DAZL polymorphisms and susceptibility to spermatogenic failure: an example of remarkable ethnic differences

L. BECHERINI,* E. GUARDUCCI,* S. DEGL’INNOCENTI,* M. ROTONDI,† G. FORTI* and C. KRAUSZ*

*Andrology Unit, Department of Clinical Physiopathology, and †Endocrinology Unit, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy

Summary
Polymorphisms in genes involved in spermatogenesis are considered potential risk factors for male infertility. Recently a polymorphism in the deleted in azoospermia-like (DAZL) gene (T54A) was reported as susceptibility factor to oligo/azoospermia in the Chinese population. DAZL is an autosomal homologue of the Y chromosomal DAZ (deleted in azoospermia) gene cluster and both are considered master regulators of spermatogenesis. The aim of the present study was to screen (i) for mutations of the entire coding sequence of the DAZL gene in patients lacking of the DAZ gene cluster, in order to evaluate if DAZL polymorphisms may influence the AZFc deletion phenotype; (ii) for the two previously described (and eventually newly identified) single nucleotide polymorphisms (SNPs) in a large group of infertile and normospermic men of Italian origin. We failed to detect new mutations. We confirmed previous results showing no evidence for a functional role of the T12A mutation. Surprisingly, the T54A polymorphism, which was present in 7.4% of the Chinese patients was absent in our Caucasian population. This remarkable difference represent an example of how ethnic background is important also for polymorphisms involved in spermatogenesis and contributes to better select clinically relevant tests, specifically based on the ethnic origin of the infertile patients.

Keywords: DAZL, genetics, male infertility, polymorphism, spermatogenesis

Introduction
The list of potential and ascertained factors influencing male fertility is steadily increasing mainly because of recent progresses achieved in molecular genetics. Among them Y chromosome microdeletions represent one of the most frequent causes of oligoastenoteratozoospermia (5–7%) and azoospermia (12–15%) (Krausz et al., 2003). The Y microdeletions associated with infertility occur in specific regions of the long arm of the Y, called azoospermia factor (AZF) regions (Vogt et al., 1996; Repping et al., 2002). A strict genotype-phenotype correlation is observed only for the deletion of the entire AZFa and AZFb regions which are associated with the complete absence of germ cells in the testes and spermatogenic arrest (in general at the stage of spermatocytes), respectively (Vogt et al., 1996; Krausz et al., 2003). On the contrary, the deletion of the most distal AZFc region is associated with a heterogeneous phenotype in different individuals, ranging from the absence of germ cells in the testis to a severe reduction of sperm number/motility and morphology in the ejaculate (oligoasthenoteratozoospermia) (Krausz et al., 2001a). This phenomenon suggests that although spermatogenesis may start without AZFc genes, their absence is crucial for a quantitatively and qualitatively normal spermatogenesis. This region contains a

Correspondence: Csilla Krausz MD PhD, Andrology Unit, Department of Clinical Physiopathology, Viale Pieraccini, 6 Florence, Italy.
E-mail: c.krausz@dfc.unifi.it

© 2004 Blackwell Publishing Ltd.
total of eight gene families (BPY2, CDY1, DAZ, TTY3.1, TTY4.1, TTY17.1; CSPG4LY and GOLGA2LY) (Skeletsky et al., 2003). The first multicopy gene identified in the region was the deleted in azoospermia (DAZ) which belongs to a gene family that consists of the two autosomal single copy genes: BOULE and DAZ-like (DAZL) and the Y specific DAZ (Reijo et al., 1995; Cooke et al., 1996; Yen et al., 1996; Yen, 2004). All members of the family are expressed exclusively in the germ cells and encodes proteins containing a highly conserved RNA-type RNA-recognition motif (RRM) and a unique DAZ repeat of 24 amino acid residues (Habermann et al., 1998; Reijo et al., 2000; Shan et al., 1996; Xu et al., 2001; Yen, 2004). Besides structural homologies, the abilities of the human BOULE gene to rescue the spermatogenic defect in Drosophila boule mutants (Xu et al., 2003), and human DAZ and DAZL transgenes to partially rescue the mouse Dazl null phenotype (Slee et al., 1999; Vogel et al., 2002) indicate that the functions of these genes are also highly conserved between species. Taken together these data, it is plausible that the absence of the DAZ gene, because of AZFc microdeletion, can be partially compensated by a fully efficient DAZL gene or in alternative mutations/polymorphic variants in the DAZL gene may lead to a more severe phenotype in AZFc deleted patients. DAZ was copied to the Y chromosome relatively recently, in the old world primate lineage and is 90% identical to its autosomal ancestor DAZL (Saxena et al., 1996). No mutations for the DAZL and BOULE genes have been reported so far, except two single nucleotide polymorphisms (SNPs) in the DAZL gene sequence in exon 2 and exon 3 (Teng et al., 2002). In the Chinese population a significant association between the presence of the SNP (A to G transition) in exon 3 at nucleotide position 386 and oligozoospermia \((p = 0.0003) \) has been found whereas the SNP (A to G transition) at nucleotide position 260 was similarly distributed among infertile (3.52%) and control men (2.59%). The mutation in exon 3 is situated within the highly conserved RNA-recognition motif domain of the DAZL protein and leads to Thr54 \(\rightarrow \) Ala change (T54A). Thr54 is conserved for both DAZL and DAZ and it is likely that this mutation may lead to functional consequences such as reduced RNA binding capacity. This would explain the observed similarity in the phenotypic expression of the T54A mutation and the DAZ gene (AZFc) deletion.

The aim of the present study was to evaluate, through mutational analysis of the entire coding sequence of the DAZL gene, the influence of the two known and eventually of newly identified mutations on the spermatogenic potential of AZFc deleted men. In addition, in order to establish if any of the previously described SNPs may represent a risk factor for spermatogenic failure and thus could be proposed as a new diagnostic test, we analysed a large group of infertile and control normospermic men of Italian origin.

Materials and methods

Subjects

The study population consisted of 242 patients of Italian origin seeking complete andrological work-up for couple infertility at the Andrology Unit of the University Hospital Careggi (Florence). All patients underwent comprehensive andrological examination including semen analysis, karyotype and Y chromosome microdeletion screening. At the end of the clinical work-up the patients have been divided into three categories: (i) ‘idiopathic’ \((n = 92)\): patients with no abnormal andrological findings in their medical history and at the medical examination, normal hormone levels and normal genetic tests; (ii) ‘co-factor+’ \((n = 61)\) presence of co-factors with potential negative effect on the spermatogenesis i.e. unilateral varicocele, previous infections of the urogenital tract, heavy smoking, monolateral cryptorchidism; (iii) ‘non-idiopathic’ \((n = 89)\): presence of abnormal andrological findings with clearly established negative effect on spermatogenesis i.e. karyotype abnormalities, obstructive azoosperma, bilateral cryptorchidism, bilateral second to third grade varicocele, iatrogenic, bilateral orchitis, hypogonadal hypogonadism.

A selected group of 12 patients bearing complete AZFc deletions has been screened separately.

Patients in each category (‘idiopathic’, ‘co-factor+’ and ‘non-idiopathic’) have been further divided into subgroups on the basis of their sperm count: azoospermic (the complete absence of spermatozoa), cryptozoospermia (<1 million spermatozoa/mL); severe oligozoospermia (1–5 millions spermatozoa/mL), moderate oligozoospermia (5–20 millions spermatozoa/mL), asthenoteratozoospermia (total progressive motility <50% with total normal morphology <30%) pure teratozoospermia.

A total of 229 Italian men with normal sperm parameters have been recruited mainly from the Florence area. Ninety men fathered at least one child or had normal fertilization after IVF for pure tubal factor infertility.

All subjects gave an informed consent for molecular analysis of their blood samples.

Semen analysis

Semen analysis has been performed according to the World Health Organization (WHO) (1992) guidelines at the Andrology Laboratory of the University Hospital of Careggi (Florence).

Molecular analysis

DNA source. The DNA has been extracted from peripheral lymphocytes in the infertile group and in 129 controls whereas DNA was isolated from frozen semen in 100 controls.

For detection of the polymorphisms at nucleotide position 260 and 386 we performed polymerase chain
reactions (PCRs) in 25 μL containing 200 ng of genomic DNA, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.1% Triton X-100, 200 μM deoxynucleotide triphosphates, 100 pmol of each primer, and 1 U Taq DNA polymerase (Promega Corp., Madison, WI, USA). DNA samples were amplified at following conditions: 5 min 94 °C; 30X 30 sec 94 °C, 30 sec 58 °C, 30 sec 72 °C; 5 min 72 °C. The primer sequences used for detection of SNP260 in exon 2 and SNP386 in exon 3 are reported in the paper by Teng et al. (2002).

The mutation in exon 2 leads to a Thr12-Ala change (T12A) of the DAZLA protein. The T12A variant creates a Ddel restriction site (CTNAG). On digestion, gel electrophoresis, in agarose gel, showed 67- and 197-bp fragments for the variant, instead of the 264-bp fragment of wild-type allele. Sequence analysis was performed with automatic sequencer (ABI 310; PE Applied Biosystems, Foster City, CA, USA) for all patients presenting the ‘A’ variant.

The mutation in exon 3 leads to a Thr54-Ala change (T54A) of the DAZLA protein. Sequence analysis was performed with automatic sequencer (ABI 310; PE Applied Biosystems) in 242 infertile and 100 normal controls.

Statistical analysis

Statistical analysis has been performed using the statistical package SPSS for Windows (version 11, SPSS Inc. Chicago, IL, USA). All variables were checked for normal distribution by Kolmogorov–Smirnov one sample test. For comparisons of mean values between groups of different genotypes Student t-test for independent samples, when normal distribution was observed, has been applied. Logarithmic transformation of data has been performed in order to normalize the distribution when the presence of log normal distribution was checked. Finally, in case of non-normalized distribution, the nonparametric test Mann–Whitney U-test was applied to achieve the same objective.

Allele frequencies were calculated by the allele counting method and the Hardy–Weinberg equilibrium was confirmed $\chi^2 = 0.6291$ and 0.5706 for patients and controls, respectively. Differences in genotype and allele frequencies between patients and controls were compared by chi-square test and Fisher’s exact test was used when appropriate.

A p-value <0.05 was considered statistically significant in each situation. The null hypothesis of means (or median) equality has been refused.

Results

Mutation screening by direct sequencing of the DAZL gene in patients affected by AZFc deletions

In order to evaluate an eventual modulating effect of DAZL variants or mutations on the AZFc phenotype, a mutational analysis of the entire coding sequence of the DAZL gene has been performed in 12 patients affected by complete AZFc deletions. No new mutations or SNPs have been detected. In one patient with cryptozoospermia the previously described SNP260 (A to G transition) was found in heterozygosis. The genotype and semen parameters of these patients are reported in Table 1.

Search for polymorphisms (T12A and T54A) in the Italian population

Frequency and distribution of the T12A (SNP260) allele of the DAZL gene in controls vs. patients. The most frequently observed allele in both controls and patients was the common ‘T’ allele (Teng et al., 2002). The variant T12A was found both in homozygosis and heterozygosis.

The frequency of the SNP260 genotypes (AA; AG; GG) in the control and the entire patient population (including idiopathic, cofactor+ and non-idiopathic patients) was comparable. A further subdivision of the patient population on the basis of the etiology and semen parameters was unable to identify significant differences for any of the subgroups vs. controls (Table 2).

Effect of SNP260 on sperm parameters. In order to assess if the presence of the ‘G’ substitution (genotypes AG and GG) is able to influence spermatogenesis or sperm function, we compared the mean values of the three principal sperm parameters (concentration, morphology and motility) among men with and without the ‘G’ substitution. The mean values of the three parameters were not significantly different between the two groups, in both normospermic and infertile men (Fig. 1a,b).

Table 1. DAZL genotypes in 12 patients bearing AZFc deletions. Sperm analysis has been performed according to WHO guidelines (WHO, 1992). Total number (millions spermatozoa/mL); motility (% of type a + b); morphology (% of normal forms)

<table>
<thead>
<tr>
<th>Code</th>
<th>Y chromosome deletion</th>
<th>DAZLA</th>
<th>SNP 260</th>
<th>Total number</th>
<th>Motility (%)</th>
<th>Morphology (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>AZFc</td>
<td>AA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21</td>
<td>AZFc</td>
<td>AA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A50</td>
<td>AZFc</td>
<td>AA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A57</td>
<td>AZFc</td>
<td>AA</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A81</td>
<td>AZFc</td>
<td>AG</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A116</td>
<td>AZFc</td>
<td>AA</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A129</td>
<td>AZFc</td>
<td>AA</td>
<td>1.20</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A189</td>
<td>AZFc</td>
<td>AA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A208</td>
<td>AZFc</td>
<td>AA</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A282</td>
<td>AZFc</td>
<td>AA</td>
<td>1.4</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A302</td>
<td>AZFc</td>
<td>AA</td>
<td>1.8</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A336</td>
<td>AZFc</td>
<td>AA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency and distribution of the T54A (SNP386) allele of the DAZL gene in controls vs. patients. Direct sequencing of exon 3 (Fig. 2) has failed to detect the A to G transition in nucleotide position 386 both in the control and patient group. This finding indicates a sharp contrast with the relatively high frequency of the T54A allele in the Chinese infertile population (7.39%).

Discussion

Male infertility is a multifactorial pathological condition mainly (approximately 70%) because of factors acting directly in the testes (Forti & Krausz, 1998). Although some of them induce a homogeneous phenotype (complete AZFa and AZFb deletions of the Y chromosome), the majority of pathogenic factors (Klinefelter sdr, cryptorchidism, chemio/radiotherapy, varicocele, environmental toxic factors, AZFc deletions) cause different degree of spermatogenic failure in different individuals. This interindividual variability is likely to be related to the genetically determined spermatogenic potential of each individual.

Polymorphisms or genetic variants in genes involved in spermatogenesis are considered potential risk factors which may contribute to the severity of spermatogenic failure. Several polymorphic variants have been described in association with oligo/azoospermia (Fritsche et al., 1998; Dowsing et al., 1999; Ruiz-Pesini et al., 2000; van der Ven et al., 2000; Holyoake et al., 2001; Krausz et al., 2001a;b; St John et al., 2001; Kukuvitis et al., 2002; Rajpert-De Meyts et al., 2002; Tsujimura et al., 2002; Asatiani et al., 2003; Tanaka et al., 2003; Yong et al., 2003), and among them a DAZL polymorphism (T54A) has been reported as a susceptibility factor to oligo/azoospermia in the Chinese population. This mutation represents the first example of a SNP in an autosomal gene influencing human spermatogenesis. Independently from this finding, the presence of the T54A allele does not worsen the phenotype of AZFc deleted men (Teng et al., 2002). However, the lack of effect in this selected group of patients can be related to the influence of other AZFc homologous genes.

Data on DAZL mutations are limited in the literature as only one population has been screened so far (Teng et al., 2002). Therefore, in order to assess whether the two known mutations/variants may influence the spermatogenic potential of AZFc deleted men, and to explore for the presence of yet unidentified mutations, we performed a mutational analysis of the entire coding region of the gene in 12 patients bearing the AZFc deletion. The screening did not lead to the detection of new mutations, and the only variant found was the G to A transition in exon 2 (SNP260) in one cryptozoospermic patient. Only three of 12 patients had a less severe grade of spermatogenic failure with respect to the heterozygous patient, which suggests little or no functional effect of this variant on spermatogenesis.

The screening for the two previously described SNPs in a large group of patients and normospermic men gave a surprising outcome. The previously described susceptibility polymorphism, T54A reported to be present at a relatively high frequency in the infertile group (7.39%) and significantly different from that observed in the control group (0.86%), was completely absent in a Caucasian population such as the Italian population. On the contrary, in accordance to the Chinese study, the frequency of SNP260 was not different between infertile and control patients. Given that the group of infertile men was constituted by a heterogeneous population both for aetiological factors and sperm counts, we further subdivided the study population and compared them with the control population. Nevertheless, no specific ‘at risk’ subgroup has been identified. This data, together with the absence of significant differences concerning the mean

Table 2. DAZL genotypes in the whole study group. Values in parenthesis are expressed as percentages

<table>
<thead>
<tr>
<th>Group</th>
<th>AA</th>
<th>AG</th>
<th>GG</th>
<th>Total (n)</th>
<th>p-value vs. controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>176 (76.8)</td>
<td>48 (20.9)</td>
<td>5 (2.2)</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>173 (71.5)</td>
<td>65 (26.8)</td>
<td>4 (1.65)</td>
<td>242</td>
<td>0.332</td>
</tr>
<tr>
<td>Aetiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>64 (69.6)</td>
<td>26 (28.3)</td>
<td>2 (2.2)</td>
<td>92</td>
<td>0.387</td>
</tr>
<tr>
<td>Cofactor+</td>
<td>44 (72.1)</td>
<td>17 (27.9)</td>
<td>0 (0)</td>
<td>61</td>
<td>0.332</td>
</tr>
<tr>
<td>Idiopathic and cofactor+</td>
<td>108 (70.6)</td>
<td>43 (28.1)</td>
<td>2 (1.3)</td>
<td>153</td>
<td>0.260</td>
</tr>
<tr>
<td>Non-idiopathic</td>
<td>65 (73.0)</td>
<td>22 (24.7)</td>
<td>2 (2.2)</td>
<td>89</td>
<td>0.729</td>
</tr>
<tr>
<td>Sperm count* (millions/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>40 (76.9)</td>
<td>11 (21.1)</td>
<td>1 (1.9)</td>
<td>52</td>
<td>0.993</td>
</tr>
<tr>
<td><5</td>
<td>45 (69.2)</td>
<td>19 (29.2)</td>
<td>1 (1.5)</td>
<td>65</td>
<td>0.368</td>
</tr>
<tr>
<td>>5</td>
<td>23 (63.9)</td>
<td>13 (36.1)</td>
<td>0 (0)</td>
<td>36</td>
<td>0.114</td>
</tr>
</tbody>
</table>

*Non-idiopathic infertile patients have been excluded.
values of the three sperm parameters (sperm count, motility and morphology) in both the infertile and in the control groups and the presence of five homozygous mutants with normozoospermia, suggests that this polymorphism has no evident functional role in spermatogenesis.
Our study, based on a large group of infertile and normospermic men clearly indicates that the screening for T54A (and T12A) does not provide a new diagnostic tool in a Caucasian population. A similar conclusion has been made by another preliminary study dealing with a low number of patients \((n = 95) \) and controls \((n = 65) \) from Caucasian origin and using a different method for the detection of this polymorphism (Bartoloni et al., 2004). However, this polymorphism could be taken into consideration as a potential new marker for population genetic studies.

Discrepancies between results of association studies is a rather frequent phenomenon and may be related to many different factors (Ioannidis et al., 2001). An important feature of this study is that the discrepancy between our analysis and the Chinese study is not related to sampling biases (small sample size, inadequate control group or population sub-structuring), but it is related to the complete absence of the ‘at risk’ SNP in 300 subjects, indicating that in Italy this polymorphism is probably absent or extremely rare. This remarkable difference is paradigmatic as it shows how ethnic background is important for polymorphisms involved in spermatogenesis, thereby underscoring that different genetic ‘risk’ factors may be present in different populations. A similar phenomenon is observed for cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations causing azoospermia because of congenital bilateral absence of vas deferens (CBAVD). The frequency of a particular CFTR mutation is also influenced by the ethnic composition of the population analysed (Patrizio & Leonard, 2000). Our study therefore contributes to a better definition of clinically relevant tests, specifically based on the ethnic origin of the infertile patients.

Acknowledgements

We thank the clinical staff of the Andrology Unit and Reproductive Physiology for patient’s recruitment: Prof. M. Maggi, Drs G. Corona, M. Magni, L. Petrone, A. Cilotti, Prof. E. Coccia, Prof. I. Noci. The study was supported by a grant of University of Florence.

References

DAZL gene polymorphism and male infertility

Revised 18 October 2004; accepted 27 October 2004

Received 18 October 2004; revised 26 October 2004; accepted 27 October 2004