
21 February 2025

A Dynamic Precision Floating-Point Arithmetic Based on the Infinity Computer Framework / Amodio,
Pierluigi; Brugnano, Luigi; Iavernaro, Felice; Mazzia, Francesca. - STAMPA. - 11974:(2020), pp. 289-297.
(Intervento presentato al  convegno NUMTA 2019) [10.1007/978-3-030-40616-5_22].

Original Citation:

A Dynamic Precision Floating-Point Arithmetic Based on the Infinity
Computer Framework

Publisher:

Published version:
10.1007/978-3-030-40616-5_22

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The above-
mentioned date refers to the last update of the record in the Institutional Repository FloRe

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
The webpage https://hdl.handle.net/2158/1184376 of the repository was last updated on 2020-02-
20T13:23:53Z

D.S. Sergeyev, D.E. Kvasov

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

https://hdl.handle.net/2158/1184376


A Dynamic Precision Floating-Point Arithmetic
based on the Infinity Computer Framework∗†

Pierluigi Amodio1[0000−0003−3372−0162], Luigi Brugnano2[0000−0002−6290−4107],
Felice Iavernaro1[0000−0002−9716−7370]B, and Francesca

Mazzia3[0000−0003−1072−9578]

1 Dipartimento di Matematica, Università di Bari, Italy
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Abstract. We introduce a dynamic precision floating-point arithmetic
based on the Infinity Computer. This latter is a computational platform
which can handle both infinite and infinitesimal quantities epitomized
by the positive and negative finite powers of the symbol ¬, which acts
as a radix in a corresponding positional numeral system. The idea is
to use the positional numeral system from the Infinity Computer to
devise a variable precision representation of finite floating-point numbers
and to execute arithmetical operations between them using the Infinity
Computer Arithmetics. Here, numerals with negative finite powers of
¬ will act as infinitesimal-like quantities whose aim is to dynamically
improve the accuracy of representation only when needed during the
execution of a computation. An application to the iterative refinement
technique to solve linear systems is also presented.

Keywords: Infinity Computer · Floating-point arithmetic · condition-
ing · iterative refinement.

1 Introduction

The Infinity Computer paradigm, patented in EU, USA, and Russia (see for
example [16]), is based on a positional numeral system with the infinite radix ¬
(called grossone) representing, by definition, the number of elements of the set
of natural numbers N [11, 14]. A number in this system is a linear combination
of powers of ¬ with coefficients in the standard numeral system, such as

dpm¬pm . . . dp1¬p1dp0¬p0dp−1¬p−1 . . . dp−k
¬p−k ,
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with the usual meaning

dpm
¬pm + . . .+ dp1

¬p1 + dp0
¬p0 + dp−1

¬p−1 + . . .+ dp−k
¬p−k .

The numerals di 6= 0 belong to a traditional numeral system and are called
grossdigits, while numerals pi are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k,

and are called grosspowers (only finite grosspowers are considered in this con-
tribution). Among the many fields of research this new methodology has been
successfully applied, we mention numerical differentiation and optimization [4,
12, 17] and numerical solution of differential equations [9, 1, 10, 6].4 First results
on handling ill-conditioning using the Infinity Computer may be found in [5, 13].

Of particular interest in our study are grossnumbers consisting of a finite
expansion of integer grosspowers such as, for example,

X = ¬P
T∑

j=0

xj¬
−j , with grossdigits xj = ±βpj

t∑
i=0

dijβ
−i, (1)

where P, pj ∈ Z and T, t are given positive integers, while β stands for the base
of the traditional floating-point arithmetic system (usually β = 2).

This representation suggests interesting applications of the Infinity Computer
if now ¬ identifies a suitable prescribed finite value. The idea is to exploit the
grossdigits xi in order to store a large number of significant digits in a dynamic
manner during the execution of an algorithm. This means that the accuracy
may be increased/decreased on demand during the flow of computations by
automatically activating/deactivating a number of negative grosspowers. Taking
aside the technical aspects related to the hardware implementation of the Infinity
Computer, our study explores this path of investigation and is addressed to the
accurate solution of ill-conditioned/unstable problems [7, 3].

It should be noticed that, in principle, neither the user nor the programmer
needs to know what the value of ¬ actually is. This assumption should be instead
understood as an inherent feature of the machine architecture which, consistently
with the Infinity Arithmetic methodology, will perceive the negative powers of
¬ as infinitesimal-like quantities if related to the classical floating-point system.
Adopting this point of view, it turns out that changing the meaning of ¬ as we
are going to do in the present work, does not affect that much the philosophical
principles the grossone methodology is rooted in.

2 The framework

In this section, we discuss an application of the Infinity Arithmetic system which
consists in devising a floating-point variable precision arithmetic that will be

4 For further references and applications see the survey [15].
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used later to overcome the intrinsic loss of accuracy experienced when solving
an ill-conditioned problem in the standard floating-point arithmetic.

The implementation of multiple and, in particular, variable precision arith-
metic has been largely explored and successfully implemented, as is testified
by the rich literature on this topic (see, for example, the survey paper [2] and
reference therein). Here, however, we explore a further generalization of this
paradigm in that the number of significant digits needs not to be a priori spec-
ified and maintained fixed but may be dynamically changed during the flow of
computations. In particular, depending on the specific problem at hand and the
algorithm used to solve it, the involved variables may allocate a different and
variable amount of memory during the execution of the algorithm. The final
goal is to control the error and make sure that the desired accuracy in the output
data is achieved. This dynamic precision arithmetic is introduced as a natural
byproduct of the Infinity Computer architecture and thus is expected to be easy
to handle and to perform efficiently, once a hardware implementation of this
latter will be available.

Representation of a real number. Consider first the problem of storing a real
non-zero number x = ±βp

∑∞
i=0 diβ

−i ∈ R, d0 6= 0, by preserving N + 1 > 0
significant digits. This task can be accomplished by setting in (1): ¬

.
=βt+1 and

assuming pj = p, j = 0, . . . , T , and P = 0.5 The first N + 1 digits of x may be
gathered in adjacent groups of t+ 1 elements as follows:

x = ±βp d0.d1 . . . dt︸ ︷︷ ︸ dt+1 . . . d2t+1︸ ︷︷ ︸ . . . dj(t+1) . . . d(j+1)(t+1)−1︸ ︷︷ ︸ . . . dN . (2)

Then, assuming that (N + 1) ≤ (T + 1)(t + 1) and setting di = 0 for i =
N + 1, . . . , (T + 1)(t + 1), the floating-point grossnumber representing x takes
the form

fl(x) = ±βp
T∑

j=0

¬−j
t∑

i=0

dj(t+1)+iβ
−i. (3)

Notice that all grossdigits share the same exponent p which, therefore, could be
stored only once. We call (3) the normalized machine representation of x and its
uniqueness comes from the uniqueness of the standard normalized notation (2).

Renormalization after a computation. According to the Infinity Arithmetic me-
thodology, the four basic operations over two grossnumbers follow the same rules
of operations with polynomials. In fact, by definition, in this numeral system
the radix ¬ is infinite while all digits dij are finite. For example, given the two
grossnumbers (see (1))

X = x1¬1 + x2¬0 + x3¬−1, Y = y1¬0 + y2¬−1 + y3¬−2

we get
X + Y = x1¬1 + (x2 + y1)¬0 + (x3 + y2)¬−1 + y3¬−2 (4)

5 .
= denotes the identification operation, so the meaning of ¬ remains unaltered.
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and

X · Y = x1y1¬1 + (x1y2 + x2y1)¬0 + (x1y3 + x2y2 + x3y1)¬−1

+(x2y3 + x3y2)¬−2 + x3y3¬−3.
(5)

Now, due to the identification of ¬ with a finite number and the assumption
that all grossdigits must share the same exponent, it follows that, in general,
the result of an operation will be not normalized and thus it is necessary to
carry forward or backward some digits along the powers of ¬ in order to obtain
the result in the form (3). Without entering into details of this normalization
procedure, which would go beyond the aims of this short paper, we consider an
illustrative example.

Example 1. Set β = 2 (binary base) and t = 3 (four significant digits). Consider
the sum of the two floating-point normalized grossnumbers

X = 20 · (¬01.101 + ¬−11.010 + ¬−21.111),

Y = 2−2 · (¬01.011 + ¬−11.110 + ¬−21.001).

The procedure, which moves along similar lines as for standard floating-point
arithmetic, is summarized by the following steps of obvious meaning:

¬0 ¬−1 ¬−2

(a) alignment 20 1.101 1.010 1.111
20 0.010 1.111 1.010 01

(b) sum with carrying 20 10.000 1.010 1.001 01
(c) normalization 21 1.000 0.101 0.101

Notice that, as explained above, the Infinity Computer would perform the addi-
tion without carrying. This means that step (b) needs to be suitably arranged,
also considering how to manage the rounding effects in each floating-point gross-
digit. This aspects needs a specific study and is not addressed here since we just
intend to show the general lines of our apprach. As a further remark, one clear
advantage arising from the use of the Infinity Computer is that the computation
of the grossdigits outcoming from basic operations such as (4) and (5) may be
carried out in parallel.

Dynamic precision usage. Among the features offered by the computational plat-
form based on the Infinity Computer, we assume that the user may decide how
many infinitesimals stored in a variable should be involved in a given compu-
tation. If X is chosen as in (1), we denote by X(q) the grossnumber obtained
by neglecting, in the sum, all the infinitesimals of order greater than q, that is,
X(q) = ¬P ∑q

j=0 xj¬
−j . For example, choosing X and Y as in Example 1, we see

that X(0) +Y (0) = 21 ·1.000 would become the standard floating-point addition,
and one can improve the accuracy by letting the subsequent infinitesimals come
into play. This possibility may be exploited in a dynamical manner to overcome
ill-conditioning issues associated with a given problem. The following example
has a heuristic purpose in this direction.
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Example 2. Set β = 10 (decimal base) and t = 3 (four significant digits), without
rounding. Consider the three grossnumbers

X = 100 · (¬01.234 + ¬−15.678 + ¬−29.012 + ¬−33.456),

Y = 100 · (¬01.234 + ¬−14.444 + ¬−24.444 + ¬−34.444),

Z = 10−4 · (¬01.230 + ¬−11.234 + ¬−21.234 + ¬−31.234).

storing three corresponding decimal numbers, say x, y, z ∈ R with 16 significant
digits. Then X(0),Y (0) and Z(0) may be interpreted as the single precision rep-
resentation of x, y, z while, on the other side, X, Y and Z are their quadruple
precision approximations. Consider the problem of computing w = (x − y) − z
with four significant digits, which would suggest the use of single precision. Un-
fortunately, the first subtraction x− y is ill-conditioned in single precision:∣∣∣∣ (x− y)− (X(0) − Y (0))

x− y

∣∣∣∣ =

∣∣∣∣ (X − Y )− (X(0) − Y (0))

X − Y

∣∣∣∣ = 1. (6)

The following scheme illustrates the procedure to obtain the correct result while
minimizing the computational effort. It goes without saying that a cheap esti-
mation of the relative error be available.6 However, for simplicity of exposition,
we evaluate the error by exploiting formulae similar to (6).

steps error action

(a) X(0) − Y (0) = 0 1.9 · 10−1 improve the accuracy

(b) X(1) − Y (1) = 1.234 · 10−4 3.7 · 10−4 accept the result

(c) (X(1) − Y (1))− Z(0) = 4.000 · 10−7 7.7 · 10−2 improve the accuracy

(d) X(2) − Y (2) = 1.2344568 · 10−4 8.0 · 10−9

(e) (X(2) − Y (2))− Z(1) = 4.333 · 10−7 5.1 · 10−6 accept the result

Steps (a)-(b) produce four significant digits in the difference X − Y . However,
a new cancellation phenomenon occurs at step (c). To overcome the loss of
significant digits at this stage, a further improvement in accuracy of X − Y
is required (step (d)). The final step (e) reveals the coexistence of variables
combined with different precisions.

In general, improving the accuracy of variables results in an increase of the over-
all computational complexity. However, it turns out that, in certain situations,
algorithms may devised where only a marginal amount of computation needs to
be performed with high accuracy. One such example is the iterative refinement
and will be considered in the next section to illustrate the idea.

3 A case study

Citing Cleve Moler [8], iterative refinement reduces the roundoff errors in the
computed solution to a system of linear equations. Starting from an initial ap-
proximated solution x0 to a linear system Ax = b, this procedure consists of
three steps iteratively executed. For k = 0, 1, . . . ,

6 For example, one could take the values X(k+1), Y (k+1) and Z(k+1) as a reference
solution with respect to X(k), Y (k) and Z(k), and change the procedure accordingly.



6 P. Amodio et al.

step 1: compute the residual rk = b−Axk;
step 2: solve the system Adk = rk;
step 3: add the correction xk+1 = xk + dk.

In absence of roundoff errors the iteration would converge after one step to the
true solution x∗ = A−1b. As is well-known, the use of finite precision arithmetic
causes an amplification of the representation errors of the input data A and b
proportional to the condition number κ(A) of the coefficient matrix A. It turns
out that, if step 1 is performed using a higher precision arithmetic with respect
to the standard precision used at steps 2-3, the accuracy of the approximation
may be significantly improved. In particular, denoting by ε1 and ε2 the round-off
units defining the accuracy of the evaluations of steps 2-3 and step 1 respectively,
in [8] it is shown that

||xk − x∗||∞
||x∗||∞

≤ (σκ∞(A)ε1)k + µ1ε1 + nµ2κ∞(A)ε2 (7)

where n is the dimension of A and σ, µ1, µ2 are suitable positive quantities
with µ1, µ2 = O(1/(1 − σκ∞(A)ε1)). Consequently, under the assumption 0 <
σκ∞(A)ε1 � 1, we see that µ1 and µ2 become of the order of unity and the
relative error approaches the size of the greatest round-off unit (that is ε1 if we
assume ε2 � ε1). Usually, the LU factorization with partial pivoting of matrix
A is used at step 2 to reduce the computational effort associated with the linear
systems to be solved at each iteration. During the execution of the algorithm on
the Infinity Computer, one can control the convergence of the scheme by looking
at the norms of the residuals computed at step 1:

– In the unfortunate event that ||rk|| diverges, the algorithm should improve
the overall accuracy of step 2 by involving suitable negative powers of ¬,
thus reducing ε1 (see (7)). One alternative we adopt in the example below
is to compute the LU factorization of A with a higher accuracy and then
truncate L and U to the roundoff level ε1.

– In the case where ||rk|| stagnates before the error reaches the desired size,
an improvement of the accuracy in performing step 1 is needed to reduce the
value of ε2. This is again accomplished by introducing new negative powers
of ¬ in the representation of the data A and b and in the computation of
the residual rk.

In the following example, the Infinity Computer arithmetic has been emulated
in the Matlab environment by using β = 2 and t = 52, which means that the
grossdigits associated with ¬0 carry the 64-bit base-2 format of the IEEE 754
standard (double precision). This precision is doubled or tripled by involving the
grossdigits associated with ¬−1 and ¬−2 respectively.

Example 3. Consider the system Ax = b, where A is the Vandermonde matrix
of size 25 and coefficients aij = (i − 1)j−1, i, j = 1, . . . , 25, while b = Ae with
e = (1, . . . 1)>, so that x∗ := A−1b = e. The condition number of A is κ∞(A) ≈
8.5·1039. The iterative refinement procedure described above is executed starting
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Fig. 1. Fixed versus dynamic precision implementation of the iterative refinement on
a linear system with Vandermonde coefficient matrix of size 25.

from the initial guess x0 = (0, . . . , 0)>. We make the choice ε1 = β−t/2 (double
precision) and we want to gain as many correct significant digits as possible while
dynamically changing ε2 in order to minimize the overall computational cost.
A double precision accurate LU factorization with pivoting has been initially
computed to solve the systems at step 2. As for the previous examples, we
set A(j) and b(j) the truncations of A and b to the term j in their expansion
along the negative grosspowers, and initially perform step 1 with A(0) and b(0)

until an increase in ||rk|| is detected. In fact, the condition ||rk|| > ||rk−1|| is
symptomatic that a stagnation of the error is going to occur. This happens
at the third iteration: here step 1 is run again with A(1) and b(1) (quadruple
precision) in place of A(0) and b(0) and, consequently, the accuracy increases in
the subsequent iterations. Notice that rk has to be truncated at t digits, that is
the standard double precision accuracy, before implementing step 2.

A further improvement in the accuracy of rk is needed at the eighth iteration
to avoid the saturation of the error at about 10−5. Therefore A(2) and b(2)

come into play at step 1 and assure a representation of A and b in sextuple
precision (192 bits). This is enough to allow the error decrease at roundoff level
ε1 (see (7)). The results are illustrated in Figure 1. The dashed, dash-dotted
and dotted lines refer to the execution of the iterative refinement using fixed
accuracy ε2 = β−t/2, β−2t/2, β−3t/2, respectively, and reveal the error levels it is
possible to reach with these choices. In particular, we see that sextuple precision
is needed at step 1 in order to obtain a double precision accurate solution.
The solid line refers to the dynamic precision implementation of the procedure
illustrated above. The errors at the first two iterations executed with ε2 = ε1
are labeled with asterisks. The errors in the subsequent five iterations, executed
with ε2 = β−2t/2 are labeled with circles. Finally, the remaining iterations are
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executed with ε2 = β−3t/2 and the related errors are labeled with crosses. We see
that the error decreases until the saturation level of the corresponding precision
mode is attained. Consequently, the dynamic change of the accuracy is finely
tuned for this example and guarantees a number of total iterations very close
to those needed by directly working with the highest considered precision but,
evidently, requiring a lower computational effort.
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