TECHNICAL NOTE

PhenoMeNal: processing and analysis of metabolomics data in the cloud

Kristian Peters 1,*, James Bradbury 2,*, Sven Bergmann 3,4, Marco Capuccini 5,6, Marta Cascante 7, Pedro de Atauri 7, Timothy M. D. Ebbels 9, Carles Fougues 7, Robert Glen 9,10, Alejandra Gonzalez-Beltran 11, Ulrich L. Günther 12, Evangelos Handakas 9, Thomas Hankemeier 14, Kenneth Haug 15, Stephanie Herman 6,16, Petr Holub 17, Massimiliano Izzo 11, Daniel Jacob 18, David Johnson 11,19, Fabien Jouard 20, Namrata Kale 15, Ibrahim Karaman 21, Bita Khalili 3,4, Payam Emami Khonsari 16, Kim Kultima 16, Samuel Lampa 6, Anders Larsson 6,22, Christian Ludwig 23, Pablo Moreno 15, Steffen Neumann 1,24, Jon Ander Novella 6,22, Claire O’Donovan 15, Jake T.M. Pearce 9, Alina Peluso 9, Marco Enrico Piras 25, Luca Pireddu 25, Michelle A.C. Reed 12, Philippe Rocca-Serra 11, Pierrick Roger 26, Antonio Rosato 27, Rico Ruedi 3,4, Christoph Ruttkies 1, Noureddin Sadawi 8,9, Reza M. Salek 15, Susanna-Assunta Sansone 11, Vitaly Selivanov 7, Ola Spjuth 6, Daniel Schober 1, Etienne A. Thévenot 26, Mattia Tomasoni 3,4, Merlijn van Rijswijk 13,28, Michael van Vliet 14, Mark R. Viant 2,29, Ralf J. M. Weber 2,29, Gianlugi Zanetti 25 and Christoph Steinbeck 30,*

1Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany, 2School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom, 3Department of Computational Biology, University of Lausanne, Lausanne, Switzerland, 4Swiss Institute of Bioinformatics, Lausanne, Switzerland, 5Division of Scientific Computing, Department of Information Technology, Uppsala University, Sweden, 6Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden, 7Department of Biochemistry and Molecular Biomedicine,
Universitat de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Spain; 8Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University, London, UK; 9Department of Surgery & Cancer, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom; 10Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, United Kingdom; 11Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, OX1 3QG, Oxford, United Kingdom; 12Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; 13Netherlands Metabolomics Center, Leiden, 2333 CC, Netherlands; 14Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333 CC, The Netherlands; 15European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; 16Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden; 17BBMRI-ERIC, Graz, Austria; 18INRA, University of Bordeaux, Plateforme Métabolome Bordeaux-MetaboHUB, 33140 Villenave d’Ornon, France; 19Department of Informatics and Media, Uppsala University, Box 513, 751 20 Uppsala, Sweden; 20INRA - French National Institute for Agricultural Research, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France; 21Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary’s Campus, Norfolk Place, W2 1PG, London, United Kingdom; 22National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden; 23Institute of Metabolomics and Systems Research (IMSR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; 24German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; 25Distributed Computing Group, CRS4, Pula, Italy; 26CEA, LIST, Laboratory for Data Analysis and Systems’ Intelligence, MetaboHUB, Gif-Sur-Yvette F-91191, France; 27Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence and CIRMMP, 50019 Sesto Fiorentino, Florence, Italy; 28ELIXIR-NL, Dutch Techcentre for Life Sciences, Utrecht, 3503 RM, Netherlands; 29Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; 30Cheminformatics and Computational Metabolomics, Institute for Analytical Chemistry, Lessingstr. 8, 07743 Jena, Germany; 31 and 32

*Correspondence address. Kristian Peters, Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany. E-mail: kpeters@ipb-halle.de http://orcid.org/0000-0002-4321-0257; James Bradbury, E-mail: j.bradbury@bham.ac.uk; Christoph Steinbeck, E-mail: christoph.steinbeck@uni-jena.de http://orcid.org/0000-0001-6966-0814

Abstract

Background: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution. **Findings:** PhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm. **Conclusions:** PhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.

Keywords: metabolomics; data analysis; e-infrastructures; NMR; mass spectrometry; computational workflows; galaxy; cloud computing; standardization; statistics
Findings

Background

The field of metabolomics has seen remarkable progress over the last decade and has enabled fascinating discoveries in many different research areas. Metabolomics is the study of small molecules in organisms that can reveal detailed insights into metabolic biochemistry, e.g., changes in concentrations of specific molecules, metabolic fluxes between cells or compartments, identification of molecules that are involved in the pathogenesis of a disease, and the study of the biochemical phenotype of animals, plants, and even soil microorganisms [1–3].

The principal metabolomics technologies of mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) typically generate large datasets that require computationally intensive analyses [4]. Biomedical investigations can involve large cohorts with many thousands of metabolite profiles and can produce hundreds of gigabytes of data [5–8]. With such large datasets, processing becomes impracticable and unmanageable on commodity hardware. Cloud computing can offer a solution by enabling the outsourcing of calculations from local workstations to scalable cloud data centers, with the possibility to allocate thousands of central processing unit (CPU) cores simultaneously. Furthermore, cloud computing allows for resources to be instantiated on-demand (CPUs, random access memory, network, storage) and allows access to computational tools in the form of microservices that can dynamically grow or shrink.

MS and NMR data processing usually involves selection of parameters (that are often specific to the analytical instrumentation), algorithmic peak detection, peak alignment and grouping, annotation of putative compounds, and extensive statistical analyses [9, 10]. Many open-source tools have been developed that address these different steps in data processing and analysis. These tools, however, usually come with their own software dependencies, resource requirements, and scripting languages. As a consequence, configuring and running them is often complicated, especially for researchers who are untrained in computer science [4]. Furthermore, many tools require users to input parameters that can significantly affect results and performance, and reporting of these parameters is not always clear [11].

A number of infrastructures and integration efforts have been initiated in the past five years, including metabolomics data repositories with a global scope [6, 12], platforms for reproducible workflow analysis [13, 14], as well as initiatives to integrate and coordinate data standards [15]. Simultaneously, multiple networks of service centers such as the international Phenome Centers [16] and MetaboHub [17] have formed with the goal to facilitate the acquisition, processing, and analysis of metabolomics data [6–8] at ever increasing scales.

Currently, several web-based metabolomics data processing platforms are available. XCMSOnline provides a platform based on XCMS for downstream data analysis, visualization, data sharing, and access to Metlin to facilitate metabolite identification and pathway analysis [18]. MetaboAnalyst presents a wide variety of data processing and analysis tools including statistical analysis, time-series analysis, functional analysis, and pathway analysis [19]. Workflow4Metabolomics is based on Galaxy and provides various metabolomics processing workflows, including NMR [13, 20]. These common tools for analyzing metabolomics data provide web-based graphical user interfaces (GUIs) with different functionality.

Figure 1: Conceptual design of the PhenoMeNal cloud e-infrastructure, which brings compute to the data for any large number of data scientists.

Here, we present PhenoMeNal (Phenome and Metabolome aNalysis), a unique, easy-to-use, complete, robust, and performant cloud e-infrastructure that provides a large suite of standardized and interoperable metabolomics data processing tools as a complete data analysis solution. In contrast to current metabolomics processing platforms, PhenoMeNal provides Infrastructure-as-a-Service (IaaS) and seamlessly integrates a wide array of existing open-source tools.

A major advantage over other platforms is that PhenoMeNal make it possible to instantiate many different services in the cloud and provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm (Fig. 1). Moreover, the PhenoMeNal e-infrastructure can be easily deployed onto public and private cloud environments and can be configured elastically to fit into any cloud-based environment, thus enabling scalable and cost-effective high-performance metabolomics data analysis in a way that hides the technical complexity from the user. PhenoMeNal further facilitates reproducible analyses through automated, sharable, and citable workflows.

Overview

The features of the PhenoMeNal e-infrastructure are encapsulated as a cloud research environment (CRE). The PhenoMeNal CRE can be instantiated on major commercial public cloud providers, including Amazon web services (AWS) and Google cloud platform (GCP), as well as OpenStack-based private clouds and in custom environments. Technical complexity is hidden from the users, simplifying setting up the cloud infrastructure for administrators (Fig. 2).

From a web-based portal, users can deploy the CRE, which includes several web services and software tools (Fig. 2). Data can be processed directly in the e-infrastructure without the need to install additional software. Scientific workflows can be executed via user-friendly web-based platforms such as Galaxy, as well as programmatic interfaces and notebooks. Each service has been supplied with a rich source of documentation and training material to assist researchers.

The PhenoMeNal Portal

The PhenoMeNal Portal [21] allows users to deploy, manage, and delete PhenoMeNal CREs simply through a web interface. Deployments to major commercial cloud platforms (AWS and GCP) as well as OpenStack, an open-source cloud platform, can be made using an easy-to-follow wizard (Fig. 2). OpenStack deploy-
Figure 2: Screenshots of creating and using the PhenoMeNal cloud e-infrastructure. First, log in with ELIXIR to the cloud research environment (CRE) portal. Second, select a public or private cloud provider. After entering cloud credentials and setting up parameters in the dedicated portal, the deployment of the PhenoMeNal e-infrastructure into the cloud environment can be made. Third, in the PhenoMeNal Portal app library there are several services ready to be deployed and used in the set-up infrastructure. Fourth, dedicated web services such as Galaxy are readily available in the cloud e-infrastructure. All steps can be operated from an easy-to-use web interface that is accessible from any standard web browser.

Scientific workflows
A scientific workflow is a set of computational steps that are carried out to process and analyze data [22]. Usually, a workflow is comprised of several linked software tools that are each executed during a particular step of the workflow. In order to manage and automate scientific workflows, in PhenoMeNal the well-established dedicated workflow management system Galaxy can be deployed, which presents the user with an easy-to-use graphical user interface as well as providing a programmatic interface [20, 23]. Galaxy facilitates collaborative exchange, reproducibility, and traceability of data analysis by enabling users to share entire workflows and analysis histories [24]. In addition to Galaxy, programmatic executable notebooks (Jupyter) and the workflow tools exposed as programmatic interfaces Luigi and Pachyderm are also supported [25].

In order to cover typical use cases in metabolomics and to illustrate the usage and applicability of given analytical pipelines and software tools, five representative scientific workflows are available in the PhenoMeNal Galaxy (Table 1), each having different computational demands and purposes. More than 250 individual modules have been integrated in Galaxy (see the subsection Scientific Workflows in the Methods section).
Table 1: List of workflows that are representative for their respective metabolomics domains (identification in NMR, Fluxomics, Annotation, and identification in MS and eco-metabolomics)

<table>
<thead>
<tr>
<th>Workflow name</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D NMR</td>
<td>Processes 1D NMR experiments from raw data to a data matrix required for visualization and statistical analysis, building on nmrML and NMRProcFlow. The automatic workflow is based on the MTBLS1 dataset, describing urinary changes in type 2 diabetes in humans.</td>
<td>[26, 27, 28]</td>
</tr>
<tr>
<td>Fluxomics</td>
<td>Quantifies steady-state fluxes following 13C metabolic flux analysis. The workflow was first based on the analysis of the MTBLS412 dataset with 13C tracer data of human umbilical vein endothelial cells under hypoxia.</td>
<td>[29, 30]</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Processes, quantifies, and annotates/identifies features in mass spectra using MetFrag — a tool that annotates molecules from compound databases of tandem mass spectrometry (MS/MS) spectra. The workflow is based on MTBLS558.</td>
<td>[31, 32, 33]</td>
</tr>
<tr>
<td>Univariate and Multivariate Statistics</td>
<td>Applies univariate and multivariate statistical analysis and illustrates how datasets may be explored, enabling the identification of variables of interest and the construction of predictive models. The workflow is based on MTBLS404.</td>
<td>[13, 34]</td>
</tr>
<tr>
<td>Eco-Metabolomics</td>
<td>Implementation of a resource demanding metabolomics use case in ecology, used in large field experiments to describe interactions between different species of organisms in remarkable detail. The workflow is based on MTBLS20.</td>
<td>[35]</td>
</tr>
<tr>
<td>ISA-Create-Validate-Upload</td>
<td>A workflow to create Investigation, Study, and Assay data model framework-compliant metadata files based on study design information, augmented with semantic markup as source, implementing UK Phenome center naming conventions. Following validation, the workflow also allows visualization of overall study design and deposition to EMBL-EBI.</td>
<td></td>
</tr>
</tbody>
</table>

Software tools

The Portal App Library [36] shows the software tools packaged in PhenoMeNal that are available through the CRE deployment (Fig. 2). The range of software tools available covers several metabolomics domains, making PhenoMeNal relevant for use in a wide range of data analysis scenarios. The domains covered include clinical metabolomics, plant metabolomics, fluxomics, and eco-metabolomics. Data from both targeted and untargeted analysis can be analyzed for metabolite profiling and fingerprinting approaches [1, 2]. NMR and MS (liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, direct infusion mass spectrometry) data can be processed.

PhenoMeNal also provides tools for data management (e.g., via the Investigation, Study, and Assay data model framework [ISA] format and application programming interface [API]), metabolite feature detection (e.g., XCMS, CAMERA, nmrProcFlow), metabolite identification (MetFrag, BATMAN, Metabo-Matching), and (bio)statistics (e.g., univariate, multivariate, and power analyses) (Supplementary Table S1). Tools can be filtered for functionality, approaches, and instrument (data) types to readily find the most appropriate software tools. Some tools that implement specific functionality (e.g., Rnmr1D, which performs baseline correction of NMR spectra as part of nmrProcFlow) are available through dedicated Galaxy modules or through software containers (Supplementary Table S1).

Study design

PhenoMeNal was designed to use standardized protocols and software tools and to comply with state-of-the-art dedicated specifications and data formats across the entire project. Development was geared toward implementation of open standards for tracking provenance of both data and metadata generated by clinical phenotyping projects. In PhenoMeNal, the ISA model and specifications were implemented using the ISA format to generate, annotate, validate, and deposit experimental metadata information of datasets and studies to public repositories such as MetaboLights [37, 38]. ISA-based metadata tracking is used for the different analysis pipelines that are specific to the distinct metabolomics domains. PhenoMeNal reached native support for the ISA format by developing a dedicated Galaxy composite data type. Such component affords direct recognition of the ISA format by the Galaxy environment, thus ensuring seamless integration with the downstream workflow component.

Data deposition

PhenoMeNal encourages the metabolomics data repository MetaboLights as a primary source of data deposition [39]. Private and public datasets are supported, as are download and upload to MetaboLights. If the storage in a data repository such as MetaboLights is not possible, data can be stored locally or in the cloud e-infrastructure. Access to the data is strictly controlled and secured. To support data deposition, ISA-based Galaxy modules are available making it possible to publish and disseminate scientific results in standard compliant ways.

Reproducibility

One of the challenges of cloud computing is that analyses need to be run continuously and successfully in different environments [40]. Specifically, it has to be ensured that, given the same input, workflows and tools produce identical results regardless of the underlying environment [4, 40]. When these requirements are fulfilled, end users can be confident that their data will be analyzed correctly. PhenoMeNal has implemented three major testing strategies to ensure technical reproducibility using a continuous integration framework [41]. Tests were implemented for the infrastructure components, individual software containers, and data involved in computational workflows.

Sustainability

PhenoMeNal is part of a number of initiatives (BioMedBridges, COSMOS, and ELIXIR) to foster the role of metabolomics and to harmonize experimental data and metadata usage [15, 42]. Col-
PhenoMeNal collaborations were established with EGI [43] and Indigo Datacloud [44] infrastructure providers and initiatives [45, 46] to ensure that PhenoMeNal uses technologies that are well supported and ensure their widespread usage, continuity, and further development. For example, the development of KubeNow and contributions to the Galaxy and WorkFlow4Metabolomics community are essential for PhenoMeNal [47]. Core development will continue on GitHub and is fostered by collaborations with tool developers.

Dependencies on specific technologies and frameworks were avoided by focusing on open standards such as ISA-Tab/ISA-JSON, mzML and nmrML, and widely accepted software [48]. By being able to deploy PhenoMeNal on multiple types of cloud environments, lock-ins to specific computing resource providers are avoided. PhenoMeNal implemented continuous integration and delivery, validated by extensive testing and with clear maintenance responsibilities (see Methods section).

Privacy and security
With human or animal material, the collection, storage, and analysis of metabolomics data introduce a number of constraints due to ethical, legal, and social implications (ELSI) [49]. In particular, data initially derived from human clinical studies may be identifiable and will require consent for use, usually for a defined objective, such as diagnosis, or be related to a particular disease study. Where data is identifiable or pseudonymized, users can deploy PhenoMeNal on local secure resources, thus avoiding the export of data. In this scenario, access to the e-infrastructure should be strictly controlled through local access and authorization. It is recommended that clinical data be fully anonymized before analysis in PhenoMeNal [49, 50].

The PhenoMeNal portal provides substantial guidance to enable users to comply with ELSI and general data protection regulation (GDPR) requirements. Users must register in order to use the individual parts of the e-infrastructure. PhenoMeNal was implemented to use secured and encrypted transport and network communications.

Documentation and training materials
Extensive user documentation and tutorials are provided via the PhenoMeNal Wiki page [51]. The Wiki includes detailed developer resources including information about the PhenoMeNal release schedule; guidelines for tool, workflow, and portal developers; continuous integration; and testing. Further documentation is also provided detailing, creating, and managing PhenoMeNal CREs and tutorials for the Galaxy modules and pre-configured workflows, as well as Galaxy tours that provide step-by-step guidance for inexperienced users.

Community engagement
The PhenoMeNal project is open source and is hosted on GitHub [52]. Developers can contribute tools to PhenoMeNal and are encouraged to do so. To add a tool to PhenoMeNal, it must be containerized using Docker and then integrated into the build process. Detailed documentation is available in the project’s Wiki for developers who wish to add their tools to PhenoMeNal.

Collaborations with other projects have been actively encouraged during the development of PhenoMeNal, including WorkFlow4Metabolomics [13] and the developers of both nmrML and nmrProcFlow [26]. These collaborations are essential to fostering greater standardization within PhenoMeNal and to increasing compatibility with other metabolomics data processing infrastructures.

Availability
Information on how to access PhenoMeNal can be found at the project’s website [53]. The GitHub repository hosts the source code of all development projects [52]. The project container-galaxy-kbs-runtime contains all of the developments regarding Galaxy. The Wiki containing documentation is also hosted on GitHub [51]. The PhenoMeNal Portal can be reached at [21]. The public instance of Galaxy is accessible at [54]. Source code and documentation are available under the terms of the Apache 2.0 license. Integrated open-source projects are available under the respective licensing terms.

Conclusions
PhenoMeNal has succeeded in increasing the robustness and coverage of representative metabolomics data processing in scientific cloud e-infrastructures. The presented cloud e-infrastructure covers a wide range of analysis pipelines including data generation and download, data pre- and post-processing, (bio)statistics, and result deposition in data repositories. A large effort has been made to introduce lower-level changes to cloud e-infrastructures (e.g., the cloud deployment software KubeNow) to meet the demands of the biomedical domain. Furthermore, Galaxy has been enriched with metabolomics data standards, in particular, the ISA format for study metadata and mzML and nmrML for acquired data files, as well as support for Kubernetes. PhenoMeNal has fostered the visibility of new metabolomics tools and has enabled the development of more sophisticated data analysis workflows. Our efforts were also guided by feedback from real-life test scenarios collected at workshops with users from the clinical domain.

PhenoMeNal constitutes a keystone solution in cloud platforms available for metabolomics data analysis. The platform was designed to deliver optimal performance and functionality for typical use cases in the metabolomics domain. While the needs of clinicians and researchers in the biomedical and biochemical domains have been targeted, PhenoMeNal is not limited to a specific domain as the cloud infrastructure, tools, and workflows can be adapted to other use cases as demonstrated with the inclusion of the eco-metabolomics workflow. The technological advancements can be reused in other scientific cloud environments and could be integrated with solutions from other ‘omics domains in the future.

Methods
Cloud e-infrastructure
The PhenoMeNal CRE is designed as a microservice architecture, with services being implemented as virtual machine images and software containers. Containers are used to provide microservices for metabolomics data analysis tools and also long-running services such as workflow management systems. A container orchestrator runs containers on top of the scalable infrastructure. The orchestrator takes a group of machines that act as a distributed cluster and receives requests for tools as well as service executions. PhenoMeNal implements various layers to provide container orchestrator on top of either bare metal hardware or IaaS given by a cloud provider [55] (Supplementary Fig. S1).

During the setup process and while PhenoMeNal is deployed, data storage and CPU limits can be configured and dynamically scaled to fit any cloud environment. Deployments can be made...
to GCE, AWS, and OpenStack-based private clouds from the PhenoMeNal portal. Deployments are also supported from the command line to Microsoft Azure [56], the European Science Cloud [57], and local servers (bare metal) [58]; we provide step-by-step instructions for these solutions. PhenoMeNal provides IaaS for three different cloud environments:

“local cloud”: local workstations or bare metal clusters where data are not allowed to leave the facility.
“public cloud”: the flexible use of commercial cloud providers such as GCE and AWS.
“shared cloud”: using OpenStack—a free and open-source software platform for cloud computing, ideal for custom environments and research networks.

Software tools

The PhenoMeNal portal has an application library that allows users to deploy tools as microservices into the cloud infrastructure (Fig. 2, Supplementary Table S1). The portal is packaged into frontend and backend engines on top of Kubernetes.

Most software tools in PhenoMeNal are compiled from source code and use a variety of programming languages. Linux versions of software tools and user interfaces such as Galaxy are supported in dedicated encapsulated Docker containers that are implemented as minimum-sized microservices. PhenoMeNal currently hosts 100 such projects in its GitHub repository [59] (Supplementary Table S1). Projects are indicated by the trailing `Acontainer-`A name and include a ruleset to build and run the containerized tools, as well as datasets for testing and other necessary files.

PhenoMeNal provides tutorials for developers who want to integrate their tools into our e-infrastructure [60].

Scientific workflows

In PhenoMeNal, a number of options are available for running reproducible and standardized workflows (Table 1).

Galaxy

The Galaxy workflow management system is widely regarded as one of the most popular scientific workflow platforms [20, 61]. It provides a user-friendly web-based GUI to make it easy for the end user to configure and run individual modules and entire workflows without programming experience. Command-line tools and scripts are encapsulated into modules that are launched via the web interface. Galaxy also supports more powerful features such as programmatic access through a REST API and helper libraries to access the running instance of Galaxy [62].

PhenoMeNal has been able to adapt Galaxy for use with a microservices-based architecture [31]. To this end, modules are encapsulated into Docker containers that can be flexibly launched within the cloud e-infrastructure. Galaxy is available in all deployed PhenoMeNal CREs and contains more than 250 modules that have been implemented as part of PhenoMeNal.

Six representative metabolomics Galaxy workflows have been fully integrated into PhenoMeNal (Table 1), and more workflows (mzQuality, NMR-BATMAN) are available for testing.

Jupyter

Jupyter, which started its history as the IPython notebook, is the most popular among the tools commonly referred to as executable notebooks or computational notebooks [63]. Jupyter lets users combine executable code with results from code executions such as text, tables, and figures. Usually, Jupyter notebooks are enriched with extended information that explains what the code does. As a result, they are often used for training material and for tutorials. Also, computational notebooks can, to some extent, be used as a way to document code executions and to make executions more reproducible [64].

Luigi and Pachyderm

Luigi is a Python workflow programming library that was originally developed by the company Spotify. It manages pipelines of computations primarily on "big data" systems such as Hadoop and Apache Spark but also supports local execution [63, 64]. Luigi is a very flexible library that facilitates building complex pipelines of batch jobs handling dependency resolution, workflow management, and visualization.

Similarly, Pachyderm makes it possible to process distributed data and to keep track of the data from every stage of the analysis pipeline [25]. With Pachyderm, it is possible to track the provenance of results and to accurately reproduce scientific workflows. Luigi and Pachyderm are well suited for complex scientific tasks and are easy to use from the python environment in Jupyter notebooks without additional integration tooling needed.

In PhenoMeNal, we have extended Galaxy, Jupyter, Luigi, and Pachyderm in such a way that they can be orchestrated throughout the cloud infrastructure together with the data analysis tools themselves [31]. Six important metabolomics workflows have been fully integrated into PhenoMeNal (Table 1), and more (mzQuality, NMR-BATMAN) are available for testing.

Reproducibility

Three strategies are realized to ensure technical reproducibility. They are implemented in the continuous integration (CI) software development framework Jenkins [41] which is accessible at [65]. These strategies are implemented as tests in our Jenkins and a tutorial guide is available at [66].

- Infrastructure testing: Procedures were implemented to ensure that each individual component (e.g., the deployment process of software containers, resource management, APIs/application binary interfaces [ABIs]) within the infrastructure is interacting correctly with the other components.
- Container testing: Verification that tools, which are packaged into software containers, build and run correctly in the infrastructure. Dependencies within one container and across several interdependent containers are tested.
- Data testing: The output of tools, which process demonstration data, is checked against a data set that is known to contain the expected result. This is being done for both individual tools and for several tools running in a workflow using the workflow testing tool for Galaxy called wft4galaxy [67].

Standardization

PhenoMeNal has implemented several dedicated Galaxy modules that directly retrieve and store ISA-Tab data set descriptors from and to MetaboLights, and can convert between other formats. Native Galaxy composite data types to support ISA-Tab and ISA-JSON have also been integrated, building upon the ISA API [38, 48]. The ISA data type allows for the upload of an ISA-Tab archive (a zip file containing the ISA set of files and raw
Table 2: Overview of the most important FAIR criteria and implementations suggested for PhenoMeNal data, tools and workflows

<table>
<thead>
<tr>
<th>(F)indability</th>
<th>(A)ccessibility</th>
<th>(I)nteroperability</th>
<th>(R)eusability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexing in domain relevant databases (e.g., MetaboLights)</td>
<td>Rich descriptions of metadata (e.g., ISA-Tab)</td>
<td>Standard formats for experimental metadata (ISA-Tab/ISA-JSON)</td>
<td>Deposition in data repositories (e.g., MetaboLights) and data indexing sites (e.g., OmicsDI)</td>
</tr>
<tr>
<td>Indexing in domain relevant software repositories (e.g., the PhenoMeNal App Library, GitHub)</td>
<td>Tool descriptions follow the EDAM ontology</td>
<td>Standardized tool descriptions</td>
<td>Rich documentation and usage guides</td>
</tr>
<tr>
<td>Indexing in workflow management systems such as Galaxy (e.g., PhenoMeNal, W4M), or libraries such as [69]</td>
<td>Accessible open-source licenses</td>
<td>EDAM ontology to annotate tools</td>
<td>Rich documentation and tutorials (e.g., Galaxy tours)</td>
</tr>
</tbody>
</table>

Security

Open-source tools are used throughout the entire e-infrastructure. This promotes community efforts to discover and resolve bugs and security issues. The container build process is steered by the continuous integration (CI) service Jenkins, which continuously builds the containers and generates reports. On success and through authentication, container images are pushed to the PhenoMeNal container registry, which is publicly available but read-only. Cloud provider credentials are not stored in the cloud but only on the deployer host. The Kubernetes cluster running the Jenkins-CI and the container registry, as well as the portal, runs on a CoreOS container, which is a self-updatable, cluster-aware system with most portions being read-only. It reboots nodes sequentially to avoid lack of availability.

KubeNow is a key component that initializes the cloud infrastructure and configures access to it via Cloudflare [72], providing dynamic Domain Name Services (DNS) and encryption for all network communication. The flexible implementation of PhenoMeNal allows the user to decide to not use Cloudflare, in

Privacy

PhenoMeNal supports fully anonymized data, which cannot be traced back to individuals in any way [50] and treats pseudonymized data as identifiable. As pseudonymized data are anonymous to the investigator, third parties may be able to link pseudonymized data back to identifiable individuals through mappings such as a hash or code [49]. In these cases, e.g., in a hospital environment, users must deploy PhenoMeNal within a private cloud or bare metal cluster behind their institution’s firewall.

PhenoMeNal provides guidance on ethical and technical frameworks to regulate and secure the use of private or sensitive data [49, 50]. It is possible to combine data and metadata within an ELSI compliant framework [50] and in such cases users can follow the example of the European Genome Phenome Archive (EGA) [71]. In public installations of PhenoMeNal, the ELIXIR policy on privacy has been implemented within a technically secure environment to process data [42].
which case encryption is disabled. KubeAdm, which manages the setup of Kubernetes, is not reachable at runtime by default. The only way to access it is by having access to the private key stored on the computer on which it was launched. PhenoMeNal only allows access to standard ports (ssh, http, https, and port 44 for the Galaxy Downloader) and implements a cloud-specific firewall for all supported cloud providers.

Microservices are designed to be launched on-demand and terminated after completed analysis. If security issues are reported for the microservices, tool, or dependencies or if incremental security patches are available, new builds are automatically triggered in the CI system and developers and the release manager are notified to take additional actions if required. Images are built on a daily basis and tested for deployment to avoid security patches from introducing any abnormality in the deployment process.

User resources

There are many user resources for both PhenoMeNal users and developers in the form of documentation, tutorials, and training videos. The PhenoMeNal Wiki [51] contains detailed documentation on all aspects of PhenoMeNal, including general user guides, workflow and tool tutorials, developer documentation, and general information on topics such as security and the e-infrastructure landscape. The PhenoMeNal portal contains help pages generated from the Wiki [73], which are categorized as User Documentation, Developer Documentation, and Workflow Tutorials. Interactive Galaxy tours are directly integrated in Galaxy [74]. Training videos are available at the project’s YouTube page [75].

Availability of source code and requirements

Project name: PhenoMeNal,
Project home page: http://phenomenal-h2020.eu
Operating system(s): Platform independent
Programming language: Go, HCL, Java, JavaScript, Python, R, Shell, XML, YAML
Other requirements: Linux, Docker, Kubernetes, Terraform, Ansible, Helm
License: MIT license for all code written by the PhenoMeNal project. Individual, Open Source Foundation approved licenses for all containerized tools.
RRID:SCR_016605

Availability of supporting data

The following MetaboLights datasets are integrated into PhenoMeNal and are used to demonstrate the cloud integration and reproducibility of Galaxy workflows: MTBLS1 (NMR1D), MTBLS404 (Uni- and multivariate statistics), MTBLS412 (Fluxomics), MTBLS520 (Eco-Metabolomics), MTBLS558 (MetFrag). Datasets are available at https://www.ebi.ac.uk/metabolights. Snapshots of the code and additional supporting data are available in the GigaScience repository, GigaDB [76].

Additional files

Supplemental Figure 1: PhenoMeNal implements various layers to provision containers on top of the e-infrastructure.
Supplemental Table 1: List of external software tools that were incorporated into PhenoMeNal.

Abbreviations

ABI: application binary interface; API: application programming interface; AWS: Amazon web services; CI: continuous integration; CPU: central processing unit; CRE: cloud research environment; ELSI: ethical, legal, and social implications; FAIR: criteria for good data management and stewardship based on findability, accessibility, interoperability, and reusability; GCP: Google cloud platform; GUI: graphical user interface; IaaS: Infrastructure-as-a-Service; ISA: Investigation, Study, and Assay data model framework; MS: mass spectrometry; NMR: nuclear magnetic resonance (spectroscopy); PhenoMeNal: Phenome and Metabolome aNalysis; W4M: Workflow4Metabolomics.

Competing interests

The authors declare that they have no competing interests.

Declarations

Human-derived samples in the datasets MTBLS404 and MTBLS412 were processed according to ELSI guidelines.

Author contributions

Writing original draft: K.P and J.B.
Conceptualization: C.S.
Project administration: N.K.
Technical lead: P.M.
Data curation: K.H., S.-A.S., P.R.-S.
Support was provided by the Nordice-Infrastructure Collaboration (NeIC) via the Glenna2 and Tryggve2 projects. All authors contributed to, read, and approved the final manuscript.

Funding

References

