THE 12th EUROPEAN CONFERENCE ON PRECISION AGRICULTURE
8-11 July 2019
Montpellier
France

BOOK OF ABSTRACTS OF ALL THE POSTERS
Foreword

Prof. Bruno Tisseyre, Conference Chair

May 25, Montpellier SupAgro, Montpellier, France

Dear Reader,

In 2001, the city of Montpellier hosted the 3rd European Conference on Precision Agriculture (ECPA). Now, 18 years later, we are very pleased to welcome the Precision Agriculture scientific community back to Montpellier for 12ECPA.

We sincerely hope this 12th European Conference on Precision Agriculture will result in a profitable meeting for everyone and will provide some solutions to the challenges that modern agriculture is facing.

We are grateful to Montpellier SupAgro, Irstea and the International Society of Precision Agriculture (ISPA) for supporting us in the organisation of this event. We are grateful to all the members of the Poster Scientific Committee for their invaluable contribution in assuring the scientific quality of the Posters presented at this conference.

We appreciate the financial contribution of all the sponsors of 12ECPA, which includes private companies as well as public institutions and consortia. We would also like to express our gratitude to all the authors and attendees. The conference is nothing without your support and engagement. We will have more than 120 oral communications (compiled in a Conference Proceedings) and nearly 100 posters that the extended abstracts are presented in this book. This is a strong indication of the trust placed in this conference as a source of knowledge related to Precision Agriculture.

Finally, as the Chair, I am indebted to the support and hard work of the conference Organising Committee over the past 2 years in bidding for and delivering this conference. It is simply not possible to do this without a fantastic team behind the scenes. The Organising Committee is composed of academics and engineers from a joint team of Montpellier SupAgro (Institute for Higher Education in Agriculture) and Irstea (National Research Institute of Science and Technology for the Environment and Agriculture); The UMR ITAP team. We are all both honoured and delighted to have worked for you and to have helped advance methods and techniques in Precision Agriculture.

Bon congrès à tous !

Bruno
Organising Committee
Chair: Prof Bruno Tisseyre (Montpellier SupAgro)
Vice Chair: Dr James Taylor (Irstea)

Members:
Dr Guilhem Brunel (Montpellier SupAgro)
Eng. Thomas Crestey (Montpellier SupAgro)
Dr. Nicolas Devaux (Montpellier SupAgro)
Dr Arnaud Ducanchez (Montpellier SupAgro)
Dr Serge Guillaume (Irstea)
Mrs Laure Haon (Montpellier SupAgro)
Dr Hazael Jones (Montpellier SupAgro)
Eng. Nina Lachia (Montpellier SupAgro)
Eng. Simon Moinard (Montpellier SupAgro)
Dr Olivier Naud (Irstea)
Eng. Pierre Péré (Irstea)
Eng. Léo Pichon (Montpellier SupAgro)
Dr Gilles Rabatel (Irstea)
Eng. Yoann Valloo (Montpellier SupAgro)
Prof Philippe Vismara (Montpellier SupAgro)

Scientific Committee (posters)
The mission of the Scientific Committee has been to guarantee the academic quality of the posters and their extended abstracts of the 12th European Conference on Precision Agriculture by reviewing and assessing each of the proposal received (more than 150 abstracts were received). The committee was chaired by Dr. J. A. Taylor, in his capacity as the editor of the 12th ECPA book of poster abstracts edited in this electronic book. The Scientific Committee was made up of renowned researchers involved in the organising committee. Abstracts of posters have followed a review process in order to guarantee the academic quality of 12th ECPA.
Chair: Dr J. A. Taylor

Members (alphabetical order)
Guillaume Serge Irstea (Montpellier, France)
Naud Olivier Irstea (Montpellier France)
Rabatel Gilles Irstea (Montpellier France)
Tisseyre Bruno Montpellier SupAgro (Montpellier France)
TABLE OF CONTENTS

PREDICTIONS OF Cu, Zn and Cd in Swedish Agricultural Soil from Portable X-ray Fluorescence (PXRF) Data: Potential Foundation for Elemental Maps for Use in Precision Agriculture

Adler K., Piikki K., Söderström M., Eriksson J. and Alshihabi O.

Automatic Control of the Growth of Plants Using Artificial Intelligence and Internet Technology

Agostini A., Wörgötter F.

Employing False Color Infrared Cameras for Biomass Estimation on Natural Grassland.

Togeiro de Alckmin G.; van der Merwe D.; Manzanera J.A.; Tisseyre B.

Estimating Spatial Variability of Crop Yields Using Satellite Vegetation Indices

Ali A., Martelli R., Lupia F., Barbanti L.

Weeding by Yncrea: Mixing Expertises to Create Synergy for the Development of a Robot Dedicated to Weeding Operations

Andriamandroso A.L.H., Cockenpot R., Carneau A., Dugardin C., Zwickert M., Sirois V., Brocvielle L., Thomasin X., Vandoorne B.

Monitoring Wheat Crop N Status Under Humid Mediterranean Conditions Based on Changes in NDVI

Aranguren M. Castellón A., Aizpurua A.

Jujube Fruit Tree Yield Prediction at Field Scale Assimilating LAI from TM8 Data into WOFOST Model

Tiecheng Bai and Benoit Mercatoris

An Approach for Building a Digital Model of Vine Canopies by Using a Multichannel Lidar

P. Berk, P. Bernad, M. Lakota and J. Rakun

Comparing UAV-Based Hyperspectral Data of Corn with Proximal Sensor Data

Variable-Rate Application of Nitrogen for Everyone in Denmark

Birkmose, T.S.

Development of a Dynamic Nitrogen Fertilizer Management Method to Optimize the Agri-Environmental Performance of the Soil-Plant System for Winter Wheat

ESTIMATION OF EAR DENSITY IN WINTER WHEAT CROP BY STEREOSCOPIC IMAGING FOR CROP YIELD PREDICTION

A. Bouvy¹, S. Dandrifosse¹, V. Leemans¹, B. Dumont³, B. Mercatoris¹

PRECISION ULTRASONIC SONAR FOR PASTURE BIOMASS

Bradley S.¹ and Legg M.²

THE ASSOCIATION OF SOIL TYPES AND RAPE BIOMASS FOR NITROGEN VARIABLE RATE APPLICATION

Bruel V.¹, Samain D.², Darbin T.³

USING PROXIMAL IMAGERY TO IMPROVE CARBON AND NITROGEN BALANCES APPROACHES OF A WINTER WHEAT CROP UNDER VARIOUS NITROGEN FERTILIZATION STRATEGIES

Bustillo Vazquez E.¹, Dandrifosse S. 1, Bouvry A. 1, Bebronne R. 1, Dumont B. 2, Longdoz B. 1, Mercatoris B. 1

PREDICTION OF ORGANIC MATTER AND CLAY CONTENTS USING DIFFUSE REFLECTANCE SPECTROSCOPY VIA PARTIAL LEAST SQUARES REGRESSION ANALYSIS AND RANDOM FOREST

Camargo, L.A.¹, Amaral, L.R.², Dos Reis, A. A.¹, Brasco, T.², Magalhães, P.S.G.¹

ADOPTION OF VARIABLE RATE IRRIGATION IN NORTH-EAST ITALY

M. Canavari, R. Wongprawmas, V. Xhakollari and S. Russo

VARIABLE RATE NITROGEN IN DURUM WHEAT ACCORDING TO SPATIAL AND TEMPORAL VARIABILITY

Cillo G.¹, Stagnari F.², Pagnani G.², D’Egidio S.², Galieni A.³, Petito M.¹, Morari F.¹, Moretto J.¹, Pisante M.²

VINEYARD MODELLING FOR PRECISION AGRICULTURE: COMPLEXITY REDUCTION OF VINES DENSE 3D-POINT CLOUDS FROM UAVS REMOTELY SENSED IMAGERY

Comba L.¹, Zaman S.², Biglia A.², Ricauda D.², Dabbene F.³, Gay P.²

SPATIALLY RESTRICTED PARTIAL LEAST SQUARE REGRESSION TO EXPLAIN WITHIN FIELD GRAIN YIELD VARIABILITY

Córdoba M.¹, Paccioretti P.¹, Vega A.¹, Balzarini M.¹

FIELD ROBOT REMOTELY-OPERATED TO INSPECT OLIVE TREES AFFECTED BY XYLELLA FASTIDIOSA BY PROXIMAL SENSING

S. Cubero¹, S. López¹, N. Aleixos², V. Alegre¹, B. Rey², C. Ruiz², E. Aguilar¹, J. Blasco¹*

WEED DIGITAL MULTISPECTRAL RESPONSES TO GLYPHOSATE

Silva A.R. da¹, Freitas M.A.M.¹, Santos W.V.¹, Costa D.S.¹, Santana H.A.¹, Galvani Filho M.E.¹, Rocha R. A.¹, Santos P.V.¹

AN ECONOMIC-THEORY-BASED APPROACH TO MANAGEMENT ZONE DELINEATION

Edge B.
VARIABLE-RATE IN REAL-TIME NITROGEN APPLICATION INCREASES ENERGY USE IN ARABLE AGRICULTURE 58

Evangelou E.1, Stamatiadis S.2, Schepers J. S.3, Glampedakis A.4, Glampedakis M.4, Tserlikakis N.1, Nikoli T.1, Dercas N.1, and Tsadilas C.1

ESTIMATION OF POTATO TUBER YIELD USING DUALEM-II SENSOR IN ATLANTIC CANADA: SITE-SPECIFIC MANAGEMENT STRATEGY 60

Farooque, A.A1, Zare, M1, Zaman, Q2, Bos, M1, and Esau, T2

ISOBUS SIMULATOR FOR SMALL-/MEDIUM-SCALE FARMERS AND MANUFACTURERS 62

Favier M.1, Le Chevanton Y.2, Marchal A.2, Michael V.1, Xie Y.1, Zhao R.3, Seewig J.1

MAPPING OF INTRA-Plot VARIABILITY OF COVER CROP BIOMASS USING SOIL RESISTIVITY MEASUREMENTS AND MULTI-TEMPORAL SATELLITE IMAGES 64

Fieuzal R.1, Dejoux J.F.1, Gibrin H.1, Pique G.1, Julien M.1, Ceschia E.1

ADVANCED TECHNOLOGIES FOR EFFICIENT CROP MANAGEMENT (ATEC) 66

Florence A.1, Revill A.2, Gibson-Poole S.1, Vigors B.1, Rees RM.1, MacArthur A.2, Barnes AP.1, Hoad SP.1, and Williams M.2

ROBOTTI - AN AUTONOMOUS TOOL CARRIER 68

Foldager F. F.1,2* and Green O.2,3

MULTI-OPERATING REMOTE CONTROLLABLE SYSTEM FOR A NON-TRIPPED AIR VEHICLE 70

M.A.M. Freitas1, L. Mendonça Neto 1, and B.G.Xavier1

AGRICULTURAL MACHINERY CHAIR: DESIGN AN INNOVATIVE TEACHING SOLUTION TO ANSWER TO NEW INDUSTRIAL CHALLENGES 72

Gée Ch.1, Phelep R.1

YIELD PREDICTION USING MOBILE TERRESTRIAL LASER SCANNING 74

Gené-Mola J.1, Gregorio E.1, Llorens J.1, Sanz-Cortiella R.1, Escolà A.1 and Rosell-Polo Joan R.1

THE USE OF ‘DRONE DATAFLOW’ IN AGRONOMIC FIELD EXPERIMENTS 76

René Gislum1*, Anders Krogh Mortensen1, Morten Stigaard Laursen2, Rasmus Nyholm Jørgensen2, Jacob Glerup Guldengren1 and Birte Boelt1

EVALUATION OF A NOVEL THERMAL IMAGING SYSTEM FOR THE DETECTION OF CROP WATER STATUS IN COTTON 78

Gobbo, S.1, Snider, J.L.1, Vellidis, G.1, Cohen, Y.2, Liakos, V.1, Lacerda, L.N.1

UPSCALING THERMAL AERIAL IMAGERY FOR HIGH-RESOLUTION EVAPOTRANSPIRATION ESTIMATIONS 80

Gomez-Candon D.1, Bellvert J.1, Jofre C.1, Casadesus J.1

AN INVESTIGATION INTO OPTIMAL ON-FARM FIELD TRIAL DESIGNS 82

Gong A.

MAPPING YIELD AND QUALITY OF CITRUS USING SELF-PROPELLED PLATFORM WITH IN-FIELD SORTING. 84
Frank Liebisch¹, Raghav Khanna², Johannes Pfeifer¹,³, Corinne Müller-Ruh¹, Moritz Köhle¹, Achim Walter¹

INTEGRATED SOLUTION SYSTEMS DEVELOPMENT FOR PRECISION FERTILIZER MANAGEMENT __ 112

Litaor, M.I.,¹² Shir, O.,¹² Israeli A.¹²

R SOFTWARE CODE TO PROCESS AND EXTRACT INFORMATION FROM 3D LIDAR POINT CLOUDS __ 114

Llorens J.¹, Cabrera C.², Escolà A.¹ and Arnó J.¹

MULTI-ACTOR, MULTI-CRITERIA ANALYSIS TO ADOPT SUSTAINABLE PRECISION AGRICULTURE __ 116

Lombardo S.¹, Sarri D.¹, Rimediotti M.¹, Vieri M.¹

INVERSION OF RICE PLANT POTASSIUM ACCUMULATION USING NON-NEGATIVE MATRIX FACTORIZATION WITH UAV-BASED HYPERSONTAL REFLECTANCE __________________________ 118

J.S. Lu, W.Y. Li, M.L. Yu, and Y.C. Tian*

LOW YIELDING ZONES ARE PREDOMINATLY ON THE EDGE OF FIELDS ___________ 120

Maestrini B.¹,², Basso B.²

EVALUATING CROP SENSOR IN MAIZE GROWN IN SEMI-ARID CONDITION UNDER VARYING IRRIGATION AND NITROGEN LEVELS ____________________________ 122

Maharjan, B., Liang, W.Z., Panday, D., and Qiao, X.

CHARACTERISATION OF THE BIOMASS-STATUS AND THE NITROGEN- UPTAKE OF CORN AS A BASIS FOR A SENSOR-BASED, SITE-SPECIFIC FERTILIZATION ____________________________ 124

Maidl, F.-X., Weng J. and Hülsbergen K.-J.

FIELD EVALUATION OF COMMERCIALY AVAILABLE SMALL UNMANNED AERIAL APPLICATION SYSTEMS __ 126

Martin, D.¹, Woldt, W.², Latheef, M.¹

SATELLITES REVEAL NITROGEN LOSS ______________________________________ 128

Montcalm A.¹ and Kristensen N. H.¹

EFFICIENCY IN THE USE OF ELECTRONIC PROGRAM OF MAPPING FOR SAMPLING OF GEOREGREATED PEST ______________________________________ 130

Alves Netto, A.F.¹; Bellizi, N.C.¹; SILVA. J.P ¹; Pereira, A. I. A¹; Curvelo, Carmen R.S¹.

USE OF HIGH-RESOLUTION DRONE IMAGES TO QUANTIFY SOIL EROSION ___________ 132

Noll D.¹, Cannelle B.², Bullinger G.³, Vadi G.³, Spahni B.³, Favre Boivin F.³, Liniger H.⁴, Krauer J.⁴, Hodel E.⁴, Ebner L.⁵, Berger N.⁵, Stettler M.⁵ and Burgos S.⁵

COMPOSITION OF LEGUME SPECIES IN MIXED LEGUME-GRASS PASTURE USING HYPERSONTAL IMAGING __ 134

Oide A, Tanaka K, and Minagawa H

ARTIFICIAL NEURAL NETWORKS CAN ESTIMATE CORN FOLIAR AREA WITH PROXIMAL REMOTE SENSING ________________________________ 136
Danilo Tedesco de Oliveira¹, Maelson Freire de Oliveira¹, Rouverson Pereira da Silva¹, Rafael de Graaf Correa¹, Cristiano Zerbato¹.

STATISTICAL MODELING FOR ON-FARM EXPERIMENTATION USING PRECISION AGRICULTURAL TECHNOLOGY

Paccioretti P.¹, Córdoba M.¹, Bruno C.¹, Bullock D.S.² and Balzarini M.¹

PISUM SATIVUM L. (PEA) YIELD MODELLING USING SENTINEL-2 NDVI MAPS

Paixão L.¹, Marques da Silva J.R.¹, Terron J.M.³, Ramiro A.³, Ordóñez, F.³

APPLICATION OF UAV MULTISPECTRAL IMAGES FOR ESTIMATION OF WINTER RAPESEED AGRONOMIC VARIABLES

Pattier P.¹, Nicolas H.¹, Bissuel C.¹, Pinochet X.², Laperche A.¹, Kazemipour-Ricci F.²

AGRICULTURAL DATA OWNERSHIP AND USE: DIGITAL FARMING PERSPECTIVE

Paraforos D.S.¹, Pavlenko T.¹,², Sharipov G.¹, Grei pentrog H.W.¹, Argyropoulos D.²

SMALL PLOT FIELD EXPERIMENTS AND PROXIMAL SOIL SENSING (GAMMA AND MID-INFRARED SPECTROSCOPY) PROVIDE RECIPROCAL SERVICES

Pätzold S., Heggemann T., Welp G. and Leenen M.

SOIL VAIRABILITY WITHIN HIGH TUNNELS

Pena-Yewtukhiw, E.M.¹ and Grove J.H.²

DESIGN AND EVALUATION OF A SELF-PROPELLED ELECTRIC PLATFORM FOR HIGH THROUGHPUT FIELD PHENOYPING IN WHEAT BREEDING TRIALS

Pérez-Ruiz, M.¹; Aguera. J.²; Martinez-Guantner, J.¹; Apolo-Apolo, O.E.¹; White, J.³; Saeys, W.⁴; Andrade-Sanchez, P.⁵ and Egea, G.¹

AN ENHANCED YIELD POTENTIAL SPATIAL CLUSTERING METHOD, ACCOUNTING FOR SEASONALITY, HETEROGENEOUS MORPHOLOGY AND CLIMATE VARIABILITY: AN APPLICATION IN THE UMBRIA REGION (CENTRAL ITALY) FOR THE SMARTAGRI PROJECT.

Reyes F.¹*, Casa R.¹, Mzid N.¹, Pascucci S.², Pignatti S.² and Palombo A.²

QUINOA PLOT AND DRONE

Ricardo Z.¹, Marcos I.², Carlos S.³, Andres F.⁴

REMOTE ESTIMATION OF Glyphosate INJURY ON Eleusine Indica THROUGH RGB IMAGES

Rocha R.A.¹, Costa D.S.¹, Santos P.V.¹, Santos W.V.¹, Freitas M.A.M.¹, Silva A.R. da¹

MEXICAN CROP OBSERVATION, MANAGEMENT AND PRODUCTION ANALYSIS SERVICES SYSTEM – COMPASS

Rodrigues Jr F. A.¹, Jabloun M.², Ortiz-Monasterio J. I.¹, Crout N. M. J.², Gurusamy S.³, Green S.³

STUDENT AMBASSADORS FOR INCREASING ON-FARM TECHNOLOGY ADOPTION

Rose G.¹, Pavlenko T.², Paraforos D.S.², Argyropoulos D.², Draper J.³, Seibold F.⁴, Park J.¹

INCREASING THE SPEED AND UPTAKE OF INNOVATION IN THE FIELD VEGETABLE AND POTATO SECTORS: DEFINING A NEW APPROACH FOR DELIVERING COST EFFECTIVE RESEARCH (INNO-VEG)
VINESCOUT: A VINEYARD AUTONOMOUS ROBOT FOR ON-THE-GO ASSESSMENT OF GRAPEVINE VIGOUR AND WATER STATUS

PREDICTION OF PHYTOTOXICITY CAUSED BY GLYPHOSATE ON BRACHIARIA DECUMBENS USING RGB IMAGES

ECONOMIC EFFECTS OF INSUFFICIENT SOIL INFORMATION WITH REGARD TO PHOSPHOROUS

FORECASTING CROP GROWTH FOR IRRIGATION RECOMMENDATION

AGDATABOX: WEB PLATFORM OF DATA INTEGRATION, SOFTWARE AND METHODOLOGIES FOR DIGITAL AGRICULTURE

INTRODUCING GEOFIS: AN OPEN-SOURCE DATA PROCESSING AND DECISION PLATFORM FOR PRECISION AGRICULTURE

A DEEP LEARNING-BASED APPROACH FOR CROP CLASSIFICATION USING DUAL-POLARIMETRIC C-BAND RADAR DATA

USE OF SENTINEL 2 IMAGES TO DELINEATE SOIL MANAGEMENT ZONES USING THE CLAY RATIO

ASSIMILATION OF LEAF AREA INDEX MEASUREMENTS INTO A CROP MODEL FRAMEWORK: PERFORMANCE COMPARISON OF TWO ASSIMILATION APPROACHES

MODEL WITH SATELLITE IMAGES AS DECISION SUPPORT FOR PGR USE IN WINTER WHEAT

PREDICTING PRECISION NITROGEN SIDE-DRESS APPLICATIONS FOR MAIZE WITH A SIMULATION MODEL

A WEB-TOOL TO ASSESS THE COST AND BENEFITS OF PRECISION FARMING SYSTEMS
USING A CROP GROWTH MODEL TO IMPROVE THE WAGENINGEN POTATO LATE BLIGHT DECISION SUPPORT SYSTEM

Van Evert, F.K.¹, T. Been¹, I. Hoving², C. Kempenaar¹, J.G. Kessel³, Y van Randen⁴

COMBINING NEW HIGH RESOLUTION SATELLITE IMAGERY WITH CROP GROWTH MODELING OF POTATO IN THE NETHERLANDS

van Oort, P.A.J.¹, Kempenaar C.¹ and van Evert, F.K.¹,

LOCALIZED SPRAYING IN OILSEED RAPE CROP WITH A CONVENTIONAL BOOM SPRAYER

Vuillemin F.¹, Lucas JL.¹, Mangenot O.¹, Chalon C.², Marechal F.³, Gée C.⁴

AUTOMATIC WEED RECOGNITION FOR SITE-SPECIFIC HERBICIDE APPLICATION

Wellhausen, C.1, Pflanz, M.1, Pohl, J.-P.2, Nordmeyer, H.1

ETHICAL AND LEGAL ASPECTS OF OPEN DATA IN AGRICULTURE AND NUTRITION

Zampati F.¹,²

ESTIMATING GROWTH INDICES AND PREDICTING GRAIN YIELD OF WINTER WHEAT BASED ON FIXED-WING UAV PLATFORM AND MULTISPECTRAL IMAGERY

Zhang J.¹, Liu X.¹,*, Cao Q.¹, Tian Y.¹, Zhu Y.¹, Cao W.¹

MEASURING IN-SITU TIME SERIES ON THE DEGRADATION OF FRUIT CHLOROPHYLL IN APPLE

Zude, M.¹ and Sasse, J.²
MULTI-ACTOR, MULTI-CRITERIA ANALYSIS TO ADOPT SUSTAINABLE PRECISION AGRICULTURE
Lombardo S.1, Sarri D.1, Rimediotti M.1, Vieri M.1
1University of Florence, Florence, Italy.

Introduction
Fostering innovation in agriculture is a catalyst needed in the direction of digitizing agriculture and make it more sustainable. In the last years, several studies and European think thank pushed to put farmers at the centre of the innovation process (Di Mambro, 2017, Eip-Agri, 2019), contributing also to the dignity of this figure starting the food process and providing it for people. The introduction of innovation in farming is a complex process made by different steps in which taking decision is needed. To bring innovation and thus precision agriculture in the farming system means also to approach the ecosystem differently from the past (Lombardo et al., 2018). In this regard, MAMCA (Multi Actor Multi Criteria Analysis) software (Macharis & Baudry, 2018) is a tool to help with decision processes in multi-actor and multi-criteria situations.

Method
The MAMCA software was applied to answer the following question in three different levels of acquired technology: Is Precision Agriculture a real opportunity? For each level, there are several actors involved in an Italian Sustainable Precision Agriculture (SPA) System as farmers, providers, innovation brokers, industry, local community, research, public bodies. There are also several criteria for each actor, mainly divided in environmental, social, economic and operative criteria.
Levels are about the technology adopted in the farming system. The first level is about the introduction of auto-steering in farming, the second one considered the introduction of Variable Rate Technology (VRT) spreaders and seeders based on yield data and the third one is on the introduction of Decision Support System (DSS) in farming.
MAMCA is useful for taking decisions and considering the sustainability and the weight of each actor at the different levels. In this case, we tried to apply it to a poor system, represented as marginal agricultural lands, as a methodology to help actors in the decision process. After the problem and the alternatives have been defined, and the stakeholder analysis has been made, a definition of criteria and relative weights to build a criteria tree is needed. In MAMCA Analysis, the aim and goals of the stakeholder should be considered as criteria and weights and not, as is often done, as effects or impacts. In this case, the weight of each actor was considered equal as a pragmatic approach, in order to make it possible to respect each point of view on an equal basis. Afterwards, a set of indicators are built for each actor and a pairwise comparison of the alternatives respecting each specific criterion can be made. (Baudry et al, 2018)

Results
Results show that the MAMCA method could help to order (Macharis et al., 2012) the likely adoption of SPA from the actor point of view in marginal lands, highlighting contradictions between actors or point of contact between them. This allows to better visualize different views and to address the consequent solution that could be found also for policy makers.

Conclusions
From Figure 1 below, it is clear that different levels of acquired technologies mean different needs and different awareness of the ecosystem surrounding all the actors. It is important to take into account that new technologies acquisition is not only a cultural problem but depends
also on economic availability, only partially solved thought PAC funding. The MAMCA method could help actors in understanding and supporting decisions and make the best choice.

Figure 12: Multi-Actor Multi-Criteria Analysis chart for adoption of a Sustainable Precision Agriculture system

REFERENCES