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The ORIS Tool: Quantitative Evaluation
of Non-Markovian Systems

Marco Paolieri, Marco Biagi, Laura Carnevali, and Enrico Vicario (IEEE Member)

Abstract—We present the next generation of ORIS, a toolbox for quantitative evaluation of concurrent models with non-Markovian timers.
The tool shifts its focus from timed models to stochastic ones, it includes a new graphical user interface, new analysis methods and a
Java Application Programming Interface (API). Models can be specified as Stochastic Time Petri Nets (STPNs) through the graphical
editor, validated using an interactive token game, and analyzed through several techniques to compute instantaneous or cumulative
rewards. STPNs can also be exported as Java code to conduct extensive parametric studies through the Java library, now distributed as
open-source. A well-engineered software architecture allows the user to implement new features for STPNs, new modeling formalisms,
and new analysis methods. The most distinctive features of ORIS include transient and steady-state analysis of STPNs modeling Markov
Regenerative Processes (MRPs), and transient analysis of STPNs modeling generalized semi-Markov processes. ORIS also supports
state-space analysis of Time Petri Nets (TPNs), simulation of STPNs, and standard analysis techniques for continuous-time Markov
chains or MRPs with at most one non-exponential timer in each state. We illustrate the general workflow for the application of ORIS to the
modeling and evaluation of non-functional requirements of software-intensive systems.

Index Terms—Quantitative Evaluation, Formal Methods, Stochastic Models, Concurrency, Stochastic Petri Nets, Non-Markovian
Processes, Markov Regenerative Processes, Performance, Reliability, Software Tools and Libraries.

F

1 INTRODUCTION

In the engineering of non-functional requirements of a large
class of software or cyber-physical systems, quantitative
evaluation of stochastic models enables early assessment
of design choices and provides model-driven guidance for
implementation and integration stages. In the specific context
of software, notable examples include testing of real-time
software components [24], [71], evaluation of quality of
service in distributed systems [48], and analysis of restart
mechanisms or rejuvenation policies [67], [58], [37].

Most relevant results in the literature on quantitative
evaluation have addressed models with exponentially dis-
tributed (EXP) durations, which always satisfy the Markov
property (i.e., future evolution depends on the current logical
location but not on past history). In this case, the underly-
ing stochastic process of the model is a Continuous-Time
Markov Chain (CTMC), and evaluation can resort to consoli-
dated numerical approaches and tools such as PRISM [51],
MRMC [47], SMART [29], GreatSPN [3], Storm [31], or
specialized functions within MATLAB and Mathematica.

However, in several application contexts, the system un-
der analysis is strongly characterized by deterministic (DET)
timers (e.g., inter-release times of periodic jobs, timeouts or
watchdogs) or non-exponential generally distributed (GEN)
durations (e.g. execution times, jittering latencies, asyn-
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chronous arrivals, aging). In this case, the underlying stochas-
tic process of the model falls in more complex classes of so-
called non-Markovian processes [28], but numerical solution
may still be viable if the model satisfies the Markov property
at specific times, termed regeneration points. In particular, if
a new regeneration is always reached with probability 1
(w.p.1), then the model subtends a Markov Regenerative
Process (MRP) [50], which can be solved numerically once it
has been described in terms of a local kernel, characterizing
the behavior until the first regeneration, and a global kernel,
characterizing sequencing and timing of visits to subsequent
regenerations. Solutions for evaluation of kernels have been
consolidated only for models satisfying the enabling restriction,
requiring that at most one timer with general distribution
is enabled in each state [40], [63], [27], [39], [5]. Software
tools implementing these techniques include SHARPE [65],
TimeNET [72], and GreatSPN [3].

In this paper, we present the next generation of ORIS [54],
which supports construction of Petri net models with concur-
rent non-Markovian durations and quantitative evaluation of
their underlying stochastic processes, through a new Graphi-
cal User Interface (GUI) and an Application Programming
Interface (API) based on the included Java library SIRIO [61].1

Functional capabilities of the ORIS tool are summarized in
the use case diagram of Fig. 1. On the one hand, the GUI
supports the specification of a model using the formalism of
Stochastic Time Petri Nets (STPNs), its validation through
interactive simulation (token game), and its quantitative
evaluation, targeted to transient or steady state rewards,
and performed through different solution engines applicable

1. A tutorial on ORIS 2.0 was presented at VALUETOOLS’17 [12]. A
very preliminary version of the API was presented at SAFECOMP’11 [22]
and QEST’11 [23]. Release 1.0 of ORIS focused only on nondeterministic
analysis of timed models and is now outdated [16].
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under different assumptions on the underlying stochastic
process. On the other hand, the API provides access to all
the functions exposed by the GUI with various additional
capabilities for the generalization of modeling features,
analysis algorithms, simulation, symbolic manipulation of
multivariate probability distributions.

The distinguishing feature of ORIS is the quantitative
analysis of models where multiple timers with general
distribution can be concurrently enabled in each state,
which goes beyond the enabling restriction and significantly
extends the class of models amenable to numerical solution.
In turn, this feature relies on an implementation of the method
of stochastic state classes [69], [44], which is put to work
in various types of quantitative continuous-time analysis:
exact transient and steady-state analysis of STPNs where a
regeneration is always reached within a bounded number
of state transitions (a subclass of MRPs); exact transient
analysis of STPNs where the number of state transitions
within the time limit is bounded (without restrictions on
the occurrence of regenerations); approximate transient
analysis of STPNs with no restriction on the presence or
the sequencing of regenerations. In addition, ORIS provides
a basic implementation of methods for transient and steady-
state analysis of models with underlying CTMC [62] and for
transient analysis of models with underlying MRP under
the enabling restriction [39], which are the focus of other
tools such as PRISM, SHARPE, TimeNET, and GreatSPN.
ORIS also supports simulation of STPNs to compute transient
and steady-state rewards, and nondeterministic analysis of
Time Petri Nets (TPNs) [68] based on the so-called state class
graph abstraction, also implemented in tools for qualitative
verification, notably Tina [9], Romeo [36], and Uppaal [6].

ORIS has been developed for several years and put to the
test of practice in various application domains, addressing
different modeling and evaluation challenges [55], [24], [14],
[25], [13], [20], [11]. Overall, ORIS is now a well-engineered
software tool, fully implemented in Java, designed so as to
accommodate agile implementation of new features for Petri
net models and new solution techniques for their underlying
stochastic processes. SIRIO, the Java library included in ORIS,
can be used to integrate the analysis functionalities available
in the GUI into custom software tools and toolchains, or to
perform extensive parametric studies, where a system property
(such as reliability or availability) is evaluated for many
combinations of parameters and model variants defined
using the Java API. To simplify this integration, STPN models
can be exported from the ORIS GUI as Java code.

In this paper, we illustrate modeling and analysis features
of ORIS, and we report on examples of its application. Specifi-
cally, in Sections 2 and 3, we illustrate how to construct STPN
models and perform quantitative analysis of their underlying
stochastic processes, respectively, using a running example
from the literature on software rejuvenation to describe
the typical modeling and evaluation workflow in ORIS
(including derivation of distributions of GEN durations),
the class of properties that can be analyzed, and the limits
of the analysis methods. In Section 4, we review selected
case studies where ORIS has been applied to the quantitative
evaluation of models of real-time software [24], [55], railway
signalling systems [13], repair procedures for gas and water
distribution networks [14], [25], and activity recognition [20],

[11]. Finally, conclusions are drawn in Section 5.
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Figure 1: Use-case diagram of the functionalities provided
by the ORIS GUI and API.

2 THE ORIS WORKFLOW: MODEL SPECIFICATION

In ORIS, concurrent systems with stochastic temporal pa-
rameters are specified using the formalism of STPNs [69].
In the following, we define syntax and semantics of STPNs
(Section 2.1), and we illustrate the typical workflow in the
construction of a model: the set of feasible behaviors is
initially identified by capturing the structure of concurrency
and qualitative timing constraints (Section 2.2); and it is
then associated with a quantitative measure of probability
by setting stochastic parameters (Section 2.3); the model is
finally validated through interactive simulation featured as a
token game (Section 2.4).

2.1 Stochastic Time Petri Nets (STPNs)

STPNs are a formal model of concurrent timed systems where
transitions (depicted as vertical bars, see for instance Fig. 2)
represent activities, places (depicted as circles) represent
discrete components of the logical state with values encoded
by a number of tokens (depicted as dots), and directed arcs
from input places to transitions and from transitions to output
places represent token moves occurring at the execution of
activities: a transition is enabled when all its input places
contain at least one token; and its firing will remove a
token from each input place and add one to each output
place. The time elapsing from the enabling to the firing
of a transition is a random variable (possibly imposing
minimum and maximum duration). Besides, the choice
between transitions with equal time to fire is solved by a
random switch determined by probabilistic weights.

Similarly to stochastic reward nets [64] and stochastic
activity networks [59], STPNs also permit the enabling
of a transition to be restricted by general constraints on
token counts, called enabling functions. Moreover, additional
updates of token counts after the firing of a transition can
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be specified through update functions, the restart of selected
transitions can be forced using reset sets, and priorities can be
imposed among immediate or deterministic transitions.

Definition 1 (Syntax). An STPN is a tuple 〈P, T,A−, A+, B,
U,R,EFT,LFT, F,W,Z〉 where: P and T are disjoint sets
of places and transitions, respectively; A− ⊆ P × T and
A+ ⊆ T × P are precondition and post-condition relations,
respectively; B, U , and R associate each transition t ∈ T
with an enabling function B(t) : M → {TRUE, FALSE}, an
update function U(t) : M →M, and a reset set R(t) ⊆ T ,
respectively, where M is the set of reachable markings
m : P → N; EFT and LFT associate each transition t ∈ T
with an earliest firing time EFT (t) ∈ Q>0 and a latest firing
time LFT (t) ∈ Q>0 ∪ {∞} such that EFT (t) ≤ LFT (t);
F , W , and Z associate each transition t ∈ T with a
Cumulative Distribution Function (CDF) Ft for its dura-
tion τ(t) ∈ [EFT (t), LFT (t)] (i.e., Ft(x) = P{τ(t) ≤ x},
with Ft(x) = 0 for x < EFT (t), Ft(x) = 1 for x > LFT (t)),
a weight W (t) ∈ R>0, and a priority Z(t) ∈ N, respectively.

A place p is said to be an input or output place for a tran-
sition t if (p, t) ∈ A− or (t, p) ∈ A+, respectively. Following
the usual terminology of stochastic Petri nets, a transition t is
termed immediate (IMM) if EFT (t) = LFT (t) = 0 and timed
otherwise; a timed transition is termed exponential (EXP)
if Ft(x) = 1 − exp(−λx) for some rate λ ∈ R>0, or
general (GEN) if its time to fire has a non-exponential distribu-
tion; as a special case, a GEN transition t is deterministic (DET)
if EFT (t) = LFT (t) > 0. For each transition t with
EFT (t) < LFT (t), we assume that Ft can be expressed
as the integral function of a probability density function
(PDF) ft, i.e., Ft(x) =

∫ x
0 ft(y) dy. The same notation is also

adopted for an IMM or DET transition t ∈ T , which is
associated with a Dirac impulse function ft(y) = δ(y − y)
with y = EFT (t) = LFT (t).

A marking m ∈ M assigns a natural number of tokens
to each place of an STPN. A transition t is enabled by m
if m assigns at least one token to each of its input places and
the enabling function B(t)(m) evaluates to TRUE. The set of
transitions enabled by m is denoted as E(m).

Definition 2 (State). The state of an STPN is a pair 〈m,~τ〉
where m ∈M is a marking and vector ~τ ∈ R|E(m)|

>0 assigns
a time to fire ~τ(t) ∈ R>0 to each enabled transition t ∈ E(m).

Definition 3 (Semantics). Given an initial marking m0,
an execution of the STPN is a (finite or infinite) path
ω = s0

γ1−→ s1
γ2−→ s2

γ3−→ · · · such that: s0 = 〈m0, ~τ0〉 is the
initial state, where the time to fire ~τ0(t) of each enabled tran-
sition t ∈ E(m0) is sampled according to the distribution Ft;
γi ∈ T is the ith fired transition; si = 〈mi, ~τi〉 is the state
reached after the firing of γi. In each state si:

• The next transition γi+1 is selected from the set of
enabled transitions with minimum time to fire and
maximum priority according to a discrete distribution
given by weights: if Emin = arg mint∈E(mi) ~τi(t) and
Eprio = arg maxt∈Emin Z(t), then t ∈ Eprio is selected
with probability pt = W (t)/(

∑
u∈Eprio

W (u)).
• After the firing of γi+1, the new marking mi+1 is

derived by (1) removing a token from each input
place of γi+1, (2) adding a token to each output place

of γi+1, and (3) applying the update function U(γi+1)
to the resulting marking. A transition t enabled by
mi+1 is termed persistent if it is distinct from γi+1,
it is not contained in R(γi+1), and it is enabled also
by mi and by the intermediate markings after steps
(1) and (2); otherwise, t is termed newly enabled (thus,
transitions in the reset set of γi+1 are newly enabled
if enabled after the firing).

• For each newly enabled transition t, the time to fire
~τi+1(t) is sampled according to the distribution Ft; for
each persistent transition t, the time to fire in si+1 is
reduced by the sojourn time in the previous marking,
i.e., ~τi+1(t) = ~τi(t)− ~τi(γi+1).

When features are omitted for a transition t ∈ T , default
values are assumed as suggested by intuition: an always-true
enabling function B(t)(m) = TRUE and an identity update
function U(t)(m) = m for all m ∈ M; an empty reset set
R(t) = ∅; a weight W (t) = 1; and, a priority Z(t) = 0.

Arc cardinalities greater than 1 could be easily introduced
in STPN syntax and semantics, letting the firing of a transi-
tion remove an arbitrary number of tokens from each input
place or add an arbitrary number of tokens to each output
place. Though explicitly supported by the SIRIO library, arc
cardinalities were not introduced in the ORIS GUI to reduce
model clutter, in contrast with explicit features provided by
other tools [72]; instead, arc cardinalities can be modeled in
ORIS through enabling and update functions.

2.2 Defining the structure of concurrency of the model
The process for the design of an STPN is conveniently
decomposed in activities focusing on two different aspects
of the model: the set of feasible timed behaviors is first
identified by designing the structure of concurrency, possibly
involving qualitative min-max timing constraints; a (quanti-
tative) measure of probability is then introduced by setting
stochastic parameters.

We illustrate the concept with reference to an example re-
lated to the practice of software rejuvenation where a software
system subject to aging is restarted to prevent failures and
avoid extended unavailability intervals [67], [58], [37], [46].
Inspired by [38], we consider a system that accumulates
internal errors over time, which are not observed and
do not impair correct operation but may eventually lead
to a disruptive failure. To prevent failures, the system is
periodically rejuvenated by switching it off and restoring it
to the initial safe state. If a failure occurs, upon detection,
an unplanned repair is performed and the next rejuvenation
time is rescheduled.

The basic structure of concurrency is captured by the
underlying Petri Net (PN) of the model (i.e., by places,
transitions, enabling functions, update functions, and priori-
ties), using places and transitions to represent logical states
and state transitions, respectively. In the case of software
rejuvenation, the model (shown in Fig. 2) captures the
concurrency between the aging process of the software
system and the rejuvenation mechanism. In the top part,
places Up, Down, and Detected represent the aging of the soft-
ware through the states of correct functionality, undetected
down state, and detected failure state, respectively, while
transitions fail, detect, and repair account for the time
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Figure 2: GUI editor of ORIS showing an STPN model of
software rejuvenation. As usual in stochastic Petri nets, the
color and thickness of a transition represent the PDF type
of its stochastic duration: thick bars filled in with white,
gray, and black represent EXP, DET, and GEN transitions,
respectively; thin black bars represent IMM transitions.
Transitions associated with a non-default value of enabling
function, update function, or reset set are marked with label
e, u, or r, respectively. The update functions are: Wait = 1
for repair; Wait = 0 for detect; Up = 1 for rejuvenate;
Up = 0; Down = 0; Detected = 0 for clock. Time is in h.

required by software aging, failure detection, and unplanned
repair, respectively. In the bottom part, places Wait and Rej
model a rejuvenation scheduled and in progress, respectively,
while transitions clock and rejuvenate represent the time
between two consecutive rejuvenations and the time needed
to perform rejuvenation, respectively. The interactions be-
tween the software system and the rejuvenation mechanism
are modeled through update functions: transition clock is
associated with an update function that flushes places Up,
Down, and Detected to represent system switch-off during
rejuvenation; transition rejuvenate is associated with an
update function that assigns a token to place Up to model sys-
tem restart after rejuvenation; transition detect is associated
with an update function that flushes place Wait to account
for disabling of rejuvenation during unplanned repair; and,
transition repair is associated with an update function
that adds a token to place Wait to represent reschedule
of rejuvenation. The caption of Fig. 2 provides the exact
definition of the update functions: specifically, ORIS accepts
a semicolon-separated list of update functions with syntax
“p = e” where p is a place name and e is an expression made
of place names, constants, and operators (the exact syntax of
expression e is described in Section 3.1).

Firm timing constraints and reset sets associated with
transitions contribute to the definition of the set of feasible
behaviors by extending the basic PN model into a Time
Petri Net (TPN) [8]. Note that this determines the set Ω
of timed firing sequences (i.e., transition firing sequences,
each associated with the time elapsed between each pair of
consecutive firings). In the example of software rejuvenation,
we assume that the system specification requires the time
to detect a failure to be lower than 4 h, the repair time to
be between 4 and 24 h, the rejuvenation time to be lower
than 2 h, and the rejuvenation period to be equal to 168 h

(7 days). According to this, in Fig. 2, transitions detect,
repair and rejuvenate have support [0, 4] h, [4, 24] h, and
[0, 2] h, respectively, while transition clock has a deterministic
value of 168 h. Conversely, we assume that the failure time
is unbounded, thus transition fail has support [0,∞) h.
Note how bounded firing intervals restrict the set of possible
behaviors: for instance, if the system fails 160 h hours after it
has been started, the failure will be detected with certainty
before rejuvenation; in contrast, if inter-rejuvenation time had
support [160, 168] h, rejuvenation could be triggered before
failure detection. Finally, the initial marking is Up Wait so
that the software system is initially up and the timer to the
next rejuvenation has just started.

2.3 Deriving the stochastic parameters of the model
Stochastic duration of system activities and random choices
are captured by probability distributions and weights asso-
ciated with transitions, respectively. The characterization of
these stochastic parameters identifies an STPN model that
casts the set Ω of timed firing sequences determined by the
underlying TPN into a probability space [55].

ORIS supports expolynomial distributions (also known in
the literature as exponomials [65]) obtained as products of
exponentials and polynomials, on bounded or unbounded
supports, with an analytical representation over the entire
domain or piecewise-defined over multiple sub-domains.
Expolynomials are general expressions with EBNF syntax

EXPR := PROD { + PROD }
PROD := FLOAT { * TERM }
TERM := x | x^ INT | Exp[ FLOAT x]

where FLOAT and INT are floating-point and integer constants,
respectively, e.g., 4.0 * Exp[-2.0 x] * x^2.

Expolynomials permit the representation of common
distributions (e.g., Erlang, uniform) and enable a variety
of approaches to fit data (e.g., moments [70], shape [45],
[57]) obtained in different manners (e.g., estimated from
real measurements, synthetically generated, derived from
system specification). For instance, in the example of software
rejuvenation, we assume that the failure time has been
repeatedly observed, obtaining measurements lower than
x1 = 72 h (3 days), x2 = 144 h (6 days), and x3 = 216 h
(9 days) with frequency p1 = 0.001, p2 = 0.006, and
p3 = 0.016, respectively; and, with frequency p4 = 0.984,
measurements larger than x3, for which the mean value was
672 h (28 days). These measurements can be modeled by
the PDF of transition fail, with piecewise representation
over 4 intervals: i) 3 uniform PDFs with value 0.0000139,
0.0000694, and 0.000139 over [0, 72) h, [72, 144) h, and
[144, 216) h, respectively, fitting the PDF of time to failure
within each interval [xi, xi+1) as (pi+1 − pi)/(xi+1 − xi)
∀ i ∈ {0, 1, 2}, with x0 = 0 and p0 = 0; and, ii) a shifted
exponential PDF f(x) = p4α exp(−λx) for x ∈ [x3,∞) with
rate λ = 0.002193, shift x3 = 216 h, and α = 0.003522
(which has mean value of 672 h when x > x3). Other, more
complex, expolynomial PDFs could also be used. Conversely,
we assume no data measurements for the time spent in failure
detection, repair, and rejuvenation; thus transitions detect,
repair and rejuvenate can be associated with uniform
distributions over [0, 4] h, [4, 24] h, and [0, 2] h, respectively.
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ORIS also supports the definition of transition weights as
expressions e built from token counts in the current marking
(e.g., 2.0*p1, the exact syntax is defined in Section 3.1); in
particular, weights, used to select one among the enabled
IMM transitions (or DET transitions with the same value),
allow modeling of discrete probabilistic choices that depend
on the logical state of the system (e.g., probability of message
losses depending on the conditions of the radio channel).
Rates of EXP transitions can also be expressed as functions
of the current marking, representing activity durations that
depend on the logical state of the system (e.g., service rates
depending on the number of available servers).

2.4 Validating the model
As usual in the lifecycle of a model, a validation step is
needed to achieve confidence about its correspondence with
the intended (often implicit) modeling aim. This can be
effectively supported by interactive simulation, which in
ORIS is implemented in the form of a token game.

Specifically, the state space of the STPN model can be
explored either manually, by selecting the next transition
to fire from the set of firable transitions, or automatically,
by specifying a number of transition firings to be executed
or a stop condition (i.e., a function of the current marking,
see Section 3.1). To support inspection of the model and
gain insight into its behavior, the firing probability and the
range of accepted firing times of each firable transition are
evaluated using the method of stochastic state classes [44].

3 THE ORIS WORKFLOW: MODEL EVALUATION

Reward properties and stop conditions allow the user to evaluate
the probability of a subset of execution paths satisfying
specific criteria, and to calculate the expected value of
rewards accrued in each state of such paths. In this section,
we illustrate how these mechanisms can be used in ORIS for
the quantitative evaluation of non-functional requirements
from an STPN model of the system (Section 3.1). Then, we
compare the different analysis engines available in ORIS for
the evaluation of reward properties (Section 3.2), and discuss
their limitations and complexity factors, also with respect to
alternative methods and tools (Section 3.3). Finally, we recall
the method of stochastic state classes, which forms the basis
for the regenerative engine, the most distinctive feature of
ORIS (Section 3.4).

3.1 Reward Properties and Stop Conditions
Rewards. For the quantitative evaluation of an STPN model,
ORIS supports formulation and evaluation of rewards de-
fined from the marking process M = {M(t), t ∈ R≥0} where
M(t) is the marking at time t ≥ 0. A reward r is an
expression that combines constants and token counts so
as to define a real-valued function over the set of markings.
Formally, ORIS accepts any expression e with the following
syntax:

c := place id | constant
e := c | ( e) | e+ e | e- e | e/ e | e* e | e^ e | e== e
| e!= e | e> e | e>= e | e< e | e<= e | e&& e | e|| e
| ! e | If( e, e, e) | min( e, e) | max( e, e)

where place identifiers evaluate to the number of tokens
assigned by the marking M(t), operators have the same
precedence as in Java, comparison operators return 0 or 1,
and If(e1,e2,e3) is a ternary conditional if operator as in
the Java language (i.e., it evaluates to the value of e2 or the
value of e3 depending on whether e1 evaluates to TRUE or
FALSE, respectively). In particular, the latter construct is often
used in the form If(ϕ,1,0) which returns the probability
of ϕ, i.e., the measure of probability of the set of behaviors
where the marking satisfies the (state) property ϕ. For exam-
ple, if p1 and p2 are names of places in the model, the reward
expression If(p1+p2>0,1,0) evaluates the probability of
states where at least one token is contained in p1 or p2. Since
e1 and e2 are themselves expressions, the ternary operator
also permits more complex forms implementing an if-then-
else logic, with possible nesting, as enabled by the ternary
operator in the Java or C languages. Conversely, a reward
can also be defined as a simple expression e, which is a
shorthand of the form If(true,e,0) and evaluates the
expected value of expression e, e.g., the reward expression
p1+p2 evaluates the expected value of the sum of tokens in
places p1 and p2.

ORIS allows the evaluation of the expected value of
reward expressions during the transient evolution of the
stochastic process and at steady-state. In particular, let
pij(t) = P{M(t) = j |X0 = i} and pij = limt→∞ pij(t)
represent, respectively, the transient and steady-state proba-
bilities for each initial regeneration i ∈ R (an initial marking
where times to fire are sampled independently) and each
marking j ∈ M; then, a reward r is evaluated for each
marking j ∈ M to compute the instantaneous expected
reward Iir(t) =

∑
j∈M r(j) pij(t) at each time t, its steady-

state expected value I
i
r = limt→∞ Iir(t) =

∑
j∈M r(j) pij , or

its cumulative expected value Cir(t) =
∫ t
0 Ir(u) du up to t.

Rewards can be used for the evaluation of a variety of
non-functional requirements. For example, for the model
of software rejuvenation in Fig. 2, a measure of system
availability can be expressed as r(m) = Up, which will return
the probability to be in a correctly functioning state.

Stop Conditions. While rewards define quantitative prop-
erties over system states, stop conditions can turn states that
satisfy a Boolean predicate into absorbing states where all
transitions are disabled and the system sojourns indefinitely.
This mechanism allows the evaluation of quantitative mea-
sures where only a subset of execution paths is of interest. For
example, system reliability is defined as the “probability that
the system will continuously perform its intended function
during a specified period of time [0, T ]”: the system must
be continuously available during the time interval [0, T ]. We
can evaluate this property in ORIS using a stop condition
s(m) that evaluates to TRUE when the system is down, i.e.,
Up==0. Then, the instantaneous expected value of the reward
r(m) = Up at time T excludes execution paths where the
system is up at time T but has visited a down state before:
the reward then gives the probability that the system is up
at time T and has never reached a down state in [0, T ].

In general, stop conditions are Boolean functions s : M→
{TRUE, FALSE} over the set of markings of an STPN. They are
specified using the same syntax as rewards in ORIS, where
any nonzero value is considered TRUE.
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Notably, stop conditions allow the evaluation of reach-
avoid objectives equivalent to a bounded until operator
ϕ1 U [0,t]ϕ2 of probabilistic model checking [55]. This op-
erator specifies the set of model behaviors where a safety
condition ϕ1 is always satisfied until a goal condition ϕ2 is
reached within the time bound t; to evaluate the probability
measure of these behaviors, the user can run transient
analysis using the stop condition !ϕ1 ||ϕ2 (i.e., stop on
illegal or goal states) and evaluate the reward ϕ2 for each
time instant t (i.e., compute the probability that a goal state
is reached by time t traversing only safe states). Probabilistic
until and probabilistic existence TRUE U [0,t]ϕ2 (a special case)
were found to be the two most frequent specification patterns
for quality and dependability requirements of software-
intensive systems in application domains such as medical
applications, automotive systems, air traffic control, and
railway signalling [42].

Example. The model of software rejuvenation shown in
Fig. 2 can be analyzed in ORIS using regenerative transient
analysis, which is performed with time limit tmax = 1344 h
(corresponding to 8 weeks of wall-clock time) and with step
size k = 0.005 h, so that transient probabilities are evaluated
for all t = 0, k, 2k, . . . , b tmax

k ck.
To evaluate system availability, we compute the instan-

taneous reward Down>0||Detected>0||Rej>0, which
gives the transient unavailability, i.e., the probability that the
system is not working at time t, with Up Wait being the
initial marking. We also evaluate the cumulative unavailability,
i.e., the expected outage time within the interval [0, t]. Plots in
the top and middle of Fig. 3 depict transient and cumulative
unavailability of the system, respectively; unavailability is
very high (nearly 0.993) at time 168 h, since this is the time
of the first scheduled rejuvenation and the probability that
the system fails before 168 h is low (nearly 0.009). As time
progresses, failures and repairs before rejuvenation become
more frequent, reducing unavailability at peaks produced by
the initial schedule (rejuvenation is rescheduled after repair),
and slightly increasing unavailability between peaks.

To evaluate system reliability, we compute the instanta-
neous reward Down with stop condition Down>0, yielding
the transient unreliability, i.e., the transient probability that
the system has failed at least once by time t (again, with
Up Wait being the initial marking). As shown by the plot at
the bottom of Fig. 3, system reliability is quite low: it could
be improved by increasing the frequency of rejuvenations, at
the cost of reducing system availability.

The results from Fig. 3 could be used to determine
whether the software system meets given unavailability
and unreliability requirements, and to predict the time
intervals during which it is subject to maintenance. Moreover,
evaluation of the considered rewards could also be repeated
for different values of the model parameters (notably, for
different values of the rejuvenation period), so as to derive
the time to the next rejuvenation that achieves the best trade-
off between reliability and availability of the software system.

3.2 Analysis Engines and Complexity Factors

As illustrated in Fig. 1, ORIS provides a suite of analysis
engines that implement different solution methods, but

Figure 3: GUI of ORIS: for the model of software rejuvenation
of Fig. 2, plots show transient rewards providing the transient
unavailability (top), cumulative unavailability (center), and
transient unreliability (bottom). Transient probabilities and
rewards (instantaneous or cumulative up to time t) can be
visualized also in table form (steady-state probabilities and
rewards can be visualized in table form only).

support the evaluation of STPN properties specified using
the same input format for rewards and stop conditions. Each
analysis engine imposes different limitations on the class
of the underlying stochastic process of the STPN, which
result in more efficient solution methods, but can require
additional care (or approximations) during the modeling
phase. We provide here an overview of all analysis engines.
Markovian Engine. This engine implements standard meth-
ods for transient and steady-state analysis of CTMCs [62].
It requires STPNs with only EXP and IMM transitions
(also known in the literature as GSPNs [2]); in practice, to
overcome this severe limitation, each GEN transition can
be replaced (prior to the analysis) with the sequence of
EXP transitions produced by a phase-type approximation
(obtained, for example, using PhFit [45]).

The implementation uses dense transition matrices of size
|M|×|M| to solve linear systems (for steady-state analysis in
each bottom component of the process) and for matrix-vector
multiplications in the method of uniformization, adopting the
Fox-Glynn algorithm [34] to select the number of iterations
that guarantee an error bound ε at each time point.
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Enabling Restriction Engine. This engine implements tran-
sient analysis for MRPs under enabling restriction [41]. It
requires STPNs with at most one GEN transition enabled
in each state (this requirement is checked by ORIS at the
beginning of the analysis). This method partitions the state
space in subgraphs where only a specific GEN transition is
enabled: the transient solution of each subgraph (computed
with uniformization) is used to evaluate the global and local
kernels of MRP, which are then used to solve a system of
Volterra integral equations [50].

Similarly to the Markovian engine, the implementa-
tion uses dense transition matrices of size |M| × |M| for
uniformization; the solution of Volterra integral equations
requires O(T 2) multiplications of |R| × |M| matrices, where
|R| is the number of MRP subgraphs, |M| is the number
of markings, and T is the number of time ticks (in the time
interval [0, T∆t] under analysis, for a given time step ∆t).

Regenerative Engine. This engine implements transient and
steady-state analysis of MRPs with multiple GEN transitions
enabled in each state [44]. Steady-state analysis requires a
bounded number of transition firings until a regeneration,
i.e., a state where all transitions are newly-enabled; this con-
dition can be checked for a given STPN by the (terminating)
algorithm for nondeterministic analysis of the underlying
TPN. In contrast, transient analysis can lift this restriction by
allowing an error in the enumeration of MRP subgraphs [44].

The implementation is based on the enumeration of
stochastic state classes, which encode (symbolically) the
joint PDFs of transition timers after each firing. The analysis
complexity depends on the number of classes and on the
analytical form of the PDFs [60]. Once kernels are evaluated
using stochastic state classes, steady-state analysis requires
the solution of an |R| × |R| linear system, while transient
analysis requires the solution of a system of Volterra integral
equations, through O(T 2) multiplications of |R| × |M|
matrices, where |R| is the number of MRP subgraphs, |M| is
the number of markings, and T is the number of time ticks.

Forward Engine. This engine implements transient analysis
of STPNs without restrictions on the presence of regenera-
tions [44]. The implementation enumerates a single graph of
stochastic state classes from the initial state, until the earliest
firing times EFT (γ) of transitions along each sequence
surpass the target time bound of the analysis. The com-
putational cost depends on the number and length of firing
sequences before the time bound, and on the complexity of
PDF functions (number of terms in their analytical form).
To reduce the number of enumerated classes, the user can
specify a truncation error ε > 0: in this case, the analysis
guarantees the error bound 0 ≤ pij(t)− p̃ij(t) ≤ ε between
approximate transient probabilities p̃ij(t) and exact ones
pij(t). A truncation error ε is required when the STPN
allows cycles of transitions firing in zero time; effects of
the truncation error on the analysis are evaluated in [44].

Nondeterministic Engine. In addition, ORIS supports non-
deterministic analysis of the state space of STPNs [68]: the
dense set of timed states reached by an STPN is encoded as
a directed graph (state class graph) where edges are transition
firings and nodes are state classes comprising a marking and
a set of timer values. This analysis supports verification of
qualitative properties of the model: for example verifying

whether a marking can be reached, or whether the state class
graph contains a regeneration on each cycle (allowing exact
regenerative analysis) or cycles of IMM transitions (requiring
ε > 0 in the forward engine).

3.3 Advantages over alternative tools
Several alternative tools have been developed over the years
for the evaluation of quantitative properties from models
of stochastic systems. ORIS provides a contribution that is
twofold, bringing improvements both to the applicability of
analysis methods and to the user workflow.

On the one hand, ORIS extends the evaluation of quanti-
tative properties to a larger class of stochastic processes, be-
yond Markov chains (analyzed in PRISM, MRMC, SMART),
and beyond models with at most one GEN timer in each state
(analyzed in TimeNET) or with at most one DET timer in each
state (analyzed in MC4CSLTA [4]). The method of stochastic
state classes, leveraged by the regenerative and forward
engines of ORIS, allows the analysis of models including, in
each state, multiple GEN timers: deterministic, uniform, or
timers with expolynomial PDFs, possibly with firm lower and
upper bounds. This class of models is of particular importance
for the analysis of systems where concurrency is limited
through firm timing constraints (e.g., firm lower and upper
bounds of activity duration in real-time systems). It is also
important when GEN distributions are required not because
of firm timing constraints between activities, but for an
accurate and compact fitting of experimental data. We stress
the fact that, in this latter case, phase-type distributions [45]
can be used to fit input data with EXP timers [56], at the
expense of a state-space explosion (producing models that
can be analyzed with tools such as PRISM). Conversely,
analysis methods applicable to more general classes of
stochastic processes incur higher computational costs; and it
is recommended to select the most specific analysis method.

On the other hand, in the user workflow, ORIS allows
seamless integration of GUI modeling and validation with
a programmatic approach based on the SIRIO API. Using
the graphical interface, the user can quickly develop a model
and validate its operation using the interactive simulator or
through the evaluation of quantitative requirements; once
validated, the model can be exported from ORIS as Java code
using the API of the SIRIO library. This integration allows
the user to introduce quantitative evaluation of parametric
non-Markovian models into larger software projects, such
as tools for computer-aided design of critical infrastructures
[21], [25], autonomic systems using models at runtime [15],
ambient assisted living applications [20]. In contrast, tools
such as TimeNET or GreatSPN allow graphical editing of a
model, but not its integration in other software projects; and
tools such as PRISM or Storm require input models specified
with text-based formalisms.

3.4 The method of stochastic state classes
The method of stochastic state classes integrates correctness
verification of feasible behaviors (identified by the underly-
ing TPN) with quantitative evaluation of their probability
(induced by the stochastic parameters of the STPN). Specif-
ically, in the execution of a TPN, a sequence of transitions
can be fired with different timings, each reaching the same
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marking but with possibly different values of the age and
the vector of remaining times of enabled transitions. The
set of all the reachable values of this vector takes the shape
of a particular convex linear polyhedron, usually termed
zone, which can be efficiently encoded and manipulated as
a Difference Bounds Matrix (DBM) [32]. The composition
of a DBM zone and a marking (or, more generally, a logical
location) is usually called state class, and comprises the basic
abstraction for finite symbolic representation of the state
space of any model where all active timers advance with
the same speed. This has been widely exploited in a number
of software tools for qualitative verification of concurrent
models with non-deterministic timers based on TPNs [9],
[36], [68] or timed automata [7], [30].

The basic idea of stochastic state classes is to extend state
classes with a multivariate distribution over the allowed
values of the age and vector of remaining times of transitions
(the support of their probability density). The analytical form
of this distribution turns out to be derivable through efficient
symbolic manipulation, provided that all the durations in
the model are either deterministic or expolynomial. Many of
the distinctive capabilities of the ORIS tool develop on an
efficient Java implementation of this derivation and on its
combination with Markov-regenerative analysis.

More specifically, a stochastic state class [69] encodes: i) a
marking; ii) a joint support for the remaining times to fire
of the enabled transitions and for the absolute elapsed time
(termed age); and, iii) a joint PDF for such values.

Definition 4 (Stochastic state class). A stochastic state class
is a tuple Σ = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 where: m ∈ M is a
marking; f〈τage ,~τ〉 is the PDF (immediately after the previous
firing) of the random vector 〈τage , ~τ〉 including the age timer
τage and the times to fire ~τ of transitions enabled by m; and,
D〈τage ,~τ〉 ⊆ Rn+1 is the support of f〈τage ,~τ〉.

Given a stochastic state class Σ, a succession relation
provides the joint support and the joint PDF of the random
vector 〈τage , ~τ〉 conditioned on the firing of a transition γ.

Definition 5 (Succession relation). Σ′ = 〈m′, D′, f ′〈τage ,~τ〉〉
is the successor of Σ = 〈m,D, f〈τage ,~τ〉〉 through transition γ
with probability µ, and we write Σ

γ,µ
==⇒ Σ′, if, given that the

marking of the STPN is m and 〈τage , ~τ〉 is distributed over
D according to f〈τage ,~τ〉, then: γ has nonzero probability µ
of firing in Σ; if γ fires in Σ, its firing yields the marking m′

and, conditioned on this event, the new vector of times to
fire 〈τ ′age , ~τ ′〉 is distributed over D′ according to f ′〈τage ,~τ〉.

The relation
γ,µ
==⇒ can be enumerated by computing the

probability of transition firings and the support and PDF
of the random vector 〈τage , ~τ〉 in successor classes [69].
In particular, the support is encoded as a DBM and, for
models with expolynomial GEN distributions, the PDF takes
a piecewise representation over a partition of the support in
DBM sub-zones [19]. Starting from an initial stochastic state
class in which the times to fire of the enabled transitions are
independently distributed, transient trees can be computed
where nodes are stochastic state classes and edges are labeled
with transitions and their firing probabilities, supporting the
derivation of quantitative measures for the transient and
steady-state regime of STPNs.

For STPNs with underlying MRP, regenerative transient
analysis [44] enumerates transient trees of stochastic state
classes reached within a given time limit between each pair
of regeneration points [26], [50], i.e., selected transition firings
after which future evolution is independent of past history
and univocally determined by the specific regeneration value.
Transient measures between regeneration points are encoded
in a local kernel and a global kernel, and then combined
through a system of Markov renewal equations to compute
transient probabilities of reachable markings.

A powerful class of “extended regenerations” can be
detected in STPNs with DET transitions by verifying whether
all GEN timers are reset or have been enabled for a deter-
ministic time: in this case, given the current marking and the
enabling times of GEN timers, the probability distribution
of future states is conditionally independent of the previous
history. This idea, introduced in [55], generalizes the usual
concept of regeneration from the literature on stochastic
Petri nets [27], which requires all enabled GEN transitions to
be newly enabled (i.e., with enabling time equal to 0), and
extends the applicability of regenerative analysis to a larger
class of models with DET and GEN transitions.

4 CASE STUDIES

We illustrate how ORIS can be exploited in quantitative
evaluation of non-Markovian models by reviewing some
selected cases of application [55], [24], [14], [25], [13], [20],
[11], in various domains and with different usage patterns.

4.1 Software Engineering

4.1.1 Model checking of real-time systems
In real-time software models, firm bounds on task durations
are often crucial in guaranteeing the system correctness.
A representative example is Fischer’s protocol [52], which
guarantees mutual exclusion of a set of processes that
compete for access to a critical section by imposing firm
bounds on the duration of write operations and test delays.

Quantitative properties of this protocol were analyzed
in [35] for read and write operations modeled with exponen-
tial or Erlang distributions, which do not guarantee mutual
exclusion. In [53] and [55], using the regenerative engine of
ORIS, it was possible to analyze steady-state and transient
properties, respectively, of a correct model of the protocol,
where read and write operations were modeled by GEN
transitions with firm upper and lower bounds.

Fig. 4 illustrates such STPN model for three processes P1,
P2, P3: each horizontal section represents a process, while
place id models a shared variable that can take the values
{0, 1, 2, 3}. When id is empty, a process Pi for i = 1, 2, 3
can access the critical section by (1) setting the number of
tokens of id to its identifier i (through the update function
id=i of transition writei), (2) waiting for a time greater
than the maximum write time of any other process (waiti
fires after 1.1 time units, since transitions writingi are
uniformly distributed over [0, 1]), and then (3) ensuring that
the number of tokens in id has not changed (i.e., no other
process has started an access to the critical section). If some
other process has changed the token count of id, process Pi
aborts and waits for id to become empty before starting
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Figure 4: STPN model of Fischer’s protocol, a software engineering case study analyzed in [53], [55].

Figure 5: Probability that process P1 enters the critical section
for the first time within time β (transient reward cs1 with
stop condition cs1==1) from different initial states.

a new attempt. These conditions on id are checked using
enabling functions id==i and id!=i for IMM transitions
readSelfi and readOtheri, respectively. The time spent
in the critical section is modeled as uniformly distributed
over [0, 2] for all processes (transitions servicei), while idle
time is exponentially distributed with rate 0.1 (transitions
arrivali). Mutual exclusion is enforced by firm time bounds:
after the waiting phase, a process can detect concurrent
accesses and let other processes enter the critical section [52].

In Fig. 5, we illustrate the probability that process P1

enters the critical section within time β, for β ∈ [0, 12]
and different initial states: P1 is ready while P2 and
P3 are idle (mA = ready1 idle2 idle3), P1 is ready
but P3 has already started to access the critical section
(mB = 3 id ready1 idle2 waiting3), P1 is ready but
P2 is trying to access the critical section after P3 (mC =
3 id ready1 writing2 waiting3). This property can be ex-
pressed as the instantaneous reward cs1 with stop condition
cs1==1, comprising a probabilistic existence pattern [42].

4.1.2 Testing of real-time systems
In the testing process of concurrent timed systems includ-
ing both controllable (nondeterministic) temporal parameters
and noncontrollable (stochastic) temporal parameters, input
generation is a complex task aimed at identifying the values
of controllable parameters that maximize the probability
that the system executes selected test cases [43], [49], [71].
This context is another testbed for modeling and analysis of
systems with firmly bounded stochastic durations.

In [24], input generation is addressed with reference
to a general system model, where controllable parameters
take values in a min-max (possibly unbounded) interval
and noncontrollable parameters have a non-Markovian
distribution (possibly with bounded support). To this end,
the SIRIO API is used to derive the dense set of timings
that let the system run along a selected test case and
to associate it with the measure of probability induced
by the distributions of noncontrollable parameters. Then,
the probability of conclusive test execution is derived as
a function of values of controllable parameters, either in
symbolic or in numerical form. On the one hand, the
symbolic solution repeatedly integrates multi-variate PDFs
with DBM support to eliminate non-controllable variables,
with domain partitioning and polynomial degree growing
with the length of the trace (i.e., number of events of the
test case) and with the concurrency degree of the model.
On the other hand, the numerical solution avoids the curse
of dimensionality of symbolic integration while suffering
the number of samples to be generated and the number of
expolynomial terms in the considered multi-variate PDFs.

The approach is applied to the testing of real-time
software, considering a set of concurrent tasks with con-
trollable release times and non-controllable execution times.
In particular, the latter are assumed to have an Erlang
distribution truncated over the execution time range, so as
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to preserve a nonzero Best Case Execution Time (BCET) and
a firm Worst Case Execution Time (WCET). Experimental
results prove that the approach can be effectively used for
input generation, significantly reducing the number of test
repetitions with respect to random testing.

4.2 Systems Engineering

4.2.1 Performability evaluation of railway signalling systems
In Level 3 of the European Rail Traffic Management Sys-
tem/European Train Control System (ERTMS/ETCS-L3) [33],
the maximum distance that a train is allowed to travel
is computed based on the minimum safe rear-end of the
foregoing train (moving-block signalling), exploiting the Global
System for Mobile Communications-Railway (GSM-R) [1]
for a continuous bidirectional communication between trains
and ground controllers. Hence, headways between trains can
be considerably reduced (in principle to the braking distance)
provided that the GSM-R is highly available [73]. Evaluation
of emergency stops caused by consecutive message losses
provides a challenging testbed for ORIS, given that the
periodic exchange of messages between ground and on-
board controllers may be impaired by synchronous and
asynchronous phenomena with different time scales.

In [13], an ERTMS/ETCS-L3 scenario is considered where
a foregoing train sends Position Reports (PRs) to a ground
controller which, in turn, sends Movement Authorities (MAs)
to the chasing train. Transient failures of the GSM-R may
cause the loss of end-to-end messages (impairing transmis-
sion of PRs or MAs), due to burst noise, connection losses
(requiring repetition of connection trials after a timeout), or
handovers between neighboring radio stations (occurring pe-
riodically given the regular distance between radio stations).
Evaluation of a flat model of this scenario is not feasible
due to the complexity of behaviors resulting from multiple
concurrent GEN timers with overlapping activity intervals.
Moreover, approximation of GEN transitions having firmly
bounded support would reduce the accuracy of results, while
stochastic simulation would suffer the presence of rare events
and the different order of magnitude of durations.

The approach of [13] resorts to the STPN model of Fig. 6,
which consists of: i) a submodel representing communication
failures due to handovers as a periodic process with GEN
jitter and initial DET offset; ii) a submodel with M places
(watch variables) keeping memory of which among the last
M end-to-end messages have been lost due to handovers
(in Fig. 6, M = 4); and, iii) a submodel accounting for
the periodic generation and transmission of PRs and the
subsequent computation and transmission of MAs. The latter
submodel also represents the event (modeled by transition
failure) that, among the last M end-to-end messages, those
that are not lost due to handovers are lost due to burst
noise or connection losses, causing an emergency braking
(without conditioning on the fact that no emergency braking
occurred before). In particular, the probability of such event
(i.e., the weight of transition failure) is computed from the
probability that burst noise or connection losses impair a
given number of consecutive end-to-end messages, which in
turn is derived analytically. Finally, probability distributions
are derived by fitting the ERTMS/ETCS specification with
(possibly piecewise) uniform PDFs or with DET values.

The model is solved by regenerative transient analysis
using SIRIO, computing an upper bound on the first-passage
time distribution of a spurious emergency braking as the
instantaneous expected value of the reward Failure with
stop condition Failure==1. The analysis incurs medium
complexity mainly due to the value of M , the number of
concurrent GEN and DET transitions, and the length of
behaviors between consecutive regenerations. Since the sys-
tem behavior is recurrent over the hyper-period of periodic
message releases and periodic arrivals at cell borders, the
upper-bound on the probability that a spurious emergency
stop occurs within a hyper-period is used as the parameter
of a geometric distribution to derive an upper bound β̃(M, t)
on the first-passage probability that M consecutive losses
occur within a time interval [0, t] of arbitrary duration.

The reduced computational complexity makes it pos-
sible to perform a sensitivity analysis with respect to the
number M of consecutive tolerated losses and the headway
distance Th between trains. Fig. 7 plots β̃(M, t) for increas-
ing values of M and Th. Specifically, β̃(M, t) significantly
decreases by one order of magnitude as Th increases by 6 s,
which corresponds to an increase of M by 1, being at time
t ∼ 1 h in the order of 4.3 · 10−1, 1.5 · 10−2, and 6.9 · 10−4

for Th = 60 s (M = 2), Th = 66 s (M = 3), and Th = 72 s
(M = 4), respectively. The obtained results could be used
to select the delay Th so as to achieve a trade-off between
the utilization of the railway line and the probability that a
train is stopped within 1 h; in turn, the delay Th corresponds
to a headway distance, which determines the maximum
number M of consecutive tolerated losses. Overall, results
prove that the headway distance must be significantly larger
than the braking distance to effectively limit the expected
number of spurious emergency stops.

4.2.2 Performability evaluation of gas distribution networks
During a repair procedure, affected components of a gas
distribution network are isolated by opening or closing some
valves, and the consequent deviation from nominal network
operation is mitigated by regulating the supply pressure [17].
Given that repair steps take random durations, valve and
pressure control is performed at stochastic times, yielding
different completion times of the procedure phases and
different risk that pressure becomes insufficient for demand.
Evaluation of the network performability is relevant in the
applicative perspective, and it permits illustrating how ORIS
can be used to analyze workflows with concurrent steps that
have firmly bounded non-Markovian duration and may be
suspended for a deterministic time (i.e., non-working hours).

To facilitate the procedure modeling, the approach of [14]
extends STPNs implemented in the SIRIO library with two
transition features (not included in the present distribution):
i) fickle functions, which shift the time to fire of persistent
transitions by a deterministic value upon a transition firing,
representing suspension and resumption of activities at de-
terministic time points according to work shifts of personnel;
and, ii) marking-dependent CDFs, which sample the time to
fire at newly-enabling from a different CDF depending on
the marking, modeling pressure restoration with duration
that depends on the number of completed regulation steps.
GEN distributions of repair times are assumed to be derived
from data that could be actually captured by the increasingly
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Figure 6: STPN model of the ERTMS/ETCS-L3 railway signalling case study analyzed in [13].
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Figure 7: Railway signalling case study [13]: first-passage
time distribution of a spurious emergency braking computed
for different values of the number M of consecutive tolerated
losses and of the headway distance Th between trains.

available smart devices, such as the probability that duration
is lower than a value v within a bounded [min,max] interval,
which can be fit by an expolynomial PDF of the form
f(x) = α(x − min)(max − x)e−λx, with α, λ ∈ R+

0 such
that

∫ max
min f(x)dx = 1 and

∫ v
min f(x)dx = p.

To evaluate the network performability, the procedure
model of [14] is solved through forward transient analysis
(since the number of reached regenerations is low), with
(limited) complexity mainly due to the number of concurrent
GEN and DET transitions and on the length (i.e., number of
discrete events) of behaviors where their enabling intervals
overlap. On the one hand, the CDF of the completion time
of the n-th phase of the procedure, with n ∈ {1, . . . , N},
can be computed as a first-passage probability, i.e., as the

instantaneous expected value of the reward EndPhasen
with stop condition EndPhasen==1 (where place EndPhasen
receives a token upon completion of the n-th phase). On
the other hand, since the supply pressure can be controlled
independently of the network history, and a steady state
is reached after any discrete change of the fluid-dynamic
process, the expected value of a measure of Low-Pressure
Risk (LPR) over time can be derived by combining the LPR
experienced in each fluid-dynamic state (computed by fluid-
dynamic analysis of the network) with transient probabilities
of such states, i.e., as the instantaneous expected value of
the reward

∑
γ∈Γ If(e(m, γ),LPRγ , 0) where Γ is the set

of fluid-dynamic states, LPRγ is the LPR measure in γ ∈ Γ,
and e(m, γ) evaluates to TRUE if marking m represents fluid-
dynamic state γ and to FALSE otherwise.

Thanks to the limited computational complexity of for-
ward transient analysis of the procedure model, performa-
bility evaluation of a real gas distribution network with
actual load profiles can be repeated for different values of
various model parameters, notably supporting selection of
the procedure start time that minimizes the overall LPR.

4.2.3 Performability evaluation of water distribution networks

Performability evaluation of repair procedures with non-
Markovian durations and daily work schedules is addressed
also in [25], in the context of water distribution networks,
evaluating the expected Demand Not Served (DNS) over
time, a relevant indicator of the lack of service experienced
by users. Though the problem is similar to that of [14] in
the applicative perspective, the underlying mathematics is
much different (since behavior of pumps depends on node
pressures and tank levels, and, in turn, tank levels depend
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on the history of incoming fluxes and served demand),
providing the opportunity to illustrate an advanced use
of SIRIO, beyond the capabilities of the available engines.

The approach of [25] solves the problem by integrating
quantitative evaluation of the procedure timing, specified by
a model similar to that of [14], with fluid-dynamic analysis
of the network. Specifically, the joint PDF f of the times
when the procedure affects the network behavior is derived
either by stochastic simulation or symbolic analysis of the
procedure model, and fluid-dynamic analysis of the network
is then repeated for each sample extracted from f . To derive
the analytical form of f , the SIRIO API is extended by
enriching stochastic state classes with clock variables (not
included in the present distribution) permitting evaluation of
the time spent in each network topology. In so doing, f can be
derived by enumerating the transient tree of stochastic classes
and by directly manipulating their PDFs through projections
and linear transformations (without performing any type of
analysis), with very limited computational complexity.

Experimentation on a real water distribution network
points out the convenience of the analytical solution over the
simulated one when a high degree of accuracy is needed in
the evaluation of the expected DNS over time.

4.3 Activity Recognition
Activity Recognition (AR) aims at filling the gap between
high-level operations performed by humans and low-level
data collected by sensors, with relevant application in Ambi-
ent Assisted Living (AAL). This context allows testing ORIS
with modeling and analysis of asynchronous phenomena,
requiring a model sufficiently accurate to capture observed
behaviors without overfitting, and sufficiently simple to
permit evaluation at run-time after each observed event.

In [20], [11], AR is addressed by exploiting not only the
type of the observed events but also the continuous-time
duration of activities and inter-event times. To this end, an
STPN model of activities and observable events is derived
and enhanced according to the observed statistics, associating
events with occurrence probabilities and durations with GEN
distributions. In particular, in this context, sample mean and
coefficient of variation of durations are fit with expolynomial
distributions over [0,∞), so as to avoid false negatives that
would be produced by distributions with bounded support
whenever the observed duration is outside that support.

At run-time, SIRIO is used to analyze the model after each
time-stamped event, deriving the set of plausible states and
their likelihoods. Specifically, forward transient analysis is
performed from each plausible state with local stop criterion
being the occurrence of an observable event, with limited
computational complexity thanks to the small depth of
transient trees. Then, the probability that an activity is
performed at time t conditioned to the sequence of events
observed until t is derived as the instantaneous expected
value of the reward If(e(m, a), 1, 0), where e(m, a) is a
function of token counts that evaluates to TRUE if marking m
represents the execution of activity a and to FALSE otherwise.
By exploiting a Forward-Backward procedure, offline AR is
also supported, computing the probability that an activity is
performed at time t based on all the events before and after t.

Experiments performed on a AAL dataset [66] of low-
level sensor data used to predict high-level human activities

show that the considered continuous-time approach achieves
performance measures comparable to state-of-the-art discrete-
time approaches while significantly improving applicability.
In fact, the approach is less prone to overfitting (only few
parameters have to be to fit) and it can be similarly applied
in domains where the observed phenomena have different
timescales.

5 CONCLUSIONS

ORIS represents a unique solution for quantitative modeling
and analysis of non-Markovian models. It includes a new
graphical editor and a new Java library supporting transient
and steady-state analysis of MRPs with concurrent GEN
timers, or even GSMPs with concurrent GEN timers. ORIS
also implements standard solution techniques for transient
and steady-state analysis of CTMCs, transient analysis
of MRPs under the enabling restriction, and state-space
enumeration of models with nondeterministic durations.

Instantaneous or cumulative state-based rewards can be
defined to compute performance measures. Through the Java
API, model definition and analysis can be automated, allow-
ing the user to carry out extensive performance studies (e.g.,
varying multiple parameters of the model). The software
architecture, designed to implement new features of Petri
models and new analysis methods, makes ORIS also a flexible
research tool to evaluate novel solutions for discrete-event
systems. Over the years, ORIS has been successfully used in a
variety of contexts and application domains, for instance as a
GUI to evaluate performability measures in railway signaling
systems [18], as an API to perform sensitivity analysis of
maintenance procedures in gas distribution networks [21],
and also as a tool to implement a new solution technique for
transient analysis of non-Markovian models [10].

The integration of probabilistic model checking tech-
niques for regenerative stochastic systems [55] is planned for
future development in ORIS.
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APPENDIX: EXTENDING THE SIRIO LIBRARY

SIRIO collects libraries for analysis and simulation of TPNs
and STPNs, designed to facilitate the implementation of
new modeling features and new solution techniques. We
illustrate this concept discussing how SIRIO can be extended
to support fickle functions [25], which enable the represen-
tation of suspension of activities for a deterministic time.
Specifically, the STPN syntax (Definition 1) is extended by
associating each transition t ∈ T with a fickle function
I(t) : M × T → R>0 which, in turn, associates each
marking and (fired) transition with a real value. Moreover,
in the derivation of state si+1 = 〈mi+1, ~τi+1〉 reached from
state si = 〈mi, ~τi〉 through the firing of transition γi+1, the
STPN semantics (Definition 3) is extended by adding the
deterministic value I(t)(mi+1, γi+1) to the time to fire of
each transition t that is persistent in state si+1. In so doing,
a transition can be suspended for a deterministic amount of
time upon the firing of a given transition in a given marking.
Modeling. In SIRIO, the Petri net type of the model is
not encoded statically, but it is defined dynamically by
the features associated with its basic elements, allowing
agile maintainability and evolution of code. Therefore,
according to the UML class diagram shown in Fig. 8, a
new class FickleFunction is defined that implements
the TransitionFeature interface, with a map associating
pairs 〈Marking,Transition〉 with a BigDecimal value.
Evaluation. The analysis engines rely on a framework
orchestrated by the class Analyzer, implementing a generic
algorithm (Algorithm 1) for enumeration of the state-space
of discrete-event systems. Specifically, a succession evaluator
is repeatedly invoked to enumerate the children of a parent
stochastic state class, and its behavior can be customized
through pre-processors (applied before the successors of a
stochastic state class are computed) and post-processors (ap-
plied after a stochastic state class is computed). A specific enu-
meration policy can be used to extract stochastic state classes
from a queue and enumerate their successors. Moreover,
a global stop criterion permits halting the whole state-space
enumeration, while a local stop criterion permits terminating
enumeration of the successors of specific classes.

The implementation of Algorithm 1 is customized us-
ing composition rather than inheritance, so that the im-
plementation of new solution techniques amounts to the
implementation of delegate components for Analyzer.
As shown in Fig. 9, each instance of Analyzer is con-
figured with an instance of State, providing the ini-
tial state for the enumeration, and with an instance of
AnalyzerComponentsFactory, providing the objects re-
quired to determine enabled events, select the next event to
analyze, compute successor states, and halt the enumeration
from the current state or globally. Enumeration yields an
instance of SuccessionGraph, which represents a labeled
graph of State instances. To allow for heterogeneous kinds
of analysis, instances of State support the dynamic addition
of objects implementing the StateFeature interface.

Hence, a new class FickleSuccessionEvaluator is
defined which implements the SuccessionEvaluator in-
terface: for each enabled transition whose FickleFunction
has the current marking and fired transition as map entry,
the time to fire is shifted by the corresponding map value.

Figure 8: Extensible Petri net model of the SIRIO library.

Algorithm 1 State-space exploration from the initial class Σ0

(·, ·,Σ0) = INITIALSUCCESSIONBUILDER()
(·, ·,Σ0) = POSTPROCESSOR((·, ·,Σ0))
Q = {(·, ·,Σ0)}
G = ∅
while Q 6= ∅ ∧ ¬ GLOBALSTOP() do

select and remove a succession (Σp, ti,Σ) from Q
(Σp, ti,Σ) = PREPROCESSOR((Σp, ti,Σ))
if NEWSUCCESSION((Σp, ti,Σ)) ∧ ¬LOCALSTOP() then

G = G ∪ {(Σp, ti,Σ)}
for each t ∈ NEXTEVENTS(Σ) do

(Σ, t,Σ′) = SUCCESSIONEVALUATOR(Σ, t)
(Σ, t,Σ′) = POSTPROCESSOR((Σ, t,Σ′))
Q = Q ∪ {(Σ, t,Σ′)}
if GLOBALSTOP() then

break
end if

end for
end if

end while

Figure 9: Analyzer framework of the SIRIO library.
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