) and PrimaDORAC (GAFF2) parameterization, for a total of 16 solvation free

energy calculations. All solvation free energies were determined using the recently developed

fast switching annihilation method, FSAM.25 The methodology relies on two main computa-

tional steps, consisting in the canonical sampling of fully coupled solute conformations using

efficient enhanced sampling techniques and, starting form these states, in the subsequent

fast decoupling of the solute in a collection of driven NE trajectories. The decoupling free

energies (equal to minus the solvation free energies) are recovered from the nonequilibrium

work distributions using unbiased estimates solidly banking on the Crooks non equilibrium

theorem.53 FSAM, along with the free energy estimate, by design provides a straightforward

and highly reliable confidence interval from a single work distribution,47 with no need for

checking, a posteriori or on the fly,68 the balance of the variances in equilibrium stratification

(FEP-based) techniques.56

As a general trend, common to all selected solutes, we have seen that in water the

quantity ∆Gq and ∆GLJ, i.e. the discharging and the dispersive-repulsive contributions to

the decoupling free energy, have opposite signs, while in 1-octanol both these contribution

are positive. Hydration free energies have been found rather insensitive to the adopted water

model. We found that the TIP3P model, due to the underestimation of the density of the

liquid, consistently yields ∆GLJ that are smaller than those obtained with OPC3 and SPCE.

Agreement with experimental hydration free energies is acceptable for both force fields,

but with difference between experimental and calculated values in most cases largely ex-

ceeding the FSAM uncertainty. GAFF2 exhibits a moderate improvement with respect to

GAFF1.19 On the overall, GAFF2/SPCE resulted the best combination for hydration free

energies for the eight selected compounds, yielding a mean unsigned around 3 kcal mol−1.
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By eliminating the outlier dialifor, OPLS-AA/OPC3 becomes the best alternative for the

remaining solutes with a mean unsigned error dropping to less than 2 kcal mol−1. Dis-

crepancies in the solvation free energies stem from the electrostatic part of the force field,

since OPLS-AA and GAFF2 produce similar ∆GLJ values. This is somehow encouraging

in perspective force field refinement studies, since the dispersive-repulsive contribution is

essentially controlled by the mean shape of molecule in solution and by the Lennard-Jones

potential, i.e. by the transferable part of the general force field, relying on the definition of

a restricted set of atom types. Our results hence indicate that most of the effort for general

force field improvement should be invested on the non transferable electrostatic part of the

force field, by adjusting and tuning the available atomic charge calculation protocols, namely

AM1/BCC for GAFF2 and 1.14*CM1A or 1.14*CM1A-LBCC for OPLS-AA.

When computing the octanol/water partition coefficient LogP, OPLS-AA and GAFF2

force fields perform better due to an error compensation effect. Error compensation can be

easily explained by considering that the major source of error is due to the ∆Gq discharging

contribution and that the error in ∆Gq has the same sign in both solvent. MUE’s on the

LogP values have been found around one unity, hence implying a mean deviation of the

∆∆G values within 1.5 kcal mol−1. This small error has been obtained on a set of organic

molecules coarsely spanning a significant portion of the chemical space and characterized by

the presence of multiple rotable bonds. It should also be stressed that these results were

obtained by using “as is” the parameterizations provided by web-based automatic parameter

generator based on these force field, namely PrimaDORAC for GAFF2 and LigParGen

for OPLS-AA, hence convincingly validating these tools for scientific applications. On the

overall our study is indeed encouraging for perspective binding free energy calculations in

drug discovery projects.
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