Microalgae of interest as food source: Biochemical composition and digestibility

Alberto Niccolaia, Graziella Chini Zittellib, Liliana Rodolfib,c, Natascia Biondiad, Mario R. Tredicib,s

a Department of Agriculture, Food, Environment and Forestry (DAFRE), University of Florence, Piazzale delle Cascine 24, 50144 Florence, Italy
b Department of Biology, Agriculture and Food Sciences, Institute of Bioeconomy, National Research Council, Via Madonna del Piano 10, 50019 Florence, Italy
c F&O Solutions, S.p.A., Viale delle Ripardole 1, 50124 Florence, Italy
d Fotiosmarina & Microbiologica S.r.l., Via dei Della Robbia 54, 50132 Florence, Italy

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Microalgae
Cyanobacteria
Biochemical composition
Fatty acids
\textit{In vitro} digestibility
Nutritional quality

\textbf{ABSTRACT}

Microalgae are considered a very interesting source for the development of new food products and can be used to enhance the nutritional value of conventional foods, due to their valuable biochemical composition.

The aim of this study was to investigate the biochemical composition, the fatty acid profile and the \textit{in vitro} digestibility of twelve microalgal biomasses (\textit{Arthrosira platensis} F&M-C256; \textit{Aphanizomenon flos-aquae} from Klamath Lake; \textit{Nostoc sphaeroides} F&M-C117; \textit{Chlorella sorokiniana} F&M-M49; \textit{Chlorella sorokiniana} IAM C-212; \textit{Chlorella vulgaris} Allma; \	extit{Tetraselmis suecica} F&M-M33, in nutrient replete medium and starved; \textit{Porphyridium purpureum} F&M-M46; \textit{Phaeodactylum tricornutum} F&M-M40; \textit{Tisochrysis lutea} F&M-M36; \textit{Nannochloropsis oceanica} F&M-M24) of interest as food source.

The three cyanobacteria and the \textit{Chlorella} species presented high protein (50-65\%) and low lipid (5-20\%) content. A high fiber content (14-17\%) was found in \textit{T. suecica} grown in nutrient replete medium, \textit{P. purpureum} and \textit{P. tricornutum}.

Biomasses of marine species contained high concentrations of polyunsaturated fatty acids, mainly C20:5\omega3 and C22:6\omega3, along with substantial amounts of C16:1\omega7, C18:1\omega9 and C16:0. Freshwater algae contained high amounts of C18:3\omega3 and an even higher amount of C16:0.

\textit{A. platensis}, \textit{C. sorokiniana} IAM-C212 and \textit{C. vulgaris} showed the highest digestibility, while \textit{T. suecica}, \textit{P. tricornutum}, and \textit{P. purpureum} were the least digestible, likely because of the presence of robust cell walls or of exopolysaccharides that might have limited the action of digestive enzymes.

1. Introduction

The use of microalgae (including cyanobacteria) as food source and food supplements is known since centuries [1]. Microalgae are cultivated for human consumption in many Asian countries, Europe, the USA, and Australia since several decades [2]. Microalgae are also commercialized in the cosmetics industry or as animal feed [3,4]. The microalgal business sector is currently very dynamic with several new companies starting every year. > 150 companies of different sizes, mainly producing \textit{Arthrosira} (spirulina), are present in Europe, mostly in France [5].

Among the microalgae genera largely employed for human consumption there are \textit{Arthrosira}, \textit{Chlorella} and \textit{Aphanizomenon} due to their high content in essential nutrients and protein [6,7], and \textit{Dunaliella} and \textit{Haematococcus}, which are rich in antioxidant carotenoids [8,9]. \textit{Arthrosira} and \textit{Chlorella} are historically used as food ingredients.

The Kanembou in Chad collect spirulina from natural lakes, where special conditions of pH and salinity create a monoalgal bloom [10]. In Myanmar, the natural blooms of spirulina, occurring in small volcanic basins in some periods of the year, are collected, subjected to simple processing and consumed as food [11]. Concerning \textit{Chlorella}, much research was conducted on this genus starting from the 1950s, when it was considered as a potential candidate to combat global food shortage [12]. \textit{Chlorella} is one of the top selling food supplements in Japan and it is produced by > 70 companies worldwide [13]. The Upper Klamath Lake in Oregon (USA) is known for the exploitation of seasonal blooms of \textit{Aphanizomenon flos-aquae}. This cyanobacterial bloom is used to obtain a dietary supplement consumed in the United States and in Europe [14]. \textit{Nostoc} has been used since ancient times for the preparation of traditional dishes in North Asia [15], North America and Northern Europe and as a dietary fiber source to replace fruit and vegetables [16] scarcely available in cold climatic zones. \textit{N. flagelliforme}, called “Facai”,...
is consumed in China and Southeast Asia since ancient times as a health food [17]. *N. commune*, called by the Chinese “Ge-Xian-Mi” and by the Japanese “Ishikuraque”, is sold at USD $70–120 per kg dry weight as an ingredient for soups and salads or to be fried with meat [18].

The inclusion of *C. protothecoides*, *A. platensis*, *D. bardawil*, and astaxanthin from *Haematococcus* are subjected to a safety assessment through a uniform procedure in order to protect public health [20]. According to the 1997 Regulation, the EU included some microalgae in the list of foods authorized in the EU market (European Union, Novel Food catalogue). The list included *A. flos-aquae* from Klamath Lake, *A. platensis*, *C. lutheoviridis*, *C. pyrenoidosa*, and *C. vulgaris*. Odontella aurita, Tetraselmis chuii and astaxanthin from *H. pluvialis* were successively approved as food or food ingredients after the fulfillment of the novel food regulation procedures [21].

When dealing with novel matrices for food production one of the most important requirements is to demonstrate lack of toxicity in the range of concentrations at which that food or food ingredient is intended for use [20]. This represents one of the main obstacles that have to be faced when applying for a novel food due to long duration and high costs of the in vitro experiments. Some microalgae may produce toxins [22]. To have a preliminary picture of their potential toxicity, the microalgal biomasses investigated in this work were tested using two in vitro models, human dermal fibroblasts and *Artemia salina* [23]. The biomass from Klamath Lake bloom (mainly *A. flos-aquae*) showed toxicity. *C. vulgaris* Allma, *T. suecica* F&M-M33 and *P. purpureum* F&M-M46 were not toxic, while the remaining algae showed different levels of toxicity especially against fibroblasts, which proved to be a too highly sensitive model [23]. These results encouraged the continuation of the work on toxicity. *A. platensis* F&M-C256 and *T. lutea* F&M-M36 were tested in rats, showing no acute toxicity [24,25].

Another problem to deal with when using microalgae as food is the robust cell wall of certain strains, which restricts the access of the digestive enzymes to the cell components [26]. For this reason, information on the digestibility of microalgal biomass is of utmost importance [27]. In vitro digestion models are widely used to study the structural changes, digestibility and release of food components under simulated gastrointestinal conditions [28,29]. The most frequently used digestive enzymes (pancreatin, pepsin, trypsin, chymotrypsin, peptidase, α-amylase and lipase) are of porcine, rabbit or human origin [29], or derive from bile salts and mucin [28]. These *in vitro* digestion models have been already adopted to evaluate the digestibility of algal biomasses [30,31].

Determining the biochemical composition and the digestibility is the first requirement to evaluate the potential of novel food sources. In this work, twelve microalgal biomasses belonging to species already approved as food (*A. platensis*, *C. vulgaris* and *A. flos-aquae* from Klamath Lake) and two species not approved but belonging to the same genus already authorized (*C. sorokiniana* and *T. suecica*), together with species used in aquaculture as *Tisochrysis*, *Nannochloropsis* and *Phaeodactylum* [32,33] or in the cosmetic field, as *Porphyridium* [34], were tested for their biochemical composition, fatty acid profile and *in vitro* digestibility to evaluate their potential application as food sources.

2. Materials and methods

2.1. Microalgal strains and biomasses origin

The investigated algal biomasses are listed in Table 1. *A. platensis* F&M-M256, *N. sphaeroides* F&M-C117, *C. sorokiniana* F&M-M49, *T. suecica* F&M-M33, *T. suecica* F&M-M46, *P. purpureum* F&M-M46, *T. lutea* F&M-M36, and *N. oceanica* F&M-M24 belong to the Fossintestica & Microbiologica (F&M) S.r.l. collection. Most of the biomasses tested in this study were produced at the facilities of F&M S.r.l. or of the Institute of Bioeconomy of the CNR, both located in Sesto Fiorentino, Florence (Italy). The algae were cultivated in GWPP-II photobioreactors [35] in semi-batch mode, during the spring/summer season (*A. platensis* F&M-C256; *N. sphaeroides* F&M-C117; starved *T. suecica* F&M-M33; *T. lutea* F&M-M36) or during autumn (*C. sorokiniana* F&M-M49; *C. sorokiniana* IAM-C212; *T. suecica* F&M-M33 grown in nutrient replete medium; *P. purpureum* F&M-M46; *P. tricornutum* F&M-M40; *N. oceanica* F&M-M24). The cultures were harvested in the early stationary phase (*N. sphaeroides* F&M-C117; starved *T. suecica* F&M-M33; *P. purpureum* F&M-M46) or in the linear growth phase (*A. platensis* F&M-C256; *C. sorokiniana* F&M-M49; *C. sorokiniana* IAM-C212; *T. suecica* F&M-M33 grown in nutrient replete medium; *P. tricornutum* F&M-M40; *T. lutea* F&M-M36; *N. oceanica* F&M-M24) by centrifugation or filtration, and biomasses were frozen, lyophilized and powdered. The powdered biomasses were stored at −20 °C until analysis. Only *A. platensis* biomass was washed with physiological solution during harvesting to remove carbonates. The freshwater strains were cultivated in BG11 [36] and the marine strains in F medium [37]. *A. platensis* was cultivated in Zarrouk medium [38]. *T. suecica* F&M-M33 was also grown in F medium deprived of the nitrogen source. The two commercial products, *C. vulgaris* Allma and Klamath were obtained from Allma Microalgae (Portugal) and from Erborlogica S.A.S. (Italy), respectively. In particular, Klamath derives from a natural bloom, mainly composed of *A. flos-aquae*, harvested from the Upper Klamath Lake (Oregon, USA).

2.2. Biochemical composition

All biomasses were analyzed for protein, carbohydrate, lipid, dietary fiber, ash, and moisture. Elemental analyses were performed using a CHNOS Analyzer (Flash EA, 1112 Series, Thermo Electron Corporation, USA) [39]. Total protein content was calculated as N x 6.25, where N is the nitrogen content determined through the elemental analysis. Carbohydrate was determined using the Dubois method [40]. Total lipid following Marsh & Weinstein [41]. Dietary fiber was determined by AOAC Method 985.29 [42]. Moisture and ashes were analyzed following the ISTISAN protocol [43].

2.3. Fatty acid profile

Fatty acids were analyzed following the ISTISAN protocol [43]. The nutritional quality of the lipid fraction was estimated by the Hydrocholesterolemic/Hypercholesterolemic ratio (H/H), which was

<table>
<thead>
<tr>
<th>Strain/biomass</th>
<th>Type of culture medium</th>
<th>Origin of biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrospira platensis F&M-C256</td>
<td>Alkaline</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>"Klamath polvere" (hereafter Klamath)</td>
<td>Fresh</td>
<td>Commercial product</td>
</tr>
<tr>
<td>Nostoc sphaeroides F&M-C117</td>
<td>Fresh</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Chlorella sorokiniana F&M-M49</td>
<td>Fresh</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Chlorella sorokiniana IAM-C212</td>
<td>Fresh</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Chlorella vulgaris Allma</td>
<td>Fresh</td>
<td>Commercial product</td>
</tr>
<tr>
<td>Tetracelis suecica F&M-M33 (S)</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Tetraselmis suecica F&M-M33 (NR)</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Porphyridium purpureum F&M-M46</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Phaeodactylum tricornutum F&M-M40</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Tisochrysis lutea (T-ISO) F&M-M36</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
<tr>
<td>Nannochloropsis oceanica F&M-M24</td>
<td>Marine</td>
<td>In-house cultivation</td>
</tr>
</tbody>
</table>

F&M-M33, *P. purpureum* F&M-M46, *P. tricornutum* F&M-M40, *T. lutea* F&M-M36, and *N. oceanica* F&M-M24 belong to the Fossintestica & Microbiologica (F&M) S.r.l. collection. Most of the biomasses tested in this study were produced at the facilities of F&M S.r.l. or of the Institute of Bioeconomy of the CNR, both located in Sesto Fiorentino, Florence (Italy). The algae were cultivated in GWPP-II photobioreactors [35] in semi-batch mode, during the spring/summer season (*A. platensis* F&M-C256; *N. sphaeroides* F&M-C117; starved *T. suecica* F&M-M33; *T. lutea* F&M-M36) or during autumn (*C. sorokiniana* F&M-M49; *C. sorokiniana* IAM-C212; *T. suecica* F&M-M33 grown in nutrient replete medium; *P. purpureum* F&M-M46; *P. tricornutum* F&M-M40; *N. oceanica* F&M-M24). The cultures were harvested in the early stationary phase (*N. sphaeroides* F&M-C117; starved *T. suecica* F&M-M33; *P. purpureum* F&M-M46) or in the linear growth phase (*A. platensis* F&M-C256; *C. sorokiniana* F&M-M49; *C. sorokiniana* IAM-C212; *T. suecica* F&M-M33 grown in nutrient replete medium; *P. tricornutum* F&M-M40; *T. lutea* F&M-M36; *N. oceanica* F&M-M24) by centrifugation or filtration, and biomasses were frozen, lyophilized and powdered. The powdered biomasses were stored at −20 °C until analysis. Only *A. platensis* biomass was washed with physiological solution during harvesting to remove carbonates. The freshwater strains were cultivated in BG11 [36] and the marine strains in F medium [37]. *A. platensis* was cultivated in Zarrouk medium [38]. *T. suecica* F&M-M33 was also grown in F medium deprived of the nitrogen source. The two commercial products, *C. vulgaris* Allma and Klamath were obtained from Allma Microalgae (Portugal) and from Erborlogica S.A.S. (Italy), respectively. In particular, Klamath derives from a natural bloom, mainly composed of *A. flos-aquae*, harvested from the Upper Klamath Lake (Oregon, USA).
calculated according to Santos-Silva et al. [44], as follows:

\[
\text{H/H} = \frac{(C18: 1\omega 9 + C18: 2\omega 6 + C20: 4\omega 6 + C18: 3\omega 3 + C20: 5\omega 3 + C22: 6\omega 3)/(C14: 0 + C16: 0)}
\]

2.4. In vitro digestibility

The biomasses in vitro digestibility was evaluated by the method of Boisen and Fernández [45], modified as follows.

Microalgal biomasses were grounded, sieved and weighed (1 g, particle size ≤ 1 mm) and transferred in 250 mL conical flasks. To each flask, phosphate buffer (25 mL, 0.1 M, pH 6.0) was added and mixed, followed by HCl (10 mL, 0.2 M) and pH was adjusted to 2.0. To each flask, 3 mL of a freshly prepared 10 g L\(^{-1}\) porcine pepsin (0.8 FIP-U/mg, AppliChem, Darmstadt, Germany) solution in water was added. The flasks were incubated at 39 °C for 6 h with constant agitation (150 rpm). After, phosphate buffer (10 mL, 0.2 M, pH 6.8) and NaOH solution (5 mL, 0.6 M) were added to each sample and pH was adjusted to 6.8. Then, to each sample 10 mL of a freshly prepared porcine 50 g L\(^{-1}\) porcine pancreatin (42,362 FIP-U/g, AppliChem, Darmstadt, Germany) solution in ethanol:water (50/50 v/v) were added. The porcine pancreatin (42,362 FIP-U/g, AppliChem, Darmstadt, Germany) solution in ethanol:water (50/50 v/v) was used and added to each flask. The contents of the investigated microalgae are comparable with those found in the literature for the same species [50,51,56-58,60] (Table 2).

The investigated microalgal biomasses exhibited lipid contents varying from 11 to 29%, with the exception of Klamath (6%). In particular, *C. sorokiniana* (both strains), *T. suecica* grown in nutrient replete medium, *T. lutea*, and *N. oceanica* showed a lipid content close to 30%.

The positive effects of high intakes of total dietary fiber (TDF) are related to: i) decreased blood cholesterol and glycaemia; ii) increased volume of fecal bulk and decreased time of intestinal transit; iii) trapping of substances that can be dangerous to the human body (mutagenic and carcinogenic agents); iv) stimulation of the proliferation of the intestinal flora [61,62]. *N. sphaeroides*, *C. sorokiniana* F&M-M49 and all the marine species showed high TDF values (between 9 and 17%). *C. sorokiniana* IAM C-212, *A. platensis*, and *C. vulgaris* were found to contain the lowest amount of TDF (4.4, 5.8, and 5.9%, respectively), which confirms data reported in the literature for these species [63-65]. Only for Klamath the dietary fiber was below detection limit (Table 2). In general, TDF content of most of the microalgae examined in this study was significantly higher compared to that of some cooked cereals, like white rice (0.3%) and oatmeal (1.7%), raw vegetables, such as tomatoes (1.3%) and lettuce (1.0%), and raw fruits such as bananas (1.8%) and pineapple (1.5%) [66]. On the contrary, macroalgae generally show a higher TDF content (33–75%) [67].

Ash content was generally low (< 10%) in freshwater biomasses. Marine biomasses exhibited a higher ash content, reaching 22% in *P. purpureum* (Table 2).

For several of the strains tested in this work previous trials have highlighted the effect of culture conditions on biochemical composition. In particular, the effects of light quality (natural vs artificial, white vs green, red and blue) were investigated by Abiusi et al. [58] on *T. suecica* F&M-M33 and by Chini Zettelli et al. [68] on *N. oceanica* F&M-M24, the effects of nutrient availability were studied by Gugnone et al. [51] on *C. sorokiniana* F&M-M49 and *C. sorokiniana* IAM-C212 and by Rodolfi et al. [69] on *P. tricornutum* F&M-M40, and the effects of temperature and salinity were investigated by Giugnone et al. [51] on *C. sorokiniana* F&M-M49 and *C. sorokiniana* IAM-C212.

Table 3 shows the fatty acid profile of the twelve algal biomasses. The algal biomasses with the highest ω3 PUFA content (> 3% of biomass dry weight) were *C. sorokiniana* F&M-M49 (predominantly C18:3ω3), *P. tricornutum* and *N. oceanica* (mainly C20:5ω3). Among those tested *T. lutea* was the only alga containing C22:6ω3 (Table 3). Concerning the ω6 PUFA, the algae with the highest content (> 2% of biomass dry weight) were *C. sorokiniana* (both strains) and *T. suecica* (grown in nutrient replete medium), all containing mainly C18:2ω6 and *A. platensis* containing C18:2ω6 and C18:3ω6 (Table 3). The fatty acid profiles of the investigated microalgae are comparable with those found in the literature for the same species [56-58,65,69]. Studies have
shown that C20:5Δ6ω3 and C22:6ω3 are important for proper foetal development (including neuronal, retinal, and immune functions) [70] and may positively affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and coagulation [70,71].

The nutritional quality of the lipid fraction of the twelve microalgal biomasses was further evaluated by the Hypocholesterol esteric/ Hypercholesterolemic ratio (H/H) (Table 3). The H/H ratio is based on current knowledge of the effects of individual fatty acids on cholesterol metabolism [44]. Nutritionally, high H/H values are considered beneficial for human health [72]. The highest H/H values were found for T. suecica grown in nutrient replete medium, C. sorokiniana F&M-M49, and in starved T. suecica (5.42, 4.66, and 3.68, respectively) (Table 3). The H/H values found for C. sorokiniana F&M-M49 and for P. purpureum are similar to those reported for marine microalgae [81]. The H/H ratio is based on the metabolic activity [44]. Nutritionally, high H/H values are considered beneficial for human health [72]. The highest H/H values were found for T. suecica grown in nutrient replete medium, C. sorokiniana F&M-M49, and in starved T. suecica (5.42, 4.66, and 3.68, respectively) (Table 3). The H/H values found for C. sorokiniana F&M-M49 and for P. purpureum are similar to those reported for marine microalgae [81]. The H/H ratio is based on the metabolic activity [44]. Nutritionally, high H/H values are considered beneficial for human health [72]. The highest H/H values were found for T. suecica grown in nutrient replete medium, C. sorokiniana F&M-M49, and in starved T. suecica (5.42, 4.66, and 3.68, respectively) (Table 3). The H/H values found for C. sorokiniana F&M-M49 and for P. purpureum are similar to those reported for marine microalgae [81].

3.3. In vitro digestibility

The in vitro digestibility provides useful information about the nutrient bioavailability of a product [45]. Most of the literature on algae deals with macroalgae [76–78] and only few studies, to our knowledge, focus on the in vitro digestibility of microalgae [6,30,79,80].

The in vitro digestibility of the twelve microalgal biomasses under investigation was determined by an enzymatic method using pepsin and pancreatin. Digestibility of dry matter (DMD), organic matter (OMD), carbohydrate (CD) and crude protein (CPD) is reported in Fig. 1. A. platensis showed the highest DMD (78%). C. vulgaris, C. sorokiniana IAM C-212, T. suecica, N. sphaeroides and Klamath showed a DMD higher than 60%. P. purpureum was the least digestible (47%) (Fig. 1). Devi et al. [81] and Mišurcová et al. [30] found higher DMD values for A. platensis (84% and 94%, respectively) compared to our study (78%). The high digestibility of A. platensis can be, at least partially, related to its Gram negative cell wall mainly composed of the peptidoglycan layer and the proteic and lipopolysaccharidic outer membrane. In spite of the similar cell wall, the other cyanobacteria (Klamath and N. sphaeroides) showed a lower digestibility, but, still high compared to the other tested microalgal biomasses. This may be due to the presence of outer layers of polysaccharides, common among cyanobacteria. The DMD showed by C. sorokiniana IAM C-212 (73%) was comparable to that obtained by Mišurcová et al. [30] for C. pyrenoidosa (75%). To our knowledge, no literature is available concerning DMD of the other studied microalgae.

Digestibility differences appear in some cases at the strain level (see C. sorokiniana F&M-M49 and IAM C-212 in Fig. 1). Green algae cell wall typically contains cellulose, hemicellulose, pectic compounds and glycoproteins [82,83], which may confer resistance to the action of digestive enzymes. Also Nannochloropsis has a thick, bilayered, cell wall composed of cellulose and algaeans [84] that may reduce digestibility. Porphyridium cells are typically covered by polysaccharides [85] that can form stable complexes with proteins and reduce cell access to proteolytic enzymes [86]. In general, our study shows a partial correspondence between cell wall structure and DMD.

The values of OMD and CD reflected those of DMD, except in the case where the starting material was particularly rich in ashes, as for P. purpureum (Table 2). In terms of OMD and CD (Fig. 1) A. platensis resulted the most digestible (86% and 79%, respectively), on the contrary, P. tricornutum and P. purpureum confirmed to be the least digestible (51%).

CPD values did not reflect DMD values (Fig. 1). Protein digestibility is an important factor to estimate protein availability [55]. N. sphaeroides, A. platensis and C. vulgaris showed the highest CPD (82%, 81%, 76%, respectively), which compares favourably with the protein digestibility found for beans, oats and wheat (78%, 72% and 77%, respectively) [55]. Most of the other biomasses showed CPD values ranging from 62 to 70%. N. oceanica and C. sorokiniana F&M-M49 exhibited the lowest protein digestibility values (50 and 55%, respectively).

The low CPD of N. oceanica is in accordance with the results of Cavonius et al. [87] who reported a low degree of protein hydrolysis of N. oculata. Most authors reported diverse CPD values for different species of Chlorella (from 70 to 92%) [79,88] and Arthrospira (from 70 to 94%) [81,89]. Tibbergs et al. [50] reported higher CPD for P. tricornutum, Nannochloropsis granulata, T. chuii and Porphyridium aerugineum (83–97%) compared to the values found in our study. Wild et al. [49] also found higher CPD values for C. vulgaris, C. protothecoides, C. sorokiniana, N. oceanica, N. oculata and P. tricornutum (54–79%).

Studies conducted on brown algae reported an inhibitory action of fiber on peptic activity with a consequent reduction in protein digestibility [90]. Contrary to Horie et al. [89], no significant (P > 0.05) correlation between CPD and fiber content (r = −0.31) was found in our study, whereas a significant (P < 0.05) negative correlation between DMD (r = −0.83), OMD (r = −0.79), CD (r = −0.83) and fiber content was found (Fig. 2).

The method adopted in this study to determine the protein content is based on the elemental (CHNSO) analysis of biomass [91]. This method represents proteins as crude protein (N x 6.25) [91] and overestimates the real protein content of biomasses rich in non-proteinaceous nitrogen, for example in the case of A. platensis F&M-C256, which is particularly rich in nucleic acids [24]. This may justify that the CPD values did not reflect DMD values (Fig. 1).
<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>K</td>
<td>Ns</td>
<td>CaM49</td>
<td>CaIAM</td>
<td>CvA</td>
<td>TsS</td>
<td>TsNR</td>
<td>Pp</td>
<td>Pt</td>
<td>Tiso</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>C12:0</td>
<td>0.20 ± 0.008</td>
<td>1.55 ± 0.03</td>
<td>0.50 ± 0.002</td>
<td>0.59 ± 0.02</td>
<td>0.14 ± 0.001</td>
<td>0.51 ± 0.03</td>
<td>1.21 ± 0.004</td>
<td>0.35 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>0.25 ± 0.02</td>
<td>0.04 ± 0.03</td>
<td>0.05 ± 0.001</td>
<td>0.06 ± 0.004</td>
<td>0.03 ± 0.03</td>
<td>0.02 ± 0.02</td>
<td>0.57 ± 0.002</td>
<td>3.09 ± 0.01</td>
<td>0.93 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td>2.56 ± 0.02</td>
<td>1.24 ± 0.02</td>
<td>3.02 ± 0.005</td>
<td>1.74 ± 0.003</td>
<td>1.26 ± 0.02</td>
<td>1.99 ± 0.01</td>
<td>1.33 ± 0.007</td>
<td>0.95 ± 0.005</td>
<td>1.26 ± 0.003</td>
<td>1.27 ± 0.001</td>
<td>1.62 ± 0.005</td>
<td>6.73 ± 0.004</td>
</tr>
<tr>
<td>C18:0</td>
<td>0.12 ± 0.01</td>
<td>0.15 ± 0.02</td>
<td>0.11 ± 0.002</td>
<td>0.26 ± 0.009</td>
<td>0.60 ± 0.04</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.008</td>
<td>0.14 ± 0.05</td>
<td>0.35 ± 0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other SFA</td>
<td>0.02 ± 0.01</td>
<td>0.13 ± 0.03</td>
<td>0.05 ± 0.009</td>
<td>0.14 ± 0.03</td>
<td>0.73 ± 0.008</td>
<td>0.04 ± 0.06</td>
<td>0.66 ± 0.1</td>
<td>1.04 ± 0.002</td>
<td>0.24 ± 0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ SFA</td>
<td>2.70 ± 0.04</td>
<td>1.49 ± 0.05</td>
<td>3.50 ± 0.09</td>
<td>3.50 ± 0.08</td>
<td>1.26 ± 0.02</td>
<td>3.00 ± 0.06</td>
<td>1.31 ± 0.01</td>
<td>2.90 ± 0.1</td>
<td>1.50 ± 0.1</td>
<td>3.00 ± 0.06</td>
<td>7.10 ± 0.09</td>
<td>8.60 ± 0.08</td>
</tr>
<tr>
<td>C16:1ω7</td>
<td>0.29 ± 0.03</td>
<td>1.23 ± 0.03</td>
<td>0.15 ± 0.02</td>
<td>0.17 ± 0.01</td>
<td>0.44 ± 0.04</td>
<td>0.04 ± 0.02</td>
<td>0.04 ± 0.005</td>
<td>0.16 ± 0.009</td>
<td>2.42 ± 0.04</td>
<td>0.79 ± 0.01</td>
<td>5.82 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>C18:1ω9</td>
<td>0.18 ± 0.02</td>
<td>0.48 ± 0.03</td>
<td>2.52 ± 0.02</td>
<td>0.52 ± 0.005</td>
<td>1.81 ± 0.01</td>
<td>1.95 ± 0.006</td>
<td>1.37 ± 0.02</td>
<td>0.02 ± 0.001</td>
<td>0.90 ± 0.05</td>
<td>2.91 ± 0.02</td>
<td>3.06 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>Other MUFA</td>
<td>0.03 ± 0.01</td>
<td>0.004 ± 0.01</td>
<td>1.43 ± 0.03</td>
<td>0.05 ± 0.03</td>
<td>0.49 ± 0.007</td>
<td>0.02 ± 0.008</td>
<td>0.08 ± 0.002</td>
<td>0.10 ± 0.01</td>
<td>0.04 ± 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>0.50 ± 0.05</td>
<td>1.75 ± 0.08</td>
<td>3.90 ± 0.08</td>
<td>0.69 ± 0.02</td>
<td>2.30 ± 0.08</td>
<td>1.37 ± 0.04</td>
<td>1.90 ± 0.03</td>
<td>0.20 ± 0.03</td>
<td>3.40 ± 0.09</td>
<td>3.80 ± 0.04</td>
<td>8.92 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>C16:3ω3</td>
<td>0.23 ± 0.01</td>
<td>0.87 ± 0.03</td>
<td>0.87 ± 0.03</td>
<td>1.02 ± 0.01</td>
<td>0.87 ± 0.03</td>
<td>0.87 ± 0.03</td>
<td>1.02 ± 0.01</td>
<td>0.87 ± 0.03</td>
<td>1.02 ± 0.01</td>
<td>0.87 ± 0.03</td>
<td>1.02 ± 0.01</td>
<td>0.87 ± 0.03</td>
</tr>
<tr>
<td>C18:3ω3 (ALA)</td>
<td>0.01 ± 0.01</td>
<td>1.51 ± 0.04</td>
<td>2.14 ± 0.03</td>
<td>3.44 ± 0.01</td>
<td>1.93 ± 0.003</td>
<td>2.51 ± 0.06</td>
<td>1.76 ± 0.009</td>
<td>1.56 ± 0.04</td>
<td>0.07 ± 0.008</td>
<td>1.60 ± 0.005</td>
<td>0.02 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>C20:5ω3 (EPA)</td>
<td>0.01 ± 0.01</td>
<td>1.51 ± 0.04</td>
<td>2.14 ± 0.03</td>
<td>3.44 ± 0.01</td>
<td>1.93 ± 0.003</td>
<td>2.51 ± 0.06</td>
<td>1.76 ± 0.009</td>
<td>1.56 ± 0.04</td>
<td>0.07 ± 0.008</td>
<td>1.60 ± 0.005</td>
<td>0.02 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>C22:6ω3 (DHA)</td>
<td>1.66 ± 0.01</td>
<td>0.03 ± 0.04</td>
<td>0.04 ± 0.06</td>
<td>0.01 ± 0.006</td>
<td>0.03 ± 0.01</td>
<td>0.01 ± 0.002</td>
<td>0.08 ± 0.007</td>
<td>0.04 ± 0.001</td>
<td>0.07 ± 0.002</td>
<td>0.04 ± 0.001</td>
<td>0.07 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>Other PUFA ω6</td>
<td>0.48 ± 0.007</td>
<td>0.02 ± 0.008</td>
<td>0.09 ± 0.006</td>
<td>0.04 ± 0.02</td>
<td>0.03 ± 0.01</td>
<td>0.23 ± 0.001</td>
<td>0.04 ± 0.006</td>
<td>0.07 ± 0.008</td>
<td>0.09 ± 0.006</td>
<td>0.09 ± 0.006</td>
<td>0.09 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>ΣPUFA ω6</td>
<td>2.82 ± 0.05</td>
<td>0.33 ± 0.05</td>
<td>1.14 ± 0.06</td>
<td>2.46 ± 0.008</td>
<td>2.41 ± 0.08</td>
<td>1.86 ± 0.01</td>
<td>1.19 ± 0.07</td>
<td>2.09 ± 0.1</td>
<td>1.52 ± 0.1</td>
<td>0.91 ± 0.03</td>
<td>1.17 ± 0.01</td>
<td>0.96 ± 0.2</td>
</tr>
<tr>
<td>TFA</td>
<td>6.0 ± 0.1</td>
<td>3.56 ± 0.1</td>
<td>8.5 ± 0.2</td>
<td>13.4 ± 0.3</td>
<td>7.16 ± 0.1</td>
<td>9.7 ± 0.2</td>
<td>7.29 ± 0.2</td>
<td>8.5 ± 0.3</td>
<td>5.0 ± 0.7</td>
<td>11.3 ± 0.2</td>
<td>15.1 ± 0.2</td>
<td>21.7 ± 0.5</td>
</tr>
<tr>
<td>H/H</td>
<td>0.52</td>
<td>1.23</td>
<td>1.22</td>
<td>4.66</td>
<td>3.41</td>
<td>3.01</td>
<td>3.68</td>
<td>5.42</td>
<td>2.58</td>
<td>3.01</td>
<td>1.41</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Ap: A. platensis F&M-C256; K: Klamath powder; Ns: N. ghaemodes F&M-C117; CaM49: C. sorokiniana F&M-M49; CaIAM: C. sorokiniana IAM C-212; CvA: C. vulgaris Allma; TsS: T. suecica F&M-M33 (starved); TsNR: T. suecica F&M-M33 (nutrient replete medium); Pp: P. purpureum F&M-M46; Pt: P. tricornutum F&M-M40; Tiso: T. lutea F&M-M36; No: N. oceanica F&M-M24; – traces or 0 value.
The large differences in digestibility values found in our work for the twelve biomasses compared to the literature may also be related to differences in terms of strains and in the protocols adopted to evaluate the in vitro digestibility [29,30,76].

4. Conclusions

The large biodiversity of microalgae available in nature and in culture collections still needs evaluation in terms of useful properties and safety before its exploitation in the food and feed sector. To obtain food algae-based products and co-products, advancing our knowledge on the biochemical composition and digestibility of microalgae is the first key requirement. More microalgal species should be considered for the approval as novel food, thus contributing in the long term to a wider inclusion of these microorganisms in the human diet.

The present study provides information on the biochemical composition, the fatty acids profile and the in vitro digestibility of twelve microalgal biomasses that could be exploited to produce new functional foods.

Higher crude protein contents and in vitro digestibility were found in cyanobacteria (in particular A. platensis F&M-C256), C. sorokiniana F&M-M49 and C. vulgaris Allma. Marine species were less digestible and contained higher concentrations of polyunsaturated fatty acids (mostly eicosapentaenoic acid and docosahexaenoic acid) along with substantial amounts of palmitoleic, oleic and palmitic acids. Freshwater algae showed high concentrations of α-linolenic acid and an even higher amount of palmitic acid.

It is worth pointing out that to fully assess microalgae nutritional quality, also vitamin, mineral and bioactives content, and bioavailability should be determined and that it is possible to substantially modify the biochemical composition and the digestibility of algal biomass by changing culture conditions (mainly growth medium composition and the source of light).

Declaration of Competing Interest

M.R. Tredici and L. Rodolfi have a financial interest in F&M S.r.l. The other authors declare no conflicts of interest.

Acknowledgments

We thank Dr. Alessandra Bonetti (CNR-IRET) for technical support in fiber analyses and Allma Microalgae (Portugal) for providing the C. vulgaris biomass used in this work. The authors also thank the Regione Toscana (Par-FAS 2007-2013 Projects) for financial support to the Centro di Competenza VALORE (Florence, Italy), where part of the analyses have been carried out. AN holds a fellowship funded by the POR FSE 2014-2020 – Progetto Strategico “STREAMING”, sottoprogetto PhotoWING (Regione Toscana, Italy).

Authors’ agreement to authorship and submission

All the authors agreed to the authorship and submission of the manuscript to Algal Research for peer review.

Declaration of authors’ contributions

AN, GCZ, MRT: study conception and design; AN, GCZ: cultivation of microalgae, biochemical composition analyses and in vitro digestibility; all the authors participated in data analyses, discussion of results, writing and revising the manuscript.

Statement of informed consent, human/animal rights

No conflicts, informed consent, or human or animal rights are applicable to this study.

Fig. 1. Dry matter (in order of decreasing digestibility), organic matter, carbohydrate, and crude protein digestibility (expressed as %) of the twelve microalgal biomasses investigated. The analyses were performed in triplicate and data are reported as mean value ± SD. Ap A. platensis F&M-C256; K Klamath; Ns N. sphaeroides F&M-C117; CsM49 C. sorokiniana F&M-M49; CsIAM C. sorokiniana IAM C-212; Cva C. vulgaris Allma; TsS T. suecica F&M-M33 (starved); TsNR T. suecica F&M-M33 (nutrient replete medium); Pp P. purpureum F&M-M46; Pt P. tricornutum F&M-M40; Tiso T. lutea F&M-M36; No N. oceanica F&M-M24.
Fig. 2. Linear correlation between fiber content and DMD (left) and CPD (right) (n = 12; significance level P < 0.05). Ap, *A. platensis* F&M-C256; K, Klamath; Ns, *N. sphaeroides* F&M-C117; CsM49, *C. sorokiniana* F&M-M49; CsIAM, *C. sorokiniana* IAM C-212; CvA, *C. vulgaris* Allima; TsT, *T. suecica* F&M-M33 (starved); TsNR, *T. suecica* F&M-M33 (nutrient replete medium); Pp, *P. purpureum* F&M-M46; Pt, *P. tricornutum* F&M-M40; Tiso, *T. tatei* F&M-M36; No, *N. oceanica* F&M-M24.

References

[15] L. Mišarović, Š. Krškmar, K. Božović, J. Vacek, Nitrogen content, dietary fiber, and...

