UNIVERSITA
DEGLI STUDI

FIRENZE

PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELLINFORMAZIONE (DINFO)

Language Models for Text
Understanding and Generation

Andrea Zugarini

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Language Models for Text Understanding
and Generation

Andrea Zugarini

Advisor:

Prof. Marco Maggini

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Vincent Guigue, UPMC - LIP6
Prof. Massimo Piccardi, University of Technology Sydney (UTS)

XXXIII ciclo — December 2021

Acknowledgments

First of all, I would like to thank my advisor Marco Maggini for guiding and sup-
porting me during this three years of Ph.D. Besides my supervisor, I would like to
thank the rest of my Supervisory Committee: Marco Lippi and Marco Turchi, whose
supervision during the entire program gave me precious insights and suggestions
from different perspectives. I also would like to thank the Evaluation Committee,
Vincent Guigue and Massimo Piccardi, for reviewing this thesis. A special mention
goes to Stefano Melacci whose guidance has been of invaluable help to me since
before I was a Ph.D student.

My sincere thanks go to Kata Naszadi, that mentored and supervised me during
the internship period at Amazon, and to Manuel Giollo, my manager, that despite
the distance (due to covid) made me feel closer.

I would like to thank all the administrative stuff of both the Florence and Siena
universities. In particular, my thank goes to Simona Altamura, always kind and
efficient. Without her, I would probably be still stuck in bureaucracy. My sincere
thanks go to QuestIT s.r.l. (Siena) for funding the grant supporting my studies.

A special thank goes to all the members of SAILab. My experience in SAILab
started since before it was called that way (Dario knows it well!). I have seen the lab
growing and I met a lot of great friends and colleagues that made this journey amaz-
ing. I will always remember with affection all the time we spent together, dinners,
soccer games, wine tastings and all the rest. It was really a pleasure. In particular,
thanks to Michelangelo for his amazing cooking skills, his dinners were the best.
I thank Vincenzo for not giving to me “il posto del morto” (the death’s spot) and
for his profound appreciation of automatically generated poetry. Thanks to Lisa, a
certainty in the lab, she had always a “good word” for anybody. I thank Gabriele,
proactive member of the lab, for his insightful questions, despite he stole my desk
as soon as he got the chance! Thanks to Enrico, great guy I had the pleasure to work
with during this last year. A special thank goes to Alberto, one of the first guys I
met in Siena, a friend, and also a great beekeeper! I thank Francesco for the many
beautiful movies he made me watch, as well as the many less beautiful ones, and for
the endless discussions about them. I thank Giuseppe, code mate by choice, room-
mate by accident (literally), for the many scientific conversations had while eating
half kilogram hamburgers. Thanks to Dario, he was always there in the funniest
moments I can think of. Never do an hackathon without him, it’s bad luck. I thank
Matteo, desk mate, mayor behind the scenes, we went through the Ph.D together
(summer schools included), but most of all, for being a fantastic friend!

It was a wonderful period of my life, but none of this would have been possible
without the support of my family. Thanks to my parents for believing in me, to my
little brother Francesco for reminding me the importance of playing sometimes, and

above all, thanks to Martina, my blonder half, for always being by my side.

Abstract

The ability to understand and generate language is one of the most fascinat-
ing and peculiar aspects of humankind. We can discuss with other individuals
about facts, events, stories or the most abstract aspects of our existences, only
because of the power and the expressiveness of language. Natural Language
Processing (NLP) studies the intriguing properties of languages, the rules, their
evolution, its connections with semantics, knowledge and generation, and tries
to harness its features into automatic processes. Language is built upon a collec-
tion of symbols, and meaning comes from their composition. Such symbolic na-
ture limited for many years the development of Machine Learning solutions for
NLP. Many models relied on rule-based methods, and Machine Learning mod-
els where based on handcrafted task-specific features. In the last decade there
have been incredible advances in the study of language, thanks to the combina-
tion of Deep Learning models with Transfer Learning techniques. Deep models
can learn from huge amounts of data, and they are proven to be particularly ef-
fective in learning feature representations automatically from high-dimensional
input spaces. Transfer Learning techniques aim at reducing the need for data
by reusing representations learned from related tasks. In the scope of NLD, it
is possible thanks to Language Modeling. Language Modeling related tasks
are essential in the construction of general purpose representations from unla-
belled large textual corpora, allowing the shift from symbolic to sub-symbolic
representations of language.

In this thesis, motivated by the need of moving steps toward unified NLP
agents capable of understanding and generating language in a human-like fash-
ion, we face different NLP challenges, proposing solutions based on Language-
Modeling. In summary, we develop a character-aware neural language model
to learn general purpose word and context representations, and use the encoder
to face several language understanding problems, included an agent for the ex-
traction of entities and relations from an online stream of text. We then focus
on Language Generation, addressing two different problems: Paraphrasing and
Poem Generation, where in one the generation is tied with information in in-
put, whereas in the other the production of text requires creativity. In addition,
we also present how language models can offer aid in the analysis of language
varieties. We propose a new perplexity-based indicator to measure distances
between different diachronic or dialectical languages.

Contents

Contents

1 Introduction

1.1
1.2
1.3

Motivation e e
Contributions e
Structure of the Thesis

2 Background

21

2.2

2.3

3.1
3.2
3.3
34

Language Modeling Lo oL
211 Definition L o o oo
212 Evaluation 0 o
213 N-grams
214 Neural Language Models
2.1.5 Recurrent Neural Language Models
Language Representations
221 Tokenization o0 L
222 Omne-hotEncoding
223 Word Embeddings
224 Sub-word Encoding oL
225 Contextual Representations
Language Generation
2.3.1 Text Generation is Language Modeling
2.3.2 Decoding Strategies 0oL
3 Character-aware Representations
Related Works L
Model
Learning Representations
Experiments
341 Chunking Lo o
3.42 Word Sense Disambiguation
3.43 RobustnesstoTypos

O 0 U1 U1

CONTENTS

3.44 Qualitative Analysis 37
3.5 Discussion e 38
Information Extraction in Text Streams 39
41 RelatedWorks e 39
42 ProblemSetting L oo 41
43 Model e e 43
43.1 Mention Detection 43
43.2 Mention and Context Encoding 44
433 Candidate Generation 45
434 Disambiguation 0oL 49
44 Online Learning Dynamics 50
45 Experiments 53
451 Datasets 53
452 Learning Settings 56
453 Competitors o oo oo 57
454 Results e 58
455 AblationStudy o Lo oL 60
45.6 Dealing with Long Text Streams 61
4.6 Discussion e e 63
Natural Language Generation 65
51 Related Works 65
52 Neural Poetry 67
52.1 ASyllable-based Model 68
52.2 Multi-Stage Transfer Learning 70
5.2.3 Generation Procedure 71
524 Experiments o o Lo 72
5.3 Neural Paraphrasing 77
5.3.1 Automatic Dataset Construction 77
532 CaseStudy 80
533 Model. 81
534 Experiments L oL 85
54 Discussion 88
Language Varieties 89
6.1 RelatedWorks 90
6.2 DataCollection 91
6.2.1 Historical background 91
6.2.2 Datasetstructure 93

6.2.3 Statistical Analysiso 0 0L 93

CONTENTS 3
6.3 Perplexity-based Language Measures 95
6.4 Conditional Language Modeling 97
6.5 Experiments Lo o oo 99
6.6 Discussion o 00 101

7 Conclusions 103
71 Summary 103
72 FutureWorks. 104

A Publications 107

Bibliography 111

Chapter 1

Introduction

1.1 Motivation

Language is the main form of human communication that allows the exchange of
information between individuals. It is known that many living species have some
sort of verbal communication. Arguably, this strong communication abilities have
been paramount for the development of our intelligence and dramatically increased
the social skills of human beings. We distinguish from other species for the unique
capability of creating (and believing in) fictive stories, which is considered to be a
fundamental milestone of the Cognitive Revolution of humankind (Harari (2014)).

To us, understanding, interpretation, elaboration and generation of language
seem natural. We acquire such capacities since the moment we are born, and grad-
ually develop them during all our life. There are two key aspects of natural lan-
guage: understanding and generation. Understanding is the ability to comprehend
the meaning of text, i.e. the information received by another individual. Generation
is the capability to convey information by producing your own message. In humans
those properties are interleaved. This complex phenomenon has been studied for
decades. Many have wondered and tried to wire human language into automatic
programs. Natural Language Processing (NLP) is a discipline in between com-
puter science and linguistics, aimed at studying and analyzing language by means
of automatic processes. To tackle the many aspects of language, researchers have
break down its complexity, dividing the problem into many single simpler prob-
lems. Some applications require both understanding and generation, as for exam-
ple, in conversational agents.

The symbolic nature of language has been an obstacle to the development of
Machine Learning techniques, that are essentially sub-symbolic, for many years.
Most of the solutions indeed were based on rules conceived for each specific task
at hand. Machine Learning or Statistical techniques were used only where enough
supervised data was available and they required the design of handcrafted features

5

6 Introduction

constituting the input of such models.

In the last decade there have been astonishing advances in Machine Learning.
Arguably, most of the success has been achieved thanks to the rise of Deep Learning
techniques. Computer Vision, Speech Recognition and Natural Language Process-
ing too, have all seen major improvements and nowadays neural architectures dom-
inate the state-of-the-art in these fields. Deep models can learn from huge amounts
of data, and they are proven to be particularly effective in learning feature represen-
tations automatically from high-dimensional input spaces. However, these models
have a lot of parameters (in the order of millions or even billions), so they are ex-
tremely data-hungry, which means that large amounts of annotated examples are
necessary in order to learn effectively. Labelling examples is in general expensive
and sometimes non-trivial, since it requires human intervention, limiting the power
of these models in many scenarios.

Deep Learning has benefit a lot from Transfer Learning. Transfer Learning is
based on the idea of reusing acquired knowledge to solve new problems. In its most
general form, we refer to Transfer Learning anytime what has been learned in one
setting is exploited to improve generalization in another setting. In the classical Ma-
chine Learning setup, each task is attached independently. However, there may be
many problems that are related to each other. This means that at least part of the
representations (features) that a model has to develop for one task are important
for another task as well. Hence, if we treat related problems independently we have
to re-discover the same features each time, from less data, which seems rather in-
efficient. Making a parallel to us humans, we do not start from scratch anytime we
learn a new skill. The knowledge we acquired from previous problems is already
there, so it would be a tremendous waste of energy to “re-train” ourselves without
exploiting what we already know. Our strong generalization and adaptation abili-
ties are the essence of our intelligence. For example, learning to ride a motorbike is
easier for people who know how to ride bicycles. Learning to speak a new language
is simpler when you already speak a similar one. In general, the more related the
tasks, the easier is to learn. In the context of Natural Language Processing, prob-
lems like Sentiment Analysis or Topic Classification, both require the development
of some sort of language understanding features. Differently, in Transfer Learning
the acquired knowledge is shared/reused to address related problems. Sharing fea-
ture representations across multiple tasks reduces the data burden, since part of the
effort was already done to acquire the previous knowledge. The simplest way to
reuse previous knowledge from related task(s) is to pre-train a model on this task,
then adapt its weights to solve the new task. This technique is particularly powerful
when the previous task has a lot of data and it is generic enough to allow the devel-
opment of general purpose representations. We highlight the differences between
standard Machine Learning and Transfer Learning in Figure 1.1.

1.1 Motivation 7

Machine Learning Transfer Learning
Training Training Training Pre-training Adaptation
Specific Task Specific Task Specific Task Specific Task

Generic Task

General Purpose

Model/Representation

Figure 1.1: Illustration of classical Machine Learning vs Transfer Learning. In Ma-
chine Learning each task is treated separately, whereas in transfer learning all the
data available is exploited to learn shared input representations, so that task-specific
models only have to adapt their parameters from an already informative represen-
tation, instead of learning everything from scratch.

Natural Language Processing has seen dramatic improvements, that no long
time ago, many would have thought to be impossible to achieve. The game changer
in Natural Language Processing was the introduction of methods capable of learn-
ing robust, general purpose, representations of text from large self-supervised tex-
tual corpora. The ability of transferring such representations to any task brought
tremendous progresses in both Language Understanding and Generation. All these
techniques are based on the principle that the meaning of a word is correlated with
the context in which it appears. This principle is the key of learning tasks that do
not require annotated data, and they are all intimately related with the problem of
Language Modeling.

Focus of this thesis. Motivated by the need of moving steps toward unified NLP
agents capable of understanding and generating language in a human-like fashion,
in this thesis, we investigate specific instances of NLP problems ranging from under-
standing to generation, proposing Language-Modeling-based solutions. We bene-
tit from Language Modeling related tasks to train a character-aware neural model
obtaining general purpose representations of words and contexts from large un-
supervised corpora. These embeddings are exploited to address two well known
Language Understanding problems: Chunking and Word Sense Disambiguation.
On top of the same character-aware encoder, we build a novel agent for extract-

8 Introduction

ing information from text streams. The system is furnished with memory compo-
nents (initially empty) that are dynamically updated while reading one sentence
at a time. The model learns online from sparse supervisions and self-supervised
mechanisms. We then studied two language generation problems in low-resource
conditions, Poem Generation and Paraphrasing, proposing different approaches to
train those language models and generate text from them. In addition, we show
how language models can be help in the analysis of language varieties, were we in-
troduced a new perplexity-based indicator to measure distances between different
diachronic languages.

1.2 Contributions

The major contributions of the thesis are summarized as follows:

e Proposal of a character-based contextual encoder to learn representations for
words and contexts. The model consists in a hierarchy of two distinct Bidirec-
tional Long Short Term Memory (Bi-LSTMs) networks (Schuster and Paliwal
(1997)), to encode words as sequences of characters and word-level contex-
tual representations, respectively. The unsupervised learning approach yields
general purpose embeddings with features that turn out to be important for
different NLP problems. Based on Marra et al. (2018).

e Proposal of an online-learning agent for extracting entities and relations that
populates a not-given-in-advance Knowledge Base. In particular, (1) we in-
troduce a new scheme to learn latent representations of entities and relations
directly from data, either autonomously (self-learning) or using limited su-
pervisions. Character-based encoders are exploited to handle small morpho-
logical variations (plurals, suffixes, ...) and typos, synonymy, semantic simi-
larity. (2) We present a new problem setting where the system is evaluated
while reading a stream of sentences organized into short stories, requiring on-
line learning capabilities. (3) We showcase the validity of our approach both
in an existing dataset made of Wikipedia articles and a new dataset that we
introduce and make publicly available. Based on Maggini et al. (2019).

e Introduction of a syllable-based neural language model to generate poems
with the style of a given author. To cope with the lack of data, we design a
multi-stage transfer learning approach that exploits non-poetic works of the
same author, and also other publicly available huge corpora of modern lan-
guage data to learn robust representations of the target language. Further-
more, we devise an automatic selection mechanism, to rank generated poems
according to measures that are designed around the poet style. Based on Zu-
garini et al. (2019).

1.3 Structure of the Thesis 9

e Proposal of a method for building a dataset of aligned sentences that can be
used to train sequence-to-sequence models for paraphrasing. In particular, we
apply it to the case of the Italian language, generating the dataset by crawling
pairs of contents from Italian newspapers and blogs, and exploiting them to
train a neural paraphrasing sequence-to-sequence architecture based on Pointer
Networks (See et al. (2017)). Based on Globo et al. (2019).

e Presentation of Vulgaris, a project that studied a text corpus consisting of vul-
gar Italian language literary resources. We first provide an in-depth analysis
through a corpus-driven study in dialectology and diachronic varieties. Then
we consider perplexity-based distances to analyse the historical evolution pro-
cess of the Italian varieties, introducing the use of neural language models for
the estimation of perplexity and a novel indicator, that we named Perplexity-
based Language Ratio (PLR). Based on Zugarini et al. (2020)

1.3 Structure of the Thesis

The rest of this thesis is organized as follows:

e Chapter 2 introduces all the fundamental concepts and terminologies that will
be necessary in the rest of the dissertation. Particular attention is given to Lan-
guage Modeling, Recurrent Neural Networks, that will be widely used in the
following chapters, Input Representations and Natural Language Generation.

e Chapter 3 discusses the character-based model to learn contextual representa-
tions of words by exploiting an unsupervised learning approach. After collo-
cating the work in the literature, a description of the architecture and the learn-
ing algorithm is given. An experimental analysis to evaluate the effectiveness
of the learned representations in Chunking and Word Sense Disambiguation
shows that the approach is competitive with other related methods. Finally,
we provide a final discussion of the obtained results.

o Chapter 4 presents a model for extracting entities and relations from text streams
by updating online a simple knowledge base. We outline the related works, the
problem setting, the proposed agent architecture and its online learning dy-
namics. Then, we discuss the results on both novel synthetic data and bench-
marks available in the literature.

e Chapter 5 introduces two Natural Language Generation models on different
domains: Poem Generation and Paraphrasing. The models learn through data,
and are trained as language models. In both problems we operate in a low-
resource environment. In Poem generation the lack of resources is inherently

10

Introduction

dependent on the kind of task, that involves ancient manuscripts that are rare.
So we introduce a syllable-based language model trained in a multi-stage trans-
ter learning fashion to acquire knowledge from large corpora of modern lan-
guages. Concerning paraphrasing, the lack of resources occurs especially in
non-English languages, and can be addressed by retrieving paraphrase pairs
automatically. Hence, we propose an algorithm to create a corpus with aligned
pairs of sentences. Then, we train a Pointer Generator model on such data to
prove the effectiveness of the retrieved pairs and, henceforth, the validity of
our algorithm.

Chapter 6 describes Vulgaris, a project to study the evolution of Italian Lan-
guage Varieties in the middle age. We provide a statistical analysis of the data
and show how language models can be exploited to provide insights about the
evolution of diachronic varieties.

Chapter 7 draws the final remarks of the work presented in this thesis. Further-
more, we illustrate possible future directions to extend and unify the presented
approaches.

Chapter 2

Background

2.1 Language Modeling

In this Section, we define what is Language Modeling, how it is evaluated and tra-
ditional techniques to estimate the models. For the sake of simplicity, in the follow-
ing discussion we describe language modeling by considering text as a sequence of
words, however the narration is general and holds for any kind of token (e.g. char-
acters, syllables etc...).

2.1.1 Definition

Language modeling is the problem of estimating the probability distribution of text.
Given a sequence of n words, the goal of a language model is to determine the prob-
ability of the joint event (wy, wy, ..., wy), i.e.

p(wy,wy, ..., wn), (2.1)
where, each w; is a random variable. If we apply the the chain rule, Equation 2.1 is
equivalently rewritten as a factorization of conditional probabilities:

n
p(wy,ws, ..., wy) =[] p(wilwi_y, ..., w1), (2.2)
i=1

where p(w;|w;_1,...,w1) is the probability of word w; to appear after all the previ-
ous words w;_1,...,w;, that are also referred as (left) context. Since Equation 2.2
is more tractable, usually statistical models aim at estimating the conditional prob-
abilities p(w;|w;_1,...,w1) or approximations of them.

2.1.2 Evaluation

Language Models are usually evaluated in terms of perplexity. In information the-
ory, perplexity is directly related to entropy, being defined as the exponential (base

11

12 Background

two) of the entropy of a given distribution for a certain random variable. Therefore,
perplexity is a measure of uncertainty, where lower values indicate more certainty,
vice versa, when the entropy increases (and consequently perplexity grows too),
the model decisions are more chaotic.

To evaluate a language model, perplexity is estimated at word level. The dis-
tribution learnt by the model is compared with a reference test sample. Let be w
a sequence of words w := (wy,...,wy,), e.g. the words in a sentence or an entire
corpus, and p(w;|w;_1, ..., w7) the learnt distribution, the perplexity pp of p in w is
defined as:

pp(p’ w) = 2% Z;1:1 log(p(w;|w;_1,....w1)) . (23)

2.1.3 N-grams

The estimation of all the conditional probabilities in Equation 2.2 can be learnt from
the observations available in a given, arbitrarily large corpus. Indeed, the proba-
bility of token w; given the context w;_1,...,w; can be obtained by counting the
number of times w; appears after such context, normalized by the number of times
the context w;_1, ..., w1 appears in total:

_ #(wy, ..., wiq,w;)
Ywev #(wy, ..., wi_g,w;)’

p(wilw;_q,...,w1) (2.4)

where #(-) is the counting function of an input observation. Unfortunately, storing
and using all the possible sub-sequences in language is infeasible in terms of mem-
ory and computation as soon as the context length starts growing. N—gram models
overcome this problem by approximating Equation 2.2 with a conditional probabil-
ity on a truncated, fixed-size context of N — 1 tokens. Hence, Equation 2.2 becomes:

n
p(wy,wy, ..., wy) ~ [] p(wilwi—q, ..., wi_ni1). (2.5)
i=1

The bigger N is, the more the approximation is reliable. In the simplest case, when
N = 1, the probability estimation is not conditioned at all, and Equation 2.1 becomes
a product of prior probabilities, which is equivalent to assume that each word occur-
rence is an independent event. Intuitively, a longer context window N requires the
need for more observations. The problem is that the size grows exponentially with
respect to N. If V is the token set referred to as vocabulary, containing all the words
appearing in the corpus, the number of possible sequences of length N is equal to
|V|N. If we also notice that usually vocabularies have cardinality in the order of 10,
it is immediately clear that statistics will quickly fail.

2.1 Language Modeling 13

2.1.4 Neural Language Models

To overcome the generalization issues of N-grams, feed-forward neural networks
can be adapted to learn the conditional probabilities in Equation 2.5:

n
p(wy,wy, ..., wy) =~ [[pe(wilwi_y, ..., wi—n+1)- (2.6)
i=1

where py is the distribution estimated by a neural networks parameterized by its
weights 6. The model is a multi-layer perceptron (MLP) taking as input the last
N — 1 words and optimized to maximize the probability of the next word in the
whole sequence (wy, ..., wy):

n

meaxl—[p@(wi|wi_1,...,wi_NH). (2.7)
i=1

Words can be represented in multiple ways, as we will describe shortly. For now we
consider them as one-hot vectors.

Neural Networks introduce several advantages w.r.t. to N-gram models. They
can generalize to unseen sequences and handle missing or unknown data. Further-
more, the model size is independent from the corpus size. The first Neural Language
Model was proposed in Bengio et al. (2003). Despite their good properties, these
models still share with N—grams the same limitation underneath the assumption
formulated in Equation 2.5: the requirement of fixed size inputs, thus they cannot
estimate directly Equation 2.2.

2.1.5 Recurrent Neural Language Models

Before discussing about Recurrent Neural Language Models, let us provide a brief
introduction to Recurrent Neural Networks.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are one of the most successful Machine Learn-
ing models in NLP. They are a natural extension of multi-layer perceptrons (MLPs)
designed to deal with sequences as inputs. An MLP learns a non-linear function
f: X Cc R — Y mapping fixed length multi-dimensional inputs into the output
space. MLPs are memory-less, i.e. when processing an input, the output does not
depend on the inputs seen in the past. However, there are lots of problems where
the decision is inherently conditioned on past information. Time series, dynamical
systems, language are all use cases where data is inherently sequential. Instead of
mapping fixed length inputs, RNNs process sequences of variable length. These
models naturally embed the temporal dynamics by storing past information into a
state ;.

14 Background

Depending on the task, RNNs can either be trained for sequence classification
or for mapping the input sequence to an output sequence (I/O transduction). Let
us consider the latter case. Given an input sequence x := (x1,...,x,) and a target
sequence ¥ := (y1,...,Yn), an RNN is a non-linear transformation of x into y. In its
simplest form, an RNN is composed by two functions, f and g. At each time step t,
we have:

ht = f(xt, htfl) (28)
ye = 8(hy). (2.9)

The temporal dynamics takes place in the function f, sometimes called as memory
cell, where the state h; is updated combining state information computed at the
previous time step (h;_1) and the current input x;. All the relevant knowledge about
the past is summarized into the state /; thanks to the recursion of Equation 2.8. The
function g is instead just a non-linear projection, mapping the hidden state to the
output space. In the simplest case f is implemented by a single layer:

ht = f(xt,ht_l) = (T(W - Xt + u - ht—l)/

with W and U being two weight matrices. There exists many other variants of RNNs,
but we detail only Long-Short Term Memory Networks, that will be extensively used
in the rest of this thesis.

Long-Short Term Memory Networks. Long short-term memory (LSTM) networks
were introduced in Hochreiter and Schmidhuber (1997) and are nowadays the most
popular architecture of recurrent neural network. The popularity of LSTM is mainly
due to its ability of better capturing long—term dependencies (Bengio et al. (1994)),
i.e. information coming from old past elements of a sequence. In problems like lan-
guage modeling, sequences can be very long, and also the information present at
the beginning of the sequence may be important to determine the next token. The
structure of the function f in LSTMs is composed of four non-linear layers. Some
of these layers act as gates, that ideally should regulate the flow of information in
such a way that only relevant knowledge passes through. Gating is implemented
combining squashing functions and point-wise matrix operations. The state ; of
an LSTM at time ¢ is the result of the following equations:

ft =0 (Wg- [he_1, x1] + by) (2.10)

iy = o (Wi - [lhy_1, x:] + by) (2.11)

¢ = tanh (W, - [h;_1, x¢] + be) (2.12)
¢t =frOc1+irOC (2.13)

or =0 (Wp - [h4—1, x¢] + bo) (2.14)

hy = oy ® tanh(c;) (2.15)

2.2 Language Representations 15

where © denotes point-wise multiplication, [-, -] the vector concatenation and ¢,tanh
are respectively the sigmoid and hyperbolic tangent functions. Instead of having a
single internal hidden state that stores past information, LSTMs have two states: h;_1
and c;_ that is called cell state. At each time step t, c; combines past and current
inputs after being filtered by two gates: forget (see Equation 2.10) and input gates
(see Equation 2.11), respectively. The last gate, in Equation 2.15, is used to compute
the hidden state /i; taking into account ¢;. We can summarize all the operations to
compute the hidden state h; as follows:

ht = LSTM(X;}, I’ltfl), (216)

and use it in the rest of the dissertation.

Language Modeling with RNNs

Language Modeling can be seen as an I/O transduction problem. Recurrent Neural
Networks naturally avoid the N-gram assumption, allowing the direct modelling
of Equation 2.2. Text is a sequence of tokens (words) and, at each time step ¢, the
goal of the model is to predict a word given the current one and the previous his-
tory encoded in h;_1, which is equivalent to learning the probability distribution
po(w;|w;_1, ..., w1).Thus, the model is optimized to maximize:

n
H p@(wi|wi—1, ey wl)/
i=1

that is the actual joint probability of language p(ws, ..., w,). An example of recur-
rent language model training is shown in Figure 2.1.

2.2 Language Representations

Differently from other kinds of information, such as speech signals or images, lan-
guage is purely symbolic, whereas Machine Learning models, neural networks in-
cluded, are designed for dealing with sub-symbolic inputs. Roughly speaking, re-
gardless of the NLP problem that we want to tackle, it is necessary to transform text
into numbers. In this Section we discuss how to represent language in order to feed
it to Machine Learning algorithms.

2.2.1 Tokenization

Tokenization is the process of converting a string into a sequence of tokens. This is
the first aspect to address when processing text. Probably, the most natural way to
look at language, at least for us humans, is to consider it as a sequence of words.

16 Background

The cat is sleepy

! f ! f

<GO> the cat is

Figure 2.1: Example of a Recurrent Neural Network trained for language modeling.
At each time step, the RNN predicts the next word given the current one and the
past information carried out by h;_;.

Indeed, words are the tokens that actually convey the semantics in the text. Their
ordering and composition are what eventually determine the meaning of a textual
span. By large, word-based tokenization has been dominating the scene. However,
text can also be interpreted as a sequence of characters or syllables or any kind of
sub-word tokenization. Recently, byte pair encoding, WordPiece and SentencePiece
methods (Sennrich et al. (2015); Wu et al. (2016); Kudo and Richardson (2018))
have gained a lot of popularity.

The choice of tokenization influences all the next steps of an NLP pipeline. In
some scenarios one tokenizer may be better suited than the other, depending on
language characteristics, the task at hand, etc. Separating a string into words will
create a large set of possible tokens, typically in the order of tens of thousands that
can rise up to few millions. Moreover, morphological information is lost, albeit there
are tasks or applications in which morphology plays a crucial role.

Character-level tokenization preserves without loss of information the content of
a string and will produce much fewer possible elements, at the cost of making the
tokenized sequences longer and breaking the word-level semantics into multiple
tokens, which may be harder to be captured by a learning model.

Syllables, Byte Pair Encoding, WordPiece, SentencePiece tokenizers are some-
what a trade-off between character-level and word-level splits. Syllables are not
a popular choice, because in general they require hyphenation tools, that are lan-
guage dependent and can be hard to design. However, in problems like poetry or
some languages, it can be the natural option. Byte Pair Encoding, WordPiece and
SentencePiece are similar algorithms that, given a desired vocabulary size, split a
string into a set of tokens according to their frequencies. Resulting symbols will be

2.2 Language Representations 17

a combination of entire words, single characters and word portions. We illustrate in
Figure 2.2 an example of different tokenization strategies.

The cat sleeps
Words: [The, cat, sleeps]
Characters: [T, h, e, <s>, ¢, a, t, <s>, s, 1, e, e, p, s, <s>]
WordPiece: [The, cat, sl, ##te, #iteps]

Figure 2.2: Example of different kinds of tokenization of the same sentence. In Word-
Piece, the symbol ## indicates that the token should be attached with the previous
one.

2.2.2 One-hot Encoding

The problem of representing a number of discrete symbols goes beyond NLP. It is
common to have scenarios in ML where some features are inherently symbolic, or
categorical. Gender, blood type, citizenship, the color of a flower are all examples
of possible features that can assume only a discrete number of values.

Let ¢ be a categorical feature and V' the set of its possible values. We define an
assignment function H : V — IR? to map each symbol into a real vector. Discrete
symbols must be uniquely assigned to a certain point in IRY, otherwise two different
elements would end up in the same representation, making them indistinguishable
for the learning model. Clearly, it is possible to map any discrete set of values in
R for any d > 1. However, in spaces with d < |V|, it is impossible to guarantee
that all the elements are equally distant to each other. This may bias the model
and introduce spurious, unintended similarities between uncorrelated values. Thus,
without any other assumption, the best way is to assign symbols to one-hot vectors,
such that all the nominal values are orthogonal. As obvious consequence, the size
of feature representation d grows linearly w.r.t. the cardinality of V.

For example, let us create a one-hot encoding of the blood type feature. The set
of possible values is V := {A,B, AB,0}, d = |V| = 4 and so a one-hot encoding of
the values is:

H(A) = [1,0,0,0]
H(B) = [0,1,0,0]
H(AB) = [0,0,1,0]
H(0) = [0,0,0,1]

We can see H as a hash function indexing the rows of a matrix E of size RIVI*IV1,
In language the set of possible values V it is called vocabulary or dictionary and it

18 Background

corresponds to the list of all the possible tokens. If we consider as tokens the words,
the cardinality of V can be very large, in the order of tens of thousands up to few
millions, depending on the application. This make one-hot encoding not scalable
for complex NLP problems.

2.2.3 Word Embeddings

One-hot encoding is not well suited when features have a high number of discrete
symbols. They produce one-hot sparse representation of symbols in very large spaces
making the job of learning models difficult. So far, we have implicitly assumed that
the input representation is determined a priori and kept fixed. Alternatively, one
could randomly assign dense representations to represent each symbol, using rela-
tively small vectors such that d << |V| and consider them as learnable parameters
of the model. This kind of representations in language goes under the name of em-
beddings. When text is segmented into words, we talk about Word Embeddings
(WE). Word embeddings immediately reduce the size of matrix E from R/VI*IV! to
RIVI¥4_ Typical dimensions for d are between 50 up to 1000, usually around 300. In
any case, d is significantly smaller than |V|, making the memory occupation cost for
E growing as O(|V| - d) instead as O(]|V|?). More importantly, a distributed learn-
able representation of words tremendously eases the learning process, because it
allows to adjust the representations of the symbols (words) such that related ele-
ments are closer in the representation space than unrelated symbols, improving the
generalization capabilities of the model.

The idea of continuous word vectors was originally introduced long time ago
in Hinton et al. (1986), and re-proposed for the Neural Language Model in Bengio
et al. (2003) that we discussed in Section 2.1.4. However, the extensive use of WEs
became popular after the seminal works of Mikolov et al. (2010, 2013). They showed
that WEs can grasp both syntactic and semantic regularities of text, and that words
are disposed in the embedding space such that some algebraic properties between
them emerge, as in the well known example of king, queen and man,woman:

we('king") — we('queen’) ~ we("man’) — we("woman”).

The main obstacle to the spread of distributed representations of words before Mikolov
et al. (2010, 2013) was the fact that learning the matrix E of |V| x d parameters
requires large amounts of data and computational resources. Annotated corpora
available were generally too small, and training a neural model this way was still
not affordable at that time. In Mikolov et al. (2010, 2013), they obtained word em-
beddings with simple shallow algorithms on unsupervised, arbitrarily large, textual
corpora. Once trained, these representations are easily transferable and exploitable
to train models in any NLP task. Literally dozens of methods designed to create WEs

2.2 Language Representations 19

have followed since then. Here we describe only CBOW and Skip-gram (Mikolov
etal. (2013)), that rely on a basic principle that is shared by most of these methods,
included the one proposed in this thesis in Chapter 3.

CBOW and Skip-Gram

CBOW stands for Continuous Bag of Words. The idea is inspired by a famous quote
of Ruper Firth:

“ You shall know a word by the company it keeps”

In other words, the word’s meaning is given by the words in the context where it usu-
ally appears in. From such principle they defined an optimization problem where
the goal is to estimate the probability of a word given the context in which it ap-
pears. So, given a sequence of words w := (wjy,...,wy), the goal is to estimate
pe(wilwy, ..., wi—1,Wiy1, ..., wy), where p is a model parametrized by the embed-
ding matrix E only. In practice, only a fixed length context window of size k before
and after the target word w; is considered, hence conditioning pr on

Wi kreee s Wi—1,Wit1,+++, Witk

The task can be formulated as a standard classification problem by setting the con-
textwy, ..., w;_1,Wjt1,...,wy as input and w; as target.

The model is very simple, each word w; in the context is associated to its embed-
ding e; corresponding to a row of the embedding matrix E (randomly initialized).
This association can be seen as a hashing function, or as a linear layer (without bias)
that projects the one-hot |V| sized representation of a word into a d-dimensional
space. The embeddings of the words in the context are summed together:

i+k
e, = Y, € (2.17)

j=i—ki]

then the resulting vector e, is projected into the target space with a linear transfor-
mation, and normalized as a probability with the sof tmax function:

p(wilw; g, ..., wi—1,Wit1, ..., W) = softmax(e, - E') (2.18)

where ’ indicates the transpose operator.

Skip-gram is the dual formulation of CBOW. Instead of predicting a word given
its context, the words in the context are predicted given the central word. A sketch of
both models is presented in Figure 2.3. Both models are optimized with a log-linear
classifier, usually the cross-entropy. The shallowness of these approaches makes
them particularly efficient, allowing the processing of large textual corpora.

20 Background

Connections with Language Modeling. Estimating the probability of a word given
its context has several analogies with Language Modeling. In Section 2.1 we have
defined Language Modeling as the problem of estimating the joint probability of a
sequence of words, and shown in Equation 2.2 that it can be decomposed as product
of conditional probabilities p(w;|wy, ..., w;_1). Intuitively, instead of estimating the
probability of a word w; given the previous words, i.e. only the words in its left con-
text, CBOW takes into account the entire surrounding context, before and after w;.
The conditional probability optimized in CBOW can be derived in the same manner
from Equation 2.1, as follows:

p(wi, ..., wn) = p(wile;) - p(ci), (2.19)

where ¢; := wy,...,wj_1,Witq,..., w,. However, the problem defined in CBOW
is not equivalent to Language Modeling, because the second term p(c;) in Equa-
tion 2.19 cannot be recursively expanded as it was done in Equation 2.2, so pg(w;|c;)
is not enough to estimate Equation 2.1. Moreover, the approximation of the context
¢; on a fixed-length window interval is analogous to the approximation of Equa-
tion 2.5 done in N-gram models, where in this case, the truncation occurs on both
the left and right sides of a word.

Limitations

Despite their benefits, word embeddings have two major limitations. Being word-
based representations, WEs lack of morphological knowledge about text, that, as we
already detailed in Subsection 2.2.1, can be crucial in specific use-cases, and more
importantly overcomes the problem of unknown tokens.

The second limitation comes from multi-sense words and the intrinsic ambigu-
ity of language. The actual meaning of a word highly depends on the context in
which it is placed, and its sense may change dramatically from one sentence to an-
other. Assigning a unique embedding to words, without contextualizing it in the
current context, inevitably limits the power of such representation. In the next two
subsections, we will discuss how to address these problems, posing the basis for our
proposed approach presented in Chapter 3.

2.24 Sub-word Encoding

There are multiple ways to create representations that are aware of sub-word infor-
mation. We can either inject sub-word knowledge to create word embeddings or
we can directly work with sub-word tokenization. In the former case, sub-word in-
formation enriches the representation of a word, whereas in the latter, CBOW-like
approaches or Language Modeling are applicable in the same way, being the only
difference the fact that tokens are not words (e.g. characters, syllables, etc).

2.2 Language Representations 21

cBOw

€Ec;

€i—k €i-1 €it+1 Cit+k

Wi—k Wi-1 Wi+1 Witk
Skip-gram

Wi~k Wi-1 Wi+1 Wi+k

€4

T

W

Figure 2.3: Sketch of CBOW and Skip-gram Algorithms.

2.2.5 Contextual Representations

A contextual representation of a token is an embedding that depends on the context
where the token appears. In other words, the representation of a token in a sequence
is obtained by taking into account the entire sequence (e.g. sentence or paragraph).
Clearly, a model providing contextual representations of tokens is more expressive
than word embeddings. The outcome of CBOW-like approaches is an embedding
matrix E, reusable and transferable in other tasks. To produce contextual represen-
tations, we need a model capable of processing sequences adjusting the representa-
tions accordingly.

Bidirectional Recurrent Neural Networks are a class of models particularly effec-
tive to compute contextual representations of tokens. Let us describe them.

Bidirectional Recurrent Neural Networks. From a technical point of view, Bidi-
rectional Recurrent Neural Networks (Bi-RNNs), proposed in Schuster and Paliwal
(1997), are just a combination of two disjoint RNNs (presented in Subsection 2.1.5),
processing the input sequence in opposite directions. At each time step, the states

22 Background

of this two RNNSs are concatenated. Given an input sequence x = (x1,...,%n):
_>
he =t] = [P (caye e x), 7 Gty)], (2.20)

where 77, 7 are the cells of the two recurrent networks, respectively processing the
input in forward and backward directions, and [+, -] is the concatenation operator.
In case of sequence classification, Bi-RNNs are usually exploited to compute a sin-
gle hidden state, concatenating the final state of both the forward and backward
networks:

he = [?(xl,...,xn),?(xl,. ey X)) (2.21)

When the cells 7, ¥ are LSTMs, we obtain a Bi-LSTM, that is one of the most pop-
ular bidirectional RNN architectures. We will make use of Bi-LSTMs in the next
Chapters, hence we rewrite equations 2.20, 2.21 for Bi-LSTMs:

hy = [LSTM(xq, ..., x¢), LSTM(x¢, ..., Xn)], (2.22)
he = [LSTM(x1, ..., Xn), LSTM(X1, - . ., Xp)]. (2.23)

We concisely define the computations of Equation 2.22 as:
hy := Bi-LSTM(x;, hy—1).

Despite their simplicity, bidirectional architectures have become quite popular be-
cause they alleviate the problem of learning long-term dependencies (Bengio et al.
(1994)), since the distance between the current token and the past ones is reduced.
At the same time, the hidden state /i; calculated at each step, naturally provides a
contextual representation of the token x;.

2.3 Language Generation

In its most general view, Natural Language Generation (NLG) is the problem of
automatically generating text. The kinds of NLG problems can be various and het-
erogeneous. Text Summarization, Paraphrasing, Machine Translation, Poem Gen-
eration, Text Continuation and even Question Answering are all problems formu-
lated as NLG tasks. Despite this variability, nowadays all NLG models can be re-
conducted to Language Models opportunely decoded at inference time. In this Sec-
tion, we first describe the reasons of this connection with LMs, then we summarize
the main decoding strategies that are chosen depending on the kind of task at hand.

2.3.1 Text Generation is Language Modeling

Natural Language Generation problems are all special instances of Language Mod-
eling. To understand why, let us consider a sequence of tokens (wy, . .., Wy4) taken

2.3 Language Generation 23

from a text corpus in a target language. Since, most of NLG tasks are actually
sequence-to-sequence problems, it is convenient to divide the tokens into two dis-
joint sequences x and y, where x = (x1,...,x,) and y = (y1,...,Ym). The former
(x) is the context provided to the text generator in advance, from which to base the
new text to generate. More generally, x is a given source of information that con-
ditions the generation of y (x could also be empty), while y is the sequence that is
expected to be generated by the model. The goal of the LM is then to estimate the
probability p(y|x), that is factorized as follows,

m

pyle) = [1p(ily<i0), (2.24)
i=
being y.; a compact notation to indicate the words in the left context of y;. Hence,
the problem of estimating p(ylx) reduces to the learning of the p(y;|y-;, x) distribu-
tion. Standard state-of-the-art approaches estimate p(y;|y<;, x) exploiting sequence-
to-sequence models. Shortly, a sequence-to-sequence model is a neural network
constituted by an encoder and a decoder. The encoder is responsible for creating
a compact representation of x, while the decoder yields a probability distribution
over the tokens in V conditioned by the outcome of the encoder.
Let us show how most common language generation problems can be formu-
lated as in Equation 2.24:

Machine Translation. The connection between Equation 2.24 and Machine
Translation is straightforward. There are two sequences, an input text x from
a given language and a target text y corresponding to the translation of x into
another language. Clearly, the target translation y is highly conditioned by the
source sequence Xx.

Text Summarization. In Summarization the expected output sequence is a
summary of a given input sequence. Therefore, also in this case y is highly
correlated to x.

Paraphrasing. An input text x is rephrased into y, so that y conveys the same
meaning while using different words.

Language Modeling. When the sequence x has size n = 0, we fall back to the
traditional LM formulation as defined in Equation 2.2.

Text Continuation. The task is the generation of text y from an input text
passage x. The generation in this problem is inherently loosely correlated by
the input, since there are many ways to continue an input text.

24 Background

Poem Generation. As in Text Continuation, few verses may be provided as
input x, however, the previous verses are not enough to determine a unique
continuation (y) of the poem.

Open vs non-open ended text generation. The way p(y;|y~;, x) will be related
to the input sequence x depends on how strongly x is informative with respect to
y. We adopt the distinction in two categories of text generation problems that was
provided in Holtzman et al. (2019). Tasks where the source sequence significantly
biases the generation outcome are referred to as non-open-ended text generation, in
contrast to open-ended text generation, where the source sequence loosely correlates
with the output y . Machine Translation, Text Summarization, Paraphrasing, Ma-
chine Comprehension are all instances of non-open-ended text generation, whereas
Text Continuation and Poem Generation are examples of open-ended tasks. Of course,
this categorization may be fuzzy, indeed there may be some particular problems or
applications that are in between the two groups. In terms of optimization, all the
models are learned based on the same objective, i.e. maximizing the likelihood of
p(y|x). The distinction between open and non-open ended tasks is important to
decide how to generate tokens at inference time.

2.3.2 Decoding Strategies

A trained Language Model estimates the probability p(y|x). At inference time, the
model generates the sequence y, one token at a time feeding itself with the previ-
ous output, i.e. by applying an autoregressive update scheme. There are different
decoding strategies that are commonly used to determine the output sequence y.
Holtzman et al. (2019) have shown that the decoding strategy is essential for produc-
ing good quality results, and its choice intimately depends on the kind of text gener-
ation problem at hand. All the approaches can be divided into maximum-likelihood
and sampling methods, that are better suited for non-open-ended and open-ended text
generation, respectively.

Maximum-likelihood Decoding

Maximum-likelihood approaches aim to obtain the most probable output sequence,
ie.
m
Y=o ym) = argmax [[pGily<i) (2.25)
i=
Unfortunately, finding the optimal y is intractable. The number of possible sequences
grows exponentially w.r.t. the sequence length m. The computational cost for search-
ing the optimal solution is O(|V|™), being | V| the vocabulary size. Therefore, search
methods that explore only a small subset of sequences have been devised. Beam

2.3 Language Generation 25

Machine Translation

Z: Il gatto dorme sul divano Y: the cat sleeps on the couch

couch, 0.48

on, 0.44

sofa, 0.18

Beam search (b=2) eats, 0.38

cat, 0.89

the, 0.87
sleeps, 0.37

pet, 0.04

sofa, 0.03

sleeps, 0.39
cat, 0.88

eats, 0.38

Greedy search

pet, 0.09

<GO> —>»{ the,0.87 —>»{ cat, 0.89 —>» eats, 0.38 —>» the, 0.22 —>»{ on, 0.44 —>»{couch, 0.48

Figure 2.4: Illustration of beam search and greedy search decoding in a Machine Trans-
lation example. Both algorithms are heuristic, but beam search is exploring more
solutions — in this case b is set to 2— generally leading to better results, as in this
example, where beam search finds the correct sequence, while greedy search does
not.

search and greedy search are the most popular ones. At each time step, beam search
reduces the exploration to the b most promising sub-sequences. The computational
cost drops to O(m - b?), making the approach effective for a relatively small b. Greedy
search adopts the same heuristics for the extreme case where only the best sub-
sequence is expanded, which is equivalent to beam search with b = 1. Hence,
Equation 2.25 becomes:

m
y = [Targmaxp(yily<i,), (2.26)
i=1 l
which has a linear cost w.r.t. the sequence length m. The two approaches are illus-
trated in Figure 2.4.

Despite their simplicity, those search algorithms are quite effective for decod-
ing text because the distribution p(y;|y-;, x), typically modelled by a neural model

26 Background

with a softmax layer, has only few candidates that are worth to be explored, the
rest is a long tail of tokens with very low probabilities. Maximum likelihood de-
coding, beam search in particular, generally performs well in non-open-ended text
generation problems, such as Machine Translation, Text Summarization and Para-
phrasing, where x highly conditions the probability distribution. On the contrary,
in open-ended domains, likelihood maximization dramatically fails, leading to repet-
itive degenerate text (Holtzman et al. (2019)). More than a model flaw, it seems
that the problem is related to the fact that humans naturally avoid to state the obvi-
ous (Grice (1975)), hence making highly probable sequences implausible, in stark
contrast with maximum-likelihood approaches.

Sampling Methods

Surprisingly enough, when text generation is only marginally biased by the given
input x, randomization in the decoding is crucial for producing high-quality texts.
Indeed, noise allows to pick less probable elements, emulating the human behaviour
of not stating the obvious. Randomness in decoding also introduces variability to
generation process. In fact, techniques based on probability maximization are de-
terministic, i.e. multiple generations with the same input will inevitably produce
the same output.

Randomization is achieved by sampling the distribution. Intuitively, instead of
picking the token y; with highest probability, any token can be selected, depending
on how probable it is. On average more likely elements are selected most of the
times, whereas tokens from the tail have a very low chance to be chosen. At each
time step i the next token is sampled from p(y;|y;, x):

exp(hy)
=0 r (2.27)
£ exp(hy)

where 11, h; are the conditional hidden representations of the neural language model.
This straightforward approach is known as multinomial sampling. It overcomes repet-
itive generations, but still leads to degenerate texts. The problem is that the vast
majority of the tokens at time i is implausible and would make the text nonsensi-
cal, and albeit sampling one particular element in the tail of the distribution is un-
likely to be selected, the probability mass of sampling a generic token from the tail
is not neglectable, making sampling from the tail in a sequence of size m eventually
extremely likely. To analyze this phenomenon let us define 7 as the tail set,. cor-
responding to the set of tokens with probability below the gold token. This set is
typically large, and has a cardinality | 7| comparable to the vocabulary size. At each
time step, the probability of sampling from the tail is:

vi ~ p(yily<i, x)

€7 =pWYi € Tly<i,x) =¢€;-|T| (2.28)

2.3 Language Generation 27

where ¢; is the average probability of the elements in the tail. Thus, the probability
of not sampling the tail in the entire sequence is:

m

ply¢ Tlx) =111 —er), (2.29)

i=1

that decreases exponentially w.r.t. the sequence length m.

One way to alleviate the problem is by sampling with temperature ¢ (Goodfellow
et al. (2016)). The softmax in Equation 2.27 is re-estimated introducing a scaling
factor t as follows: "

p(yilycox) = —o b (2.30)

ijl exp(h]-/t)

The value of the temperature regulates the skeweness of the distribution. Typical
values of f are in the interval [0, 1) where the distribution becomes more skewed.
In particular, when t approaches 0 it resembles greedy search decoding, whereas
when t approaches to 1 it goes back towards multinomial sampling. Making the
distribution more skewed reduces significantly the average value €; of the elements
in the tail, and consequently ¢; 7, but it also reduces the generation diversity.

There exists several methods that overcome tail issues by truncating it. Essen-
tially they differ in the truncation strategy. Top-k sampling (Fan et al. (2018)) trun-
cates the distribution to the set of most probable k elements V). The number of
tokens is fixed, determined a priory. In Nucleus (top-p) sampling (Holtzman et al.
(2019)) instead, values are added in the non-tail set V() in decreasing order starting
from the most probable one, until the probability mass does not outreach a certain
p value threshold. In this case, the number of truncated tokens can vary. Regard-
less of the method, the final distribution is obtained by setting tail elements to 0 and
normalizing the remaining values so that they sum up to 1:

pily<iX) ify; € V)

P (yilyi x) = { Fyeve) PR (2.31)

0, otherwise,

where V(*) is either V(¥ or V(P), for top-k and nucleus sampling, respectively.

Chapter 3

Character-aware Representations

Developing methods for learning powerful general purpose representations of lan-
guage, words in particular, has been a breakthrough in Natural Language Process-
ing. We have described word embeddings in Section 2.2, highlighting the impact
and the diffusion of methods like CBOW and Skip-gram (Mikolov et al. (2013)),
that allowed to learn efficiently word representations from large unlabeled datasets,
solving a task related to language modeling. At the same time, we have also seen
some limitations of word-based representations. Briefly, traditional word embed-
dings: (1) neglect morphological information coming from characters, struggling
in scenarios with a large Vocabulary, especially in the case of morphologically rich
languages in which the same lexical form can have many surface forms, or with
many unseen or rare words (e.g. typos or Named Entities) ; (2) multi-sense words
condense multiple meanings into the same lexical unit, regardless the actual context
in which they appear in.

In this Chapter we address these limitations presenting a novel character-based
neural model that effectively learns representations of words and contexts, in a com-
pletely unsupervised learning mechanism that follows the same principle of CBOW,
discussed in Section 2.2. We first review the works in the literature, then we dis-
cuss in detail the architecture and the learning algorithm. Afterwards, we report
the effectiveness and robustness of the learned representations in the experimental
analysis carried out in two well known NLP problems: Chunking and Word Sense
Disambiguation. In addition, we highlight the properties of the embeddings in a
qualitative evaluation. Finally, we make a final discussion.

3.1 Related Works

There is a vast literature concerning language representation learning methodolo-
gies with different input representations.

29

30 Character-aware Representations

Learning. The proposed model learns with an unsupervised mechanism that fol-
lows the scheme proposed in the CBOW algorithm (Mikolov et al. (2013)). Instead
of using a fixed-length context window, we adopt recurrent neural networks to pro-
cess sequences of variable size, following the approach proposed by Melamud et al.
(2016). Instead of processing words directly, we consider words as sequences of
characters and process them with bidirectional recurrent neural networks.

Character representations. There are many character-aware approaches. Some of
them jointly learn word and character-based representations from supervised tasks.
Word and character-based encodings are either concatenated or combined trough
non linear functions. Miyamoto and Cho (2016) exploit a gate to decide how to
interpolate the two representations. In (Santos and Zadrozny (2014); Santos and
Guimaraes (2015)) instead, embeddings of words and characters are concatenated
to address Part-Of-Speech (POS) Tagging and Named Entity Recognition (NER),
respectively. We distinguish from them for the learning scheme, that is completely
unsupervised, and for the fact that we construct word embeddings directly from
characters without specific word-based parameters. Other works extract vectorial
representations directly from character sequences, for Language Modeling (LM) or
Character Language Modeling (CLM). These representations are usually obtained
with Convolutional Neural Networks (CNNs) or Recurrent Networks. In partic-
ular, in Ling et al. (2015a) Bi-LSTMs (see Subsection 2.2.5) are exploited to learn
task-dependent character level features for LM and POS tagging, whereas in (Joze-
fowicz et al. (2016)) various architectures, mostly CNN-based, are assessed in LM
problems. In Hwang and Sung (2017), authors address CLM with a multi-layered
Hierarchical RNN. All these approaches differ from ours for the learning method
and for the architecture, that naturally develops character-aware representations of
both contexts and words exploitable as task-independent features.

3.2 Model

The model is designed to build hierarchically representations of words and contexts
from characters. The proposed model combines two Bi-LSTMs (see Equation 2.22)
to process the input sequence. The architecture is illustrated in the example of Fig-
ure 3.1.

Tokenization. A sentence s is tokenized as a sequence of n words s := (wy, ..., wy)
and each word is further split into a sequence of characters, i.e. w; = (cj1, .-, [w,|),
being |w;| the number of characters in w;, or in other words, the length of word w;.
Despite the separation of words, in the end, s is a sequence of sequences, where the
symbols within s are only characters. In such a way, we preserve the word-level

3.2 Model 31

structure of language without the need for a word-based vocabulary V' or the word
embedding matrix E.

Encoding Characters. Each character ¢;; is encoded as an index in a dictionary of
C characters and it is mapped to a real vector ¢;; € R% as

éij = WC : 1(Cij)r (31)

where W, € RICI*% js the character embeddings matrix, and 1(-) is a function re-
turning a one-hot representation of the character in input. Note that C is quite small,
in the order of hundreds, and consequently W, is small too, reducing of several or-
ders of magnitudes the number of learnable weights of the model.

Encoding Words. The first Bi-LSTM, denoted as Bi-LSTM,, encodes each word w;,
processing its characters c; , in forward and backward directions. The final state of
the forward and backward networks are combined as described in Subsection 2.2.5
to obtain the word embedding:

— . n S /A ~
e = [LSTMC(Ci,ll' . -/Ci,\wi|)/LSTMC(Ci,1r- . '/Ci,\wi|)]' (32)

Hence, the result of processing the character sequence s word-wise with the Bi-LSTM,
is a sequence of word embeddings es = (e, ..., e,), that will be the input for the next
Bi-LSTM layer.

Encoding Contexts. The second Bi-LSTM layer (Bi-LSTM,) processes the sequence
es. As we have already seen in Subsection 2.2.5, we can both produce the contextual
representations of each word and the encoding of the entire sequence from the in-
ternal states of a Bi-LSTM. Moreover, we can also construct context embeddings, i.e.
distributed representations of the surrounding context of each word, excluding the
word itself. The context of a word e; comprises the words that precede and follow
ej, ie. (e1,...,ei_1)and (ej11,...,e,), respectively. Such encoding is obtained con-
catenating the RNN's states before processing the current word e;:

— — — A
& =MLP([h¢,_,, Ne,,,]) =MLP([LSTM,(e1...,€i_1),LSTMc(€jx1...€4)]), (3.3)

€it1
where MLP is a Multi-Layer Perceptron introduced in the architecture to project the
representation into a lower-dimensional space. Inspired by (Mikolov et al. (2013))
and (Melamud et al. (2016)), we will use context embeddings to learn to predict a
word given its context.

32 Character-aware Representations

cat

() (m)
e :

[IT! h'

['C' a’ vtv] [(ir

Legend

D Character Embedding I:I:I Word Embedding I:I:] Context Embedding

Figure 3.1: Example: the sentence “The cat is sleepy” is fed to our model, with target
word cat. The sequence of character embeddings (orange squares on the bottom) are
processed by the word-level Bi-LSTM yielding the word embeddings (yellow-red
squares in the middle). The context-level Bi-LSTM processes the word embeddings
in the left and right contexts of cat, to compute a representation of the whole context
(blue—green squares on the top). Such representation is used to predict the target
word cat, after having projected it by means of an MLP.

3.3 Learning Representations

In this Section we describe the learning mechanisms that allow word and context
representations of our character-aware model to emerge. First we describe the algo-
rithm and its optimization, then we provide details about the actual training.

The algorithm. The learning mechanism is inspired by CBOW (see Section 2.2)
and context2vec (Melamud et al. (2016)). We follow the unsupervised schema that
aims at predicting each word given its surrounding context on an arbitrarily large
textual corpus (Equation 2.19). Our model encodes the context representations of
word w; into a vector ¢é; as defined in Equation 3.3. Such embedding is projected into
the space of words through a linear projection:

]?i - Ww' Ai (3-4)

3.4 Experiments 33

where W, € RIV*? and d the size of embedding ¢;. We optimize the model by
choosing the Noise Contrastive Estimation (NCE) as loss function (Gutmann and
Hyvarinen (2010)), instead of softmax activation in combination with cross-entropy:.
NCE allows to spare computations by approximating the softmax function, that has
a linear cost w.r.t. |V, on a random smaller subset of sampled words.

Clearly, a word dictionary is required during learning, but this does not limit our
model, since this decoding block is no longer used after training. We also tried to
get rid of words at training time as well, using the context ¢; as input to a character-
based decoder, i.e. using as target the sequence of characters in a word. However
word-level predictions turned out to give the best results. As in (Melamud et al.
(2016)), the recurrent networks allow us to process contexts of any length, but we
reset the RNN states at the beginning of each sentence.

Training details. The model is implemented in Tensorflow!. The model is trained
on a 2 billion words dataset, the ukWaC corpusz, constructed from the Web crawl-
ing the .uk domain only. Concerning the architecture, where it is possible we take
inspiration from the context2vec architecture. We set the sizes of characters, word
and context embeddings to 50, 1,000, 600, respectively. The hidden layer in the MLP
of Equation 3.3 has 1,200 units with ReLU activation functions. The structure of the
decoder of Equation 3.4 used in training is the same as that in (Melacci and Gori
(2012)). The overall encoding architecture has around 7 million parameters, that is
about 16 TiIMES sMALLER than the context2vec model, due to the use of characters to
encode words instead of a word embedding matrix.

3.4 Experiments

Once word and context representations are learned with the proposed model, we
can detach the encoders and evaluate the performances of such embeddings as regu-
lar features for any task-specific classifier, as shown in Figure 3.2. We consider word
embeddings for Chunking and context representations for Word Sense Disambigua-
tion (WSD). Additionally, we also evaluate the robustness of such embeddings w.r.t.
character-level noise in the case of WSD. Finally, we present some qualitative exam-
ples to illustrate the properties of the obtained word and context representations. In
the following, we discuss the experiments one by one.

ISource code of model and experiments is available at https://github.com/GiuseppeMarra/
char-word-embeddings.
’http://wacky.sslmit.unibo.it/doku.php?id=corpora

https://github.com/GiuseppeMarra/char-word-embeddings
https://github.com/GiuseppeMarra/char-word-embeddings
http://wacky.sslmit.unibo.it/doku.php?id=corpora

34

Character-aware Representations

Generic
task

output

f

Task-related
Predictor

A

A
1
1
1

Text surrounding [word] that we
considered

Chunker

I-NP

f

Chunk
Classifier

A

[[]

The black [dog] was barking

WSD

"bank
(geography) "

Sense
Classifier
Y

]

Cook it right on the [bank] of the river.

Legend

I:I:l Word Embedding Context Embedding I:' Other Features

Figure 3.2: Examples of word and context embeddings usage. From left to right, a
generic task, Chunking and Word Sense Disambiguation.

3.4.1 Chunking

Chunking is a classical problem in Natural Language Processing. The goal of Chunk-
ing is to identify phrases from text. Each text segment is expected to be tagged with
a label defining its syntactic role, e.g. noun phrase (NP), verbal phrase (VP), etc. A
word is uniquely associated to a unique tag. A Chunking classifier is a model that
automatically assigns a word to its chunk. An example is illustrated in Figure 3.2,
where dog is marked with the label I-NP (Inside-chunk Noun Phrase).

Dataset. We consider CoNLL 2000, a standard benchmark in Chunking. The dataset
is composed of a training set and a test set. The training set has 211,727 tokens,
whereas the test set contains 47,377 tokens, belonging to one of the 23 chunk tags,
i.e. the targets.

Classifier. As classifier we exploit a Bi-LSTM. The network is fed at each time step
with a 600 dimensional vector, the result of the projection of the concatenation of
word and context representations. We optimize the network with Adam with de-
fault hyper-parameters and a weight decay of 1072,

Results. We compare the same classifier with different input features. In partic-
ular we train the model with pre-trained Word Embeddings only (Our WE), only

3.4 Experiments 35

with pre-trained Context Embeddings (Our CE) and both of them (Our WE + CE).
Furthermore, we also take into account the case of training WE and CE features
from scratch (WE + CE from scratch), using the same architecture, but without
pre-training it. We report F1 scores in Table 3.1. The best result is obtained when
using both embeddings (Our WE + CE) as features, which indicates that both of
them are needed to achieve better performances, as expected. Experiments clearly
outline the importance of knowledge transfer achieved by pre-training the represen-
tations, that allows us to reach an F1 score of 93.30. This value is comparable with
results reported in literature, such as Collobert et al. (2011) (94.32) and Huang et al.
(2015) (94.46), that, it is important remark, in our case was achieved without mak-
ing use neither of hand-crafted features nor of any kind of post-processing to adjust
incoherent predictions. In case we add POS tagging features to our classifier, perfor-
mances reach an F1 score of 93.94, the same value of the state-of-the-art architecture
(Huang et al. (2015)), but without exploiting Conditional Random Fields on the
output sequence of tags. Furthermore, we remind that our model, being based on
characters has significantly less parameters w.r.t. the competitors. Hence, we can
conclude that our proposed architecture and learning framework is beneficial and
brings a positive transfer of information.

Table 3.1: Results (F1 score) on Chunking, using different input features. Best result
is achieved when using both word and context pre-trained representations.

Input Features F1 %
Our WE 89.68
Our CE 89.59
Our WE + CE 93.30

WE + CE from scratch 89.83

3.4.2 Word Sense Disambiguation

WSD is the problem of determining the actual meaning, or sense, of a word in the
context where it appears in. Words can have multiples senses, this varies from word
to word. The goal of a WSD is to assign the proper sense of a word among its possible
senses.

Datasets. Word Sense Disambiguation is traditionally benchmarked on the frame-
work proposed by Raganato et al. (2017), that gathers multiple datasets (Senseval*,
SemEval*, and a merged collection - ALL).

Classifier. Our model follows the commonly used IMS approach proposed in (Zhong
and Ng (2010)), that is based on an SVM classifier on top of conventional WSD fea-

36 Character-aware Representations

tures. We extend it by introducing the context embeddings as input features (using
word embeddings of the current word is pointless in this task).

Results. We refer to our model as IMS + Our CE, and compare it against the
original IMS and other instances with different augmented context embeddings
(IMS + word2vec, IMS + context2vec). Results are reported in Tables 3.2 and
3.3. Our embeddings outperform both IMS with only conventional features and
IMS + word2vec, i.e. word2vec embeddings, opportunely averaged (Iacobacci et al.
(2016)). Moreover, it is competitive against context2vec representations, despite, as
already mentioned, our model has less learnable parameters, in particular 16 times
less weights than context2vec. It is also worth to point out that, to the best of our
knowledge, the use of context2vec features as input of the IMS is a novel attempt in
the literature.

Table 3.2: Word Sense Disambiguation in the benchmarks collected in (Raganato
et al. (2017)). SE2 and SE3 stand for SensEval2 and SensEval3. The best results (F1
%) are obtained by the contex2Vec model that however has 16 TIMES MORE PARAMETERS
THAN THE PROPOSED MODEL and no capability to deal with OOV tokens.

Model SE2 SE3 SemkEval2007 SemkEval2013 SemEval2015 ALL
IMS 70.2 68.8 62.2 65.3 69.3 68.1
IMS+word2vec 722 699 62.9 66.2 71.9 69.6
IMS+context2vec | 73.8 71.9 63.3 68.1 72.7 71.1
IMS+Our CE 72.8 705 62.0 66.2 71.9 69.9

Table 3.3: Overall results (F1 %) grouped by Part of Speech (ALL benchmark Ra-
ganato et al. (2017)).

Model Noun Adjective Verb Adverb
IMS 70.0 75.2 56.0 83.2
IMS+word2vec 71.8 76.1 57.4 83.5
IMS+context2vec | 73.1 77.0 60.5 83.5
IMS+Our CE 71.3 76.6 58.1 83.8

3.4.3 Robustness to Typos

There are many real world scenarios in NLP where the actual data is noisy. Mis-
spelled words are hardly included in word dictionaries, therefore word-based model
treat them as unknown elements, resulting in a loss of information. Our model be-
ing based on characters may be more robust to this kind of problems. To prove it,
we devise a task to measure the robustness to random perturbations of characters.

3.4 Experiments 37

We consider WSD (ALL benchmark) and compare the context embeddings of our
model against context2vec, introducing random noise to the words in the sentence
context. Conventional WSD features are completely removed in both cases, so we
only use context-level representations. We show how F1 decreases with the noise
probability growth in Figure 3.3. Clearly, both the models suffer for perturbations,
however our character-aware features yield a slower loss of performances, eventu-
ally outperforming context2vec for a high degree of perturbations.

72

[« -6-Context2Vec
70+ =0-0ur Method

60

0 0.2 0.4 0.6 0.8 1
Noise Probability

Figure 3.3: Analysis of robustness to typos in a WSD task (ALL benchmark Raganato
et al. (2017)). “Noise probability” in the x-axis corresponds to the probability of
having a typo in a word in the input context.

3.4.4 Qualitative Analysis

One of the most intriguing properties of embeddings is their capability to capture
semantic and syntactic similarities into the topology of the embedding space. We
outline such properties for our word and context embeddings by means of examples.
In both cases we compute the distance between representations to retrieve k-nearest
elements. We chose cosine similarity, that is considered a better measure than eu-
clidean distance in high-dimensional spaces. Given some target words, we report
their 5 nearest neighbours in Table 3.4. From the examples it emerges the character-
based nature of the model, that captures morphological similarities. However, the
model encodes also semantic information, as proven by some of the examples.

For the evaluation of context embeddings, we proceeded analogously. We took
eight sentences related to two distinct topics (4 sentences each): pizza and state
capitals. For each sentence we consider the context embeddings of words capital or
pizza. Then, a random sentence is chosen as query, and the remaining sentences are
sorted in increasing order w.r.t. the distance between the query context embedding
and their vectors. The experiment is presented in Table 3.5. The query sentence

38 Character-aware Representations

is about pizza, and we can see clearly that all the sentences related to the topic are
closer to the query than sentences about capitals.

Table 3.4: Top-5 closest words for a given target word. Target words are in the head-
line of the table.

turkish ~ sometimes usually happiness
danish somehow normally weirdness
welsh altogether ~ basically fairness

french perhaps barely deformity
kurdish nonetheless typically ripeness
swedish heretofore = formerly smoothness

Table 3.5: Some contexts sorted by descending cosine similarity with respect to the
query context “I like eating [| with cheese and ham” of (unused) target word pizza.

Query: I like eating [] with cheese and ham. pizza

Do you like to eat [| with cheese and salami ? pizza
Contexts Did you eat [] at lunch ? pizza
sorted by What is the best [| i can eat here ? pizza
descend- Paris is the [| and most populous city in France capital
ing cosine London is the | | and most populous city of England | capital
similarity Rome is the [] of Italian Republic . capital

Washington , D.C., , is the [] of the United States . capital

3.5 Discussion

We have presented a character-aware neural model that develops task-independent
representations of words and contexts by learning from an unsupervised language
modeling-related task. The embeddings that emerged from the training on a 2 bil-
lion word dataset, were exploited as input features for two popular NLP problems,
Chunking and Word Sense Disambiguation, leading to competitive results against
state-of-the-art embeddings of models with significantly more parameters. More-
over, the character-level information makes the representations more robust to noise
introduced by misspelling, which may be significant in real world scenarios, such
as conversational agents.

Chapter 4

Information Extraction in Text Streams

Most of nowadays machine-learning-based approaches to language-related prob-
lems are defined in the classical setting where offline predictors learn from data to
tackle a given task. Little has been done when considering the setting in which we
process a continuous stream of text and build systems that learn and respond in
an online manner. However, actual real-world applications, such as conversational
systems (Yu et al. (2016)), information extractors from streams of news (Del Corso
etal. (2005)), or social network data (Ritter et al. (2012)), and those systems that re-
quire interactions with the environment (Christakopoulou et al. (2016)), all belong
to the latter setting.

In this Chapter we face these challenges to learn an information extractor from
online streams. In particular, we develop an agent living in an online environment
that learns to discover and disambiguate entity/relation instances in a text stream,
exploiting a small number of sparse supervisions and learning in an online fashion.

The Chapter is organized as follows. Related work is reviewed in Section 4.1. Sec-
tion 4.2 formally describes the problem setting. The architecture of the proposed
system is presented in Section 4.3, while the online learning dynamics is summa-
rized in Section 4.4. We discuss the experiments in Section 4.5, then in Section 4.6
we make some final remarks.

4.1 Related Works

Mining over text streams has been studied in a number of works (Banerjee and Basu
(2007); Krawczyk et al. (2017); Aggarwal and Zhai (2012)), with several purposes,
that, however, are different from what we consider in this Chapter. Our approach to
the learning problem is based on simple sentences that have the same structure of
the ones used in many tasks of the bAbI project by Facebook (Sukhbaatar et al. (2015);
Kumar et al. (2016)). However, none of such tasks is conceived for online learning
or for entity/relation extraction and disambiguation. Interesting ideas on entity-

39

40 Information Extraction in Text Streams

oriented sub-symbolic memory components have been recently proposed by Henaff
et al. (2017) and Ji et al. (2017), and extended to the case of relations by Bansal
et al. (2017): their formulation is developed to comply with the aforementioned
bADI tasks. The idea of considering small text passages could resemble the task of
Machine Comprehension, where, however, such passages are read with the purpose of
answering a question (Richardson et al. (2013); Rajpurkar et al. (2016); Kobayashi
etal. (2016)).

Our approach disambiguates mentions using their contexts, so it shares several
aspects with Word Sense Disambiguation (WSD) and Entity Linking (EL), that, dif-
terently from our case, assume to work with a given ontology and are not meant to
learn online. In WSD (Zhong and Ng (2010); Raganato et al. (2017)), the set of target
words is known and the senses of each word are taken from a given dictionary. EL
(Shen et al. (2015)) is similar to WSD (Moro et al. (2014); Moro and Navigli (2015)),
but it is about linking “potentially partial” entity mentions to a target KB, that has an
encyclopedic nature (Hachey et al. (2013); Moro and Navigli (2015)). The EL prob-
lem is presented in several variants and focusing on different types of data (Ling
etal. (2015b); Guo et al. (2013); Pan et al. (2015); Sil and Florian (2016); Pappu et al.
(2017); Lin et al. (2017)), and it has been the subject of task-oriented evaluation pro-
cedures and benchmarks (Ma et al. (2017); Van Erp et al. (2016)). A few EL systems
work in an unsupervised way (Han and Sun (2011); Pan et al. (2015)), but the KB is
still given. Named Entity Recognition (NER) focuses on discovering mentions to enti-
ties, and it is also a basic module of several EL systems (Luo et al. (2015)). However
NER usually deals with proper nouns, as frequently EL does (Ling et al. (2015b)),
while here we also consider common nouns. Moreover, NER systems output the
entity type (person, location, etc.) without producing any instance-level informa-
tion (Lample et al. (2016); Chiu and Nichols (2016)). Relation Extraction (RE) has
been recently approached with end-to-end and advanced embedding-based models
(Miwa and Bansal (2016); Obamuyide and Vlachos (2017)). The entities involved
in the target relation are usually known, and a pre-defined ontology is given (dis-
tant supervisions are also used, as in (Mintz et al. (2009))). There are a number of
discussions to better state the RE problem and build accurate gold labels (Martin
etal. (2016)).

Our work is also inspired by Semantic Parsing (SP) (Zettlemoyer and Collins
(2012); Berant et al. (2013); Yih etal. (2014); Berant and Liang (2014)), that has been
recently approached with largely supervised networks (Herzig and Berant (2017)).
The idea of mapping text into a logical form that represents its meaning in a sym-
bolic way is a direction to which we plan to extend our approach, once we introduce
entity /relation types (see Chapter 7). Differently from common SP approaches, we
are giving emphasis to the process of learning latent sub-symbolic representations
of the KB instances.

4.2 Problem Setting 41

Finally, learning the KB component is the subject of those tasks of automatic KB
Construction (Niu et al. (2012)) and KB Population (Dredze et al. (2010); Ji and Grish-
man (2011)), that, differently from our case, either make some application-specific
assumptions to implement the KB, or exploit a given ontology schema, also combin-
ing unsupervised and supervised learning with ensembles and stacking techniques
(Rajani and Mooney (2016)).

4.2 Problem Setting

Text Stream. We consider a continuous stream of text. At each time step ¢ it pro-
duces a sentence s;. Groups of contiguous sentences are organized into small stories
about a (not-known-in-advance) set of actors/objects, so that the narration is dis-
continuous whenever a new story begins. An example of a stream with two stories
is illustrated in Figure 4.1.

Agent’s goal. The agent reads one sentence at a time. Its goal is to extract salient
text fragments and link them to its own KB. The Knowledge Base, initially empty, is
constantly updated by the system itself (Figure 4.1).

Knowledge Base structure. We think of the KB as a set of instances, and the con-
sidered text fragments of s; are mentions to them. Some mentions are about enti-
ties, others are about relations. For each instance, the KB stores (possibly) mul-
tiple mentions that are commonly used to refer to the instance itself, as for enti-
ties 1 and 2 in Figure 4.1, respectively mentioned as {Clyde Radcliffe, He, Clyde} and
{the office, the new office} . On the other way around, the same mention can be shared
among multiple instances. Looking again at the example in Figure 4.1, Clyde is a tex-
tual form that refers to different entities (entities 1 and 6), on different portions of the
stream. KB instances also include information about the contexts in which instances
have been mentioned in the stream so far, where the notion of context compactly in-
dicates the whole sentence in which the instance was mentioned. Here and through-
out the Chapter, we simplify the descriptions by frequently using the generic term
instance to refer to both the cases of relations and entities, without making a precise
distinction (if not needed).

Learning setup. We consider the case in which text fragments of s; are matched
with the mentions in the KB to detect compatible instances. Then, instances are
disambiguated by observing the current context (that is the portion of s; around
the mention), and exploiting the knowledge about the story to which s; belongs
(up to the current sentence). At the beginning of each story, a small number of
sentences are supervised with the identity of the mentioned entities and relations.

42 Information Extraction in Text Streams

The system is expected to follow the narration by disambiguating mentions, learning
from such sparse supervisions (and quickly reacting to them), and discovering new
instances. The natural ambiguity of language, the discontinuous narration, and the
dynamic nature of the KB, require the system to develop advanced disambiguation
procedures to interpret s;.

Evaluation. It is worth noticing that, in the proposed setting, the system decisions
on a given sentence are evaluated immediately when processing the following sen-
tences, regardless of whether the sentence was supervised or not. This schema gives
rise to a novel online dynamics of the learning process, which is profoundly different
from most of the existing approaches, being it more challenging and realistic than
common batch-mode offline approaches (consider, for example, the case in which
it is framed within conversational applications). We encourage the development of
new methods, models and datasets, for this extremely relevant, but largely unex-
plored setting.

Ciyde.
Clyde Radcliffe went to the office. CHE ReeEli

The new office is located in Sacramento.
A lot of people want to talk to Clyde.
(a) |He is a famous manager.
[Story B]

Clyde is chasing mice.
They hide behind the fridge.

[StoryA]
Clyde Radchffe went to the office.
The. AEw office is located in Sacramento
A}ot of people want to talk to CIydé i
(b) | He is a famous manager. ______.oc-------"7T7

[Story B].-
Clyde is chasmg mice:----------o._____
They hide behind the fridge. i

Figure 4.1: Left: a text stream composed of two stories. Right: Example of a KB.
(a) Input: sentences from the stream. (b) System output: mentions to entities and
relations are detected (pale yellow and pale blue background, respectively), and
linked (dashed lines) to KB instances (circles) - only some links are shown, for clar-
ity. Empty circles are entity instances, while filled-grey circles are relation instances
(circles are intended to also include context-related information that characterize
the instances). Boxes indicate known mentions, and they are connected with the
compatible instances. We printed with the same color those mentions that should be linked
to the same instance.

4.3 Model 43

4.3 Model

At each time step, the system processes an input sentence s. From now on, we drop
the time index, for simplicity. To reach its goal, the agent has to first detect those seg-
ments z (i.e. one or more adjacent tokens) that are expected to be mentions of KB
instances. Then for each one, the system has to find possible compatible instances
of the KB and finally disambiguate among them, linking the segment to the most
likely instance. The whole processing involves a pipeline of four neural modules,
namely MeNTION DETECTOR, ENCODER, CANDIDATE GENERATOR, DisamBiGuaTOR. We
sketch them in Figure 4.2. The MenTiON DETECTOR segments s by identifying men-
tions to entities and relations. For example, the sentence Parry is chasing a mouse is
segmented into two mentions to entities (i.e “Parry” and “a mouse”) and a mention
to a relation (i.e “is chasing”). The Encober module is responsible for embedding
the mention z and its context into a dense representation. The combination of such
embeddings, the surface form of a mention (plain text), the temporal coherence in
the current story are mixed together by the CANDIDATE GENERATOR to obtain a prob-
ability distribution over the KB instances. Finally, a DisampicuaTor takes the final
decision of which is the most likely KB instance to link a segment z with, using the
aforementioned probability distribution and the representation of the mention con-
text.

Subsections 4.3.1, 4.3.2, 4.3.3, 4.3.4 describe each computational block in details.

\
Mention

Candidate
JE— _) ; | _,m)
5 Detector z Encoder € Generator

T 7

Figure 4.2: Computational flow of the model for mention-instance linking. The sys-
tem can be seen as a sequential composition of sub-systems that process the input
sentence s and finally output the identifiers of the instances that are linked to the
mentions detected in s (z is a generic mention detected in s).

—p—> Disambiguator —o, y>

zjlzj # z

4.3.1 Mention Detection

The goal of the MenTiON DETECTOR (first block of the pipeline in Figure 4.2) is to
segment each sentence into non-overlapping text fragments, which are mentions to
yet-unknown entity or relation instances.

44 Information Extraction in Text Streams

Motivated by the need of developing models that are robust to morphological
changes and that do not depend on a pre-defined vocabulary of words (as needed
by interactive/conversational applications), we process the input data using the
character-level encoding described in Chapter 3 (Marra et al. (2018)).

Instead of encoding the context of a word as in Equation 3.3, that are represen-
tations not including the word itself, we retrieve a contextual representation &}’ of the
word itself:

é;’ = Bi-LSTM.(w;, hi—1), (4.1)

An MLP classifier processes (one-by-one) the contextualized embeddings &}’ of the
words in the input sentence. The predictions are the output of the module. The
MLP is trained using supervised learning, with a tagging scheme similar to the ap-
proach proposed in (Lample et al. (2016)). In particular, each word in the sequence
is tagged, among a total of 6 classes: depending whether a word belongs to an entity
or a relation mention and its position within the mention segment (begin, inside, end).
As a result, each mention z is composed by the sequence of words where the first
word is tagged with the begin tag, the last word with the end tag, and the other words
are predicted as inner (tags must be all of the same type, either entity or relation).

As remarked in Section 4.2, we exploit sparse supervisions, so that training the
MLP-tagger (and, in turn, the character-aware network) might be difficult. How-
ever, we follow the intuition that syntax has a crucial role in text segmentation: noun
phrases are mentions to entities, while fragments that start with a verb and end with
a preposition (if any) are mentions to relations (Fader et al. (2011)). Hence, we can
use these rules to automatically generate artificial supervisions on large collections
of text to pre-train the Mention DETECTOR.

4.3.2 Mention and Context Encoding

The Encoper module (second block of Figure 4.2) is responsible for encoding the
mentions detected and their contexts into vectorial representations. Once again, we
rely on the character-aware model presented in Chapter 3. From the output of the
previous computational block, the ENcoper receives the input sentence segmented
into a sequence of mentions of one or more words each. In details, at this stage, s is
a sequence of ms mentions z;,i = 1,...,m,. Two different vectorial representations
are computed for each mention.

Encoding Mentions. First, the mention embedding e}" of z; is obtained as
ej' = Bi-LSTM(&i1...8;)z|) , (4.2)

being &;; ... ¢; |, the sequence of characters of the mention.

4.3 Model 45

Encoding Mention Contexts. Second, the context embedding &' is computed from
the other mentions zj, j#iins, as

R s —

ej' = [LSTM. (e ..., ej" 1), LSTM. (e} ... e q)]. (4.3)
Notice that, differently from Equation 4.1, here we are encoding only the context
around the considered mention, excluding the mention itself. Equation 4.3 is anal-
ogous to Equation 3.3, except for its input, that is made of a sequence of mention
embeddings instead of word vectors.

Once the MenTION DETECTOR has been pre-trained accordingly to what suggested

in Section 4.3.1, the ENcoper module can be pre-trained as well without any hu-

man intervention, by processing large collections of text and learning to decode each
mention.

4.3.3 Candidate Generation

Given an input mention z from the current sentence and its embedding &", the Can-
DIDATE GENERATOR (third block of Figure 4.2) implements four memory components
that are used to generate a list of candidate KB instances compatible with z, and,
afterwards, to store the information on the disambiguated instance. Initially, all
the components are empty and they are progressively filled while learning. Before
providing further details on the candidate generation process, we describe the four
memory components, as shown in Figure 4.3.

Memory Components

Mentions Set. The memory component H is an ordered set that collects all the
mentions that were processed up to the current sentence; this allows a fast lookup
of previously predicted instances for specific mentions. For example, if the mention
John Doe was previously assigned to instance k, when processing the same mention
again the system could easily hypothesize that it still belongs to instance k. In other
words, H is a dynamic vocabulary storing mentions encountered by the system up
to that moment.

Mention Embeddings. The matrix E stores (row-wise) the embeddings of the
mentions in H, computed with the encoder of Section 4.3.2, Equation 4.2. Thanks
to a similarity measure in the embedding space, this component allows the system
to associate KB instances to never-seen-before mentions which are small variations
of previously seen ones, or that refer to semantically similar elements. For example,
given the never-seen-before mention John D., the system could easily predict it still

46 Information Extraction in Text Streams

H E M
john [
1 2 3. n
meg [
1 2 3 .. n
john -
doe 1 2 3. n
he [
1 2 3. n
thedog [|
i 2 3. n
-
1 2 3. n

Figure 4.3: A graphical representation of the four memory components H, E, M,
and 7. H collects the (lowercase) mentions that are stored in the KB. For each of
them, the embedding vector (blue rectangle) is stored in a row of the matrix E. The
affinity scores of the considered mention, with respect to each of the n instances in
the KB, are stored in a row of the matrix M. Finally, 7 contains the KB instances
that have been recently linked by the system (here represented as a histogram of
the number of times each KB instance was recently linked).

belongs to instance k, since its char-level embedding is close to the one of John Doe,
even though the exact lookup in H failed.

History Buffer. The set 7 keeps track of the last disambiguated instances (with
repetitions). This memory is implemented as a buffer. Despite being naive, it allows
the system to handle co-references. As we will see shortly, the system can learn that
some specific inputs (e.g. pronouns, category identifiers, etc.) are often assigned to
recently mentioned instances, making valuable temporal hypotheses when it has to
disambiguate such inputs. The buffer resets at the end of each story.

Mention to Instance Map. The matrix M stores (row-wise) the instance-activation
scores of each mention in H. Each row is associated to a mention in H, each column
corresponds to a KB instance. The row of M associated to a certain mention u € ‘H

4.3 Model 47

p(”john doe") p(e) p(t)

Figure 4.4: A visual representation of the combination of the three hypotheses.
pF=riohndoe”) guo0ests that the current mention (i.e. “john doe”) has been often
linked to entity instance 1. p(®) indicates that the embedding of the current mention
is very similar to the embeddings of mentions usually linked to entity 1. Finally, p(*
indicates that entity 1 has been recently mentioned several times.

models how strongly each KB instance is associated to the mention u. The matrix M
is learned while reading the text stream, as we will describe in Section 4.4.

Hypotheses Formulation

In the following, we will show how the CanpIDATE GENERATOR exploits these mem-
ory components to generate candidates of KB instances, given an input mention.
For the purpose of this description, we suppose that the current memory consists
of n instances and m mentions. For each mention, the candidate generation routine
first outputs three distinct hypotheses, that are represented by three vectors p(*),
p(e), p(t), of n scores each. Each score is in [0,1], and it represents how strongly
an instance is a candidate for being linked to the mention z. For example, pfz) (the
i-th component of p(*)) models the probability of the instance i to be a link candi-
date accordingly to the first hypothesis. Then, the three hypotheses are combined
together into a final vector p. A visual representation of this combination is shown
in Figure 4.4.

String-match hypothesis. The first vector, p(*), named STRING-MATCH HYPOTHESIS,
contains the activation scores of the n instances given the string z. It models the idea
that the surface form of z is a strong indicator for spotting candidate links. Intuitively,
the degree of ambiguity of a mention is generally limited to few possible instances
(e.g. there are only few individuals that are referred with the noun Clyde). Formally,

P =0 (Miia)) (4.4)

where the function /(z, H) returns the index of z in #, o(-) is a sigmoidal function
that operates element-wise on its input (yielding output values in (0,1)) and the
subscript after the matrix M indicates the matrix row.

48 Information Extraction in Text Streams

Embedding-match hypothesis. The second hypothesis, p(¢), named EmsEDDING-
MATCH HYPOTHESIS, collects the activations of the instances given the embedding e™
of z. The rationale behind it is that if " is similar to an embedding of a known
mention (in the sense of the cosine similarity cos(, -)), then it is likely to activate the
same instances. Due to the way our embeddings are computed (Section 4.3.2), we
expect that two embeddings are “close” if they have similar roles in the processed
sentences (semantic-similarity, synonymy), and similar morphological properties
(due to the character-level input). Formally:

. cos(e™, E;)+1
p<>:<[(", E)

where the notation [v;]" ; indicates the (column) vector [v1,...,v;,]. Notice that
o(M) is a matrix of the same size of M, and p¢) involves a vector-times-matrix op-
eration that basically computes a weighted sum of the rows of M accordingly to the
similarity between e and the stored embeddings'. We can consider the embedding-
match hypothesis p(¢) as a smooth version of string-match p(?).

Temporal hypothesis. The third hypothesis, p(!), named TeMPORAL HYPOTHESTS, im-
plements the idea that recently disambiguated instances are good candidates for co-
reference resolution (temporal locality). In other words, if a story is talking about a
given entity, it is likely that the narration will make references to it using some new
surface forms. For example, given an entity labeled Donald Trump, there could be
ambiguous mentions like Donald, Mr. Trump (other people called this way), or the
president (that cannot be captured by the other two hypotheses). In these cases, the
temporal locality has a crucial role, that is even more evident when using pronouns,
that are shared by several instances. Formally, we have

o _ [T
P max u(i, T

/ (4.6)

where u(j, T') returns the number of occurrences of instance j in 7.

Candidate generator. The CanpipaTE GENERATOR merges the three hypotheses and
combines them into a single one FINAL HYPOTHESIS p defined in Equation 4.7. Instead
of a simple average, we combine them such that we give more priority to p(?) than
to p'®) when the former is strongly activated (since p(*) is about “exact” matches
in terms of surface forms). Moreover, The importance of the temporal component
p!) in the hypothesis formulation depends on the current mention z. For example,

'In our implementation, we kept only the top-k cosine similarities (k = 5), forcing the other ones
to —1.

4.3 Model 49

if z is a pronoun, the system must trust p(t) more than the others, while, in case of
some unambiguous mentions, it must consider less p(*). We let the system learn the
importance of p(*) depending on the mention embedding e”. Formally, the system
computes v = g(e™) € [0,1], where g(-) is a learnable function (whose form will be
defined shortly), and the vector of merged hypotheses is

p=0-7-(pP+(1-p)p) +7-p". (47)

The vector p contains a set of scores that model how strongly each KB instance is
related to the current input mention. We kept the model as simple as possible by
considering only the three hypotheses that were necessary to cover all the ambigui-
ties present in the task at hand. However any number of hypotheses can be attached
to the candidate generation module, making our model adaptable to different NLP
problems.

4.3.4 Disambiguation

While the candidate generation routine only focuses on the mention z, the Disam-
BIGUATOR (Figure 4.2, fourth block) is responsible for determining what are the most
likely KB instances given the context of z. The representation of the context " is
computed by the Encoper (Section 4.3.2) by Equation 4.3. The DisaMBIGUATOR is
based on the functions d;(2"),i = 1,...,n, also referred to as disambiguation units.
In details, each d; is associated to a KB instance, and it is learned while reading the
text stream in a supervised or unsupervised way, as we will describe in Section 4.4.
In particular, in the considered problem, we do not have the use of any discrimina-
tive information: when we receive the supervision that the input mention is about a
certain KB instance (or when the model decides this in an unsupervised manner),
we cannot infer that the context of the considered mention is not compatible with
any other KB instance. As a matter of fact, the same context may be shared by several
instances, so each d;(-) must have the capability of learning from positive examples
only. For this reason we implement d; with a locally supported similarity measure,

d;(e") = %+% ‘max cos(&",w;;) € [0,1], (4.8)
j=1,...x

that models the distribution of the contexts for instance i by means of x centroids
{wi;j}. As we will describe Section 4.4, these centroids are developed in an online
manner, and, in the unsupervised case, we end up in an instance of online spheri-
cal K-Means. Even the previously mentioned function g(-) needs to be locally sup-
ported (for the same reasons), so we implemented it following Equation 4.8 as well.
We combine the activation of the candidates (i.e., the vectors p), and the disambi-

guation-unit outputs, d = [d;(2)]"_;, to get the output o of the system,

o=056p>7) (n-p+1—n)-d), (4.9)

50 Information Extraction in Text Streams

where ¢ returns a binary vector with 1’s in those positions for which the (element-
wise-evaluated) condition in bracket is true. The scalar 7, > 0 is a reject threshold,
and 17 € [0,1] is a tunable parameter that controls the role of the hypothesis p in
the decision process?. The reject threshold allows us to avoid computing the d;(-)
associated to very-low-probability candidate instances.

Formally, the mention z is linked to the most-likely instance y as

0= ¢(z,s), y=argmax(o), (4.10)

where ¢ is the function that computes the affinity scores of z with respect to all
the KB instances, given the context of the current sentence s. Here we replace the
second argument of ¢ by the sequence of mentions detected in s, excluding z itself,

ie, ¢(z,{zj:zj €s,z; # z}).

4.4 Online Learning Dynamics

The agent learns while reading the data from the text stream in an online fashion.
Before going into further details, we recall that the learnable parameters of the pro-
posed model are the matrix M in the memory component, the vectors w;; of the
disambiguation units and of the temporal relevance function g4 (i.e., the parame-
ters of the CanpipbaTE GENERATOR and of the DisamsiGuaTOR), and the weights of
the LSTMs in the MenTION DETECTOR and in the Encoper. The system starts with
an empty KB (so M is not allocated yet), and with randomly initialized model pa-
rameters. As already outlined in Subsections 4.3.1 and 4.3.2, we can pre-train those
modules that constitute the preliminary stages in the system pipeline of Figure 4.2,
i.e., the MenTION DETECTOR first, and then the ENcODER, in both cases, without hu-
man annotations. In other words, the system will start reading data from the text
stream and it will progressively acquire the skill of detecting mentions to entities
and relations, and the skill of encoding such mentions and their context. When the
agent has robust enough detector and encoders, the system can start to develop also
the KB-based disambiguator, and to eventually refine and improve the pre-trained
modules.

While processing the text stream, accordingly to Equation 4.10, each detected
mention z is associated to a disambiguated KB instance y. Before starting the dis-
ambiguation, the system verifies if z is already in H. If it is not the case, then z
is included in H, its embedding e™ is appended to E, and a new row is added to
M (with values such that o(Mj,(, 7)) ~ 0). The learning stage consists in an on-
line process to optimize the model parameters accordingly to either seLF-LEARNING
Or a sUPERVISION about the target instance iy. A sketch of the whole learning stage is
shown in Algorithm 1.

2For simplicity, we set 7 = 0.5.

4.4 Online Learning Dynamics 51

foreach mention in the current sentence do
if supervision not provided then
if recognized some instances then
| reinforce the associated disambiguation units
end
else if uncertain disambiguation then
| no actions
end
else if no recognized instances then
create new instance
reinforce the new disambiguation unit until > 7,
end

end

else

if already known supervision then

reinforce the associated disambiguation unit until > T,
penalize the other disambiguation units until < T,

end

else

disambiguate instance y

if v was associated to another supervision then
create new instance

reinforce the new disambiguation unit until > 7,

end

else

associate supervision to the y-th disambiguation unit
reinforce the associated disambiguation unit until > 7,
penalize the other disambiguation units until < 7,

end
end

end
end

Algorithm 1: Learning Dynamics

Self-Learning. When no supervision is provided, the learning dynamics changes
in function on the confidence that the system yields in formulating hypotheses (p)
and in disambiguating the mention z (0). We distinguish among three cases:

i. Max o0 > T; : RECOGNIZED SOME INSTANCES
ii. maxp > T, Amax o0 < T; : UNCERTAINTY
iii. maxp < T, : UNKNOWN INSTANCE ,

where T, is the aforementioned reject threshold, and 7, € (1, 1) is an accept thresh-
old.3

Casei. Theresponse of the system has been rather strong in indicating at least one
instance, therefore the prediction of the model is considered reliable enough, such

3SWe set 7, = 0.1 and 7, = 0.9.

52 Information Extraction in Text Streams

that the decision must be reinforced for all those disambiguation units that gener-
ated outputs in 0 above the accept threshold 7,. This is done in a self-learning fashion
(Nigam and Ghani (2000)), by means of a single online gradient-based update, with
the aim of minimizing the quadratic loss that measures the distance between the se-
lected disambiguation unit outputs (indexed by j) and 1, that is Zj(d i~ 1)? (i.e., we
reinforce the selected outputs).

Case ii. The system activates some candidates but it is uncertain in the disam-
biguation, so no further actions are taken.

Case iii. This case is triggered when p is composed of only low-confidence can-
didate activations. This situation happens when the candidate generation module
does not find a known instance that is compatible with the current mention, that
is likely to indicate the occurrence of a new entity/relation. Therefore, the system
creates a new instance in the KB and reinforces its disambiguation unit until its re-
sponse is above 1, to develop the new instance model (i.e., multiple gradient-based
updates).

Supervision. When a supervision i €) is provided for the mention z, we want
the system to immediately learn from it. The system keeps track of the mapping be-
tween the set of user-provided supervisions) and the set of instances in the mem-
ory components (the user is not aware of how the system handles instances). When
¥ is a known supervision, the index of the corresponding instance is found, and
the output of the disambiguation unit associated to this instance is reinforced un-
til it is greater than the accept threshold 7,. We also push the output of the other
disambiguation units towards 0, by minimizing the quadratic loss, Zj(dj)z. This
implements a penalization process, that involves multiple gradient-based updates
until all the involved outputs fall below 7,*. When ¥ is a never-seen-before super-
vision for the system, then it is associated with the disambiguated instance y. On
the other hand, if y was previously associated to another supervision symbol in)
different from ¥, then we have a collision in the mapping and we solve it by creating
a new instance and by associating it to . Then, we follow the same steps as in case
iii above’.

“Notice that, whenever the system needs to reinforce the j-th output 0;, and it also holds that
Pi < T, then, due to 4(-) in Equation (4.9), we get no gradient, so we first increase p i until it is above
T

>Supervisions may not only be related to the instance-label of the detected mentions, but they
can also be associated with the detection of the mention. For example, the user could label a men-
tion that does not correspond with the detected ones. This supervision signal is propagated to the
mention detector, that can be refined and improved. In turn, the mention and context encoders could
be refined as well. The investigation of these refinement procedures goes beyond the scope of this
proposal.

4.5 Experiments 53

4.5 Experiments

4.5.1 Datasets

The experimental campaign is carried out on two different datasets: Simple Story
Dataset and WikiFacts. In the following, we describe both in detail.

Simple Story Dataset

We introduce a new synthetic dataset®, specifically designed to emulate the prob-
lem setting described in Section 4.2, because any of the existing benchmarks, albeit
somewhat related, do not really fit the defined setup. The dataset is organized in
stories and presented to the system as a stream of sentences, similarly to what shown
in Figure 4.1. A story is a list of not-repeated facts (mostly) about a certain entity,
that we call “main entity”. Entities and relations are mentioned multiple times, in
different stories and with different surface forms, including synonyms, nicknames,
co-references, etc. Overall, we collected 564 different stories resulting in a stream of
10,000 sentences. In the dataset there are 130 entities and 27 relations, belonging to
a pre-defined ontology. The aforementioned ontology, illustrated in Figure 4.5 has
21 and 28 entity and relation types that allows us to build the facts that constitute
the stories. Each fact is a triple of mentions, two entities connected by a relation. We
automatically generate sentences from facts. Entity and relation instances are sub-
stituted with their textual forms, that are occasionally perturbed with different kind
of noise, such as character-level perturbations to emulate typos. We also introduce
noise in the stories, injecting some facts not related to the main entity, so that the
narration slightly departs from the main topic.

We end up having a dataset consisting of a word dictionary of 2,176 elements,
1,526 and 288 distinct mentions to entities and relations, respectively, including dif-
ferent variations (due to typos, determiners, etc.) from an original set of 354 base
entity mentions and of 176 base relation mentions. The stories are also rich of co-
references (7,975), and there are 6, 830 mention occurrences that are ambiguous, i.e.
that refer to multiple entity/relation instances.

WikiFacts

The WikiFacts dataset was originally proposed in (Ahn et al. (2016)) for knowledge-
aware language modeling. The dataset is a collection of Wikipedia summaries,
weakly aligned with triples from Freebase. Each summary contains a textual de-
scription of a certain entity. Anytime such entity is mentioned in the text, the men-
tion is annotated with its Freebase identifier that can be exploited to get facts involv-
ing such entity.

The dataset is publicly available at https://sailab.diism.unisi.it/stream-of-stories/.

https://sailab.diism.unisi.it/stream-of-stories/

54 Information Extraction in Text Streams

to be located in /\ to be register in .
Place » City |« Vehicle

o-drive

'
'
'
'
'
'

to work in_

to livein

\
l ' P '

l ' Pt '

' P i

' "

' T

' -~ 3| Book }f--------------{ Good |---------------- Toy
! N

i

i

:

to play with : l\‘ to chase

‘ .
:” \‘\ \\ . §
4 K \ % o \
to visit NN L
4 < . N \
K \ \ . Y ' Animal
l/ \\ \\\ S N : “ \\
4 N \ . ' . \
S N . .~ ' ' .
. \ * . 1 A
v \ \‘ N] A
N

' to eat \
ito enroll Py
;7 m to eat
to P;rszln ‘\\
: follow AN Y
: Animal
: Food
[Department
ume
to
offer

to cure

Disease

Figure 4.5: Ontology Graph of entity (nodes) and relation (edges) types in the Sim-
ple Story Dataset. Dashed lines between node pairs indicate a hierarchy between
the two types.

We adapt WikiFacts to the problem setting of Section 4.2. The dataset is com-
posed of 10,000 pages that include about 560, 000 entities. Each summary is a story.
We consider only a portion of WikiFacts, precisely 1, 112 wiki pages in order to have
about 10,000 facts. We kept only pages with at least three sentences. A sentence
must include two or more entities and we distantly supervise the text within two
consecutive entities as relation, in the case we can identify a relation involving those
two entities in Freebase. Because this alignment between relations and textual spans
is manual and not entirely reliable, we only evaluate performances on entities in
this dataset. Moreover, despite being made of real world data, entities are rarely
repeated across different stories, making the data significantly less ambiguous. In-

4.5 Experiments

55

00

ALL

(Entities)

40 . -
7’ =0~ Our Model P s :g— Our Model
20 F P s =O=Deep-RNN | 1 20+ P = Deep-RNN
o) 3= RB P =% RB
==} = Re-Reading - © === = Re-Reading
10% 25% 50% 90% 10% 25% 50% 90%
ALL (Relations LAST (Relations
00 (Re) 00 — (R)

80 .

60 r

40 1400,
—Q— Our Model :8— Our Model
o =0 = Deep-RNN o =Deep-RNN
20 -3¢+ RB 1 20+ -3+ RB
==} = Re-Reading =} = Re-Reading

00 [~

LAST (Entities)

801

4 60 -

10%

25%

50%

90%

10%

25%

50%

90%

Figure 4.6: Accuracy (%) for different amounts of supervision in the Simple Story

Dataset, in the case of entities (two topmost graphs), and relations (in the bottom).
We include two competitors (Deep-RNN, RB), our system, and our system reading
the stream again (Re-Reading).

Table 4.1: Accuracy (%) for different amounts of supervision in the Wikifacts

Dataset.
Model 10(70 25(V0 500/0 900/0
RB 16.84 40.44 48.28 49.55
All Deep-RNN 0.6 3.01 1234 21.78
Our Model 39.25 54.57 69.64 75.45
Re-Reading 44.75 54.66 66.88 70.55
RB 17.28 40.87 48.04 49.37
Last Deep—RNN 0.6 3.25 12.11 21.37
5L Our Model 3744 5293 67.45 75.37
Re-Reading 43.41 53.38 65.13 70.39

56 Information Extraction in Text Streams
ALL (Entities) LAST (Entities)
Our Model —6— Our Model
60 = Deep-RNN 60 [|=O=Deep-RNN
«%-RB | A e ®tTUT e RB | et
5o AL 50 r
40 + 00 P]
-0
30+ 01 307 e~ -
20 -7 @ 20 +
- o x': s
106 _ __ -0 101 _ e
© _ o
L L L L L L e— L L L L L
100 1k 2.5k 5k 7.5k 10k 100 1k 2.5k 5k 7.5k 10k

Figure 4.7: Accuracy (%) on entities at different time instants in the Simple Story
Dataset (with 50% of supervised sentences).

deed, in this dataset there are 4,431 entities in 10,000 facts, about 34 times more
instances than in the simple story dataset.

4.5.2 Learning Settings

Each story is split into two parts, separating supervised from unsupervised sen-
tences. The supervised portion covers the first sentences of the story. Depending
on the experimental setting, the percentage of supervised sentences varies; in par-
ticular, we considered four setups: 10%, 25%, 50% and 90% of the sentences in the
story. The system reads the data, receives supervisions, and makes predictions on
the unsupervised sentences, accordingly to the stream order.

Evaluation. The accuracy of a prediction is measured at the moment the prediction
is made. We use cluster purity measure, as in (Manning et al. (2008)), to map unsu-
pervised outputs to the ground truths, where, in case of conflicting assignments, we
only keep the mappings that are determined using the largest statistics. The map
used to convert predictions is computed with the statistics accumulated up to the
time the prediction is made. We define two scores, namely LAST and ALL, used for
the evaluation of the unsupervised sentences. ALL computes the average accuracy
for all the unsupervised sentences of a story, thus its value depends on the portion
of supervised sentences. LAST instead measures the average accuracy on a single
sentence, which allows us to compare performances across different percentages of
supervised sentences. Both are averaged over each story first, and, then, over the
whole set of stories.

4.5 Experiments 57

Model Details. The model parameters were validated on a small out-of-sample
dataset. The investigation regarded the number k of centers of the locally supported
functions (disambiguation units). The number of centers for the locally supported
function has been chosen low (k = 10) for entities, since they appear in a limited
number of contexts, whereas it has been chosen higher for relations (k = 50) since
their contexts are much more variable. The memory size for entities and relations
were set up respectively to 2,500 and 1,500, while we chose 10 as the maximum
number of recent instances (|7]) for both. The mention detector reads the input
stream of text word by word, processing words as sequences of characters. The char-
acter embedding matrix has dimensions 100 x 50, where 100 is the vocabulary car-
dinality and 50 the character embedding size. Both bi-LSTMs have an hidden state
of size 500(x2). The final output layer is composed of 6 sigmoidal units. Concern-
ing the mention and context encoder the same parameters of the mention detector
were chosen for the character embedding matrix. The size of mention contextual en-
codings has been set to 300 (2 x 150) to match the commonly used size of Word2Vec
embeddings. The decoder, exploited in the pre-training phase, was composed of an
LSTM having a hidden state of 300 neurons and a final softmax output layer over
the character vocabulary (i.e. 100 output units).

Training details. Our model was bootstrapped accordingly to the scheme of Sec-
tion 4.4. In particular, before streaming the stories, we generated a stream of text
composed of simple language sentences, taken from Simple English Wikipedia and
the Children’s Book Test (CBT) data’, getting overall a total of 1.5 million sentences.
We automatically generated supervisions for the mention detector, accordingly to
the procedure described in Section 4.3.1, and we processed the stream. We randomly
injected typos with probability 5 - 1073 to any input character in order to make the
model be more robust to this kind of perturbations. Moreover, we truncated words
with more than 15 characters and we also limited the maximum length of a sen-
tence to 20 words. During pre-training we considered a batch size of 256 sequences.
Afterwards, we stopped updating the mention detector and we streamed the same
data again to allow the system to develop the mention and context encoders (Sec-
tion 4.3.2). In this case we set the maximum length of an input segment and the
maximum sequence length to 50 and 10, respectively. Finally, we stopped updating
the encoder and we started to stream the stories.

4.5.3 Competitors

We compared our model with two competitors and we also provide a variant of the
model.

"https://simple.wikipedia.org, https://research.fb.com/downloads/babi/

https://simple.wikipedia.org
https://research.fb.com/downloads/babi/

58 Information Extraction in Text Streams

Deep-RNN. Deep-RNN, is a deep neural architecture, where bottom layers are
analogous to the ENcoper module of the agent, thus they have the same character-
aware model described in Chapter 3, already bootstrapped as for our model. In
order to classify mentions, the Deep-RNN architecture uses an MLP (1 hidden layer
with 600 units and tanh activation; softmax activation in the output layer) on top of
the concatenated representation [e, "] (Equation 4.2, Equation 4.3). This network
is aware in advance of the number of instances present in the datasets, that is the
size of the output layer of the MLDP, hence it does not incur in errors related to the
self-discovering of new instances. We followed a classic online supervised learning
scheme, where a single gradient-based update is performed for each processed sen-
tence, otherwise we experimented that the network simply overfits the last supervi-
sions and forgets about the others. In few words, Deep-RNN is a simplified version
of our system that is adapted for online-learning in a standard Machine-Learning
setup.

Rule-based model. We also devised a very informed rule-based model, RB, that
buffers statistics on the supervisions received up to time ¢t. Given an input mention,
RB predicts the most-common supervision received when encountering it. When
never-supervised-before mentions are encountered, RB predicts the most-frequent
supervision of the story, that is likely to be the main entity of the story itself. This in-
formation is very precious (our model has no access to it), since several co-references
refer to the main entity. We tested a large number of different rule-based classifiers,
and RB was the one obtaining the best results. These heuristics are very effective
since they are shaped upon prior knowledge about the dataset construction, which
provides strong biases.

Re-Reading. We also report a variant of our model referred as “Re-Reading”. We
let the system read the whole stream another time, without providing supervisions
again, that is where the self-learning skills are most emphasized.

4.5.4 Results

We summarize the results on the dataset described in Subsection 4.5.1 and com-
pare the system with the methods discussed in Subsection 4.5.3. Figure 4.6 reports
the accuracy of discovering and disambiguating mentions to entity and relation in-
stances, in the Simple Story Dataset, while Table 4.1 shows the accuracy in the case
of the Wikifacts dataset (entities).

Our system outperforms the competitors in all our experiments. Differently
from Deep-RNN, our model exploits its capability of building local models of the
instances, while Deep-RNN is not able to capture this locality, either not-learning

4.5 Experiments 59

enough or overfitting supervisions. Moreover, Deep-RNN has difficulties in storing
information on the whole story, as shown in the LAST case. When very few super-
visions are provided, in the case of entities, RB shows an accuracy that is similar
to our system on the Simple Story Dataset. Differently, the proposed model signif-
icantly outperforms RB on WikiFacts, showing interesting generalization capabili-
ties on real world data. In the case of relations, RB is not different from our system,
mostly due to the fact that relations have poor ambiguity in the Simple Story Dataset,
also confirmed by the improved results of the Deep-RNN. The re-reading variant of
our model shows better classification capabilities in most of the cases, comparing
tavourably with all the other approaches. This property is even more evident in the
tew-supervision settings. These results indicate that, despite the dynamic nature
of the online problem we face, the proposed model has strong memorization skills,
and the capability of improving its confidence by self-learning.

Model Evolution. In the Simple Story Dataset, we also investigate the evolution
of the model, evaluating its performances at different time instants, using 50% of
the supervisions (entities). Basically, we paused the system at a certain point of
the stream, measured the accuracy, and activated the system again. This process is
repeated until the end of the stream is reached. Results are reported in Figure 4.7.
Our model reaches better results than RB after having read roughly the 20 — 25%
of the input stream. We analyzed this result, and it turned out that this is mostly
due to the fact that our system takes some time to learn how to handle the temporal
information (p*)) needed to resolve co-references. As a matter of fact, co-reference
resolution clearly depends on the number of supervisions, as reported in Table 4.2.

Table 4.2: Accuracy (%) in the case of pronouns.

Supervision 10% 25% 50% 90%

ALL 12.74 36.04 43.61 53.55
Last 8.57 4285 4476 54.28

The role of y. We also analyzed the values of vy, that weighs the importance of the
temporal locality in the disambiguation process. In the case of pronouns the aver-
age value of v is 0.33, while in the case of the other mentions (that might include
some other co-references different from pronouns) is 0.21, thus showing that the sys-
tem learns to give more importance to the temporal component when dealing with
pronouns than other mentions. This is confirmed by the low instance-activation
scores in the case of mentions that are pronouns (the average of max p(®) is 0.005,
remarking their inherent ambiguity), with respect to the ones of the other mentions
(average of max p'?) is 0.5).

60 Information Extraction in Text Streams

Table 4.3: Accuracy (%) of our Full Model, of a system based on Word-Level En-
coding (WL Enc.), and of a system not-provided with information on the recently
disambiguated instances (No Recent).

Entities Relations
AL Last AL Last

WL Enc. 4739 46.18 84.33 85.10
No Recent 5556 5495 — —
Full Model 63.79 63.12 85.41 85.81

4.5.5 Ablation Study

We analyse two variants of the model in order to emphasize the role of some com-
ponents, and report the results in Table 4.3 for the Simple Story Dataset.

Character-level encoding. To understand the benefits brought by the character-
level encoding for mentions, we compare it with respect to classical word-level em-
bedding approaches. To this end, we built a vocabulary of words, including all the
correct-spelled words of our dataset (and an out-of-vocabulary token), and we lim-
ited the character-based encoder to such words, thus simulating a word-level en-
coder. We call this variant as Word-Level Encoding (WL Enc.). Our model is able
to encode in a meaningful way those words that contain typos, and to exploit them
in context encoding, while the word-level encoder faces several out-of-vocabulary
words, that also create ambiguity while comparing contexts. Once more, the im-
portance of sub-word level information embedded thanks to our character-aware
model (Chapter 3) is proven to be impactful in language understanding problems.

Impact of the temporal hypothesis. Another aspect that we investigate is the con-
tribute of the temporal hypothesis p(!) when disambiguating entities. Hence, we
consider a version of our model that considers only the hypotheses p(*) and p(©.
Please note that this variant is equivalent to setting v always equal to zero in Equa-
tion 4.7. We name this version as No Recent. Table 4.3 shows that the temporal
locality has an important role, and disabling it degrades the performances. This is
not only due to its positive effects in co-reference resolution, but also when disam-
biguating mentions to the main entity of the story. Finally, thanks to p(*), the system
learns to develop the tendency of associating new mentions to already existing in-
stances, instead of creating new ones, that is an inherent feature of each story (in
the worst case it creates only 183 entity instances).

4.5 Experiments 61

4.5.6 Dealing with Long Text Streams

The proposed model explicitly memorizes the information about entities and rela-
tions of the current and past stories into distinct (i.e., independent) memory loca-
tions (Section 4.3.3). This strongly alleviates the catastrophic forgetting problem
(McCloskey and Cohen (1989)), that is usually due to memory interference among
multiple entities or relations (e.g., due to weight sharing). The experimental anal-
ysis of Section 4.5.4, where the same stream is read a second time (“Re-Reading”),
suggests that the proposed system does not incur into serious catastrophic forgetting
issues, since its recognition accuracy improves once reading again the text stream,
without additional supervisions (Figure 4.6). Moreover, even if the encoding mod-
ule of Section 4.3.2 is based on RNNs, we are not exposed to the problem of learning
long-term dependencies with such RNNs (Bengio et al. (1994)). As a matter of fact,
the RNNs are only responsible of encoding each mention and its context within a
single sentence, whose usual length is efficiently manageable with LSTMs without
any long-term dependency problems.

We performed a further experimental analysis aimed at evaluating the memo-
rization skills of the system when dealing with long text streams. In particular, we
provided the system an incremental number of stories, and we periodically evalu-
ated its capability of correctly recognizing the entities of the first story of the stream.
As long as the system reads more data, this procedure provides a clear indication of
the persistence of the system memory. However, the system is still exposed to ambi-
guity issues, since multiple instances might share the same mention. For this reason,
we considered different experimental settings with different levels of ambiguity.

In detail, we considered four scenarios in the Simple Story Dataset, referred to as
A, B, C, D, respectively. In each of them, we generated 10 different long streams (~
2,600 sentences in each stream), randomly shuffling the involved stories. For each
stream, we selected the first story as target story. The model reads the stream and
learns in an online manner, receiving supervisions about the mentioned entities, and
constantly adapting its internal parameters as in the experiments of Section 4.5.4.
After having processed t stories, we temporarily freeze the whole system, and we
process the target story again, measuring the prediction accuracy on the entities of
this story. By increasing the number t of intermediate stories, we evaluate how the
systems keeps memory of the target story as long as the stream grows.

The four settings differ in how the stream has been constructed, and they intro-
duce an increasing level of ambiguity. In the first setting (A), intermediate stories in
the stream neither contain entities nor mentions belonging to the target story. Read-
ing the stream does not introduce any ambiguity in the contents of the target story.
This allows us to evaluate whether the system is forgetting information as long as
time passes, completely discarding ambiguity issues. In setting B we include pro-
nouns in the intermediate stories. Mentions related to pronouns are obviously very

62 Information Extraction in Text Streams

Table 4.4: Average recognition accuracy (on 10 different streams) of the entities of
target stories, with an increasing number f of intermediate stories for settings A, B,
C,D (Accy, Accp, Acce, Accp), and average number of entities per mention (degree
of ambiguity Amb,, Ambg, Ambc, Ambp).

t=0 t=10 t=50 t=100 ¢t =150

Amby 1.03 1.03 1.03 1.03 1.03
Ambg 1.05 142 2.14 242 2.65
Ambc 1.04 150 249 3.28 3.64
Ambp 1.03 1.83 3.48 4.54 5.06

Accy 9841 9841 9841 9841 98.41
Accg 99.62 96.88 92.03 94.03 94.03
Accc 98.89 85.05 7225 70.30 71.85
Accp 9798 85.83 7132 6593 63.25

ambiguous, hence the model will have to rely on the temporal hypothesis (Section
4.3.3) to be able to disambiguate them. The intermediate stories of setting C can
contain mentions that are also used in the target story, and these mentions may or
may not refer to the same entities of the target story. In this case, the system must
not only remember what was read in the target story, but it must also gain stronger
skills in disambiguating entities. Finally, in the last scenario (D), we ensure that the
intermediate stories never refer to the entities of the target story. However, we still
allow the stream to use mentions that are shared with the ones that are used in the
target story, simulating a strong data drift.

We explicitly computed the degree of ambiguity of each stream for all the settings
(referred to as Amb,y, Ambg, Ambc, Ambp), that is the average number of entities
associated to each mention of the target story up to step t. Table 4.4 reports both
the degrees of ambiguity and the recognition accuracy of the entities of the target
story (averaged over the 10 generated streams). We report the results after t = 0,
10, 50, 100, 150 intermediate stories (0, 180, 880, 1700, 2600 intermediate sentences,
respectively).

All the four settings show an accuracy close to 100% at t = 0, as expected, where
the few errors are mostly due to pronouns, since the system has not developed
strong co-reference skills, as expected. For t > 0, results in setting A confirm that
the model does not forget past information when processing text streams that do
not interfere with it. Setting B shows an interesting behaviour, in which accuracy
is reduced as long as t grows up to 50, and then it increases again. This indicates
that while at the beginning the system misclassifies pronouns in the target story, it is
able to improve pronoun resolution while reading several stories, thus adjusting the
temporal hypothesis of Equation 4.6. In both settings C and D, as expected, results

4.6 Discussion 63

indicate that performances degrade as the number of intermediate stories increases,
due to the increasing number of ambiguous mentions. The model clearly performs
better in setting C than in setting D, remarking the positive effects of refining the dis-
ambiguation units while reading information about the entities of the target story
in multiple occasions. Finally, it is worth noticing that the degradation of the perfor-
mances is directly related to the degree of ambiguity in the streams. This is a clear
hint that long streams increase the difficulty of the task not due to their length but
to their intrinsic ambiguity.

4.6 Discussion

We presented an end-to-end model to process text streams, where mentions to en-
tities and relations are disambiguated and eventually added to an internal KB, that,
differently from many existing works, is not-given-in-advance. Our model is capable
of performing one-shot learning, self-learning, and it learns to resolve co-references.
It has shown strong disambiguation and discovery skills when tested on a stream of
sentences organized into small stories (we also created a new dataset that we pub-
licly made available for further studies), even when a few, sparse supervisions are
provided. We also showed how it can improve its skills by continuously reading
text.

The proposed model has the potentiality of being enhanced by introducing a
more structured and advanced knowledge components (types, facts, abstract no-
tions for higher level inference - such as logic formulas), providing a powerful bridge
between sub-symbolic and symbolic approaches. A knowledge-grounded model
maybe also important to make language generation more controllable. We will dis-
cuss these aspects in details in Section 7.2.

Chapter 5

Natural Language Generation

Poem Generation and Paraphrasing are two very different Natural Language Gen-
eration problems. The former aims at the free generation of verses that follow pre-
cise rhyming schemes and meter rules, while conveying emotions and/or narrating
events. Instead, paraphrasing is the task of rewriting a text passage without altering
its meaning. Although we have shown in Section 2.3 that NLG problems can all be
framed as particular instances of Language Models, the nature of these two tasks
is unalike. Referring again to Section 2.3, we can categorize Poem Generation into
the class of open-ended problems, whereas Paraphrasing falls in the non-open-ended
domain. However, in this Chapter we address an issue that is common for both
problems: the lack of resources. In Poem generation data is inherently poor, since
it involves ancient manuscripts that are rare, and not enough to train a robust lan-
guage model. Regarding paraphrasing, the lack of aligned text pairs of paraphrases
occurs especially in non-English languages, such as Italian.

This Chapter presents two distinct solutions to cope with low-resources. After
reviewing the literature in Section 5.1, we introduce a novel syllable-based language
model trained in a multi-stage transfer learning fashion to acquire knowledge from
large corpora of modern languages (Section 5.2). In Section 5.3, we propose an
algorithm to create a corpus for paraphrasing, that we exploit to create a dataset
of aligned text pairs for Italian. Then we make use of such data to train a Pointer
Generator model to generate paraphrases.

5.1 Related Works

Natural Language Generation (NLG) has seen a steady increase of attention in the
last few years inside the NLP field. We focus in this Section only on the works most
related to the two problems tackled in the Chapter, i.e. Poem Generation and Para-
phrasing. Due to their very different nature, we discuss separately their related
works.

65

66 Natural Language Generation

Poem Generation

The scientific literature includes several works on machines that are either program-
med to generate poems or that approach the problem of poem generation using
machine learning algorithms. Early methods (Colton et al. (2012)) rely on rule-
based solutions, while more recent approaches focus on learnable language models.
As a matter of fact, nowadays, most of NLG approaches are based on recurrent nets
(Wen et al. (2015); Chopra et al. (2016); Hasan et al. (2016)).

Word-based language models usually require large vocabularies to store all the
(most frequent) words in huge textual corpora, and, of course, they cannot gen-
eralize to never-seen-before words. Some other approaches tried to overcome this
issue, exploiting sub-word information. A character-level solution was proposed
in (Hwang and Sung (2017)), while other authors (Miyamoto and Cho (2016))
combine word embeddings with character-level representations. It has been shown
(Marraetal. (2018); Akbik et al. (2018)) that character-based models can be adapted
to produce powerful word and even context representations, that capture both mor-
phology and semantics. Sub-word information is very important in poetry, since it
represents a crucial element to capture the “form” of a poem.

The first approach that proposes a deep learning-based solution to poem genera-
tion is described in (Zhang and Lapata (2014)), where the authors combined convo-
lutional and recurrent networks to generate Chinese quatrains. Then, a number of
approaches focussing on Chinese poetry were proposed. In particular, a sequence-
to-sequence model with attention mechanisms was proposed in (Yi et al. (2017))
and (Wang etal. (2016)). In (Yuetal. (2017)) the authors extend Generative Adver-
sarial Networks (GANs) (Goodfellow et al. (2014)) to the generation of sequences
of symbols, exploiting Reinforcement Learning (RL). They consider the GAN dis-
criminator to be the reward signal of a RL-based generator, and, among a variety of
tasks, Chinese quatrains generation is also addressed. Another RL-based approach
is proposed in (Yi et al. (2018)), where two networks learn simultaneously from
each other with a mutual RL scheme, to improve the quality of the generated po-
ems.

In the context of English poem generation, transducers were exploited to gen-
erate poetic text (Hopkins and Kiela (2017)). Meter and rhyme are learned from
characters by cascading a module that focusses on the content and a weighted state
transducer that explicitly models the form of the generation. Differently, the more
recent Deep-speare (Lau et al. (2018)) combines three neural modules, sharing the
same character-based representation, to generate English quatrains. These models
consist in a word-level language model fed with both word and character repre-
sentations, a network that learns the meter, and another net that identifies rhyming
pairs. At the end, generations are selected after a post-processing step that picks
the best quatrains combining the output of the three modules. We notice that the

5.2 Neural Poetry 67

authors of (Lau et al. (2018)) exploited a collection of poems from several authors
in order to train the model.

Paraphrasing

Paraphrasing is the task of re-writing an input text using other words, without al-
tering the meaning of the original content. Conversational systems can exploit au-
tomatic paraphrasing to make the conversation more natural, e.g., talking about a
certain topic using different paraphrases in different time instants. Recently, the
task of automatically generating paraphrases has been approached in the context of
Natural Language Generation (NLG). In particular, the task of rewriting text has
been classified into three different categories (Madnani and Dorr (2010)): lexical
paraphrasing, that consists in replacing words with other words with same mean-
ing (Bolshakov and Gelbukh (2004)); phrasal paraphrasing, when the paraphrase
is created acting on fragments with the same meaning (Ganitkevitch et al. (2013));
sentential paraphrasing when the paraphrase is generated at a sentence level, con-
sidering sentences with the same meaning (Barzilay and McKeown (2001); Barzilay
and Lee (2003); Dolan et al. (2004)). Here we follow the idea that Paraphrasing can
be approached as a sequence-to-sequence problem é (Sutskever et al. (2014)), and
we formulate it as discussed in Section 2.3. We make use of Deep Neural Networks
as for Machine Translation problems (Kalchbrenner and Blunsom (2013)). In par-
ticular, we exploit Pointer networks (Gu et al. (2016); Vaswani et al. (2017); See et al.
(2017)) widely successful in Machine Translation and Text Summarization.

5.2 Neural Poetry

In this Section we propose a model for Poem Generation, an instance of NLG that
is particularly fascinating for its unique features. The precise structure of poemes,
rhymes, meters, convey an aesthetic and rhythmic sound. Each poet has their own
style, expressing emotions in their own peculiar way. Such constraints on language
make automatic poem generation more challenging. Furthermore, the resources
available are much poorer than in other NLG problems, and the lack of examples
becomes a serious issue when considering ancient poets.

We address those aspects by proposing a novel syllable-based language model
to allow strong transfer learning from modern general purpose texts that is trained
in a multi-stage fashion on different data sources. Then, we introduce a poem selec-
tion mechanism that is based on a scoring function shaped on the poem and author
characteristics. In the following we describe the language model, the multi-stage
transfer learning approach, the generation procedure and finally we report the ex-

68 Natural Language Generation

periments, carried out on the Italian poet Dante Alighieri, widely known for his
Divine Comedy (Alighieri et al. (1998)).

5.2.1 A Syllable-based Model

The model, sketched in Figure 5.1, is composed by two blocks: a hyphenation mod-
ule and a syllable-based language model. The first block is a tokenizer that splits
text into syllables, while the second module is the actual learnable model that cap-
tures the statistics from the language. In the following, we refer to the entire model
as sy-LM.

Hyphenation Module. The hyphenation module is responsible for the tokeniza-
tion of text sequences into syllables. To do so, the input is first split into words, then
each word is divided into syllables. Syllabification is a language-dependent process.
This module is a not learnable tokenizer. We implemented the common hyphen-
ation rules for Italian, that, apart from rare exceptions, correctly separate words into
syllables. Of course, the same procedure can be designed for any other language.
We removed punctuation and enriched the sequence of syllables with special to-
kens to consider spaces separating words (<sep>), begin (<go>) and end of ter-
cet (<eot>) to delimit the generation, and an end of verse symbol (<eow>), since
each input sequence is a tercet composed of three verses.

Language Model. The sequence of syllables y = (y1, - - - ,y1) produced by the hy-
phenation module is consumed by a neural language model. Following what dis-
cussed in Section 2.1, we exploit a recurrent neural network to learn the conditional
distribution of Equation 2.2. In particular we selected an LSTM network. Syllables
and special tokens are encoded with dense embeddings, named as “syllable embed-
dings”, stored row-wise in the embedding matrix Ws, € RIV1*4 where | Vs, | is the
size of the vocabulary. At time ¢, the token y; is mapped into its syllable embedding

e;. In detail, we have:
er = Ws, - 1(yt) ,

where 1(+) is a function returning the 1-hot column vector that has 1 in the position
associated to the vocabulary index of its argument. The syllable representations are
learnt during the task. It is important to notice that Vs , i.e. the set of all syllables
(and a few special tokens), has a cardinality significantly smaller than in word-based
dictionaries. Therefore, the embedding matrix Wsy has a much less parameters, mak-
ing sy-LM lighter and easier to train. In addition to that, syllables practically solve
the problem of unknown words too. At each time step ¢, the internal recurrent state
h; is updated as follows:

hy = LSTM(e¢, hy—1) . (5.1)

5.2 Neural Poetry 69

A non-linear layer (weights W, bias b, activation ¢ indicating the hyperbolic tangent)
projects back h; to a d-sized vector z;, and a dense layer followed by the softmax
activation function computes the probability distribution §,,

Zy = O'(th + b) (52)
Of = WS/th (5.3)
i, = softmax(oy) . (5.4)

It is worth noticing that the dense layer of Equation 5.3 shares its parameters with the
syllable embedding matrix W;, (being ' the transpose operator), further reducing
the number of parameters of the model. The model architecture is illustrated in
Figure 5.1 after the hyphenation module.

Sy-LM is optimized to maximize the likelihood of the sequence of syllables in
the training poem, i.e. the Divine Comedy, given the language model that estimates
the conditional probability p(y¢|y1,...,y;—1). This is implemented by minimizing
the cross-entropy between each prediction §, and the ground truth from the Divine
Comedy, thus pushing toward 1 the entry of {}, associated to the t-th syllable of the
current tercet in the Divine Comedy.

nel <sep> mez zo <sep> ta <eot>
t il 4 t t 4 t
AN e N e AU (o AN I I
) 1 1 1)) 1
LSTM —> LSTM —> LSTM —> LSTM —> LSTM [—> __ . —> LSTM LSTM
<go> nel <sep> mez zo nes ri ta
1)

hyphenation
module

Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
ché la diritta via era smarrita.

Figure 5.1: Sketch of sy-LM. Text is first tokenized into sequences of syllables by the
hyphenation module and enriched by some special tokens: word-separator <sep>,
begin-of-tercet <go>, end-of-verse <eov>, end-of-tercet <eot>. Orange squares
are syllable embeddings, green rectangles represent the LSTM cell unfolded through
time, blue blocks depict the network of equations (5.2-5.4). As in all language mod-
els, the target is the next syllable (see Equation 2.2).

70 Natural Language Generation

5.2.2 Multi-Stage Transfer Learning

Neural Language Models require large amounts of data to generalize. This is gener-
ally not an issue, since LMs do not necessitate annotated data and the web provides
plenty of data. In the case of Poetry however, resources are generally scarce, es-
pecially when focusing on a single author from an ancient language variety, as in
the case of Dante Alighieri. In particular, the Divine Comedy contains about 4,000
tercets (~ 157k syllables) only, several order of magnitude less than traditional cor-
pora. Just to make a comparison, the ukWaC corpus! exploited to train the char-
aware model in Chapter 3 contains 2 billion words, at least forty thousand times
bigger. Even considering all the author’s manuscripts, including prose and poems,
even written with a different style, the total amount of data is barely more than dou-
bled. To alleviate the lack of available resources we propose a multi-stage transfer
learning procedure. The goal is to progressively grasp knowledge, from generic syn-
tactical and grammatical information about the language itself, up to the author’s
style. Knowledge transfer starts by exploiting a large generic corpus written in the
same language. A second training step exploits other manuscripts by the author to
adapt the network toward the author style, and finally, the model is fine-tuned on
the desired content only. The multi-stage steps are shown in Figure 5.2.

The role of syllables. Unfortunately, there is not a large enough corpus in Dante
Alighieri’s language. He lived in the middle ages and wrote the Divine Comedy in
Tuscan/Florentine Vulgar dialect of that time. He gave a strong contribute in the
development of the Italian Language that is currently spoken. Thus, we consider
for the first step a large modern Italian dataset. Clearly the language has evolved
since then, and the modern Italian is different from original Vulgar. New words
and forms have replaced some obsolete expressions. This changes would cause lit-
tle or no transfer when using a classical word-based language model, but with our
sy-LM, that is based on syllables, much more information is preserved and can be
transferred.

Czneiite gyt Author's style Poetry
and grammar (DP) (DC)
(PAISA")

Figure 5.2: Multi-stage Transfer Learning. The language model is progressively
adapted toward task-specific data. First generic grammatical properties are acquired
from large general purpose data (PAISA’). Then, the model is refined on author’s
content to learn its style and peculiarities (DP). Finally, the model is fine-tuned on
the author’s poetic material only (DC).

Inttp://wacky.sslmit.unibo.it/doku.php?id=corpora

http://wacky.sslmit.unibo.it/doku.php?id=corpora

5.2 Neural Poetry 71

5.2.3 Generation Procedure

We formulate Poem Generation as in Equation 2.24 without any given conditional
input x. As previously discussed in Section 2.3, the problem clearly belongs to the
open-ended class of NLG tasks, hence decoding requires sampling strategies. More-
over, after decoding we introduce a novel author-based scoring system to select only
a portion of the generated tercets. Lets discuss first the decoding and then the se-
lection mechanism.

Decoding. To generate new tercets, at inference time we adopt a Monte Carlo sam-
pling strategy as donein (Yuetal. (2017)). Generation starts feeding sy-LM with the
<go> input symbol and a zero vector as initial hidden state hy. The predicted to-
ken feeds autoregressively the network at the next time step. Sampling terminates
either when the end-of-tercet symbol (<eot>) is generated or, when the number
of syllables reaches a fixed maximum limit that was set to 75. The randomness in
multinomial sampling guarantees different generated sequences sampled from the
learnt distribution.

Tercets selection. We generate a batch of M tercets. A scoring function R(y) € R
assigns a value to each tercet y. The ones with highest score are selected, the rest is
discarded. In our experiments, we generated 2,000 tercets and selected the best 20.
The scoring function R(y) is actually an average of s = 4 different scores that are
based on known properties of the Divine Comedy and its author, in terms of form
and language:

R(y) = < L Ri(y). (5.5)

We describe each one in detail.

Tercets’ structure. The first score R;(y) penalizes generations that are not tercets,
i.e. that are not made of three lines. We define the function as:

Ri(y) :== —abs(|ly| —3) +1, (5.6)

where |y| indicates the number of verses in the tercets and abs is the absolute value
function.

Hendecasyllabic verses. Differently, Ry(y) promotes sequences with verses in y
that follow a hendecasyllabic meter. Since our model is based on syllables, it is easy
to count the number of syllables in a generated verse v, and we define R; as follows,

72 Natural Language Generation

Ro(x) = —) (abs(|o| —11)) +1. (5.7)
vey
where v indicates a verse and |v/ is its number of syllables.

Rhyme scheme. We remind that tercets in the Divine Comedy follow an ABA

rhyming scheme. Thus we measure R3(y),

1, if (v1,v3), v1,v3 € y are in rhyme

Rs3(y) = . , (5.8)
—1, otherwise

assigning a positive score to tercets where the first and third lines are in thyme. To
establish the rhyme we have to check the last two words of each line. Since the model
generates a sequence of syllables, first we reconstruct words, merging syllables be-
tween word-separators (<sep> token).

Word vocabulary coherence. The last scoring function R4(y) also operates at word
level. It assigns a small positive value a to words in y that appear in the Divine
Comedy and strongly discourage not valid words. Although we experienced to be
pretty unlikely, with this score we avoid the generation of words that are far from
the poet’s style. Formally,

a, fweV

Ri(y) = Y foly), fuly) = { (5.9)

wey

where w indicates a word in tercet y. In the experiments, a was set to 0.05 and b to
1.

—b, otherwise

5.2.4 Experiments

We report two kinds of experiments to evaluate the quality of the proposed poem
generator: a quantitative analysis, to assess the impact of the multi-stage transfer
learning approach and a human evaluation by expert and non-expert individuals.
Before illustrating the results, we describe the corpora that are used to train the
model and some details about the implementation of the sy-LM architecture.

Datasets

Modern Italian Dataset (PAISA’). PAISA! is a large corpus of Italian web texts.
To train sy-LM, we sampled a sub-portion of 200k documents, consisting of about
836k sentences (~ 67M syllables).

Ihttp://www.corpusitaliano.it/en/contents/paisa.html

http://www.corpusitaliano.it/en/contents/paisa.html

5.2 Neural Poetry 73

Dante’s Production (DP). We gathered most of Dante’s non-latin prose and po-
etry production. In particular, we collected the entire Convivio, Le rime and La vita
nuova, obtaining overall 1,752 sentences (~ 157k syllables) from prose and 2,727
verses (~ 48k syllables) from poems.

The Divine Comedy (DC). Divine Comedy is the most important Dante Alighieri’s
manuscript. This poem is a collection of 100 “cantos” belonging to three cantiche.
Each canto is a poem with a variable number of tercets also known as “Dante’s ter-
cet”, made of hendecasyllabic verses that follow a chained rhyming scheme (ABA
BCB ... VZV Z). S-LM was trained on 3,768 tercets and evaluated on a test set of
472. We also kept a validation set of 471 tercets to set the network hyper-parameters.
Overall, there are about 180k syllables in the Divine Comedy.

Implementation Details

The neural model and the experiments were implemented in Tensorflow!. We se-
lected the hyper-parameters of the neural language model by picking the configu-
ration yielding the best perplexity (see Section 2.1.2) on the validation set held-out
from the DC corpus. The best setup was obtained with the syllable embeddings
size d set to 300, the state of the LSTM cell with size 1,024 and the state neurons
were dropped out with probability 0.3 (Srivastava et al. (2014)). The size of the
vocabulary Vs, was set to 1,884, including all the syllables in the Divine Comedy
and the special tokens. When pre-training on PAISA’ and then refining on DP (Sec-
tion 5.2.2), we kept a small validation set for early stopping, and multiple batch sizes
and learning rates have been validated. In the end, we found that batch size 32 and
learning rate of 0.001 were the best optimization parameters.

As already mentioned in Section 5.2.3, we adopted Monte Carlo sampling in the
reported experiments. Later on, top-k and nucleus sampling strategies have been
released in our implementation too.

Transfer Learning Evaluation

We analyze the impact of the multi-stage learning procedure described in Section 5.2.2.
The multi-stage transfer learning approach is progressively trained on three datasets:
PAISA’— DP — DC (arrows specify the training order). To show that the approach
is beneficial, we evaluate the perplexity measured on the validation and test sets
held out from the Divine Comedy (DC), using the model trained with different
dataset combinations. Results are reported in Table 5.1. As expected, pre-training
on additional data always improves the LM quality. Pre-training on PAISA’ is what
gives the most substantial improvements, proving there is a significant knowledge

IThe code is publicly available at https://gitlab.com/zugo91/nlgpoetry/

https://gitlab.com/zugo91/nlgpoetry/

74 Natural Language Generation

Table 5.1: Evaluation of the model trained using multiple datasets in a multi-stage
transfer learning manner. A — B means that we train on data A first, and then we
train on data B. Perplexities reported are on the validation and test sets from the
Divine Comedy.

Datasets Validation pp Test pp
DC 12.45 12.39
PAISA” — DC 10.83 10.82
DP — DC 11.95 11.74
PAISA’— DP — DC 10.63 10.55

transfer from modern Italian to Vulgar, i.e. its past diachronic variety. Even pre-
training the model on DP, that is a rather small corpus, brings a gain in perplex-
ity. In any case, the best performances are achieved by multi-stage transfer learning
(PAISA’— DP — DC).

Human Evaluation

Evaluating the quality of generated text is challenging. Perplexity gives insights
about the quality of a language model, but we already showed in Section 2.3 how
this is not enough to guarantee good quality texts. In some NLG problems, the ones
belonging to the non-open-ended domains, it is possible to compare the generated
output with a reference text, and there are several metrics (BLEU - (Papineni et al.
(2002)), ROUGE - (Lin (2004)), METEOR - (Banerjee and Lavie (2005))) that cor-
relate with human judgments. In open-ended scenarios, as Poem Generation, there
are no reference targets, therefore, human evaluation is paramount. We employed
human judges for two different evaluations of the generated tercets.

In the first assessment, we involved 13 graduate and not graduated students,
mostly from humanistic degrees. We refer to them as “non-expert” judges, since
they were not specialized in Dante’s production, but very well aware of the author
and his works. Ten tercets were submitted to each judge, one at a time. They were
asked to identify which tercets were real and which ones were generated by sy-LM.
They always received five tercets from Dante and five generated by our model, but
they were not aware of such distribution. Results of such evaluation are presented
in Table 5.2. We report the number of times (in percentages) that tercets from a cer-
tain population were judged to be authored by Dante. It is clear that, given the hu-
manistic background of the evaluators, judgements are rather thoughtful, however
our generated tercets are able to fool the judges almost half of the times of the real
ones from Dante, with a relative difference of 56.25%. We deep-dive by distinguish-
ing the judges in two groups: the ones that struggled in the identification of real

5.2 Neural Poetry 75

Table 5.2: The number of times (percentages) that tercets from either sy-LM or Dante
Alighieri (Pogr) are considered to be authored by Dante (i.e., they were marked
as “real”). The model fooled the humans almost half of the times of real Dante’s
production.

Generator | Real-Mark
sy-LM 28%
Poet 64%

Dante’s tercets as real?, and the remaining ones. In Figure 5.3 we can observe that
the “less-capable judges” were even more attracted by sy-LM than by real Dante’s
tercets. We believe that these judges may better represent the average population
of users, hence this result suggests that sy-LM is very positively perceived. On the
other hand, more capable evaluators are less frequently fooled by sy-LM with about
67% relative difference from Dante’s poems.

s sy-LM
601 I Poet

Real-Mark
D
o

N
o

-Iess—capable—judges more-capable-judges

Figure 5.3: Results of Table 5.2 when further dividing the population into two
groups of individuals: capable vs less capable judges.

In the second human evaluation experiment, we involved 4 expert judges with
academic experiences on Dante Alighieri’s production. Trying to fool them is clearly
pointless, since they are well aware of the Divine Comedy and its contents. Hence
we ask to each expert to evaluate twenty tercets, scoring each poem (from 0 to 5) on
the following properties: emotion, meter, rhyme, readability and adherence to the au-
thor’s style. Also in this case, half of the assigned tercets was real, half was generated
by sy-LM, without informing them about such distribution. The results of the test
are summarized in Table 5.3. Real tercets are better scored, as expected, however, we

2We decided to assign to this group the evaluators that correctly marked real tercets as real less
than 50% of the times.

76 Natural Language Generation

observe a good evaluation of the quality of the rhymes produced by sy-LM. Consid-
ering that judges know deeply Dante Alighieri, it is interesting to see that they are
experiencing some of the his style in the generated tercets. Evaluators emphasized
how the semantics behind the generated verses are sometimes hard to appreciate
since they do not convey enough emotion, that is the motivation behind the lower
scores on the first two columns of Table 5.3. The meter was poorly evaluated by the
judges, because they applied very strict criteria in evaluating the meter, giving low
scores whenever a small incoherence with Dante’s meter was apparently detected,
even if they reported that it was not far from the ideal case.

Table 5.3: Evaluation of tercets generated by sy-LM by each expert and the average
rates. Five semantical aspects have been considered: readability, emotion, meter, rhyme
and style. Votes range from 0 to 5. For comparisons, in the last line we also report
the average rates in the case of actual Dante’s verses (PoEr).

Readability Emotion Meter Rhyme Style
Judge 1 1.57 1.21 1.57 3.36 2.29
Judge 2 1.64 1.45 1.73 3.00 2.27
Judge 3 2.83 2.33 2.00 417 292
Judge 4 217 2.00 2.33 2.92 2.50
Average 2.04 1.73 1.90 337 249
Poet (Average) | 4.34 3.87 4.45 450 4.34

Finally, we present few examples of generated tercets in Table 5.4 just to give
some insights of the kind of the tercets that were generated. Three of them were
rated positively by expert and non-expertjudges, the last one instead (bottom right),
was badly scored.

Table 5.4: Four examples of tercets generated by sy-LM. The last one (bottom right)
never fooled the judges, whereas the first three tercets were marked as real Dante’s
tercets by 88.00%, 55.56% and 45.45% of the evaluators, respectively.

e tenendo con li occhi e nel mondo per lo mondo che se ben mi trovi
che sotto regal facevan mi novo con mia vista con acute parole
che 'l s’apparve un dell’altro fondo e s’altri dicer fori come novi
in questo imaginar lo "ntelletto non pur rimosso pome dal sospetto
vive sotto 'l mondo che sia fatto moto che 'l litigamento mia come si lece

e per accorger palude é dritto stretto che per ammirazion di dio subietto

5.3 Neural Paraphrasing 77

5.3 Neural Paraphrasing

Paraphrasing is the problem of rephrasing a text passage without affecting its mean-
ing. We have already seen in Section 2.3 that paraphrasing can be formulated as
an NLG task, and in particular it belongs to the non-open-ended domains. In or-
der to properly training neural language models for the task of paraphrasing, large
amounts of aligned pairs of paraphrases are required.

In this Section we propose a novel method for the automatic construction of large
corpora of aligned pairs of paraphrases. The proposed method poses its basis on
the assumption that news and blogs websites talk about the same facts, using often
different narrative styles. Based on a similarity search procedure with linguistic con-
straints, our algorithm retrieves and aligns paraphrase candidates and then selects
only the most promising ones. We apply our method to the case of Italian language,
then we use such data to train a neural model to generate paraphrases and report
the results.

5.3.1 Automatic Dataset Construction

We design a method for building a dataset of sentence pairs. The resulting dataset is
a collection of pairs of textual sentences, each of them composed of an input sentence
and a target paraphrase. The method is based on the idea that websites normally
report the same news using different idiolects. An idiolect is defined as the individ-
ual distinctive and unique use of language, concerning the morpho-syntactic and
stylistic features. This assumption allows us to formulate the problem of paraphrase
discovery as a Highly Constrained Sentence Similarity Search (HCSSS), where the
results of a search in a document collection must satisfy hard linguistic constraints
(morphological, syntactic and semantic constraints) in addition to word co-occurrences.
The automatic dataset construction consists of a pipeline with different stages. We
discuss each step of the pipeline in the following.

Crawling

In the first stage of the proposed approach a large number of articles are retrieved
from the web using a focused crawler. In particular, we exploit a list of newspaper
and blog websites, and limit the search to contents belonging to a set of domains
(or topics): news, culture, economics, nature, politics, society, sports and technology. The
topic oriented crawling can be driven by groups of keywords for each domain, so
that only articles containing these keywords are retrieved. All the listed websites
can be crawled daily and their contents are organized by category (topic) and by
date in a such way to ease the subsequent alignment phase. At this step, the consid-

78 Natural Language Generation

ered content consists exclusively of raw text and it is saved for the following content
analysis phase.

Pre-processing

The crawled documents are pre-processed through a pipeline of NLP techniques
before being indexed by the search engine. The pipeline aims at enriching the rep-
resentation of text with the identified collocations and named entities, where a collo-
cation is an aggregation of tokens having a specific meaning if co-occurring together,
while a named entity represents a specific entity of the real world, belonging to a set
of predefined types (people, organization, location, etc.). For each collocation we
identify lemmas and Part-Of-Speech (POS) information. We also keep track of com-
mon nouns and proper nouns that are found in the sentence, that will play a central
role in the steps described in the following subsections.

After the NLP analysis, the text is segmented into sentences which are subse-
quently stored using a multi-field search engine. For each sentence, the following
linguistic features are indexed as search engine fields: Raw text (tokens), Collocations,
Lemmas (of collocations), POS (of collocations), Named entity type. Storing and index-
ing the linguistic features allows us to use linguistic constrained search queries, that
are crucial to improve the precision of the search results, as we will describe in the
next subsection.

Sentence Alignment

In order to build a dataset composed of (sentence, paraphrase) pairs, we define a
group of reference sentences, and, for each of them, we perform search engine queries
to identify a set of candidate paraphrases. Queries are based on the aforementioned
linguistic features, which allow us to constrain the resulting candidate paraphrases
to share a large amount of information with the reference sentence used as search
seed. Moreover, the system can use information on the crawled article, to which the
reference sentence belongs, to improve the precision of the search, such as the pub-
lication date and the article topic (paraphrases are expected to be found on articles
with the same/similar publication dates). As a result, we get a search system with
very high precision and low recall, and the details of the whole sentence selection
and alignment are reported in the following.

Selection of the reference set. Selecting the sentences that belong to the reference
set is a procedure that is applied to all the crawled sentences. The selection depends
on the number of detected proper nouns and common nouns, since we are interested
in picking sentences that are not too short and that involve the description of real-
world facts. In particular, given a sentence s;, let us indicate with CN(s;) the set of

5.3 Neural Paraphrasing 79

common nouns in s; and with PN(s;) the set of proper nouns in s;. The reference
set RS is defined as

RS = {rs; : |CN(rs;)| > mincy AND |PN(rs;)| > minpn}, (5.10)

where rs; is a sentence of the set, mincy is a system parameter indicating the min-
imum number of common nouns required in each sentence and minpy is a system
parameter indicating the minimum number of proper nouns required in each sen-
tence.

Constrained search (HCSSS). The sentences in the reference set are used as seeds
in the search of candidate paraphrases. Given a reference sentence rs;, a search
query is executed in order to retrieve sentences s; that satisfy a number of constraints
in terms of the common and proper nouns that they share with rs;. In detail, we
search for sentences s; such that:

e The proper nouns of rs; are included in s;,
PN(rs;) € PN(s;). (5.11)
e There is a strong intersection between the common nouns in rs; and the ones
ins;
]/

|CN(rs;) N CN(s]-)]
|CN(rs;)]

If [CN(rs;)| > mincy then >

If [CN(rs;)| = mincy then CN(rs;) € CN(s;),

where « € [0,1] is a coverage parameter which filters out results having a small
percentage of shared common nouns. We compactly report the function that checks
for potential paraphrase pairs in Algorithm 2.

Filtering the candidate paraphrases. The search procedure returns a large num-
ber of candidate paraphrases cs; := {parai(rs;)), ..., paray,(rs;) } for each reference
sentence rs;. Candidates in cs; are ranked according to an internal confidence score
computed by the search engine itself. The score is a value in [0, +o0) and measures
the degree of similarity between each result and the query (enriched with linguistic
features). From the n; candidates, a variable subset of 7; < n; sentences is selected
by choosing all the candidates with the score (opportunely normalized in the range
[0,1]) above a threshold B € [0,1]. From this subset of good paraphrases of the
reference sentence rs; we build the list of aligned pairs:

psi := {(rs;, paray(rs;)), ..., (rs;, paras (rs;)) }.

80 Natural Language Generation

Function isParaphrase(rs;, sj):
Data: reference sentence rs;, candidate paraphrase s;
Result: true if s; is a paraphrase of rs;, false otherwise
if PN(rs;) C PN(s;) then
if |CN(rs;)| = mincy then
return [CN(rs;) € CN(s;)]
nd
Ise if |CN(rs;)| > mincy then

o o

CN(rs;)NCN(s;
return [‘ TCZ\?(rSi)I(il > [X]
end
end
else
| return false
end

Algorithm 2: The algorithm checks if s; is compatible with a paraphrase of the
reference sentence rs; ([-] is an operator returning the Boolean value of the ex-
pression inside).

Building the final dataset pairs. Each of the elements in ps; is made of a sentence
and a candidate paraphrase (rs;, para;(rs;)). We have seen that the candidate sen-
tence is constrained to include all the proper nouns of the reference sentence (see
Equation 5.11), but in some cases the candidate paraphrase may contain additional
proper nouns, which likely corresponds to a more detailed description of the fac-
t/event. With the aim of ordering each pair with the same criterion, we ensure that
the most informative sentence is in the first position of the pair. In our context, the
informativeness of a sentence is measured by counting the number of proper nouns
that it contains. Applying the procedure that is formalized in Algorithm 3, we get
the final aligned dataset composed of what we generically refer to as (input, target).

5.3.2 Case Study

The proposed method was applied to the case of Italian Language, where there are
few available resources to train models for paraphrasing. The generated dataset will
be used in the experiments of Section 5.3.4. Crawling was performed by a propri-
etary web monitoring system>. The pre-processing was realized with a proprietary
NLP platform* developed by QuestIT?, that consists of a pipeline-based processing
system with more than 20 layers of linguistic analysis, including a sliding-window

3 http://www.mysnooper.net/
4https: / /www.quest-it.com/natural-language-processing/
>https://www.quest-it.com

5.3 Neural Paraphrasing 81

Function buildFinalPair ((rs;, para;(rs;))):
Data: aligned pair (rs;, para;(rs;))
Result: final pair (input, target)
if [PN(paraj(rs;))| > |PN(rs;)| then
‘ return (para;(rs;),rs;)
end
else
‘ return (rs;, paraj(rs;))
end

Algorithm 3: Build final dataset pairs. In case the candidate paraphrase is more
informative than the reference sentence (i.e. it contains more proper nouns),
reference and paraphrase are swapped.

SVM approach for POS Tagging, Lemmatization and Named Entity Recognition,
Search Tree combined with gazetteers to identify collocations. Overall, 86,000 arti-
cles were downloaded, spanning over a time interval of about 2 months, retrieved
from Italian news and blog sites. From these documents, we extracted more than
1 million sentences. Sentences were indexed using Elastic Search®. We selected
« = 0.70 and B = 0.70, and the proposed method (mincy = minpy = 3) identified
a reference set consisting of about 430, 000 sentences, that yielded a final paraphras-
ing dataset of about 85,000 aligned pairs in Italian language. Such final number of
pairs is due to the fact that no paraphrases were identified for most of the reference
sentences, since we imposed a high confidence score in the HCSSS procedure. In
Figure 5.4 we report few examples of the aligned pairs (input, target) generated by
our method.

5.3.3 Model

We have seen in Section 2.3 how paraphrasing can be framed as a language mod-
eling problem, where the generation of the paraphrase y is highly conditioned to
a given input sequence x (the reference sentence). The problem reduces to the es-
timation of the conditional probability of Equation 2.24, that is typically estimated
with sequence-to-sequence neural models. In particular, we exploit for this task a
sequence-to-sequence model with attention (Bahdanau et al. (2014)) and a pointer
generator. Pointer networks (Vinyals et al. (2015)) are a special class of the so-called
sequence-to-sequence models (i.e., models that process an input sequence and out-
put another sequence (Sutskever et al. (2014))), where the token to predict at each
time step is obtained from a combination of two probability distributions. When

6ht’fps: / /www.elastic.co/products/elasticsearch

82 Natural Language Generation

Input Brexit, no al secondo referendum: Parlamento boccia 1’emendamento
Brexit, May non si arrende: "Accordo entro 29 marzo alla nostra portata" Brexit,
Parlamento affonda anche "No Deal": rinvio piu’ vicino del divorzio Brexit, i
Labour contro un secondo referendum.

Thrgeh Brexit, il Parlamento boccia 1l’accordo Brexit, il Parlamento vota no
al ‘‘no deal” Brexit, no al secondo referendum: Parlamento boccia 1’emendamento
Brexit, i Labour contro un secondo referendum.

Input: Philippe Barbarin, 68 anni, cardinale e arcivescovo di Lione e uno dei
maggiori prelati della Chiesa cattolica francese, e’ stato condannato a 6 mesi di
carcere con la condizionale: 1la sentenza e’ stata pronunciata dal tribunale di
Lione.

Target: Il cardinale Philippe Barbarin, arcivescovo di Lione, condannato per
aver coperto abusi sui minori, offre le sue dimissioni.

Input: La valutazione dell’agenzia di intelligence, nella quale i dirigenti
affermano di avere un alto grado di fiducia, e’ la piu’ definitiva per ora

tra quelle che legano il principe Bin Salman al delitto e complica gli sforzi
dell’amministrazione Trump di salvare le relazioni con il suo stretto alleato in
Medio Oriente.

Target: La valutazione dell’agenzia di intelligence Usa e’ la piu’ autorevole
per ora tra quelle che legano il principe Bin Salman al delitto e complica gli
sforzi dell’amministrazione Trump di salvare le relazioni con il suo stretto
alleato in Medio Oriente.

Input: Dorothy con le magiche scarpette rosse e tutti i suoi strampalati amici
protagonisti dello spettacolo ‘‘I1 mago di 0z’’, il musical per bambini e famiglie
in programma domenica 24 febbraio alle ore 16 al Teatro condominio di Gallarate.

Target: Gallarate - Dorothy balla con le scarpette rosse nel musical ‘Il mago
di 0z’ - Bambini - Varese News.

Figure 5.4: Examples of aligned pairs automatically generated with the proposed
method (Italian).

generating the output sequence, the model either generates a word from the prede-
fined vocabulary or it copies a word from the input sequence. This mechanism is
helpful to catch and handle Out-Of-Vocabulary (OOV) words, such as named en-
tities, allowing the network to improve its performances in several NLP tasks (Ma-
chine Translation, Text Summarization, and others). Our model is similar to the one
of (See et al. (2017)), but without any coverage mechanism, where both the input
sentence and target paraphrases are tokenized as a sequence of words. An illustra-
tion of the overall architecture is given in Figure 5.5. In the following, we summarize
the encoder and decoder separately.

5.3 Neural Paraphrasing 83

l Final Distribution

Vocabulary Distribution
L.I.H.._ A
A
memmmeen-
1
1 Decoder
| Hidden
: States
1
I o o e e e M- __ - pgen)
A

pemmmm————
' I
1

1
1

1
: Context Vector---------- LR L L
! A :
1

1
1
I Attention Distribution :
1 . J
1 Attention :
. Mechanism .

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1 A A A A)
e e e e [e ____I
Femmmm e e mm e b m = S ——— -
1 1

1
' Encoder > > > —> '
: Hidden :
1 States < < «— < i
1 1
1

____________________ Lgrmmmmmmm s nnnaas
Input Text

Figure 5.5: Sketch of the neural pointer generator.

84 Natural Language Generation

Encoder

The input sequence x, corresponding to the reference sentence, is mapped into a
fixed-length internal representation using a Recurrent Neural Network (RNN). In
particular we encode x with a Bi-LSTM. The encoder processes the whole sequence x
of length 1, and its internal state at the end of the sequence, referred to as h;, is used
to initialize the state of the decoder. The encoder also returns all the intermediate
states generated while processing x and computed with the classic recurrent scheme

h; = Bi-LSTM(x;, hj_1)

as already defined in Section 2.2. So, the output of the encoder that is passed to the
decoder is a sequence of states H := {hy,..., h,}.

Decoder

The decoder estimates the probability distribution of a word given the previous
words and the input text. The decoder is an LSTM, conditioned by the output of
the encoder H processed through an attention layer (Bahdanau et al. (2014)). For-
mally, the attention layer outputs a vector /1;, computed as follows:

n
ht = Z ati-]’li, (512)
i=1

where 4, is a scaling factor of h; decided by the attention. Overall hi; is the result of
a weighted average, where the weights a; ; are computed:

etj = ’0; . tanh(Wa . [hi, St,ﬂ + ba), (5.13)
a; = softmax(e;). (5.14)

The function tanh is the hyperbolic tangent activation, and the vectors v, b, and the
matrix W, are parameters associated to the attention layer, learned while training
the network. The decoder state is then updated with

st = LSTM([y;—1, fus], 5¢-1) . (5.15)

Finally, a projection layer transforms the state s;, concatenated with h;, into a prob-
ability distribution on the words in the vocabulary

P} oca = softmax(Wy - [st,] +b), (5.16)

where the matrix Wy and vector b are learnable parameters. We will use the notation
P! . (y) to indicate the probability of generating word y at time ¢.
What we described so far is a plain decoder with attention that selects the next

word to produce at each time instant, i.e., the one that is most likely accordingly to

5.3 Neural Paraphrasing 85

Equation 5.16. Pointer networks are furnished of a decoder that combines the clas-
sical distribution over all the words in the vocabulary, with a copy mechanism that
yields the probability of emitting (copying) a word taken from the input sequence x.
The latter probability, indicated with Pcopy, is computed by exploiting the attention
scores a; of Equation 5.14. In detail,

copy Z At (5.17)

where the summation is only needed in the case in which a word is repeated mul-
tiple times in the input sentence, and all the probabilities a;; associated to the in-
stances of such word must be accumulated. In order to combine P\t, ocab(¥) and Péopy (y)
into the final generation probability P!(y), a weighting score pgen [0,1] is intro-

duced, that depends on the decoder state s;, the context vector hi; and the embedding
of the previously generated word y;_1,

p;;en = U(Wgen) []/tflz St, flt] + bgen)~ (5.18)

The parameters W, and by, are learned jointly with the whole networks, and ¢ is
the sigmoid activation function. Qualitatively, the model can learn when it should
copy from the source input and when it should not The final probability of gener-
ating a word y at time ¢ is a linear combination of P!__, (y) and P, (y) :

COpy
Pt(Y) = p;;en Ptocab(Y) + (1 - p;;en) Pctopy() (5-19)
It is worth noticing that y may be an OOV word. In such a case P!__, (y) would
be zero. Analogously, if y does not belong to the input sentence, Pcopy() =0.

Generation. Given the non-open-ended nature of the NLG problem, at inference
time we adopt a beam search as decoding strategy (see Section 2.3). In the experi-
ments we set the beam size b to 10, that is a good trade-off between performances
and computational efficiency.

5.3.4 Experiments

We evaluate the performances of different variants of the aforementioned sequence-
to-sequence model in the task of paraphrasing. Results are compared using the
ROUGE score (Lin (2004)), a popular metric in paraphrasing, with the aim of show-
ing the quality of the created dataset. Furthermore, we also present some qualita-
tive results to emphasize the limits of the compared models. In detail, we compared
a plain sequence-to-sequence model with attention and the same model enriched
with the pointer-based generator. We also evaluate the case in which we pre-train
a part of the Pointer network in an autoencoding task, where the network is asked

86 Natural Language Generation

to simply generate the input sentence. During such pre-training, both the attention
and the pointer mechanisms were turned off, to avoid the network to simply learn
the trivial solution of always copying the input text.

Datasets. We consider the dataset created for Italian language in Subsection 5.3.2
with the procedure described in Subsection 5.3.1. The corpus was divided into
two disjoint subsets of about 72k and 12k pairs, used as training and validation sets,
respectively. Furthermore, we left a test set of 1384 pairs (excluded from the training
and validation sets). Since, we found that the networks were badly biased by the
presence of multiple paraphrases of the same sentence, we decided to filter the data
to ensure that for each input sentence there was only one target paraphrase, and we
augmented the data including also flipped pairs. Afterwards, we ended up with
a training, validation, test set of 35k, 10k and 1485 examples, respectively. For pre-
training the model, we exploited the PAISA’ dataset (Lyding et al. (2014)), a large
corpus of Italian texts taken from the web already exploited in Section 5.2.

Training details. We used the same configuration of (See et al. (2017)), apart from
the size of the vocabulary that we set to 30k words, and the maximum length of input
and output sequences set to 70 tokens. Learning was stopped after 15 consecutive
epochs without any improvements on the validation set. All models were optimized
with Adam (Kingma and Ba (2014)), with learning rate 0.001 and clipping the gra-
dient norm to 4.0. All the models are implemented in Tensorflow.

Table 5.5: ROUGE-1,2,] F; score on test data. Three variants of the model described
in Subsection 5.3.3 have been trained. POINTER NETWORK is exactly as described in
Subsection 5.3.3, s2s + ATTENTION is a simplified version without the pointer gener-
ator and PRETRAINED POINTER NETWORK is the full model (partially) pretrained in an
autoencoding task.

ROUGE
1 2 l
$2S + ATTENTION 4439 31.71 41.36
POINTER NETWORK 60.66 50.21 56.64
PRETRAINED POINTER NETWORK | 60.51 49.88 56.29

Results. The results are reported in Table 5.5. We evaluated the performances
measuring different ROUGE-based metrics, that are the F1 scores in the case of
ROUGE-1, ROUGE-2 and ROUGE-I (see Lin (2004)). These metrics quantify the
word-overlap, bigram-overlap, and longest common sequence between the target
text and the predicted paraphrase, respectively. Results are in-line with the ones
commonly obtained in Text Simplification and Single-sentence Summarization (Zhang

5.3 Neural Paraphrasing 87

et al. (2017)), which are tasks related to the one we consider. They suggest that the
proposed dataset construction procedure is a feasible way to collect data to train
neural models for paraphrasing. The copying mechanism of Pointer networks sig-

INPUT. - tutto il programma velate, varese - domenica 23 a velate un’ospite
illustre: ada cattaneo vestird i panni della regina delle nevi per raccontare
le incantevoli tradizioni di questo periodo dell’anno.

TARGET. 1in arrivo la prossima domenica 23 a velate un’ospite illustre: ada
cattaneo vestird i panni della regina delle nevi per raccontare le incantevoli
tradizioni di questo periodo dell’anno.

$25 + ATTENTION: tutto il programma 2019, varese - domenica 23 a novembre un’ospite
illustre : gino cattaneo, i panni della regina delle nevi per raccontare le <UNK>
tradizioni di questo periodo dell’anno.

POINTER NETWORK: varese, domenica 23 a velate un’ospite illustre: ada cattaneo
vestird i panni della regina delle nevi per raccontare le incantevoli tradizioni di
questo periodo dell’anno.

INPUT. manovra economica sotto la lente il ministro all’economia, giovanni tria,
in audizione alle commissioni bilancio di camera e senato, ha sottolineato

che i recenti livelli di rendimento dei titoli di stato non riflettono i dati
fondamentali del paese e ha inoltre commentato che lo spread scendera.

TARGET. 1in audizione sul def davanti alle commissioni bilancio di camera e senato
tria ha confermato che "lo scenario tendenziale (del def, ndr) <UNK> gli incrementi
dell’iva e delle <UNK> dal 2020-2021".

$28 + ATTENTION: 1l ministro dell’economia, giovanni tria, in audizione alle
commissioni bilancio di camera e senato, ha sottolineato che i recenti livelli

di rendimento dei titoli di stato non riflettono i dati fondamentali del paese e ha
inoltre commentato che lo spread bancarie.

POINTER NETWORK: manovra, sotto la lente il ministro all’economia, giovanni
tria, in audizione alle commissioni bilancio di camera e senato, ha sottolineato
che i recenti livelli di rendimento dei titoli di stato non riflettono i dati
fondamentali del paese e ha inoltre commentato che lo spread scenderd lo spread
scendera in spread.

Figure 5.6: Examples of a common issue in the considered neural models. Generated
sentences are sometimes too similar to the input sentence, in particular with the
pointer generator.

nificantly improves the ROUGE scores with respect to plain sequence-to-sequence,
while the pre-training stage does not introduce further improvements. While the
former results were expected, the latter is surprising and might be caused by the
pretraining stage applied on only part of the network, without any pointers and/or
attention (for the reasons we described earlier), making it hard to transfer the pre-

88 Natural Language Generation

trained model toward the final Pointer network. An aspect that we observed is that
all the trained models are strongly biased toward the reproduction of the exact in-
put sentence. As a matter of fact, the input sentence and the target paraphrase are
sometimes very similar, due to the intrinsic property of the paraphrasing task. This
behaviour is evident when looking at the generations reported in the example of
Figure 5.6. We leave this point open for further investigation on improved neural
models for paraphrasing.

5.4 Discussion

In this Chapter we have addressed two very different NLG problems: Poem Genera-
tion and Paraphrasing. In both cases the models learns through Language Modeling
and in low-resource conditions. However, the different nature of the problems re-
quired different solutions.

Poetry. In the case of Poem Generation, we presented a syllable-based language
model to generate tercets with the style of a given author. The approach is gen-
eral and it has been studied in the context of Dante Alighieri, an Italian poet of the
middle ages, well known for being Divine Comedy’s author. The problem of low-
resources is addressed exploiting syllables to allow transfer learning from large scale
collections of modern Italian by means of a multi-stage transfer learning technique.
Despite its simplicity and the lack of large-scale collections of data from the tar-
get author, our model produces tercets that are considered real by evaluators with
humanistic background roughly half of the times of Dante’s verses. This is due to a
scored generation mechanism that helps to keep Divine Comedy’s meter and rhyme,
and also due to a multi-stage training procedure that improves the quality of the con-
tent, exploiting all the poet’s production and text in modern Italian. However, the
outcome of the evaluation from expert judges clearly showed that, while the rhyme
and style are positively captured by the model, the generations are still weak on
meter and on conveying enough emotion.

Paraphrasing. Concerning paraphrasing, the language model is conditioned to the
reference sentence to generate the paraphrase. We proposed a novel methodology
to automatically build large corpora of paraphrases, that can be exploited to train
neural language models. The algorithm consists of a pipeline involving massive/fo-
cused crawling, extraction of linguistic features from documents and an alighment
and selection procedure. We showed its effectiveness in the case of Italian language,
obtaining overall a dataset with more than 85,000 examples of paraphrases. The
quality of the dataset has been evaluated by exploiting it to train a neural paraphras-
ing sequence-to-sequence model with pointer-based generator.

Chapter 6

Language Varieties

Understanding the evolution of a language is a challenging problem. What is its ori-
gin, how is it related to other languages, these are crucial questions that the study
of language evolution attempts to answer. In this Chapter we study the evolution of
Italian, a Romance language that has its roots in Vulgar Latin. Modern Italian was
born in Tuscany around the 14th century, thanks to the works of Dante Alighieri,
Francesco Petrarca and Giovanni Boccaccio, the most prominent authors of the mid-
dle age. Italy has been characterized by an high variety of dialects, which are often
loosely related to each other, due to the past fragmentation of the territory. Italian
has absorbed influences from many of these dialects, as also from other languages
due to dominion of portions of the country by other nations, such as Spain and
France. We study the evolution of Italian in its early stages, analyzing textual re-
sources from authors of different regions, ranging in a time period between 1200
and 1600.

In summary, the contributions of this Chapter are: (1) a project, Vulgaris, that
studied a text corpus consisting of vulgar Italian language literary resources, orga-
nized in such a way to ease language research, (2) the study of historical and ge-
ographical background, the statistical properties of the collected data and its com-
position and (3) a corpus-driven study in dialectology and diachronic varieties ex-
ploiting perplexity-based distances. In particular, we introduce Neural Language
Models to estimate the perplexity and provide a new indicator, named as Perplexity-
based Language Ratio (PLR), to analyse the historical evolution process of dialects
and diachronic varieties.

The Chapter is organized as follows. Related works are summarized in Sec-
tion 6.1. In Section 6.2, we describe in detail the characteristics of the data collected,
including the historical background, its structure and several statistics. Then, in
Section 6.3, we discuss about perplexity-based measures, that combined with neu-
ral language models (Section 6.4) are then used to carry out experiments on the
diachronic varieties within Vulgaris in Section 6.1. Finally, we draw the conclusions

89

90 Language Varieties

in Section 6.6.

6.1 Related Works

Natural Language Processing techniques are powerful tools that can support re-
searchers in the analysis of dialects and diachroniclanguage varieties (Zampieri and
Nakov (2020); Ciobanu and Dinu (2020)). There exists several lines of research that
approach the problem of defining distances between languages or varieties. Lin-
guistic phylogenetics (Borin (2013)) aim at determining a rooted tree to describe the
evolution of a group of languages or varieties. Trees are built based on the so called
lexicostatistics technique, that takes into account words with common origin to de-
termine a taxonomic organization of the languages. Language distance approaches
instead rely on the distributional hypothesis of words and require cross-lingual cor-
pora. Similarity is based on word co-occurrences (Asgari and Mofrad (2016); Liu
and Cong (2013)), or using perplexity-based methods (Basile et al. (2016); Gamallo
et al. (2017); Campos et al. (2018, 2020)). Perplexity (see Section 2.1) is estimated
from Language Models, typically n-grams LMs of characters, trained on one corpus
and evaluated on another variety.

Differently from previous work, we consider Neural Language Models (NLMs)
(Bengio et al. (2003); Mikolov et al. (2010)), that as we have seen in Section 2.1 are
more robust estimators, well known for their generalization capabilities and cur-
rently the state-of-the-art approaches in Language Modeling tasks. There is a vast
literature on NLMs. Many works also address the problem of character language
modeling (Jozefowicz et al. (2016); Hwang and Sung (2017)) or character-aware
LMs (Marra et al. (2018); Kim et al. (2016)). We focus on Italian, a Romance lan-
guage derived from Vulgar Latin. The uniquely fragmented political situation that
occurred in Italy during the middle age makes Italian an extremely variegate and
complex case of study, rich of dialects that are still spoken nowadays. We consider a
corpus of medieval text collections, with the purpose of easing the research activity
on diachronic varieties. Moreover, the dataset can be also a valid resource to study
the problem of Text Generation in low-data and variegate styles conditions. Simi-
lar corpora have been already collected for other languages. Colonia (Zampieri and
Becker (2013)), is a Portuguese diachronic dataset of about 5 milion tokens grouped
by century in five sub-corpora. In (Campos et al. (2020)) the authors gathered three
corpora for English, Spanish and Portuguese.

6.2 Data Collection 91

6.2 Data Collection

With the project Vulgaris' we aim at investigating the diachronic evolution and vari-
ance of the vulgar italian language. We collected a heterogeneous literary text cor-
pus, comprehensive of poetry, prose, epistles and correspondence by the most im-
portant Italian authors ranging from the dawn of the vulgar language to the Reinas-
sance Age. Henceforth, for compactness, we refer to such data as Vulgaris. The
dataset represents a fundamental timeframe for the Italian language, including the
first steps and diachronic evolutions departing from the Latin language. Moreover,
through Vulgaris it is possible to gain evidence of the early language fragmentation
deriving from the complex historical geo-political context of the Middle Age. We
tirst summarize the hystorical background of Italy in Middle Age. Then we detail
the structure of the corpus, and finally, guided by the results of the statistical anal-
ysis, we provide hints about how the vulgar spread.

6.2.1 Historical background

The earliest years of the 13th century were characterized by a novel and complex
civilisation. The rise of medieval Communes, associations among citizens of towns
belonging to the same social class, influenced the rise of a novel school of secu-
lar thought increasingly unhindered by the religious influences. For these reasons,
along with the establishment of the first universities, beside latin literature the vul-
gar Italian language started to appear in various literary works. The heterogeneous
political and geographical context led to a linguistic fragmentation, characterized
by various contact points. The first literary evidence of vulgar poetic, which we de-
note as belonging to the Archaic text family, is a collection of verses still connected
with religious and moral themes, written in regions of the central Italy, in particu-
lar Umbria and Tuscany. Amongst the main authors, we mention Francesco d’Assisi.
Inspired by this works, in the middle of the century (about 1250) some vulgar au-
thors (e.g. Jacopone da Todi et al.), in the same geographical zone, composed several
Laude, enriching the religious and mystical poetry theme.

The Northern Didactic poetry family, flourished in the same years, was influ-
enced by these religious and moral guidelines. We point out Bonvesin da la Riva
from Milan and Giacomino da Verona among the representatives, having the goal to
instruct readers about morality, philosophy and doctrine.

The prosperous and thriving Imperial court of Federico II fostered the birth of a
Sicilian School (1230-1250), where the figure of an angelic woman and the stereo-
type of love play a central role. This group laid the foundations of modern poetry,
introducing a specific metric and organization in Stanzas, creating Sonnets and uni-

e project 1s available at https://sailab.diism.unisi.it/vulgaris/.
IThe project i ilable at https://sailab.dii isi.it/vulgaris/

https://sailab.diism.unisi.it/vulgaris/

92 Language Varieties

tying the language lexicon and structure. Among the authors we highlight Giacomo
da Lentini and Pier della Vigna.

With the death of Federico II, the cultural axis moved to Tuscany, thanks to the
proliferation of Communes. Differently from the Sicilian School we cannot talk of
a unique literary school. Indeed, in several important cities, such as Pisa, Lucca,
Arezzo, Siena, other than Florence, which became only afterwards the most impor-
tant cultural center, emerged themes inspired by the Sicilian similar ones.

The Northern/Tuscan Courtly poetry arises from poets belonging to the Sicil-
ian school who moved after the decadence of the Svevian Empire, influencing the
themes and style of local authors (Guittone D’Arezzo, Bonagiunta Orbicciani, Compi-
uta Donzella). In the meanwhile, Central Italy Didactic poetry (Brunetto Latini) and
Realistic Tuscan poetry (Cecco Angiolieri, Folgore da San Gimignano, Cenne de la Chi-
tarra) emerged, differentiated by the themes, goal of the poetry, and style. Departing
from the literature inspired by court life, a more popular and playful genre, the Folk
and Giullaresca Poetry, was mainly due to jesters such as Ruggieri Apuliese.

Finally, thanks to the influence of Sicilian School and Tuscan poetry, the Stilno-
visti family (Guido Guinizzelli, Dante Alighieri, Guido Cavalcanti, Lapo Gianni, Gianni
Alfani, Dino Frescobaldi, Cino da Pistoia) and some authors close to them (Similar to
Stilnovisti - Lippo Pasci de Bardi) evolved and refined the poetry of their predeces-
sors. Metaphors, a noble symbolism and introspection characterize this movement,
which was born in Bologna and developed in Florence reaching its climax.

Boccaccio and Petrarca compose, together with Dante, the three Crowns of Italian
literature. Their poetry and prose are inspired by Dolce Stil Novo, with an evolution
toward a more wordily thematic, rather than spiritual. Their linguistic style is the
offspring of an evolved society.

The works developed by these families highly influenced following authors. In
particular, Ariosto and Tasso, at the beginning of the 16th century, were deeply in-
spired by Petrarca and the Stilnovisti, respectively. However, their different temporal
context was reflected in their literary works.

Therefore, the vulgar Italian language, starting from the beginning of the 13th
century, became more and more popular amongst various authors, evolving dur-
ing the following years in several families, which we summarize in Figure 6.1. The
highly fragmented geo-political context gave rise to different schools, groups, com-
munities (depicted in Figure 6.1) and hence many language varieties, dialects, that
even nowadays are noticeable.

Through the Vulgaris project, we aim to provide a rich resource to analyze the
diachronic evolution of the early Italian language, in particular in poetry, prose and
correspondence texts.

6.2 Data Collection 93

Folk and Giullaresca poetry

Northern/Tuscan Cé)uﬂly poetry

Similar to Stilnovisti

) StiiInO\f/isti
Sicilian rschoo:i B Petrarca Tasso
B : B : B : B : OC B O
Archaic text Liaud{a Boccaccio Ariosto

Reeélistit.i“, Tu:scan poetry
Northern Did'acti(éz poetry
Central Italy Didactic poetry
1200 1250 1300 1350 1400 1450 1500 1550

Figure 6.1: Timeline representing the temporal sequence of the different families we
described in the main text.

6.2.2 Dataset structure

The examined corpus contains texts retrieved from Biblioteca Italiana?, a digital li-
brary project collecting the most significant texts of the Italian literature, ranging
from the Middle Age to the 20th century. The code to retrieve and analyse the data
canbe found inhttps://github. com/sailab-code/vulgaris. Vulgaris provides the
following filtered type of information, extracted from the parsed data: author, title,
collection, family, type, text. In details, the corpus is composed by text produced
by 104 authors belonging to the 14 families described in Section 6.2.1. The corpus
contains 177 collections, consisting of groups of poetry, single poems, personal epis-
tles. Each item of the dataset is a single composition, for instance a poetry, a chapter
or a letter. Moreover, we split the resources by the style attribute into poetry and
prose, with the latter containing both the prose and the correspondence documents.
The structure of a poetic composition represents an important information in
tasks such as Poem Generation (Lau et al. (2018); Zugarini et al. (2019); Zhang and
Lapata (2014)). The verse organization of the poetry is encoded by tags denoting
each line break <EOL> (end of a verse), as well as the end of each stanza <E0S>. In the
case of prose, only the organization in paragraphs is represented by the tag <E0S>.

6.2.3 Statistical Analysis

The dataset is analyzed through simple statistics to unravel the heterogeneity of the
collection. In Table 6.1 we report some statistics on the families (first column, or-

’http://bibliotecaitaliana.it/

https://github.com/sailab-code/vulgaris
http://bibliotecaitaliana.it/

94 Language Varieties

Table 6.1: Analysis of the composition of the dataset. We report the families, their
most representative authors, total number of provided texts and their distribution
in poetry and prose.

Family | Authors | #Texts | #Poetry | #Prose

Francesco d’Assisi,
Ritmo Laurenziano,

Archaic text Ritmo Cassinese 5 5 -
Giacomo da Lentini,
Guido delle Colonne,

Sicilian School Pier della Vigna, Pronotaro da Messina 46 46 -

Girardo Patecchio Da Cremona,
Bonvesin Da La Riva,

Northern Didactic Giacomino Da Verona,
poetry Anonimo Genovese 29 29 -

Guittone D’Arezzo,
Bonagiunta Orbicciani,

Northern/Tuscan Chiaro Davanzati,

Courtly poetry Monte Andrea Da Firenze 101 101 -

Brunetto Latini,Garzo,

Central Italy Detto Del Gatto Lupesco,
Didactic poetry Dal Bestiario Moralizzato Di Gubbio 8 8 -
Ruggieri Apugliese, Castra Fiorentino,

Folk and Giullaresca Matazone Da Caligano,

poetry Rime Dei Memoriali Bolognesi 23 23 -

Jacopone Da Todi, Laude Cortonesi,
Laude Lauda Dei Servi Della Vergine 41 41 -

Guido Guinizzelli, Guido Cavalcanti,
Cino da Pistoia,
Stilnovisti Dante Alighieri, Lapo Gianni 769 704 65

Rustico Filippi, Cecco Angiolieri,
Folgore da San Gimignano,

Realistic Tuscan

poetry Cenne de la Chitarra 69 69 -
Similar to Dante’s Friend,
Stilnovisti Lippo Pasci de’ Bardi 709 70 -
Boccaccio | - | 1,058 | 296 | 762
Petrarca | - | 872 | 747 | 125
Ariosto ‘ - ‘ 363 ‘ 144 ‘ 219
Tasso | - | 3366 | 1,604 | 1,762
|

Total - 76,820 | 3,887 | 2933

6.3 Perplexity-based Language Measures 95

dered by date), including their most representative authors (second column), the
total amount of collected texts, divided into poetry and prose (third, fourth and
fifth column, respectively). Whilst the older families are underrepresented, fami-
lies belonging to a later period are mostly characterized by a larger amount of texts.
This fact is a good indicator of the diffusion that the Italian language has undergone
during this timeline.

The corpus investigated in Vulgaris is extremely heterogeneous and composed by
4 million word occurrences, whose texts have been written by authors from a wide
range of geographical regions and time periods, as shown in Figure 6.1. In Table 6.2
we summarize some statistics on the total amount of word occurrences, the number
of unique words and the average occurrences per word for each text type. The total
number of words in poetry and prose is almost balanced, whereas their composition
is remarkably different. Indeed, poetry has a richer lexicon than prose, containing
almost twice unique words.

To depict the contribution of each family to the dataset, Figure 6.2 reports the
total number of word occurrences for each family and the poetry/prose proportion.
Once more, these statistics confirm the increasing spread of the Italian language. We
can also notice how vulgar spread. Initially, it was mainly used in poetry and only
later vulgar prosaic forms appeared. Only 5 out of 14 families contain prose, and,
as we can see from the timeline in Figure 6.1, they correspond to the latest families.

Table 6.2: Statistics on words for each text category. The distribution of text is almost
balanced between Poetry and Prose (# word occurrences). However, Poetry has a
richer lexicon than prose, with almost two times unique words.

| Global | Poetry | Prose

word occurrences 4,090,166 | 1,925,838 | 2,164,328
unique words 180,450 136,195 69,135
Avg occurrences per word | 22.67 | 1414 | 31.31

Finally, in the top row of Figure 6.3, we report the average distribution of the
text length, in both the styles (i.e, poetry on the left and prose on the right) among
all the families. The bottom row of Figure 6.3 shows the average number of words
contained in each collection, hence texts having similar characteristics or theme.

6.3 Perplexity-based Language Measures

We have already seen in Section 2.1 that perplexity is exploited to evaluate the qual-
ity of a language model. Perplexity pp(p, D) is a function of the probability distri-
bution p and the reference corpus D. When the evaluation set D is fixed, we can
compare different language models and select which one is best. Analogously, we

96 Language Varieties

Archaic text [BK

Sicilian school |15K

Northern Didactic poetry [50K

Northern/Tuscan Courtly poetry |32K

Central Italy Didactic poetry [21K

> Folk and Giullaresca poetry |18K
é Laude |19K

© Stilnovisti 54k 275K

Y Realistic Tuscan poetry

Similar to Stilnovisti

Boccaccio

Petrarca

Ariosto

Tasso

1669K
0K 500K 1000K 1500K 2000K
words

Figure 6.2: The figure reports the total amount of word occurrences for each family
(both in poetry and prose), at the right of each family bin. The darker blue bar
denotes the portion of word occurrences in prose texts only.

Archaic text

Sicilian school

Northern Didactic poetry
Northern/Tuscan Courtly poetry
Central Italy Didactic poetry
Folk and Giullaresca poetry
Laude

Stilnovisti

Realistic Tuscan poetry
Similar to Stilnovisti
Boccaccio

Petrarca

Ariosto

Tasso

00K 05K 1.0K 15K 20K 25K 3.0K 00K 05K 10K 15K 20K 25K 3.0K

Average text length Average text length

Stilnovisti 840
Boccaccio 1011

Petrarca 2678

family
family

Ariosto 359

Tasso 525

Archaic text

Sicilian school

Northern Didactic poetry
Northern/Tuscan Courtly poetry
Central Italy Didactic poetry
Folk and Giullaresca poetry
Laude

Stilnovisti

Boccaccio

Stilnovisti Petrarca

Realistic Tuscan poetry
Similar to Stilnovisti
Boccaccio

Petrarca

Ariosto

Tasso

family
family

Ariosto

101.41K Tasso 48.71K

0K 20K 40K 60K 80K 100K 120K 0K 100K 200K 300K 400K
Average collection text length Average collection text length

Figure 6.3: In the top row, the average text length of poetry (left) and prose (right)
texts. On the bottom, average number of words contained in each collection in po-

etry (left) and prose (right).

can fix the language model and change the evaluation corpus. Comparing the per-
plexity on different datasets for the same LM gives to us indications of which is the
corpus most similar to the distribution estimated by the model. Since the distribu-
tion of language models is a direct consequence of the data used to estimated it, we
can argue that if a language model trained on D; has a low perplexity when evalu-
ated on D, then D; and D, are related. Hence we can use perplexity and language
models to provide a distance between language corpora. This idea has been already

6.4 Conditional Language Modeling 97

exploited in (Gamallo et al. (2017)), and this approach has been effectively applied
for language discrimination and the analysis of historical varieties (Campos et al.
(2018, 2020)).

Perplexity-based Language Distance. Let us consider two language corpora, namely
L1 and £, and let LM/, LM, be two language models trained on £ and £,, respec-
tively. We can argue that the more the corpora are related to each other, the more
accurate is the estimate provided by the LM trained on one language when evalu-
ated on the other. By denoting the two measures of perplexity as pp.z, .z, (L2, LMz,)
and of ppr, -, (£1,LMz,), the Perplexity-based Language Distance (PLD) is defined
in (Gamallo et al. (2017)) as the average of these two values:
Lo/ LMe) + Py, (£1, Mg,)

PLD(Ly, £o) = PPLis s . . (6.1)

Perplexity-based Language Ratio. PLD copes with the factthat pps, 2, (L2, LM,)
and ppg,—c,(£1,LMz,) are not symmetric, mostly because LMs are trained and tested
on different data distributions. However, the asymmetry in these values can be a
good indicator of the language evolution on diachronic/dialect varieties, since it
can enlighten either a language compression/simplification or a language expansion
over time. Indeed, in the process of language unification, words are reduced, and
dialectal expressions are suppressed, thus reducing the overall richness of the lan-
guage. Hence, we introduce a novel measure, namely, Perplexity-based Language
Ratio (PLR):

PLR(Ly, £g) = PPaota (L2 Lie)

PPy, (L1, LM,

PLR values greater than 1 indicate that £, is likely to be a more various language
than £,, whereas values less than 1 are likely to indicate £, as the more complex
language.

(6.2)

6.4 Conditional Language Modeling

In this section we briefly describe the structure of the language models that have
been exploited in the experimental evaluation. We extend Equation 2.2 by adding
other features of the text to condition the NLM. In particular, we leverage the exter-
nal meta information about author 4, family f and kind of composition k (prose or
poetry) available in the dataset. Hence Equation 2.2 becomes:

p(x) =] [p(xilxiz1, ..., x1,a, f,k), (6.3)
i=1

where x is a sequence of characters.

98 Language Varieties

corpus
e XIV
XV-XVI-2
e XV-XVI-1
e Xl
text_type
e prose
* » = poetry

Figure 6.4: Two dimensional t-SNE representation of sentences’ state hr. Different
colours indicate different groups, dots for poetry, crosses for prose.

We model the distribution in Equation 6.3 by means of a recurrent neural net-
work. Each token from the vocabulary V of size | V| is associated to a latent embed-
ding e of dimension d. The set of the |V | embeddings are collected in the |V| x d
matrix E. In particular, we consider an LSTM. At time ¢ the state h; is updated as
follows,

hy = LSTM(et, hy—1) , (6.4)

The external features (4, f, k) are concatenated to h; and then linearly projected into
a d-dimensional vector s;:

Cf — [ht/ a, f/ k]/

St = W ¢t + b/
where , is the concatenation operator, and a, f, k the embedding representations
associated to author 4, family f and kind k, respectively. The probability distribution

7, is the output of a softmax layer sharing the weights of the input embeddings to
apply a back-projection of the contextual state s; into the vocabulary space:

o = ET'St,

i, = softmax(oy).

The PLD and PLR are estimated exploiting this conditional neural language model
where input tokens are characters. We chose NLMs over n-grams because of their

6.5 Experiments 99

notorious generalization capabilities, as discussed in Section 2.1. A more robust
estimation of LMs will improve the quality of the PLD and PLR measures. The
same kind of architecture is used to build and visualize the sequence representa-
tions shown in Figure 6.4, learnt from a word-based language model on the entire
Vulgaris.

6.5 Experiments

Text collected in Vulgaris spans over a time period of about four centuries. In the
experiments we analyse the diachronic varieties within the dataset using perplexity-
based distances, PLD and our novel PLR, subdividing it into groups of different
centuries.

The 14 families of Vulgaris are arranged in four language corpora, based on their
time periods, as shown in Figure 6.1. The first group, referred to as XIII, includes
all the families belonging to the 13th century. In this century there are 10 out of 14
families of the dataset, making this language variety the most heterogeneous one,
including many authors from different areas of the Italian territory. In the second
one (XIV), we consider Petrarca and Boccaccio families/authors, whereas Ariosto and
Tasso constitute the third and forth corpora, respectively, XV-XVI-1 and XV-XVI-2.
Clearly the boundaries are not neat, since the activity of some authors may span
across two centuries. From Table 6.3 we can see that the diachronic corpora are
unbalanced. Despite the high number of families and authors, the XIII corpus is
the less represented one, followed by XV-XVI-1 that is slightly larger. They both are
small compared to XIV and XV-XVI-2. However, XIIl is also the dataset with lowest
average number of occurrences per word, indicating a high variance of the collection
caused by the rich variety of styles and authors.

Table 6.3: Number of words and proportions between the four diachronic groups.

| XIII XIV XV-XVI-1 XV-XVI-2
words 455,583 1,480,379 484,276 1,669,928
dataset proportion (%) 11.14 36.19 11.84 40.83
unique words 57,343 73,530 42,594 72,369
Avg occurrences per word | 7.94 20.13 11.37 23.08

Qualitative results. As a first qualitative analysis, we trained a word-based con-
ditional NLM on the entire corpus, using a vocabulary of 50,000 words. The final
cell state hr of a text sequence x = (x1,---,xr) is projected to a 2-dimensional
representation using t-SNE (Maaten and Hinton (2008)). Figure 6.4 visualizes the

100 Language Varieties

2-d representation of 2,000 examples, colored accordingly to the corpus they be-
long to, and styled differently in case of prose or poetry works. Prose and poetry
are easily discriminated by the NLM. The corpus provenance is also captured by
the NLM, although not completely, suggesting that the diachronic varieties share a
similar structure.

Perplexity-based analysis. Then, both the PLD and the PLR described in Section
6.4 are computed for each pair of corpora. For the character LMs, we consider input
character sequences with a maximum length of 50. The state /; has size 256, with
(a, f, k) of size 16, 16 and 32, respectively. Special tokens delimiting end of sentence,
end of verse and white space are included in the vocabulary of characters. For each
L; — Lj, the network is trained on 90% of the L; corpus, whereas the remaining
10% is used for early stopping, and it is finally evaluated on the whole £;. Results

Table 6.4: PLD among pairs of diachronic language varieties. Each element (i,) in
the table corresponds to PLD(L;, ;).

‘XHI XIV XV-XVI-1 XV-XVI-2

XIII 390 5.38 5.99 6.08
XIV 538 3.52 4.76 4.65
XV-XVI-1 | 599 4.76 3.30 4.47
XV-XVI-2 | 6.08 4.65 4.47 3.28

are shown in tables 6.4 and 6.5. PLD is lower in diachronic varieties closer in time,
as expected. Interestingly enough, PLR highlights a strong asymmetric behaviour
on perplexity pairs involving the set XIII. Indeed, while training a language model
on a heterogeneous corpus, as it is XIII, makes the LM well performing when testing
on simpler varieties, a language model trained on a poorer corpus underperforms
when evaluating it on a richer corpus, as XIII.

Table 6.5: PLR among pairs of diachronic language varieties. Each element (i, j) in
the table corresponds to PLR(L;, L;).

‘XIH XIV XV-XVI-1 XV-XVI-2

XIII 1.00 0.81 0.65 0.72
XIV 1.23 1.00 0.86 0.95
XV-XVI-1 | 1.53 1.16 1.00 1.14

XV-XVI-2 | 1.39 1.05 0.88 1.00

6.6 Discussion 101

6.6 Discussion

In this chapter we analyzed a collection of literary texts covering the production of
Italian authors mainly from the middle age. The dataset contains both poetry and
prose, and each document is enriched by metadata that provide both information on
the text characteristics and structure (the verse and stanza organization for poems
and the paragraph splitting for prose). To measure the distance between different
language varieties we exploit language models in conjunction of perplexity-based
measures. To the best of our knowledge, we are the first to employ neural language
models for the analysis of language varieties with perplexity-based metrics. We
make use of Perplexity-based Language Distance and a novel asymmetric indicator
that we defined as Perplexity-based Language Ratio (PLR). Our findings on the
dataset analysis give some insights on the main features of the collection, that reflect
the dialectical and diachronic properties of Italian language in its early stages.

Chapter 7

Conclusions

This Chapter summarizes the work presented in this thesis. We point out the main
contributions and then, we discuss about some possible future research directions
for extending and unifying our work.

7.1 Summary

In this Section, we summarize all the findings of this thesis. In the previous Chapters
we have faced some crucial aspects of language understanding and generation.

Character-aware representations. We have presented a character-aware neural model
that develops task-independent representations of words and contexts by learning
from an unsupervised language modeling-related task. The character-level infor-
mation makes the embeddings more robust to morphological variations and noise
caused by misspelling, which may be significant in real world scenarios, such as
conversational agents. The obtained representations were exploited as input fea-
tures for language understanding tasks, achieving competitive results, despite the
small number of learnable parameters.

Information Extraction in text streams. The character-level encoder also consti-
tute the base of an end-to-end model that processes text streams to extract entities
and relations. This agent operates in an online scenario. It detects mentions to en-
tities and relations and then disambiguates them by aligning the instances to its
(not-given-in-advance) internal KB. We have shown that our model is capable of
learning with sparse supervisions and self-learning. It demostrated strong disam-
biguation and discovery skills when tested on a stream of sentences organized into
small stories!, even when a few, sparse supervisions are provided. We also showed

how it can improve its skills by continuously reading text.

'We also created a new synthetic dataset that we publicly made available for further studies.

103

104 Conclusions

Neural poetry. We proposed a syllable-based neural language model to generate
tercets with the style of a given author. This general approach has been studied in
the context of Dante Alighieri, a medieval Italian poet, famous for being the Divine
Comedy’s author. Syllable tokenization, that is a natural choice for poetry, allows
also transfer learning from large scale collections of modern Italian by means of a
multi-stage transfer learning technique. In addition, we devise a scoring mechanism
to select only the tercets that are more coherent with Divine Comedy’s meter and
rhyme and the author’s style. The multi-stage training procedure and the scoring
mechanism together improve the quality of the content, that, despite the poorness
of author’s data, let our model create original and realistic tercets.

Paraphrasing. Paraphrasing can be formulated as an NLG problem (Section 2.3),
i.e. a language model conditioned by an input sequence, that is nicely modeled
by sequence-to-sequence architectures. Unfortunately, unlike other sequence-to-
sequence problems (e.g. Machine Translation, Text Summarization), there are few
datasets with aligned pairs of paraphrases, especially for not-English languages.
Hence, we proposed a novel algorithm to automatically build large corpora of para-
phrases by crawling news from the Web. The method follows a pipeline involving
the extraction of linguistic features from the crawled documents and an alignment
and selection procedure. We showed its effectiveness in the case of Italian language,
collecting overall more than 85,000 examples of paraphrases. The quality of the
dataset has been evaluated by exploiting it to train a neural paraphrasing sequence-
to-sequence model. In particular, we implemented a pointer-based generator.

Language Varieties. So far, we have used textual corpora to train language models.
Vice versa, language models are a valuable asset to analyze the corpora themselves.
Our last contribution is the definition of a perplexity-based (asymmetric) indicator,
namely Perplexity-based Language Ratio (PLR), that can be used to measure the
distance between different language varieties, outlining the evolution of diachronic
or dialectical varieties. Perplexity is computed from neural language models. We
carry out the analysis of a collection of literary texts covering the production of Ital-
ian authors mainly from the middle age. Our findings on the dataset analysis give
some insights on the main features of the collection, that reflect the dialectical and
diachronic properties of Italian language in its early stages.

7.2 Future Works

Transformers. All the language models that we have used in this thesis for devel-
oping representations of text, extracting information, generating language, analyze
language varieties, are implemented by means of Recurrent Neural Networks. How-

7.2 Future Works 105

ever, recently Transformers (Vaswani et al. (2017)) have consistently outperformed
RNNs in the vast majority of NLP problems, becoming the new state-of-the-art in
NLP community. Transformers are attention-based models that allow a faster and
more effective processing of data sequences w.r.t. Recurrent Neural Networks, over-
coming the inherent sequentiality of RNNs’ computations. Our findings remain in-
tact regardless of the neural architecture underneath. Therefore, straightforward
next steps will consist in replacing RNNs with transformer-based architectures. In
particular, we can substitute language encoders (Chapter 3 and Chapter 4) with
BERT-like models (Devlin et al. (2018); Lan et al. (2019)). In (Ma et al. (2020)), au-
thors already proposed a character-aware pretrained language model that is similar
to what we presented in Chapter 3, but exploiting a BERT architecture. Concerning
language generation, language modeling can be estimated with models like GPT
(Radford et al. (2018)), GPT-2 (Radford et al. (2019)), T5 (Raffel et al. (2019)).

Controlling text generation in open-ended domains. We have seen that open-
ended generation problems loosely correlate with the source of information pro-
vided as input. As a consequence, models in open-ended domains generate text
freely, without any (formal, semantic) restrictions. Models like GPT-2 (Radford
etal. (2019)) have achieved impressive results in generation, producing sentences or
even paragraphs almost indistinguishable from the ones written by humans. How-
ever, the lack of control harms the usability of these models in actual business use-
cases. This issue is also clear in the context of Poem Generation, where text must
respect predefined meter and rhyming rules. The scoring mechanism devised in the
poem generator of Section 5.2 is a preliminary attempt toward the control of gener-
ated text. However, one could think of more sophisticated solutions. For instance,
such constraints may be injected directly into the model, either during learning as
reward functions of Reinforcement Learning (Sutton and Barto (2018)) algorithms
and/or by enriching the LM input with information that biases significantly the gen-
eration. Alternatively, revising strategies could be devised in order to make a model
compliant with some writing rules.

Toward a unified model for understanding and generation. The final future di-
rection that we believe is worth to explore is the design of a unified model with
strong understanding and generation capabilities. Research efforts, including the
contributes of this thesis are all aimed at improving single aspects of NLP, instead
of focusing on the entire picture. Some of the contributes of this thesis pose the basis
for the development of agents capable of learning through reading, reason on top of
the knowledge acquired, and provide coherent, accurate answers according to such
knowledge and the agent’s intent. Indeed, we plan to extend the system proposed
in this Chapter 4 with a more structured and advanced knowledge component that

106 Conclusions

would allow to exploit symbolic reasoning. Furthermore, we expect to make use of
such knowledge as a way to ground the language generation of the agent.

Appendix A

Publications

Journal papers

1. Marco Maggini, Giuseppe Marra, Stefano Melacci, Andrea Zugarini, “Learn-
ing in Text Streams: Discovery and Disambiguation of Entity and Relation
Instances”, IEEE Transactions on Neural Networks and Learning Systems, , 2019.
Candidate’s contributions: joint definition of the problem and method, de-
sign and implementation of the agent, joint design and implementation of the
experiments.

2. Ottavia Spiga, Vittoria Cicaloni, Andrea Zatkova, Lia Millucci, Giulia Bernar-
dini, Andrea Bernini, Barbara Marzocchi, Monica Bianchini, Andrea Zugarini,
Alberto Rossi and others, “A new integrated and interactive tool applicable to
inborn errors of metabolism: Application to alkaptonuria”, Computers in bi-
ology and medicine, pages:1-7, 2018. Candidate’s contributions: correlation
Analysis, development of AKU database and web interface.

Peer reviewed conference papers

1. Andrea Zugarini, Stefano Melacci, Marco Maggini, “Neural Poetry: Learning
to Generate Poems Using Syllables”, International Conference on Artificial Neu-
ral Networks,pages:313-325,2019. Candidate’s contributions: collection of the
data, definition of method, design of the multi-stage pre-training steps, imple-
mentation of the neural model and experiments, joint design of experiments
and evaluations.

2. Giuseppe Marra, Andrea Zugarini, Stefano Melacci, Marco Maggini, “An un-
supervised character-aware neural approach to word and context representa-
tion learning”, International Conference on Artificial Neural Networks, pages:126—
136, 2018. Candidate’s contributions: joint definition of the method, design

107

108 Publications

and implementation of the agent, joint design and implementation of the ex-
periments.

3. Achille Globo, Antonio Trevisi, Andrea Zugarini, Leonardo Rigutini, Marco
Maggini, Stefano Melacci, “Neural Paraphrasing by Automatically Crawled
and Aligned Sentence Pairs”, 2019 Sixth International Conference on Social Net-
works Analysis, Management and Security (SNAMS), pages:429-434, 2019. Can-
didate’s contributions: design and implementation of paraphrasing experi-
ments.

Workshop papers

1. Andrea Zugarini, Matteo Tiezzi, Marco Maggini, “Vulgaris: Analysis of a Cor-
pus for Middle-Age Varieties of Italian Language”, Seventh Workshop on NLP
for Similar Languages, Varieties and Dialects,pages:150-159, 2020. Candidate’s
contributions: joint statistical analysis of the corpus, joint design of the exper-
iments, implementation of the experiments, design of perplexity-based indi-
cator.

2. Andrea Zugarini, Jérémy Morvan, Stefano Melacci, Stefan Knerr, Marco Gori.
“Combining deep learning and symbolic processing for extracting knowledge
from raw text”, IAPR Workshop on Artificial Neural Networks in Pattern Recog-
nition, pages:90-101, 2018. Candidate’s contributions: joint design of model
and algorithm, implementation and execution of the experiments.

Papers under review

1. Andrea Zugarini, Enrico Meloni, Alessandro Betti, Andrea Panizza, Marco
Corneli, Marco Gori. “An Optimal Control Approach to Learning in SIDARTHE
Epidemic model”, submitted to IEEE Transactions on Neural Networks and Learn-
ing Systems. Candidate’s contributions: joint definition of the learning task,
joint design of model and algorithm, joint implementation and execution of
the experiments.

Other

1. Francesco Giannini, Vincenzo Laveglia, Alessandro Rossi, Dario Zanca, An-
drea Zugarini, “Neural networks for beginners. A fast implementation in
matlab, torch, tensorflow”, arXiv preprint arXiv:1703.05298, 2017. Candidate’s
contributions: designed and illustrated algorithms by examples in torch.

2. Vittoria Cicaloni, Andrea Zugarini, Alberto Rossi, Matteo Zazzeri, Annalisa
Santucci, Andrea Bernini, Ottavia Spiga,“Towards an integrated interactive

109

database for the search of stratification biomarkers in Alkaptonuria”, Peer] Preprints,
2016. Candidate’s contributions: correlation Analysis, development of AKU
database and web interface.

Bibliography

Aggarwal, C. C. and Zhai, C. (2012). Mining text data. Springer Science & Business
Media.

Ahn, S., Choi, H., Pirnamaa, T., and Bengio, Y. (2016). A neural knowledge language
model. arXiv preprint arXiv:1608.00318.

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string embeddings for se-
quence labeling. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1638-1649.

Alighieri, D., Sisson, C., Sisson, C., and Higgins, D. (1998). The Divine Comedy.
Oxford University Press. Oxford University Press.

Asgari, E. and Mofrad, M. R. (2016). Comparing fifty natural languages and twelve
genetic languages using word embedding language divergence (weld) as a quan-
titative measure of language distance. arXiv preprint arXiv:1604.08561.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Banerjee, A. and Basu, S. (2007). Topic models over text streams: A study of batch
and online unsupervised learning. In Proceedings of the 2007 SIAM International
Conference on Data Mining, pages 431-436. SIAM.

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. In Proceedings of the acl work-
shop on intrinsic and extrinsic evaluation measures for machine translation and/or sum-
marization, pages 65—72.

Bansal, T., Neelakantan, A., and McCallum, A. (2017). Relnet: End-to-end modeling
of entities & relations. arXiv:1706.07179.

Barzilay, R. and Lee, L. (2003). Learning to paraphrase: an unsupervised approach
using multiple-sequence alignment. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human

111

112 BIBLIOGRAPHY

Language Technology-Volume 1, pages 16-23. Association for Computational Lin-
guistics.

Barzilay, R. and McKeown, K. R. (2001). Extracting paraphrases from a parallel
corpus. In Proceedings of the 39th annual meeting of the Association for Computational
Linguistics.

Basile, P, Caputo, A., Luisi, R., and Semeraro, G. (2016). Diachronic analysis of the
italian language exploiting google ngram. CLiC it, page 56.

Bengio, Y., Ducharme, R., Vincent, P, and Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137-1155.

Bengio, Y., Simard, P., Frasconi, P, et al. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157-
166.

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on free-
base from question-answer pairs. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1533-1544.

Berant, J. and Liang, P. (2014). Semantic parsing via paraphrasing. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1415-1425.

Bolshakov, I. A. and Gelbukh, A. (2004). Synonymous paraphrasing using wordnet
and internet. In Int. Conf. on Application of Natural Language to Information Systems,
pages 312-323. Springer.

Borin, L. (2013). The why and how of measuring linguistic differences. Approaches
to measuring linguistic differences, Berlin, Mouton de Gruyter, pages 3-25.

Campos, J. R. P, Gamallo, P.,, and Alegria, I. (2018). Measuring language distance
among historical varieties using perplexity. application to european portuguese.
In Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Di-
alects (VarDial 2018), pages 145-155.

Campos, J. R. P, Otero, P. G., and Loinaz, I. A. (2020). Measuring diachronic lan-
guage distance using perplexity: Application to english, portuguese, and spanish.
Natural Language Engineering, 26(4):433-454.

Chiu, J. P. and Nichols, E. (2016). Named entity recognition with bidirectional lstm-
cnns. Transactions of the Association for Computational Linguistics, 4:357-370.

BIBLIOGRAPHY 113

Chopra, S., Auli, M., and Rush, A. M. (2016). Abstractive sentence summarization
with attentive recurrent neural networks. In Proceedings of the 2016 Conference of
the NAACL: Human Language Technologies, pages 93-98.

Christakopoulou, K., Radlinski, F., and Hofmann, K. (2016). Towards conversa-
tional recommender systems. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 815-824. ACM.

Ciobanu, A. M. and Dinu, L. P. (2020). Automatic identification and production of
related words for historical linguistics. Computational Linguistics, 45(4):667-704.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.
(2011). Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493-2537.

Colton, S., Goodwin, J., and Veale, T. (2012). Full-face poetry generation. In ICCC,
pages 95-102.

Del Corso, G. M., Gulli, A., and Romani, F. (2005). Ranking a stream of news. In Pro-
ceedings of the 14th international conference on World Wide Web, pages 97-106. ACM.

Devlin, J., Chang, M.-W.,, Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dolan, B., Quirk, C., and Brockett, C. (2004). Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of
the 20th international conference on Computational Linguistics, page 350. Association
for Computational Linguistics.

Dredze, M., McNamee, P, Rao, D., Gerber, A., and Finin, T. (2010). Entity disam-
biguation for knowledge base population. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages 277-285. Association for Computa-
tional Linguistics.

Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying relations for open in-
formation extraction. In Proceedings of the conference on empirical methods in natural
language processing, pages 1535-1545. Association for Computational Linguistics.

Fan, A., Lewis, M., and Dauphin, Y. (2018). Hierarchical neural story generation.
arXiv preprint arXiv:1805.04833.

Gamallo, P, Campos, J. R. P, and Alegria, I. (2017). A perplexity-based method for
similar languages discrimination. In Proceedings of the fourth workshop on NLP for
similar languages, varieties and dialects (VarDial), pages 109-114.

114 BIBLIOGRAPHY

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). Ppdb: The para-
phrase database. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
758-764.

Globo, A., Trevisi, A., Zugarini, A., Rigutini, L., Maggini, M., and Melacci, S. (2019).
Neural paraphrasing by automatically crawled and aligned sentence pairs. In 2019
Sixth International Conference on Social Networks Analysis, Management and Security
(SNAMS), pages 429-434. IEEE.

Goodfellow, L., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, vol-
ume 1. MIT press Cambridge.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A, and Bengio, Y. (2014). Generative adversarial nets. In Advances
in neural information processing systems, pages 2672-2680.

Grice, H. P. (1975). Logic and conversation. In Speech acts, pages 41-58. Brill.

Gu, J., Lu, Z, Li, H, and Li, V. O. (2016). Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint arXiv:1603.06393.

Guo, S., Chang, M.-W.,, and Kiciman, E. (2013). To link or not to link? a study on
end-to-end tweet entity linking. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1020-1030.

Gutmann, M. and Hyvérinen, A. (2010). Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models. In AISTATS, pages 297-304.

Hachey, B., Radford, W., Nothman, J., Honnibal, M., and Curran, J. R. (2013). Eval-
uating entity linking with wikipedia. Artificial intelligence, 194:130-150.

Han, X. and Sun, L. (2011). A generative entity-mention model for linking entities
with knowledge base. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1, pages 945-954.
Association for Computational Linguistics.

Harari, Y. N. (2014). Sapiens: A brief history of humankind. Random House.

Hasan, S. A,, Lee, K., Datla, V., Qadir, A., Liu, J., Farri, O., et al. (2016). Neural para-
phrase generation with stacked residual Istm networks. In International Conference
on Computational Linguistics: Technical Papers, pages 2923-2934.

Henaff, M., Weston,]., Szlam, A., Bordes, A., and LeCun, Y. (2017). Tracking the
world state with recurrent entity networks. ICLR, pages 1-14.

BIBLIOGRAPHY 115

Herzig,]. and Berant, J. (2017). Neural semantic parsing over multiple knowledge-
bases. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Short Papers), pages 623—628.

Hinton, G. E., Mcclelland, J. L., and Rumelhart, D. E. (1986). Distributed repre-
sentations, parallel distributed processing: explorations in the microstructure of
cognition, vol. 1: foundations.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735-1780.

Holtzman, A., Buys,]., Du, L., Forbes, M., and Choi, Y. (2019). The curious case of
neural text degeneration. arXiv preprint arXiv:1904.09751.

Hopkins, J. and Kiela, D. (2017). Automatically generating rhythmic verse with
neural networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 168-178.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional Istm-crf models for sequence
tagging. arXiv preprint arXiv:1508.01991.

Hwang, K. and Sung, W. (2017). Character-level language modeling with hierarchi-
cal recurrent neural networks. In Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on, pages 5720-5724. IEEE.

Iacobacci, I., Pilehvar, M. T., and Navigli, R. (2016). Embeddings for word sense
disambiguation: An evaluation study. In ACL (Volume 1: Long Papers), pages 897—
907.

Ji, H. and Grishman, R. (2011). Knowledge base population: Successful approaches
and challenges. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-Volume 1, pages 1148-1158. As-
sociation for Computational Linguistics.

Ji, Y, Tan, C., Martschat, S., Choi, Y., and Smith, N. A. (2017). Dynamic entity
representations in neural language models. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 1830-1839. Association
for Computational Linguistics.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring
the limits of language modeling. arXiv:1602.02410.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation mod-
els. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1700-1709.

116 BIBLIOGRAPHY

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural
language models. In AAAI, pages 2741-2749.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kobayashi, S., Tian, R., Okazaki, N., and Inui, K. (2016). Dynamic entity repre-
sentation with max-pooling improves machine reading. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 850-855.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., and Wozniak, M. (2017). En-
semble learning for data stream analysis: A survey. Information Fusion, 37:132-156.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Kumar, A., Irsoy, O., Ondruska, P, Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V.,
Paulus, R., and Socher, R. (2016). Ask me anything: Dynamic memory networks
for natural language processing. In Balcan, M. F. and Weinberger, K. Q., editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1378-1387, New York, New York,
USA. PMLR.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016).
Neural architectures for named entity recognition. In Proceedings of NAACL-HLT,
pages 260-270.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019).
Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942.

Lau, J. H., Cohn, T., Baldwin, T., Brooke, J., and Hammond, A. (2018). Deep-speare:
A joint neural model of poetic language, meter and rhyme. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1948-1958.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text
Summarization Branches Out.

Lin, Y., Lin, C.-Y,, and Ji, H. (2017). List-only entity linking. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 536-541.

BIBLIOGRAPHY 117

Ling, W., Dyer, C., Black, A. W,, Trancoso, L., Fermandez, R., Amir, S., Marujo, L.,
and Luis, T. (2015a). Finding function in form: Compositional character models
for open vocabulary word representation. In EMNLP, pages 1520-1530.

Ling, X., Singh, S., and Weld, D. S. (2015b). Design challenges for entity linking.
Transactions of the Association for Computational Linguistics, 3:315-328.

Liu, H. and Cong,]. (2013). Language clustering with word co-occurrence networks
based on parallel texts. Chinese Science Bulletin, 58(10):1139-1144.

Luo, G., Huang, X, Lin, C.-Y,, and Nie, Z. (2015). Joint entity recognition and dis-
ambiguation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 879-888.

Lyding, V., Stemle, E., Borghetti, C., Brunello, M., Castagnoli, S., Dell'Orletta, F.,
Dittmann, H., Lenci, A., and Pirrelli, V. (2014). The paisa’ corpus of italian web
texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pages 36—43. EACL.

Ma, W,, Cui, Y., Si, C, Liu, T.,, Wang, S., and Hu, G. (2020). Charbert: Character-
aware pre-trained language model. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 39-50.

Ma, X., Fauceglia, N., Lin, Y.-c., and Hovy, E. (2017). Cmu system for entity discov-
ery and linking at tac-kbp 2017. Proceedings of TAC2017.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579-2605.

Madnani, N. and Dorr, B. J. (2010). Generating phrasal and sentential paraphrases:
A survey of data-driven methods. Computational Linguistics, 36(3):341-387.

Maggini, M., Marra, G., Melacci, S., and Zugarini, A. (2019). Learning in text
streams: Discovery and disambiguation of entity and relation instances. IEEE
Transactions on Neural Networks and Learning Systems.

Manning, C. D., Raghavan, P., Schiitze, H., et al. (2008). Introduction to information
retrieval, volume 1. Cambridge university press Cambridge.

Marra, G., Zugarini, A., Melacci, S., and Maggini, M. (2018). An unsupervised
character-aware neural approach to word and context representation learning. In
International Conference on Artificial Neural Networks, pages 126-136. Springer.

Martin, T., Botschen, F., Nagesh, A., and McCallum, A. (2016). Call for discussion:
Building a new standard dataset for relation extraction tasks. In Proceedings of the
5th Workshop on Automated Knowledge Base Construction, pages 92-96.

118 BIBLIOGRAPHY

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and motiva-
tion, volume 24, pages 109-165. Elsevier.

Melacci, S. and Gori, M. (2012). Unsupervised learning by minimal entropy encod-
ing. IEEE transactions on neural networks and learning systems, 23(12):1849-1861.

Melamud, O., Goldberger, J., and Dagan, 1. (2016). context2vec: Learning generic
context embedding with bidirectional Istm. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pages 51-61.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010). Re-
current neural network based language model. In Eleventh annual conference of the
international speech communication association.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision for rela-
tion extraction without labeled data. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume 2, pages 1003-1011. Association
for Computational Linguistics.

Miwa, M. and Bansal, M. (2016). End-to-end relation extraction using lstms on
sequences and tree structures. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1105-1116.

Miyamoto, Y. and Cho, K. (2016). Gated word-character recurrent language model.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1992-1997.

Moro, A. and Navigli, R. (2015). Semeval-2015 task 13: Multilingual all-words sense
disambiguation and entity linking. In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEuval 2015), pages 288-297, Denver, Colorado. Associ-
ation for Computational Linguistics.

Moro, A., Raganato, A., and Navigli, R. (2014). Entity linking meets word sense dis-
ambiguation: a unified approach. Transactions of the Association for Computational
Linguistics, 2:231-244.

Nigam, K. and Ghani, R. (2000). Analyzing the effectiveness and applicability of
co-training. In Proceedings of the ninth international conference on Information and
knowledge management, pages 86-93. ACM.

BIBLIOGRAPHY 119

Niu, F, Zhang, C., Ré, C., and Shavlik, J. W. (2012). Deepdive: Web-scale
knowledge-base construction using statistical learning and inference. VLDS,
12:25-28.

Obamuyide, A. and Vlachos, A. (2017). Contextual pattern embeddings for one-
shot relation extraction. In 6th Workshop on Automated Knowledge Base Construction
(AKBC), pages 1-8.

Pan, X., Cassidy, T., Hermjakob, U, Ji, H., and Knight, K. (2015). Unsupervised en-
tity linking with abstract meaning representation. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1130-1139.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting
of the Association for Computational Linguistics, pages 311-318.

Pappu, A., Blanco, R., Mehdad, Y., Stent, A., and Thadani, K. (2017). Lightweight
multilingual entity extraction and linking. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining, pages 365-374. ACM.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving lan-
guage understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683.

Raganato, A., Camacho-Collados, J., and Navigli, R. (2017). Word sense disam-
biguation: A unified evaluation framework and empirical comparison. In Proc. of
EACL, pages 99-110.

Rajani, N. F. and Mooney, R. (2016). Combining supervised and unsupervised en-
embles for knowledge base population. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 1943-1948.

Rajpurkar, P, Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, page pages 2383?2392.

Richardson, M., Burges, C. J., and Renshaw, E. (2013). Mctest: A challenge dataset
for the open-domain machine comprehension of text. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 193-203.

120 BIBLIOGRAPHY

Ritter, A., Etzioni, O., Clark, S., et al. (2012). Open domain event extraction from
twitter. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1104-1112. ACM.

Santos, C. D. and Zadrozny, B. (2014). Learning character-level representations for
part-of-speech tagging. In ICML, pages 1818-1826.

Santos, C. N. d. and Guimaraes, V. (2015). Boosting named entity recognition with
neural character embeddings. arXiv preprint arXiv:1505.05008.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673-2681.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks. arXiv preprint arXiv:1704.04368.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909.

Shen, W., Wang, J., and Han, J. (2015). Entity linking with a knowledge base: Issues,
techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering,
27(2):443-460.

Sil, A. and Florian, R. (2016). One for all: Towards language independent named
entity linking. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, volume 1, pages 2255-2264.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929-1958.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks.
In Advances in neural information processing systems, pages 2440-2448.

Sutskever, L., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104—
3112.

Sutton, R. and Barto, A. (2018). Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning series. MIT Press.

Van Erp, M., Mendes, P. N., Paulheim, H., Ilievski, E,, Plu,]J., Rizzo, G., and Wait-
elonis, J. (2016). Evaluating entity linking: An analysis of current benchmark
datasets and a roadmap for doing a better job. In LREC, volume 5, page 2016.

BIBLIOGRAPHY 121

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. In Advances in NIPS, pages
5998-6008.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in
NIPS, pages 2692-2700.

Wang, Q., Luo, T., Wang, D., and Xing, C. (2016). Chinese song iambics generation
with neural attention-based model. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, pages 2943-2949. AAAI Press.

Wen, T.-H., Gasic, M., Mrksi¢, N., Su, P-H., Vandyke, D., and Young, S. (2015).
Semantically conditioned lstm-based natural language generation for spoken dia-
logue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1711-1721.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144.

Yi, X., Li, R,, and Sun, M. (2017). Generating chinese classical poems with rnn
encoder-decoder. In Chinese Computational Linguistics and Natural Language Pro-
cessing Based on Naturally Annotated Big Data, pages 211-223. Springer.

Yi, X., Sun, M,, Li, R,, and Li, W. (2018). Automatic poetry generation with mutual
reinforcement learning. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3143-3153.

Yih, W.-t., He, X., and Meek, C. (2014). Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), volume 2, pages 643-648.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence generative ad-
versarial nets with policy gradient. In Thirty-First AAAI Conference on Artificial
Intelligence.

Yu, Z., Xu, Z., Black, A. W., and Rudnicky, A. (2016). Strategy and policy learning
for non-task-oriented conversational systems. In Proceedings of the 17th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 404-412.

Zampieri, M. and Becker, M. (2013). Colonia: Corpus of historical portuguese. ZSM
Studien, Special Volume on Non-Standard Data Sources in Corpus-Based Research, 5:69—
76.

122 BIBLIOGRAPHY

Zampieri, M. and Nakov, P. (2020). Similar Languages, Varieties, and Dialects: A Com-
putational Perspective. Cambridge University Press.

Zettlemoyer, L. S. and Collins, M. (2012). Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. arXiv:1207.1420.

Zhang, C.,Sah, S., Nguyen, T., Peri, D., Loui, A., Salvaggio, C., and Ptucha, R. (2017).
Semantic sentence embeddings for paraphrasing and text summarization. In IEEE
Global Conference on Signal and Information Processing (GlobalSIP), pages 705-709.

Zhang, X. and Lapata, M. (2014). Chinese poetry generation with recurrent neu-
ral networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 670-680.

Zhong, Z. and Ng, H. T. (2010). It makes sense: A wide-coverage word sense dis-
ambiguation system for free text. In ACL, pages 78-83.

Zugarini, A., Melacci, S., and Maggini, M. (2019). Neural poetry: Learning to gener-
ate poems using syllables. In International Conference on Artificial Neural Networks,
pages 313-325. Springer.

Zugarini, A., Tiezzi, M., and Maggini, M. (2020). Vulgaris: Analysis of a corpus for
middle-age varieties of italian language. In Proceedings of the 7th Workshop on NLP
for Similar Languages, Varieties and Dialects, pages 150-159.

	Contents
	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Background
	Language Modeling
	Definition
	Evaluation
	N-grams
	Neural Language Models
	Recurrent Neural Language Models

	Language Representations
	Tokenization
	One-hot Encoding
	Word Embeddings
	Sub-word Encoding
	Contextual Representations

	Language Generation
	Text Generation is Language Modeling
	Decoding Strategies

	Character-aware Representations
	Related Works
	Model
	Learning Representations
	Experiments
	Chunking
	Word Sense Disambiguation
	Robustness to Typos
	Qualitative Analysis

	Discussion

	Information Extraction in Text Streams
	Related Works
	Problem Setting
	Model
	Mention Detection
	Mention and Context Encoding
	Candidate Generation
	Disambiguation

	Online Learning Dynamics
	Experiments
	Datasets
	Learning Settings
	Competitors
	Results
	Ablation Study
	Dealing with Long Text Streams

	Discussion

	Natural Language Generation
	Related Works
	Neural Poetry
	A Syllable-based Model
	Multi-Stage Transfer Learning
	Generation Procedure
	Experiments

	Neural Paraphrasing
	Automatic Dataset Construction
	Case Study
	Model
	Experiments

	Discussion

	Language Varieties
	Related Works
	Data Collection
	Historical background
	Dataset structure
	Statistical Analysis

	Perplexity-based Language Measures
	Conditional Language Modeling
	Experiments
	Discussion

	Conclusions
	Summary
	Future Works

	Publications
	Bibliography

