N cycle in burnt and unburnt soils under different vegetation covers in the Mediterranean region

G. Santini a, A.G. Ruggiero a, M.T. Ceccherini b, L. Santorufo a, c, V. Memoli a, G. Pietramellara b, A. De Marco c, d, A. Giarra e, G. Di Natale e, f, M. Trifuoggi g, R. Barile h, G. Maisto h, i

a Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
b BAT Center - Center for Studies on Biostimulated Agro-Environmental Technology, Italy
c Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
d Department Chemistry Science, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
e CeSMA-Centre of Meteorologic and Advanced Technology Services, University of Naples Federico II, Nicolangelo Prototipiani Course, 80146 San Giovanni a Teduccio, Naples, Italy
f Vesuvius National Park, Via Palazzo del Principe c/o Castello Mediceo, 80044 Ottaviano, NA, Italy

ABSTRACT

The Mediterranean area is a fragile semi-arid ecosystem, characterized by a high level of biodiversity. Due to its climatic conditions, fires are frequent. Fires strongly impact the microbial community of the soil and the biogeochemical cycles of the ecosystem. Although the N cycle is crucial, limited data is available about the effects of fires on the microbial community involved in this cycle in these types of environments. The aim of this research was to evaluate the effects that fire has on the amount of microbial populations involved in the different steps of the N cycle in soils under different vegetation cover. To achieve this, surface soils were collected from unburnt and burnt soil of four plant species (holm oak, pine, black locust, and herbs) from inside the Vesuvius National Park that are typical of the Mediterranean maquis. The soils were analyzed for their main abiotic properties (pH, water content, concentrations of organic C, total C, total N, NH4+, NO3–, and NO2–). They were also analyzed for their amount of total DNA (DNA yield), eubacterial DNA (16S rDNA), N2-fixers, ammonia oxidizer, archaea ammonia oxidizer, and denitrifier DNA. The largest amount of microbial populations involved in the N cycle of the unburnt soil was observed in the holm oak soil. Fires slightly affected the soil abiotic properties and the DNA yield of the unburnt soil, but significantly increased the amount of eubacteria, nitrifiers, and denitrifiers. The conditions of the pine and holm oak soil encouraged a faster recovery of the amount of microbial populations involved in the N cycle.

1. Introduction

The Mediterranean maquis of southern Italy is distinguished by different plant species, from low and high maquis to Quercus ilex and Pinus spp. forests. Vegetation cover influences the properties of the soil through the distribution of litter. This consequently controls soil-dwelling microbial populations and, in turn, the soil quality (Rutilgliano et al., 2004; Memoli et al., 2021; Santorufo et al., 2021; De Marco et al., 2022).

Additionally, fire frequently and greatly affects the properties of the soil, especially in semi-arid and fragile ecosystems such as the Mediterranean area (Memoli et al., 2020). In fact, fire alters the quantity and biodiversity of microbial populations, due to it warming and changing the physical and chemical properties of the soil (Giuditta et al., 2018; Panico et al., 2020; Memoli et al., 2019). However, different effects on the soil were observed according to how much time had passed since a fire. In particular, Banning and Murphy (2008) found a complete loss of microbial activity immediately after fire. Whereas, Cilliers et al. (2005) found that bacterial and fungal populations were recovered by one year after a fire.

Soil microorganisms, which play a key role in the organic matter degradation of soil, are involved in nutrient cycling (Gruber and Galloway, 2008; Panico et al., 2018). As nitrogen is essential for plants and soil microorganisms (Fitter et al., 2005) and is scarcely available in...
soils (Schimel and Bennett, 2004), its cycle is fundamental for the quality of the whole terrestrial ecosystem. The N cycle starts with N-fixers, which reduce N\textsubscript{2} to ammonium (NH\textsubscript{4}+). These are commonly assessed by quantifying the nifH genes encoding the nitrogenase (Howard and Rees, 1996). NH\textsubscript{4}+ in soil can be also released by microorganisms involved in the mineralization of N organic compounds. Ammonia oxidizers, such as bacteria (AOB) and archaea (AOA), transform NH\textsubscript{4}+ to NO\textsubscript{2}– (nitrite) and are associated with various ecological niches (Prosser and Nicol, 2012). The amount of these populations is assessed by quantifying the amo\textsubscript{A} genes encoding the A subunit of the NH\textsubscript{3} monooxygenase (Rothhauwe et al., 1997; Leininger et al., 2006). NO\textsubscript{2}– is oxidized to NO\textsubscript{3}– (nitrates) by other populations of nitrifiers. Finally, denitrifiers, reducing NO\textsubscript{3}– to N\textsubscript{2}, are assessed by copper-containing nitrite reductase nir\textsubscript{K} genes (Henry et al., 2004), and the N cycle is completed (Eschenberg et al., 2018). NO\textsubscript{3}– and NH\textsubscript{4}+ can also be extracted by plants that are able to compete with specific soil microbial populations (Holland et al., 1999).

As microorganisms are sensitive to rapid alterations and perturbations (García-Orenes et al., 2013), the structure and diversity of a soil microbial community provide a lot of information about the overall soil quality and functionality (Zornoza et al., 2009; Santorufo et al., 2021). Therefore, maintaining the different steps of the N cycle primarily depends on the abiotic properties and microbial biodiversity of the soil (Altieri, 1999). Some studies have documented that frequent fires increase the abundance of AOB and decrease that of AOA (Long et al., 2014). Moreover, in Mediterranean area, there was an overall decrease of the amount of microorganisms involved in the N cycle as a consequence of the changes in plant biodiversity that were caused by fire (Perego et al., 2018).

Therefore, this research aimed to contribute to the current knowledge about the impact of fire on soil microbial populations involved in the N cycle (N\textsubscript{2}-fixers, ammonia oxidizers, and denitrifiers), whilst considering the vegetation cover of the investigated sites.

The aims of this research were: (i) to evaluate the possible effects of vegetation cover on the amount of microbial populations involved in the different steps of the N cycle; (ii) to evaluate the possible effects of fire on the populations; and (iii) to highlight the main soil abiotic properties that cause possible changes to the microbial community of the soil covered by different plant species that were affected by fire. To achieve this, surface soils were collected from unburnt and burnt areas inside the Vesuvius National Park from four plant species (holm oak, pine, black locust, and herbs) typical of the Mediterranean maquis. The hypotheses behind the aims were: (H1) unburnt soils under holm oak show the highest amount of the investigated microbial populations; (H2) fire causes a decrease in the amount of the investigated microbial populations, especially in soil taken from herbs; and (H3) the contents of the investigated microbial community provide a lot of information about the overall soil quality and functionality (Zornoza et al., 2009; Santorufo et al., 2021).

2. Materials and methods

2.1. Study area and soil sampling

The research was performed inside the volcanic area of the Vesuvius National Park (Southern Italy), which is covered by flora typical of the Mediterranean regions (Memoli et al., 2018): herbs (mosses, lichens, valerian, Helichrysum, artemisia Mill., and many grasses), shrubs (myrtle, laurel, viburnum, brambles, and brooms), and plant species (holm oak and various species of pines). Since 1912, black locust, an invasive species, has been introduced in the afforestation plans of the Vesuvius National Park (Memoli et al., 2018) in order to stabilize the Lepti-Vitric and Andosols (according to the soil classification of the World Reference Base for Soil Resources, 2015). In July 2017, a fire severely burnt level four of the scale proposed by Vega et al. (2013), damaging wide areas of the Vesuvius National Park. In fact, the fire affected approximately 50 % of the total extension and 80 % of the total wooded area, completely destroying herbaceous and shrub species and strongly impacting conifers and other trees. The impact of the fire was so severe that entire green areas were devastated and many plants were cut down as they were unstable.

Unburnt and adjacent burnt areas (100 m × 100 m) covered by the same vegetation type, such as holm oak (HO), pine (P), black locust (BL), and herbs and shrubs (H), were chosen to perform the soil sampling during autumn of 2020. Inside each area, three sites were selected (making a total of 24 sites: three sites in the burnt area and three sites in the unburnt area covered by the four vegetation types). At each of them, eight soil cores (depth: 0–10 cm) were sampled. The soil cores of each site were mixed together in order to obtain a homogeneous sample. They were then transported on ice to the laboratory in order to avoid disturbances to the microbial biomass. Following that, the soil samples were sieved (2 mm mesh size) and divided into three groups. One group was kept at room temperature to perform the physico-chemical analyses. The second group was kept at 4 °C to evaluate the contents of NH\textsubscript{4}+, NO\textsubscript{2}–, and NO\textsubscript{3}–. The third group was kept at −80 °C to perform the molecular analyses. All the analyses were performed on triplicates.

2.2. Soil physical–chemical analyses

The soil samples were characterized according to pH, water content (WC), organic C (C\textsubscript{org}) concentrations, total C and N concentrations, and NH\textsubscript{4}+ and NO\textsubscript{3}– contents. Soil pH was measured, using an electrometric method in soil and a distilled water (1:2:5 = v:v:v) suspension. The WC was determined gravimetrically by drying fresh soil at 105 °C until a constant weight was reached. C\textsubscript{org} was measured with a CNS Analyzer (Thermo Finnigan) on soil samples previously treated with HCl (10%) to exclude carbonates. The C and N concentrations were evaluated on oven-dried (105 °C) and ground (Fritsch Analysette Spartan 3 Pulverisette 0) soil samples with a CNS Analyzer (Thermo Finnigan). Details for the above-mentioned analyses were reported in Memoli et al. (2018).

NH\textsubscript{4}+ and NO\textsubscript{3}– contents were measured after the extraction of fresh (4 °C) soil samples by UV–Vis spectrophotometry in accordance with the Italian Law DM 13/09/99. Two grams of soil were transferred into a plastic container, and 20 ml of KCl solution (2 M) was added and then stirred for one hour in a rotary shaker at a controlled temperature (22 °C). The solution was left to settle for at least one hour. The supernatant filtered onto filter paper and aliquots of the obtained solution, properly diluted, were built up to 10 ml in a plastic tube for the subsequent measurements. For the NH\textsubscript{4}+ measurement, 0.4 ml of phenol solution (10% w:v in ethanol), 0.4 ml of sodium nitroprusside solution (0.5% w:v in water, 1 ml of oxidizing solution based on sodium hypochlorite were added. After color development, the NH\textsubscript{4}+ concentration was evaluated using spectrophotometry UV–Vis (Cary50, Varian). This was done by performing the absorption at a wavelength of 640 nm and by using a calibration curve built in the range 0.025–0.80 mg l−1. To determine the NO\textsubscript{3}– level, 0.2 ml of HCl solution (1 N in water) was added. After shaking, the NO\textsubscript{3}– concentration was evaluated using spectrophotometry UV–Vis (Cary50, Varian). This was done by calculating the differences between the absorption at a wavelength of 220 nm (absorbance NO\textsubscript{3}– and N organic compounds) and 270 nm (absorbance of N organic compounds) and by using a calibration curve built in the range 0.2–5.0 mg l−1. For both the measurements, the QC samples were processed at the beginning, and then every 10th sample in the analytical batch was processed to verify the instrument calibration.

2.3. DNA extraction and quantitative PCR (qPCR) analyses

The functional groups of the soil microbial community were monitored by DNA extraction and subsequent amplification of a specific gene by qPCR (Nannipieri et al., 2003; Panico et al., 2020). Total soil DNA was extracted using a FastDNA™ SPIN Kit for Soil.
Table 1
Quantitative PCR primers used to enumerate bacteria in this study.

<table>
<thead>
<tr>
<th>Bacterial Groups</th>
<th>Gene</th>
<th>Oligo name</th>
<th>Sequence (5’→3’)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eub</td>
<td>16S rDNA</td>
<td>Eub341f</td>
<td>CTCACGGGAGGCAGCAG</td>
<td>Muyzer et al. (1999), Simons et al. (2007)</td>
</tr>
<tr>
<td>Eub</td>
<td>16S rDNA</td>
<td>Eub515r</td>
<td>TACCCGGGGCKGTGCGCA</td>
<td>Roux et al. (2007)</td>
</tr>
<tr>
<td>AmoX</td>
<td>amoA</td>
<td>amoA-1F</td>
<td>GGGGTTTCTCATTGGTTG</td>
<td>Roethove et al. (1999), Mintie et al. (2003), Arrahmani et al. (2003)</td>
</tr>
<tr>
<td>AmoX</td>
<td>amoA</td>
<td>amoA-2R</td>
<td>CCCCCTCAGSAAAGCTTCTC</td>
<td>Roux et al. (2007)</td>
</tr>
<tr>
<td>ArchamoX</td>
<td>archaeo</td>
<td>Archamo</td>
<td>STAATGTTCTGCGTAGCAG</td>
<td>Francis et al. (2005)</td>
</tr>
<tr>
<td>ArchamoX</td>
<td>archaeo</td>
<td>archaeoAF</td>
<td>GGGGCATCATCATGGA</td>
<td>Francis et al. (2005)</td>
</tr>
<tr>
<td>Den</td>
<td>nirK</td>
<td>nirK876f</td>
<td>ATYGGCGGAVYGGGCA</td>
<td>Henry et al. (2004)</td>
</tr>
<tr>
<td>Den</td>
<td>nirK</td>
<td>nirK1040</td>
<td>GCGTGTAGCAGRTRGGTT</td>
<td>Henry et al. (2004)</td>
</tr>
<tr>
<td>Nfix</td>
<td>Nfix</td>
<td>NfixF</td>
<td>TGCGAYCCSAAARGCBGACTC</td>
<td>Pol et al. (2004)</td>
</tr>
<tr>
<td>Nfix</td>
<td>Nfix</td>
<td>NfixR</td>
<td>ATSGCACCATYTYCCGGGA</td>
<td>Pol et al. (2004)</td>
</tr>
</tbody>
</table>

3. Results

3.1. Abiotic properties and soil microbial community population in unburnt soils

In unburnt soils, the pH level ranged from 6.81 to 7.49, and water content (WC) ranged from 8.51% to 35.3% w.w. The concentrations of Corg, C, and N, ranged from 1.14% to 4.04% w.w., from 2% to 6.33% w.w., and from 0.15% to 0.29% w.w., respectively (Table 2). The C/N ratios ranged from 8.66 to 21.5 (Table 2). The above soil properties did not statistically vary according to the different vegetation covers, with the exception of the W, which was statistically higher in holm oak soil (Fig. 1). Bacterial 16S rDNA gene sequences (Eub) ranged from 4.69 × 10^4 to 5.38 × 10^5 g^-1 w.w. with statistically higher values in the holm oak and pine soils (Fig. 1). amoA sequences (Amox) ranged from 4.69 × 10^12 to 7.59 × 10^13 g^-1 w.w., with statistically higher values in the black locust soil (Fig. 1). ArchamoA sequences (ArchamoX) ranged from 1.71 × 10^5 to 7.59 × 10^13 g^-1 w.w., with statistically higher values in the holm oak soil (Fig. 1). Finally, NirK sequences (Den) and Nfix sequences (Nfix) from 2.39 × 10^3 to 9.41 × 10^11 ng^-1 w.w. and from 4.05 × 10^8 to 8.59 × 10^11 ng^-1 w.w., respectively, with statistically higher values in the holm oak soil (Fig. 1).

In unburnt soils, significant and positive correlations were found between DNA yield, Eub, ArchamoX, and Den sequences (Fig. 2).
Moreover, significant and negative correlations were found between NO$_3^-$ concentrations and DNA yield, Eub, Den, and Nfix sequences (Fig. 3). Significant positive correlations were found between NH$_4^+$ concentrations and DNA yield and Den sequences. Moreover, positive correlation was observed between N concentration and Den (Fig. 3).

3.2. Abiotic properties and soil microorganism population in burnt soils

In burnt soil, pH levels ranged from 6.91 to 7.19, and WC ranged from 10.14% to 40.60% w.w., with values statistically lower in the soil taken from herbs (Table 2). Concentrations of C$_{org}$, C, and N ranged from 0.53 to 3.8 % w.w., from 1.04% to 7.06% w.w., and from 0.07% to
w.w., respectively (Table 2). C/N ratios ranged from 9 to 15.0.

Bacterial DNA (Eub), archaea ammonia oxidizers (Archamox) and denitrifiers (Den) and total DNA (DNA yield) in unburnt soils (blue: holm oak; red: pine; green: black locust; brown: herbs). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

0.54% w.w., respectively (Table 2). C/N ratios ranged from 9 to 15.0. Corg concentrations and C/N ratios did not statistically vary according to vegetation cover (Table 2). Whereas, C and N concentrations were statistically higher in the black locust soil and lower in the soil taken from herbs (Table 2). NH₄⁺ concentrations ranged from 2.53 to 4.52 mg kg⁻¹ w.w., NO₂⁻ concentrations ranged from 0.65 to 1.81 mg kg⁻¹ w.w., and NO₃⁻ concentrations ranged from 1.78 to 7.89 mg kg⁻¹ w.w. (Table 2). They did not vary among soils under different covers (Table 2). Total DNA yield ranged between 5.31 × 10⁵ and 2.08 × 10⁶ ng g⁻¹ w.w., and did not vary significantly according to vegetation cover (Fig. 1). Eub sequences ranged from 1.87 × 10² to 1.52 × 10³ ng g⁻¹ w.w., with values statistically higher in the holm oak soil and statistically lower in the pine soil (Fig. 1). Amox sequences ranged from 1.95 × 10⁻⁶ to 4.18 × 10⁻⁴ ng g⁻¹ w.w., and were statistically higher in holm oak soil and statistically lower in the herb soil (Fig. 1). Archamox sequences ranged from 3.70 × 10⁻⁴ to 1.06 × 10⁻³ ng g⁻¹ w.w., and were statistically lower in pine soil (Fig. 1). Den and Nfix sequences ranged from 3.35 × 10⁻¹ to 9.93 × 10⁻⁴ ng g⁻¹ w.w. (Fig. 1) and from 2.18 × 10⁻⁵ to 5.26 × 10⁻⁵ ng g⁻¹ w.w., respectively, and were statistically higher in the holm oak soil and lower in the herb soil (Fig. 1).

In the burnt soils, significant and positive correlations were found between N concentration and DNA yield and Den and Nfix sequences, as well as between NH₄⁺ concentrations and Eub sequences (Fig. 4).

3.3. Comparison between soil microorganism populations in burnt and unburnt soils

The comparison of the quantity of the investigated microbial populations (Fig. 1 and Table 4) highlighted that Eub sequences were statistically higher in burnt soils than in unburnt soils of the holm oak and black locust (holm oak: 1.52 × 10³ and 3.54 × 10⁴ in burnt and unburnt soils, respectively; black locust: 8.23 × 10² and 1.50 × 10³ in burnt and unburnt soils, respectively). Amox sequences were statistically higher in unburnt soils from the black locust (4.73 × 10⁻⁵ and 5.38 × 10⁻⁴ in burnt and unburnt soils, respectively) and in burnt soils from pines and herbs (pine: 5.27 × 10⁻⁶ and 4.68 × 10⁻¹² in burnt and unburnt soils, respectively; herbs: 1.95 × 10⁻⁶ and 2.24 × 10⁻⁷ in burnt and unburnt soils, respectively). Archamox sequences were statistically higher in burnt soils from pine, black locust, and herbs (pine: 3.70 × 10⁻³ and 1.70 × 10⁻⁵ in burnt and unburnt soils, respectively; black locust: 9.86 × 10⁻⁵ and 2.80 × 10⁻⁵ in burnt and unburnt soils, respectively; herbs: 9.45 × 10⁻⁵ and 2.99 × 10⁻⁵ in burnt and unburnt soils, respectively). Finally, Nfix and Den sequences were statistically higher in burnt soils from black locust and herbs (Nfix under black locust: 3.94 × 10⁻³ and 1.75 × 10⁻³ in burnt and unburnt soils, respectively; Nfix under herbs: 2.18 × 10⁻³ and 5.82 × 10⁻⁴ in burnt and unburnt soils, respectively; Den under black locust: 6.52 × 10⁻¹ and 3.03 × 10⁻¹ in burnt and unburnt soils, respectively; Den under herbs: 3.35 × 10⁻¹ and 2.39 × 10⁻¹ in burnt and unburnt soils, respectively).

3.4. Effects of vegetation cover and fire on soil microorganism populations

The two-way ANOVA analysis highlighted that the amount of DNA in all the investigated microbial populations was affected by vegetation cover, with values, on average, higher in the holm oak and pine soils. Moreover, Eub, Archamox, and Den sequences were also enhanced by fire. Finally, the DNA quantity, with the exception of those related to Archamox and Den, was affected by the interaction between both vegetation cover and fire (Table 3). In particular, fire occurrence further emphasized the differences in the amount of Eub already existing among various vegetation covers. Whereas, it did not significantly impact the differences in DNA yield, Amox, and Nfix that already existed among those vegetation covers (Table 3).

4. Discussion

In both the unburnt and burnt soils of the investigated area of the Vesuvius National Park, DNA yield and specific microbial sequence quantities varied widely among soils that were under different vegetation covers. The highest DNA yield, representing the total microbial biomass (Fornasier et al., 2014), was found in unburnt soils taken from under the holm oak plant (approximately five-fold higher than in the pine soil, four-fold higher compared to the soils from under the other vegetation covers). Thus, the higher water availability in holm oak soil, especially in arid and semi-arid ecosystems (Griffiths and Philippot, 2013; Liu et al., 2010) such as the Vesuvius National Park (Memoli et al., 2018). Compared to the other vegetation, the holm oak soil was in the best condition. This was confirmed by it containing the highest amount of the microbial populations involved in the N cycle (specifically, the amount of Eub was, on average, two-fold higher than in the other types of vegetation; Archamox was, on average, four-fold higher than the other types of vegetation; Nfix was, approximately, five-fold higher than
the pine and black locust soils, and 15-fold higher than herb soil; Den was approximately three-fold higher than pine and black locust soils, and 11-fold higher than the herb soil), with only the exception of Amox (Banning and Murphy, 2008; Goberna et al., 2012; Cobo-Díaz et al., 2015). Notably, the largest amount of Amox in the unburnt soil being taken from the black locust soil (approximately 102-fold higher than the holm oak and herb soils, and 108-fold higher than the pine soil) could be due to the symbiotic relationship between its roots and N fixers (Panico et al., 2020). This determines a high availability of NH$_4^+$, which is a resource for Amox (Wendeborn, 2019; Di et al., 2009). The comparison between unburnt and burnt soils highlighted that fire affected the Amox amounts differently, according to the surrounding vegetation. This was because it inhibited the Amox development in black locust soil and stimulated it in holm oak, pine, and herb soils. It is likely that fires inhibited the biological nitrogen fixation in black locust soil, but created favorable conditions in the other investigated plant species (Tierney et al., 2019).

An overall evaluation highlighted that in the unburnt soils, the amount of Eub, Archamox, and Den significantly increased with the DNA yield increase. Moreover, according to the correlations that were found, soil NH$_4^+$, NO$_3^-$, and total N concentrations seemed to be effective drivers of the development of specific microbial populations involved in N cycle. In fact, Den seemed to be stimulated by the increase of N concentrations in soils (Castaldi and Aragosa, 2002). Furthermore, being involved in nitrate degradation, the denitrifiers caused the NO$_3^-$ decrease associated with the production of N reduced forms (Valera and Alexander, 1961; Shtratnikova et al., 2015; Zhang et al., 2020; Florio et al., 2021). Instead, the highest soil concentrations of NO$_3^-$, widely absorbable by soil microorganisms, seemed to inhibit the development of Nfix (Voisin et al., 2002).

Immediately after a fire, the soil abiotic properties slightly changed compared to the pre-fire conditions in the whole investigated area, suggesting that fire affected them to a similar extent regardless of plant species (Memoli et al., 2021). By contrast, three years after a fire, the effects on microbial populations involved in the N cycle were still evident (Borgogni et al., 2019). In particular, the significant differences in DNA yield, Amox, and Nfix sequences existing in unburnt soils covered by different plant species, were hidden by fire. The significant differences in the quantities of Archamox and Den were also rectified by the interaction between the vegetation and fire. Therefore, the soil properties that drove their quantities seemed to be affected by the different vegetations (i.e., NO$_3^-$ availability) rather than by fire. Instead, the differences in the amount of Eub post-fire were likely due to changes in NH$_4^+$ level that had enhanced them (Pereg et al., 2018). Whereas, those observed before a fire were mainly due to the NO$_3^-$ level. It is well known that fire indirectly influences the survival, recolonization, and distribution of microbial populations (Velasco, et al., 2009; Griffiths and Philippot, 2013) through changes in soil properties (Bissett and Parkinson, 1980; Monleon et al., 1997; Certini, 2005). Moreover, in the burnt soils that were investigated, the amount of DNA yield, Den, and Nfix were also related to the total N concentrations (Pereg et al., 2018).

The comparison of each population in unburnt and burnt soils under the same vegetation cover highlighted that although the DNA yield did not significantly vary, the relative amount of each investigated population involved in the N cycle significantly varied. Moreover, many of them, after three years, had not yet reached the values of the pre-fire
conditions and they could not be considered stabilized. An overall evaluation highlighted that, regardless of vegetation covers, nitrifying microorganisms (i.e., Amox and Archamox) had still increased three years after the fire. These findings are in accordance with Dannenmann et al. (2011), who detected a growth rate of nitrification in post-fire conditions. The findings also correlate with Zhang et al. (2018), who found an increase in the amount of bacteria and archaea related with amoA genes after a prescribed fire. However, different behaviors of the population involved in N cycle were detected in soils under different vegetation covers. In fact, herb and black locust soils showed significant differences in all the microbial populations, with the exception of Eub and Amox, respectively. Therefore, it can be theorized that these vegetation covers created soil conditions that stimulated the development of the microbial populations involved in the N cycle, distancing them from the unburnt conditions (Panico et al., 2020). Conversely, major resilience of the investigated populations involved in N cycle was observed in the pine and holm oak soils. In fact, Eub, Den, and Nfix reached their pre-fire quantities in the pine soil. Archamox and Den also returned to their pre-fire quantities in the holm oak soil. The pine soil was the fastest to return to its pre-fire condition. This could be due to the thickening of the pine needles, resulting in an enrichment of nutrients, which are resources for the microbial populations (Knicker, 2007; Pereira et al., 2012).

Table 3
Coefficients (F values) of the two-way ANOVA performed on total DNA (DNA yield), Eubacterial DNA (Eub), ammonia oxidizers (Amox), archaea ammonia oxidizers (Archamox), denitrifiers (Den) and N2-fixers (Nfix) in relationship to plant covers (Plant), fire occurrence (Fire) and their interactions (Plant × Fire).

<table>
<thead>
<tr>
<th>Plant</th>
<th>Fire</th>
<th>Plant × Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA yield</td>
<td>31.0***</td>
<td>0.19</td>
</tr>
<tr>
<td>Eub</td>
<td>4.49**</td>
<td>10.5***</td>
</tr>
<tr>
<td>Amox</td>
<td>2.92*</td>
<td>0.04</td>
</tr>
<tr>
<td>Archamox</td>
<td>5.40***</td>
<td>16.7***</td>
</tr>
<tr>
<td>Den</td>
<td>29.4***</td>
<td>11.9***</td>
</tr>
<tr>
<td>Nfix</td>
<td>24.4***</td>
<td>0.650</td>
</tr>
</tbody>
</table>

*P < 0.05; **P < 0.01; ***P < 0.001.

Table 4
Coefficients (t-values) of the t-test performed on the soil abiotic (pH; water content; WC; organic carbon content; Corg; C and N concentrations; C/N ratios; concentrations of NH4+, NO2-, NO3-) and biotic (total DNA: DNA yield; Eubacteria DNA: Eub; ammonia oxidizers: Amox; archaea ammonia oxidizers: Archamox; denitrifiers: Den; N2-fixers: Nfix) properties to evaluate statistically significant differences between unburnt and burnt soils collected under the same plant cover, inside the Vesuvius National Park (t-test analysis).

<table>
<thead>
<tr>
<th>HO</th>
<th>P</th>
<th>BL</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>2.79</td>
<td>15</td>
<td>0.672</td>
</tr>
<tr>
<td>WC</td>
<td>0.851</td>
<td>0.025</td>
<td>1.21</td>
</tr>
<tr>
<td>Corg</td>
<td>1.75</td>
<td>0.75</td>
<td>0.460</td>
</tr>
<tr>
<td>C</td>
<td>0.471</td>
<td>0.103</td>
<td>1.18</td>
</tr>
<tr>
<td>N</td>
<td>2.73</td>
<td>0.140</td>
<td>1.20</td>
</tr>
<tr>
<td>C/N</td>
<td>15</td>
<td>0.395</td>
<td>0.087</td>
</tr>
<tr>
<td>NH4+</td>
<td>1.18</td>
<td>2.43</td>
<td>0.509</td>
</tr>
<tr>
<td>NO2-</td>
<td>2.79*</td>
<td>0.757</td>
<td>1.31</td>
</tr>
<tr>
<td>NO3-</td>
<td>13</td>
<td>0.993</td>
<td>0.398</td>
</tr>
<tr>
<td>DNA yield</td>
<td>0.90</td>
<td>0.080</td>
<td>1.55</td>
</tr>
<tr>
<td>Eub</td>
<td>3.98**</td>
<td>1.5</td>
<td>3.26**</td>
</tr>
<tr>
<td>Amox</td>
<td>3.46**</td>
<td>2.30*</td>
<td>1.66</td>
</tr>
<tr>
<td>Archamox</td>
<td>0.687</td>
<td>2.74*</td>
<td>2.98**</td>
</tr>
<tr>
<td>Den</td>
<td>0.51</td>
<td>1.30</td>
<td>2.21*</td>
</tr>
<tr>
<td>Nfix</td>
<td>2.32*</td>
<td>0.89</td>
<td>2.42*</td>
</tr>
</tbody>
</table>

*P < 0.05; **P < 0.01; ***P < 0.001.
pre-fire conditions after three years, management practices allowing for the planting of native species less susceptible and more resistant to fire are necessary. These interventions are of primary importance, especially in the areas not previously covered by trees. This will prevent erosion phenomena, restore the naturalistic value of the National Park, and create the conditions for a rapid settlement of the vegetation.

5. Conclusions

In the investigated unburnt area, different vegetation covers significantly affected the DNA yield and the amount of the microbial populations involved in N cycle. In particular, the highest quantities were observed in holm oak soil because of the wide heterogeneity of soil micro niches created by the large amount of litter accumulation, validating the first hypothesis.

Fires slightly affected the soil abiotic properties and the DNA yield. Whereas, an overall evaluation highlighted that the amounts of Eub, Den, and Archaeom increased. This conclusion highlighted that the second hypothesis was only partially validated, as a reduction in the amount of the investigated microbial populations was determined.

The main drivers of microbial population quantities in unburnt soils were the concentrations of NO$_3^-$, NH$_4^+$, and total N concentrations. Those in the burnt soils were NH$_4^+$ and total N concentrations, also the third hypothesis was partially validated. In any case, the fundamental role of the contents of organic carbon and water in controlling the amount of the investigated microbial populations cannot be ignored, at least in unburnt holm oak soil.

An overall conclusion highlighted that a faster recovery of the amount of the microbial populations involved in the N cycle was observed in soils covered by pine and holm oak compared to soil under herbs and black locust, which remained stable three years after the fire. Therefore, further investigations are needed to follow the temporal development of the microflora and to estimate the time required to reach the amount of the microbial populations involved in the N cycle of the pre-fire conditions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The research was funded by the collaboration of the Biology Department of University Federico II of Naples and the Vesuvius National Park within the “Azione di Sistema - Impatto antropico da pressione turistica nelle aree protette: interferenze su territorio e biodiversità” funded by “Ministero dell’Ambiente e della Tutela del Territorio e del Mare”, Direttiva Conservazione della Biodiversità. The authors wish to thank Miss Melissa Gurgone for English revision.

References

