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Abstract—In quasi-static elastography, the operator 

compresses the tissue under exam with the probe, while the 

scanner processes the beamformed frames, by means of 

correlation or signal phase analysis techniques, to estimate both 

the displacement and the strain. However, the quality of estimates 

may be influenced by the speckle quality and hence by the 

implemented beamforming algorithm. Therefore, in this work we 

investigate the effects of coherence-based beamforming 

techniques, providing better images than conventional Delay and 

Sum (DAS), on the estimation of axial/lateral displacement and 

strain in quasi-static elastography of the breast. Simulations were 

used to evaluate the error on axial and lateral displacement 

estimations obtained by 2D normalized cross-correlation (2D-

NCC) with polynomial fitting, as compared to the ground truth 

given by finite-element modeling. Experimental breast phantom 

acquisitions where instead evaluated in terms of elastographic 

contrast-to-noise-ratio (CNRe) and non-uniformity (NU) level. 

Results show that similar performance in axial displacement 

estimation is achieved by 2D-NCC with all beamformers, while 

using coherence beamforming provides more accurate estimates 

of lateral displacement. However, the analysis of CNRe and NU in 

experimental axial/lateral strain images does not show any 

significant improvement as compared to DAS when any of these 

beamformers is employed. 

Keywords—breast imaging, beamforming, coherence factor, 

displacement estimation, filtered delay multiply and sum, phase 

coherence, quasi-static ultrasound elastography, sign coherence 

I. INTRODUCTION  

Elastography performs a remote palpation of internal organs 
to assess their mechanical properties [1]. In particular, the so-
called quasi-static elastography [2] relies on the application of a 
gentle compression of the tissues under exam through the probe, 
and on the estimation of the displacement/strain that these 
tissues undergo. This strain, even if only indirectly, can be 
related to the elasticity modulus of the tissue, thus providing a 

qualitative map of stiffness. The elastogram is usually 
superimposed to the B-mode image and is represented as a 
color-coded image, where soft tissues appear as red areas and 
hard structures as blue regions. This technique can be applied, 
for example, to assess the stiffness of breast, as tumors are 
generally harder than the surrounding tissues [3].  

In breast elastography, usually, only axial strain is computed 
through the application of 1D displacement estimation 
techniques, e.g. based on cross-correlation or zero phase 
estimation. On the other hand, however, it is known that 
biological tissues are almost incompressible, thus an axial 
compression is likely to cause an expansion of tissues in the 
lateral direction too [4], i.e. in the direction perpendicular to the 
ultrasound beam axis and parallel to the surface of the array. 
Actually, this could provide additional diagnostic information; 
it should be considered, as an example, that in cardiac 
applications the heart strain has to be evaluated in 3D, or that, 
thanks to lateral strain, shear strain and Poisson’s ratio can be 
used to estimate tumors mobility, which provides further 
indications on their malignancy [4]. However, lateral 
displacement/strain estimation is a complex task, because of the 
reduced spatial sampling of signals (which is limited by the array 
pitch) and the lack of phase information in that direction. For 
this reason, methods for axial/lateral displacement computation 
are mainly based on 2D normalized cross-correlation (2D-NCC) 
algorithms [5], with additional interpolation or correlation-peak 
fitting procedures to achieve sub-sample accuracy [6]. 

Displacement estimation techniques for the reconstruction of 
elastograms in quasi-static elastography are applied on 
radiofrequency (RF) images, i.e. on the RF image scan lines 
obtained after beamforming in reception. Generally, standard 
Delay and Sum (DAS) beamforming is applied; however, higher 
performance beamformers have been proposed up to now, 
which are able to improve image contrast and lateral resolution 
[7], but slightly compromising the speckle pattern uniformity. 

Therefore, in this paper we aim to investigate whether 
starting from an RF image obtained by applying a coherence-
based beamforming method can lead to an improved estimation 
of displacement in elastography images. Particularly, we focus 
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on Coherence Factor (CF) [8], Generalized CF (GCF) [9], Phase 
and Sign CF (PCF, SCF) [10], and Filtered Delay Multiply and 
Sum (FDMAS) [7] beamforming, which have shown excellent 
performance in B-mode imaging as compared to DAS. A 2D-
NCC procedure with polynomial fitting is applied to simulated 
RF images obtained with these beamforming techniques, and the 
error on estimated displacement is then evaluated. Finally, their 
performance is also investigated in terms of image quality (i.e. 
contrast and uniformity) on experimental breast phantom 
elastograms. 

II. MATERIALS AND METHODS 

A. Coherence-Based Beamforming Algorithms 

- Coherence Factor 

The CF [8] provides a measure of the quality of focusing and 
is computed dividing the coherent sum of received (and delayed) 
RF signals sn(t) by their incoherent sum, obtaining a number that 
ranges from 0 to 1. If N is the number of elements in the active 
aperture, then the beamformed output signal ycf(t) is obtained by 
computing the CF for each time sample and using it to weight 
the DAS signal ydas(t), as follows: 
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- Generalized Coherence Factor 

GCF [9] is computed as the ratio between the energy of RF 

signals at frequencies lower than a certain cutoff level (M0), and 

the total energy. The GCF-weighted RF lines are obtained as: 
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where S(k, t) is the spectrum of sn(t) and k represents the spatial 

frequency index. GCF is equivalent to CF when M0=0. 

- Phase and Sign Coherence Factors 

In the PC algorithm case, the coherence of received signals 
after focusing is evaluated by analyzing the distribution of their 
instantaneous phases φn(t), particularly their standard deviation 
σ(φn(t)). The PC factor (PCF), which is again a value in the  
[0; 1] range, is computed as [10]: 
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,{tPCF n )(
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           (3) 

where γ is a user-defined parameter in the range [0; 1] used to 

tune PCF sensitivity and off-axis signal rejection. SCF is 

instead computed considering the standard deviation of signs 

bn(t) of RF signal samples:  

q

n tbtSCF ))((1)(                          (4) 

where q  0 is again a parameter used to tune SCF sensitivity. 
The beamformed signal is finally obtained by multiplying PCF 
or SCF by the DAS output, as for CF weighting. 

- Filtered Delay Multiply and Sum  

The FDMAS algorithm [7] consists in rescaling the RF 
signal amplitudes by means of a signed square root, then 
coupling, multiplying and finally summing them up: 
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The output of eq. (5) is band-pass filtered around the second 
harmonic component that originates after these non-linear 
operations, which basically correspond to the computation of the 
receive aperture spatial autocorrelation. 

B. Displacement Estimation with 2D Cross-Correlation 

Displacement estimation is based on the computation of 2D-
NCC (R) between 2D kernels on the pre- and post-compression 
RF image frames. Windows are generally overlapped and are 
moved until the whole image space is covered. The window over 
the post-compression image is shifted step by step along the 
lateral direction, while axially it is moved adaptively based on 
the axial displacement estimated at the previous step.  

At each step, R(z, x) is computed as [5]: 
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where y1 and y2 are the RF image lines in the pre- and post-
compression frames, respectively; Wz and Wx are the kernel size 
along axial and lateral direction respectively, while τ and δ 
represent the NCC lags (in samples). The 2D-NCC peak position 
provides an estimate of the spatio-temporal shift that exists 
between the pre- and post-compression kernels, and can be 
stored to generate a map of axial and lateral displacement. These 
are in the end converted into axial and lateral strain maps 
(elastograms), respectively, by computing the gradient of 
displacement (along z for axial displacement, and along x for 
lateral displacement).  

For a more accurate estimation of sub-sample lateral 
displacement, a polynomial fitting procedure of 2D-NCC can be 
applied; different types of fitting curves have been proposed in 
the literature (e.g. parabolic, cubic spline, etc. [6]). In this work 
a quartic spline polynomial was fitted to the peak of R and to its 
24 neighboring lags in 2D.  

C. Simulation and Experimental Setup 

Simulations were performed using Finite Element Method 
(FEM) to simulate tissue compression, and Field II [11], [12] for 

RF signals generation. A 3030 mm elasticity phantom 
(background shear modulus = 10 kPa) with a spherical, stiffer 
(60 kPa), isoechoic, 6-mm target was modeled using ANSYS 
(ANSYS Inc., Canonsburg, PA, USA). An external load was 
applied on its top surface to simulate a maximum displacement 
of 0.5 mm axially (z axis) and of 0.3 mm laterally (x axis). The 
FEM model node positions were resampled to derive a random 
distribution of scatterers, with more than 10 scatterers per 
resolution cell, as required for a correct speckle formation. This 
procedure was applied both to the reference FEM model and to  



 
Fig. 1. Axial (top row) and lateral (bottom row) displacement maps obtained from FEM simulations (reference) and with 2D-NCC combined with different 

beamforming methods.  

the one obtained after the load application. The pre- and post-
compression numerical phantoms were thus imported in 
MATLAB for ultrasound imaging simulations with Field II. A 5 
MHz linear array was modeled (192 elements, pitch=0.245 mm, 
64-element active aperture) to simulate the scan of 192 RF lines. 
The focal depth in transmission was set to 25 mm, while 
dynamic focusing was applied in reception. The sampling 
frequency was 100 MHz. 

The ULA-OP scanner [13] was used for experimental 
acquisitions at 26 fps on a CIRS breast phantom (model 059, 
CIRS Inc., Norfolk, VA) with inclusions about 2 times harder 
than the background, which has a ~20 kPa elastic modulus. The 
LA533 linear-array probe by Esaote (Esaote S.p.A, Florence, 
Italy) was used to acquire 192 RF lines at 7 MHz, focusing at 20 
mm depth. Signals sampled at 50 MHz were then imported in 
MATLAB for processing.  

The RF frames were reconstructed with DAS, CF, GCF 
(M0=2), PCF (γ=0.6), SCF (γ=0.6) and FDMAS beamforming. 
Elastograms were finally obtained with 2D-NCC applied to 

consecutive frame couples, considering a 14010 samples 

(z  x) kernel with Hann tapering along the z direction, and 

finally filtered by a 22 mm median filter. On simulated data, 
the performance of the algorithms was quantitatively evaluated 
by computing the Root Mean Squared Error (RMSE) and 
median error (mE) on displacement images as compared to the 
reference FEM ones. In the experimental case, instead, due to 
the lack of a reference displacement map, elastogram image 
quality was quantified in terms of elastographic contrast-to-
noise ratio (CNRe) and non-uniformity level (NU) [14]. 

III. RESULTS 

Results of simulations are shown in Fig. 1, where the 
reference axial/lateral displacements obtained from FEM and 
the ones estimated with 2D-NCC starting from differently 
beamformed RF images are presented. As it can be seen, 
estimates are in all cases similar to FEM results, but some errors 
are present, especially for lateral displacement.  

In Table I, the RMSE and mE values obtained for all images 
are provided. RMSE values are generally higher than mE ones, 
due to the presence of several outlier errors that often appear in 
the displacement estimates. For axial displacement, error values 

obtained for all beamformers are similar. In the lateral case 
instead, some more significant differences exist; in particular, 
with CF, SCF and FDMAS, a RMSE which is from 2.4 µm 
(PCF) to 5.5 µm (SCF) lower than DAS (RMSE=29.3 µm) is 
obtained. Percentage differences on RMSE and mE vs. DAS are 
shown in Table II: negative values indicate that lower errors are 
achieved. The table shows that improvements are achieved by 
coherence-based beamformers in almost all cases; such 
improvements are generally low in the axial case and increase in 
the lateral one. CF, SCF and FDMAS show the most significant 
differences from DAS on lateral displacement estimation, 
achieving an up to ~32% improvement with SCF.  

In Fig. 2, one elastography frame is shown (both axial and 
lateral strain are represented) for experimental acquisitions on 
the breast phantom. The measured CNRe and NU values are 
reported in Table III. Results show that all axial elastograms 
look very similar, as well as their NU, except the FDMAS one 
which has some overestimated areas on the target borders and 
the lowest CNRe. With all coherence-based beamformers, 
CNRe is lower than the DAS one, especially with CF, SCF and 
FDMAS. Lateral elastograms present some more significant 
differences, as the target shape looks qualitatively more defined  
 

TABLE I.  RMSE AND mE ON AXIAL/LATERAL DISPLACEMENT ESTIMATES 

 
Error 

[µm] 

Beamformer 

DAS CF GCF PCF SCF FDMAS 

AD RMSE 9.51 9.16 9.48 9.56 9.67 9.41 

AD mE 8.85 8.37 8.81 8.87 8.92 8.67 

LD RMSE 29.3 25.5 29.3 26.9 23.8 26.1 

LD mE 25.3 18.8 25 22.3 17.2 18 

AD = Axial Displacement image, LD = Lateral Displacement image. 
 

TABLE II. PERCENTAGE ERROR ON DISPLACEMENT ESTIMATION VS. DAS 

 
% 

error 

Beamformer 

CF GCF PCF SCF FDMAS 

AD RMSE  -3.7% -0.4% +0.4% +1.6% -1.1% 

AD mE -5.5% -0.5% +0.2% +0.8% -2% 

LD RMSE -13.1% -0.1% -8.1% -18.7% -10.8% 

LD mE -25.7% -1.4% -9.3% -32.2% -28.9% 

AD = Axial Displacement image, LD = Lateral Displacement image. 



 
Fig.2. Axial (top row) and lateral (bottom row) strain images of the breast phantom, obtained with different beamformers and 2D-NCC.  

TABLE III.  CNRE AND NU OF BREAST PHANTOM ELASTOGRAMS 

 Param 
Beamformer 

DAS CF GCF PCF SCF FDMAS 

AS CNRe 20.3 17.8 19.6 19.8 16.9 12.5 

AS NU 10.6% 11.1% 10.9% 10.4% 12.2% 12.5% 

LS CNRe 1.2 0.8 1.2 1 0.6 0.3 

LS NU 41.6% 41% 41.8% 40.1% 45.6% 45% 

AS = Axial Strain image, LS = Lateral Strain image. 

 

with CF and SCF. GCF and PCF behave similarly to DAS, while 
FDMAS gives the noisiest output. However, since images also 
look sharper, CNRe is lower with CF, PCF, SCF and FDMAS 
than with DAS. Also NU is about 4% worse with SCF and 
FDMAS than with DAS. 

IV. DISCUSSION AND CONCLUSION 

2D-NCC with polynomial fitting allows estimating both 

axial and lateral displacement for the reconstruction of breast 

elastograms in both directions. However, lateral 

displacement/strain images show a lower accuracy and quality 

than axial ones, since estimation in this direction suffers from 

several limitations, as explained previously.  

In this paper we investigated whether applying coherence-

based beamforming followed by 2D-NCC could lead to more 

accurate displacement estimates and elastograms with higher 

contrast/uniformity than DAS. Our simulation results show that 

an improvement can be achieved in the estimation of lateral 

displacement if coherence-based beamformers are applied, 

particularly with CF, SCF and FDMAS, while performance on 

axial displacement is similar to that of DAS. Axial strain quality 

is similar in all cases too, while for lateral strain sharper images 

are obtained with these beamformers, where the target seems 

better defined. However, CNRe and NU are lower than those of 

DAS. In particular, FDMAS gives the worst results, but 

probably in this case a different window size should be chosen, 

due to the doubled frequency. Further analyses are thus 

foreseen to investigate more in depth the effects of coherence-

based beamformers on lateral elastograms.  
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