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A Model Checking Approach for Verifying COWS
Specifications�

Alessandro Fantechi1, Stefania Gnesi2, Alessandro Lapadula1, Franco Mazzanti2,
Rosario Pugliese1, and Francesco Tiezzi1

1 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa

Abstract. We introduce a logical verification framework for checking functional
properties of service-oriented applications formally specified using the service
specification language COWS. The properties are described by means of SocL,
a logic specifically designed to capture peculiar aspects of services. Service be-
haviours are abstracted in terms of Doubly Labelled Transition Systems, which
are used as the interpretation domain for SocL formulae. We also illustrate the
SocL model checker at work on a bank service scenario specified in COWS.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm for developing loosely
coupled, interoperable, evolvable applications, which exploits the pervasiveness of the
Internet and its related technologies. SOC systems deliver application functionality as
services to either end-user applications or other services. Current software engineering
technologies for SOC, however, remain at the descriptive level and do not support an-
alytical tools for checking that services enjoy desirable properties and do not manifest
unexpected behaviors. On the other end, logics have been since long proved able to
reason about such complex software systems as SOC applications, because they only
provide abstract specifications of these systems and can thus be used for describing
system properties rather than system behaviours. Indeed, in the last twenty years, sev-
eral modal, temporal and, more recently, spatial logics have been proposed as suitable
means for specifying properties of concurrent and distributed systems owing to their
ability of expressing notions of necessity, possibility, eventuality, etc.

In this paper, we introduce a logical verification framework for checking functional
properties of services by abstracting away from the computational contexts in which
they are operating. In what follows, services are abstractly considered as entities capable
of accepting requests, delivering corresponding responses and, on-demand, cancelling
requests. Thus, we will say that a service is

1. available: if it is always capable to accept a request.
2. reliable: if, when a request is accepted, a final successful response is guaranteed.
3. responsive: if it always guarantees a response to each received request.
4. broken: if, after accepting a request, it does not provide the (expected) response.
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5. unavailable: if it refuses all requests.
6. fair: if it is possible to cancel a request before the response.
7. non-ambiguous: if, after accepting a request, it provides no more than one response.
8. sequential: if, after accepting a request, no other requests may be accepted before

giving a response.
9. asynchronous: if, after accepting a request, other requests may be accepted before

giving a response.
10. non-persistent: if, after accepting a request, no other requests can be accepted.

Albeit not exhaustive, this list contains many common properties that express desirable
attributes of services and SOC applications (see, e.g., the S������� ontology [5] or [2]).

To formalize the properties above, we introduce SocL, a logic specifically designed
to capture peculiar aspects of services. SocL is a variant of the logic UCTL [3], origi-
nally introduced to express properties of UML statecharts. UCTL and SocL have many
commonalities: they share the same temporal logic operators, they are both state and
event based branching-time logics, they are both interpreted on Doubly Labelled Tran-
sition Systems (L2TSs, [9]) by exploiting the same on-the-fly model-checking engine.
The two logics mainly di�er for the syntax and semantics of state-predicates and action-
formulae, and for the fact that SocL also permits to specify parametric formulae.

As specification language for the services and SOC applications of interest we use
COWS (Calculus for Orchestration of Web Services, [14]), a recently proposed pro-
cess calculus for specifying and combining services, while modelling their dynamic
behaviour. The design of the calculus has been influenced by the principles underlying
WS-BPEL [16], an OASIS standard language for orchestration of web services, and
in fact COWS supports service instances with shared states, allows a same process to
play more than one partner role and permits programming stateful sessions by corre-
lating di�erent service interactions. COWS has also taken advantage of previous work
on process calculi. Indeed, it combines in an original way constructs and features bor-
rowed from well-known process calculi, e.g. not-binding input activities, asynchronous
communication, polyadic synchronization, pattern matching, protection, delimited re-
ceiving and killing activities, while however resulting di�erent from any of them.

To check if a COWS term enjoys some abstract properties expressed as SocL for-
mulae, the following four steps must be performed. Firstly, the semantics of the COWS
term is defined by using a Labelled Transition System (LTS). Secondly, this LTS is
transformed into an L2TS by labelling each state with the set of actions the COWS term
is able to perform immediately from that state. Thirdly, by applying a set of application-
dependent abstraction rules over the actions, the concrete L2TS is abstracted into a
simpler L2TS. Finally, the SocL formulae are checked over this abstract L2TS. To as-
sist the verification process, we have developed CMC, an on-the-fly model checker for
SocL formulae over L2TS.

The rest of the paper is organized as follows. Section 2 introduces SocL, while Sec-
tion 3 presents syntax and main features of COWS; this is done in a step-by-step fashion
while modelling a bank service scenario, used for illustration purposes in the rest of the
paper. Section 4 demonstrates how to transform the original LTS of a COWS term into
an abstract L2TS by using suitable abstraction rules. Section 5 presents CMC and illus-
trates the results of the verification of the bank service scenario. Section 6 touches upon
related work and directions for future works.
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2 The Logic SocL

In this section, we introduce the action and state-based branching time temporal logic
SocL that is interpreted over L2TSs [9]. SocL combines the action paradigm, classi-
cally used to describe systems via LTS, with predicates that are true over states, as
usually exploited when using Kripke structures as semantic model. The advantage of
action and state-based logics lies in the ease of expressiveness of properties that in pure
action-based or pure state-based logics can be quite cumbersome to write down. Indeed
in recent years, several logics that allow one to express both action-based and state-
based properties have been introduced, for many di�erent purposes (see for example
[3,7,8,6,13]).

Before presenting the syntax of SocL, we report some basic definitions and notations
used in the sequel.

Definition 1 (Doubly Labelled Transition System, L2TS). An L2TS is a tuple
�Q� q0� Act�R�AP� L�, where:

– Q is a set of states;
– q0 � Q is the initial state;
– Act is a finite set of observable events (actions) with � ranging over 2Act and �

denoting the empty set;
– R � Q � 2Act � Q is the transition relation1; instead of (q� �� q�) � R we may also

write q
�

�� q�.
– AP is a set of atomic propositions with � ranging over AP;
– L : Q �� 2AP is a labelling function that maps each state in Q to a subset of AP.

Basically, an L2TS is an LTS (defined as the quadruple �Q� q0� Act�R�), extended with
a labelling function from states to sets of atomic propositions. By means of an L2TS, a
system can be characterized by states and state changes and by the events (actions) that
are performed when moving from one state to another.

In the interpretation domain of SocL, Act and AP are defined as follows.

– Act is a finite set of observable actions, ranged over by a, such as: request(i� c),
response(i� c), cancel(i� c) and f ail(i� c), where the name i indicates the interaction
to which the operation performed by a service belongs2, and c denotes a tuple of
correlation values that identifies a particular invocation of the operation. The mean-
ing of actions is as follows: request(i� c) indicates that the performed operation
corresponds to the initial request of the interaction i and its invocation is identi-
fied by the correlation tuple c; similarly, response(i� c), cancel(i� c) and f ail(i� c)
characterise operations that correspond to a response, a cancellation and a failure
notification, respectively, of the interaction i.

1 Notice that this definition di�ers from the classical one [9] for the labelling of the transitions:
we label transitions by sets of events rather than by single (un)observable events. This exten-
sion allows to model the occurrence of more than one action at the same time. Unobservable
actions are rendered by the empty set.

2 See Section 5 for an explanation of the mapping between service operations and interactions.
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– AP is a finite set of atomic propositions, parameterized by interactions and corre-
lation tuples, like accepting request(i) and accepting cancel(i� c), that can be true
over a state of an L2TS.

To define the auxiliary logic of observable actions �	 (Act$), we extend Act to in-
clude the possibility that the correlation tuples refer variables. Let var be a correlation
variable name, we use $var to indicate the binder of the occurrences %var. For example,
request(i� $var) denotes a request action for the interaction i that is uniquely identified
through the correlation variable $var. This way, subsequent actions, corresponding e.g.
to response to that specific request, can unambiguously refer it through %var. We de-
note the extended set by Act$ and let a$ to range over it. We will use a% to range over
actions of Act$ whose correlation tuple does not contain variables of the form $var.
Note that Act 
 Act$.

Definition 2 (Action formulae). Given a set of observable actions Act$, the language
�	 (Act$) of the action formulae on Act$ is defined as follows:

� ::� a$ � � � ::� tt � a% � � � �� � �  �

As usual, ff abbreviates �tt and � � �� abbreviates �(��  ���).
The introduction of variables to express correlation requires the notion of substitu-

tion, that in its turn requires that of pattern-matching function.

Definition 3 (Substitutions and the pattern-matching function)

– Substitutions, ranged over by �, are functions mapping correlation variables to
values and are written as collections of pairs of the form var	val.

– The empty substitution is denoted by �.
– Application of substitution � to a formula 
, written 
 ��, has the e�ect of replacing

every occurrence %var in 
 with val, for each var	val � �.
– The partial function m ( � ) from pairs of actions to substitutions, that permits

performing pattern-matching, is defined by the following rules:

m (request(i� c)� request(i� c�)) � m (c� c�) m ($var� val) � �var	val�

m (response(i� c)� response(i� c�)) � m (c� c�) m (val� val) � �

m (cancel(i� c)� cancel(i� c�))�m (c� c�) m ( f ail(i� c)� f ail(i� c�))�m (c� c�)

m ((e1 � c1)� (e2 � c2)) � m (e1� e2) � m (c1� c2)

where notation e � c stands for a tuple with first element e.

Definition 4 (Action formulae semantics). The satisfaction relation �� for action for-
mulae is defined over sets of observable actions in Act$ and over a substitution.

– � �� a$ � � i� �! b � � such that m (a$� b) � �;
– � �� � � � i� � �� �, where the relation � �� � is defined as follows:

� � �� tt holds always;
� � �� a% i� �! b � � such that m (a%� b) � �;
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� � �� � i� � � �;
� � �� �� i� not � �� �;
� � �� �  �� i� � �� � and � �� ��.

The notation � �� � � � means: the formula � is satisfied over the set of observ-
able actions � (only) under substitution �. Notably, in the above definition we require
that an observable action a$ or a% matches only and only one action in �. This is
a consequence of the assumption that inside a single evolution step two or more ac-
tions with the same type and interaction do not occur. Thus, e.g., the transition la-
bel �request(i� �1�)� request(i� �2�)� never appears in SocL interpretation models. Notice
also that actions containing correlation variable occurrences like %var (that have not
yet been replaced by values) cannot be assigned a semantics; indeed, the case � �� a%
requires that m (a%� b) � � that, according to the rules defining the pattern-matching
function, means that a% � Act, i.e. a% does not contain variables.

Definition 5 (SocL syntax). The syntax of SocL formulae is defined as follows:

(state formulae) 
 ::� true � � � �
 � 
  
� � E� � A�
(path formulae) � ::� X�
 � 
 �U 
� � 
 �U� 


� � 
 �W 
� � 
 �W� 

�

We comment on salient points of the grammar above. � � AP are atomic propositions,
A and E are path quantifiers, and X, U and W are indexed next, until and weak until
operators drawn on from those firstly introduced in [9]. The next operator says that
in the next state of the path, reached by an action satisfying �, the formula 
 holds;
the meaning of the until operators is that 
� holds at the current or at a future state
(reached by an action satisfying � or without any specific behaviour), and 
 has to hold
until that state is reached and the actions executed satisfy � or are unobservable; finally,
the weak until operators hold either if the corresponding strong until operators hold
or if for all states of the path the formula 
 holds (by executing actions satisfying � or
unobservable). A peculiarity of SocL is that the satisfaction relation of the next and until
operators may define a substitution which is propagated to subformulae. Notably, in the
left side of until operators we use � instead of �, to avoid formulae like the following

 request(i��$v�)U� 


�, where the satisfaction relation for request(i� �$v�) could produce a
di�erent substitution for each state that comes before the one where 
� holds.

To define the semantics of SocL, we first formalise the notion of path in an L2TS.

Definition 6 (Path). Let �Q� q0� Act�R�AP� L� be an L2TS and let q � Q.

– � is a path from q if � � q (the empty path from q) or � is a (possibly infinite)
sequence (q0� �1� q1)(q1� �2� q2) � � � with q0 � q and (qi�1� �i� qi) � R for all i  0.

– The concatenation of paths �1 and �2, denoted by �1�2, is a partial operation,
defined only if �1 is finite and its final state coincides with the first state of �2.

– If � � (q0� �1� q1)(q1� �2� q2) � � � then the ith state in �, i.e. qi, is denoted by �(i).
– We write path(q) for the set of all paths from q.

Definition 7 (SocL semantics). The satisfaction relation of closed SocL formulae, i.e.
formulae without unbound variables, over an L2TS is defined as follows:

– q �� true holds always;
– q �� � i� � � L(q);
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– q �� �
 i� not q �� 
;
– q �� 
  
� i� q �� 
 and q �� 
�;
– q �� E� i� �� � path(q) such that � �� � ;
– q �� A� i� �� � path(q) � �� � ;
– � �� X�
 i� � � (q� �� q�)��, � �� � � �, and q� �� 
 � �;
– � �� 
 �U
� i� there exists j � 0 such that �( j) �� 
� and for all 0 � i � j:

� � ��(�(i)� �i�1� �(i � 1))��� implies �(i) �� 
 and �i�1 � � or �i�1 �� �;
– � �� 
 �U�


� i� there exists j � 1 such that � � ��(�( j � 1)� � j� �( j))���

and � j �� � � � and �( j) �� 
� � � and �( j � 1) �� 
, and for all 0 � i � j:
� � ��

i (�(i � 1)� �i� �(i))���
i implies �(i � 1) �� 
, and �i � � or �i �� �;

– � �� 
 �W
� i� either
there exists j � 0 such that �( j) �� 
� and for all 0 � i � j:
� � ��(�(i)� �i�1� �(i � 1))��� implies �(i) �� 
 and �i�1 � � or �i�1 �� �

or for all 0 � i:
� � ��(�(i)� �i�1� �(i � 1))��� implies �(i) �� 
, and �i�1 � � or �i�1 �� �;

– � �� 
 �W�

� i� either

there exists j � 1 such that � � ��(�( j � 1)� � j� �( j))��� and
� j �� � � � and �( j) �� 
� � � and �( j � 1) �� 
, and for all 0 � i � j:
� � ��

i (�(i � 1)� �i� �(i))���
i implies �(i � 1) �� 
, and �i � � or �i �� �

or for all 0 � i:
� � ��

i (�(i � 1)� �i� �(i))���
i implies �(i � 1) �� 
, and �i�1 � � or �i�1 �� �.

Other useful operators can be derived as usual. In particular, the ones that we use
in the sequel are: false stands for � true; � �  
 stands for EX� 
; [�] 
 stands
for � � �  � 
; EF
 stands for E(true tt U
); EF� true stands for E(true tt U�true);
AF� true stands for A(true tt U�true); AG 
 stands for � EF � 
.

We end this section by showing how the abstract properties presented in the Intro-
duction can be expressed as generic patterns in SocL. For the sake of readability, here
we consider correlation tuples composed of only one element and use notations $v and
%v instead of the more cumbersome notations �$v� and �%v�, respectively.

1. Available service: AG(accepting request(i)).
This formula means that in every state the service may accept a request; a weaker
interpretation of service availability, meaning that the server accepts a request in-
finitely often, is given by the formula AGAF(accepting request(i)).

2. Reliable service: AG[request(i� $v)]AFresponse(i�%v) true.
Notably, the response belongs to the same interaction i of the accepted request and
they are correlated by the variable v.

3. Responsive service: AG[request(i� $v)] AFresponse(i�%v)� f ail(i�%v) true.
4. Broken service: �AG[request(i� $v)] AFresponse(i�%v)� f ail(i�%v) true.

This formula means that the service is temporarily broken; instead, the formula
AG[request(i� $v)]�EFresponse(i�%v)� f ail(i�%v) true means that the service is perma-
nently broken.

5. Unavailable service: AG[request(i� $v)] AF f ail(i�%v) true.
6. Fair service:

AG[request(i� $v)] A(accepting cancel(i�%v) ttWresponse(i�%v)� f ail(i�%v)true).
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Table 1. COWS syntax

s ::� kill(k) � u � u�!ē �
�l

i�0 pi � oi?w̄i�si (kill, invoke, receive-guarded sum)

� s � s � ��s�� � [d] s � � s (parallel, protection, delimitation, replication)

This formula means that the server is ready to accept a cancellation required by the
client (fairness towards the client); instead the formula AG[response(i� $v)]�EF
� cancel(i�%v)  true means that the server cannot accept a cancellation after
responding to a request (fairness towards the server).

7. Non-ambiguous service:
AG[request(i� $v)]�EF � response(i�%v)  EF � response(i�%v)  true.

8. Sequential service:
AG[request(i� $v)] A(� accepting request(i) tt Uresponse(i�%v)� f ail(i�%v)true).

9. Asynchronous service:
AG[request(i� $v)] EF � response(i�%v) � f ail(i�%v)  true.

10. Non-persistent service: AG[request(i� $v)] AG � accepting request(i).

The SocL formulation of the properties 1–10 shows that their natural language de-
scription can sometimes be interpreted in di�erent ways: hence, formalization within
the logic enforces a choice among di�erent interpretations.

3 COWS: Calculus for Orchestration of Web Services

In this section, we report the syntax of COWS and explain the semantics of its primitives
in a step-by-step fashion while modelling a bank service scenario, that will be used in
the rest of the paper for illustration purposes. Due to lack of space, here we only provide
an informal account of the semantics of COWS and refer the interested reader to [14,15]
for a formal presentation, for examples illustrating its peculiarities and expressiveness,
and for comparisons with other process-based and orchestration formalisms.

The syntax of COWS is presented in Table 1. It is parameterized by three countable
and pairwise disjoint sets: the set of (killer) labels (ranged over by k� k�� � � �), the set
of values (ranged over by v, v�, . . . ) and the set of ‘write once’ variables (ranged over
by x, y, . . . ). The set of values is left unspecified; however, we assume that it includes
the set of names, ranged over by n, m, o, p, . . . , mainly used to represent partners
and operations. The language is also parameterized by a set of expressions, ranged
over by e, whose exact syntax is deliberately omitted. We just assume that expressions
contain, at least, values and variables, but do not include killer labels (that, hence, are
not communicable values).

We use w to range over values and variables, u to range over names and variables,
and d to range over killer labels, names and variables. Notation �̄ stands for tuples of
objects, e.g. x̄ is a compact notation for denoting the tuple of variables �x1� � � � � xn� (with
n � 0 and xi � x j for each i � j). In the sequel, we shall use � to abbreviate binary
choice and write [d1� � � � � dn] s in place of [d1] � � � [dn] s. We will write Z � W to assign
a symbolic name Z to the term W.
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The COWS specification of the bank service is composed of two persistent subser-
vices: BankInterface, that is publicly invocable by customers, and CreditRating, that
is an ‘internal’ service that can only interact with BankInterface. The scenario also in-
volves the processes Client1 and Client2 that model requests for charging the customer’s
credit card with some amount. Thus, the COWS term representing the scenario is

[ocheck� ocheckOK� ocheckFail] ( �BankInterface � �CreditRating ) � Client1 � Client2

The main operator is the parallel composition � that allows the di�erent components
to be concurrently executed and to interact with each other. The delimitation opera-
tor [ ] is used here to declare that ocheck, ocheckOK and ocheckFail are (operation) names
known to the bank services, and only to them. Moreover, the replication operator � ,
that spawns in parallel as many copies of its argument term as necessary, is exploited
to model the fact that BankInterface and CreditRating can create multiple instances to
serve several requests simultaneously. Now, BankInterface and CreditRating are defined
as follows:

BankInterface � [xcust� xcc� xamount� xid]
pbank � ocharge?�xcust� xcc� xamount� xid��

( pbank � ocheck!�xid� xcc� xamount�

� pbank � ocheckOK?�xid�� xcust � ochargeOK!�xid�

� pbank � ocheckFail?�xid�� xcust � ochargeFail!�xid� )

CreditRating � [xid� xcc� xa]
pbank � ocheck?�xid� xcc� xa��

[p� o] ( p �o!�� � p � o?��� pbank � ocheckOK!�xid�

� p � o?��� pbank � ocheckFail!�xid� )

We only comment on BankInterface; CreditRating is similar and its description is
omitted. The receive-guarded prefix operator pbank � ocharge?�xcust� xcc� xamount� xid�� ex-
presses that each interaction with the bank starts with a receive activity of the form
pbank � ocharge?�xcust� xcc� xamount� xid� corresponding to reception of a request emitted by
Client1 or Client2. Receives, together with invokes, written as p � o!�e1� � � � � em�, are the
basic communication activities provided by COWS. Besides input parameters and sent
values, they indicate an endpoint, i.e. a pair composed of a partner name p and an op-
eration name o, through which communication should occur. p � o can be interpreted as
a specific implementation of operation o provided by the service identified by the logic
name p. An inter-service communication takes place when the arguments of a receive
and of a concurrent invoke along the same endpoint do match, and causes substitution
of the variables arguments of the receive with the corresponding values arguments of
the invoke (within the scope of variables declarations). For example, variables xcust,
xcc� xamount and xid, declared local to BankInterface by means of the delimitation opera-
tor, are initialized by the receive leading the charge activity with data provided by either
Client1 or Client2.

Once prompted by a request, BankInterface creates one specific instance to serve that
request and is immediately ready to concurrently serve other requests. Notably, each in-
stance uses the choice operator � and exploits communication with CreditRating
on ‘internal’ operations ocheck, ocheckOK and ocheckFail to model a conditional choice
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Fig. 1. Graphical representation of the bank scenario

(for the sake of simplicity, the choice between approving or not a request for charging
the credit card is here completely non-deterministic). Thus, if after some invocations
the service receives a message along the endpoints pbank � ocheckOk or pbank � ocheckFail, a
certain number of service instances could be able to accept it. However, the message is
routed to the proper instance by exploiting the customer data stored in the variable xid

as a correlation value.
To illustrate, define the customer processes as follows:

Client1 � pbank � ocharge!�pC� 1234� 100� id1� � pC � ochargeOK?�id1��pC � ochargeFail?�id1�

Client2 � pbank � ocharge!�pC� 1234� 200� id2� � pC � ochargeOK?�id2��pC � ochargeFail?�id2�

The processes perform two requests in parallel for charging the credit card 1234 with
the amounts 100 and 200. Two di�erent correlation values, id1 and id2, are used to
correlate the response messages to the corresponding requests. A customized UML
sequence diagram depicting a possible run is shown in Figure 1.

The specification of the scenario does not exploit all COWS operators. In particular,
the remaining two operators are especially useful when modelling fault handling and
compensation behaviours, that, for the sake of simplicity, are not considered in this
paper. In fact, kill activities of the form kill(k), where k is a killer label, can be used to
force termination of all unprotected parallel terms inside the enclosing [k] , that stops
the killing e�ect. Kill activities run eagerly with respect to the other parallel activities
but critical code, such as e.g. fault�compensation handlers, can be protected from the
e�ect of a forced termination by using the protection operator �� ��.

4 L2TS Semantics for COWS Terms

The semantics of COWS associates an LTS to a COWS term. We have seen instead that
SocL is interpreted over L2TSs. We need therefore to transform the LTS associated to
a COWS term into an L2TS by defining a proper labelling for the states of the LTS.
This is done by labelling each state with the set of actions that each active subterm of
the COWS term would be able to perform immediately. Of course, the transformation
preserves the structure of the original COWS LTS. For example, the concrete L2TS
obtained by applying this transformation to the bank scenario is shown in Figure 2.
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C1
{ bank.charge?<CUST,CC,AMOUNT,ID>

  bank.charge!<client,1234,100,id1>,
  bank.charge!<client,1234,200,id2>,

...   ...   ... }

C3
{ bank.charge?<CUST,CC,AMOUNT,ID>

  bank.charge!<client,1234,100,id1>,
...   ...   ... }

C2
{ bank.charge?<CUST,CC,AMOUNT,ID>

  bank.charge!<client,1234,200,id2>,
...   ...   ... }

{ bank.charge!<client,1234,100,id1>,
  bank.charge?<CUST,CC,AMOUNT,ID>}

{ bank.charge!<client,1234,200,id2>,
  bank.charge?<CUST,CC,AMOUNT,ID>}

C5
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

C4
{ bank.charge?<CUST,CC,AMOUNT,ID>

  bank.charge!<client,1234,200,id2>,
...   ...   ... }

{ bank.charge!<client,1234,200,id2>,
  bank.charge?<CUST,CC,AMOUNT,ID> } 

{ bank.check#1!<client,1234,100>,
   bank.check#1?<CUST,CC,AMOUNT> } 

C6
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

{ bank.check#1!<client,1234,200>,
    bank.check#1?<CUST,CC,AMOUNT> } 

C54
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

C45
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

C49
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

C58
{ bank.charge?

<CUST,CC,AMOUNT,ID>
...   ...   ... }

{ client.chargeOK!<id2>,
  client.chargeOK?<id2> }

{ client.chargeFail!<id1>,
   client.chargeFail?<id1> } 

{ client.chargeOK!<id1>,
   client.chargeOK?<id1> } 

{client.chargeFail!<id2>,
 client.chargeFail?<id2> } 

Fig. 2. Excerpt of the L2TS for the bank scenario with concrete labels

Both in the original LTS and in the L2TS obtained as explained before, transitions
are labelled by ‘concrete’ actions, i.e. those actions occurring in the COWS term. No-
tice also that labels corresponding to communications retain all information contained
in the two synchronising invoke and receive activities. However, since we are inter-
ested in verifying abstract properties of services, such as those shown in Section 2,
we need to abstract away from unnecessary details by transforming concrete actions in
‘abstract’ ones. This is done by applying a set of suitable abstraction rules to the con-
crete actions. Specifically, these rules replace concrete labels on the transitions with ac-
tions belonging to the set Act, i.e. request(i� c), response(i� c), cancel(i� c) and f ail(i� c),
that better represent their semantics meaning. This way, di�erent concrete actions can
be mapped into the same SocL action. Moreover, the rules replace the concrete la-
bels on the states with predicates belonging to the set AP, e.g. accepting request(i)
and accepting cancel(i� c), that say if the service is able to accept a specific request
or a cancellation of a previous request. The transformation only involves the concrete
actions we want to observe. Indeed, concrete actions that are not replaced by their ab-
stract counterparts cannot be observed.
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C1
{accepting_request(charge)}

{ request(charge,id1)}{ request(charge,id2)}

C3
 {accepting_request(charge)}

C49
 {accepting_request(charge)}

C2
{accepting_request(charge)}

{ request(charge,id2)}{}

C5
 {accepting_request(charge)}

C4
 {accepting_request(charge)}

C6
 {accepting_request(charge)}

{}

{ response(charge,id2)}

C45
 {accepting_request(charge)}

C54
 {accepting_request(charge)}

{ response(charge,id1)}

{ fail(charge,id1)} { fail(charge,id2)}

C58
 {accepting_request(charge)}

Fig. 3. Excerpt of the COWS specification of the banking example (abstract model)

For example, the abstract L2TS of the bank scenario shown in Figure 3 is obtained
by applying to the concrete L2TS of Figure 2 the following abstraction rules:

Action : charge��� �� �� $1� � request(charge� �$1�)
Action : chargeOK�$1� � response(charge� �$1�)
Action : chargeFail�$1� � f ail(charge� �$1�)

State : charge � accepting request(charge)

The first rule prescribes that whenever a concrete action bank�charge!�v1� v2� v3� v4�

matching charge��� �� �� $1� and producing the substitution �$1	v4� occurs in the la-
bel of a transition, then it is replaced by the abstract SocL action request(charge� �v4�).
Variables “$n” (with n natural number) can be used to defined generic (templates of)
abstraction rules. Also the wildcard “ � ” can be used for increasing flexibility. The last
rule applies to concrete labels of states instead of transitions and acts similarly. Notably,
(internal) communications between the bank subservices are not transformed and, thus,
become unobservable.

Of course, the set of “Action :” and “State :” rules is not defined once and for all,
but is application-dependent and, thus, must be defined from time to time. Indeed, it
embeds information, like the intended semantics of each action and the predicates on
the states, that are not coded into the COWS specification.
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Fig. 4. An example of L2TS

5 Model Checking COWS Specifications

To assist the verification process of SocL formulae over L2TS, we are developing CMC,
an eÆcient model checker for SocL that can be used to verify properties of services
specified in COWS. A prototypical version of CMC can be experimented via a web
interface available at the address �����������	
�	����	������.

CMC is implemented by exploiting an on-the-fly algorithm which permits to achieve
(in the most cases) the ‘linear’ complexity typical of on-the-fly model checking algo-
rithms. Indeed, depending on the formula to be checked, only a fragment of the overall
state space might need to be generated and analyzed in order to produce the correct re-
sult [4,11,17]. Moreover, in case of parametric formulae, only a subset of their possible
instantiations will be generated as requested by the on-the-fly evaluation.

The basic idea behind CMC is that, given a state of an L2TS, the validity of a SocL
formula on that state can be established by checking the satisfiability of the state predi-
cates, by analyzing the transitions allowed in that state, and by establishing the validity
of some subformula in some of the next reachable states. This schema has been extended
with appropriate data-collection activities in order to be able to produce, in the end, also
a clear and detailed explanation of the returned results (i.e. a counterexample), and with
appropriate formula instantiation activities in order to deal with parametric formulae.

To show the peculiarity of our framework with respect to parametric formulae
evaluation, we illustrate the process of establishing the satisfiability of the SocL
formula


 � EXrequest(charge��$id�) AXresponse(charge��%id�) true

on the abstract L2TS of Figure 4. We have therefore to check if the following holds:

C1 �� EXrequest(charge��$id�) AXresponse(charge��%id�) true



242 A. Fantechi et al.

Table 2. Verification results

Property Result States

Available TRUE 274
Reliable FALSE 37
Responsive TRUE 274
Permanently Broken FALSE 12
Temporarily Broken FALSE 274
Unavailable FALSE 18

Property Result States

Fair 1 FALSE 3
Fair 2 TRUE 274
Non-ambiguous TRUE 274
Sequential FALSE 3
Asynchronous TRUE 274
Non-persistent FALSE 3

Thus, the model checking algorithm tries to find a next state reachable with an action

matching request(charge� �$id�). Since C1
request(charge��id1�)
���������������� C2, then, for the semantics

of action formulae, we have:

request(charge� �id1�) �� request(charge� �$id�)� �

where the produced substitution � is

� � m (request(charge� �$id�)� request(charge� �id1�)) � m ($id� id1) � �id	id1�

It remains then to check if C2 �� AXresponse(charge��%id�) true � � that is, by applying the
substitution, if

C2 �� AXresponse(charge��id1�) true

Since C2
response(charge��id1�)
����������������� C4, by a trivial matching between the action formula and

the action on the transition, we get that the subformula Xresponse(charge��%id�) true � � is

satisfied on this path. But if we take the other path, i.e. C2
f ail(charge��id1�)
������������� C3, we fail to

find a matching, hence the same subformula is not satisfied on this path. Therefore, since
the subformula is under a universal quantification, we conclude that 
 is not satisfied.

Coming back to the abstract properties introduced in Section 1 – and formalized
in SocL in Section 2 – the results of the verification on the bank service scenario are
summarized in Table 2, where we also report the number of states considered during
the evaluation. The instantiation of the generic patterns of formulae of Section 2 over
the bank service has been obtained by just replacing any occurrence of i with charge.
Thus, e.g., the formula predicating responsiveness of the bank service becomes:

AG [request(charge� $v)] AFresponse(charge�%v)� f ail(charge�%v) true

The results show that the bank service exhibits the desired characteristics to be
responsive, not broken, available, non ambiguous, and to admit parallel and iterated
requests. Reliability is a too strong request for our service which can explicitly fail:
indeed, responsiveness is suÆcient to guarantee the expected behavior. Fairness prop-
erties are not significant for this service, that does not o�er the possibility to cancel a
request. Finally, the service is persistent, and we can understand why just looking at the
counterexample generated when verifying the corresponding property:
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6 Concluding Remarks

We have introduced a logical verification framework for checking functional properties
of service-oriented applications specified using COWS. Our approach consists in: first,
singling out a set of abstract properties describing desirable peculiar features of ser-
vices; then, expressing such properties as SocL formulae; finally, verifying satisfaction
of these properties by a COWS service specification by exploiting the model checker
CMC. We refer the interested reader to the full version [10] of this paper for additional
details on our logical verification framework and for further case studies.

One advantage of our approach is that, since the logic interpretation model (i.e.
L2TSs) is independent from the service specification language (i.e. COWS), it can be
easily tailored to be used in conjunction with other SOC specification languages. To
this aim, one has to define first an LTS-based operational semantics for the language
of interest and then a suitable set of abstraction rules mapping the concrete actions of
the language into the abstract actions of SocL. Another advantage is that SocL permits
expressing properties about any kind of interaction pattern, such as one–way, request–
response, one request–multiple responses, one request-one of two possible responses,
etc. Indeed, properties of complex interaction patterns can be expressed by correlating
SocL observable actions using interaction names and correlation values.

With respect to pure action-based or pure state-based temporal logics, action�state-
based temporal logics facilitate the task of formalizing properties of concurrent systems,
where it is often necessary to specify both state information and evolution in time by
actions. Moreover, the use of L2TSs as model of the logic helps to reduce the state space
and, hence, the memory used and the time spent for verification. In [3], we have intro-
duced the action�state-based branching time temporal logic UCTL that was originally
tailored to express properties over UML statecharts. UCTL has been already used in [1]
to describe some properties of services specified in SRML [12]. The main di�erence of
SocL with respect to UCTL is that the former permits specifying parametric formulae,
allowing correlation between service requests and responses to be expressed.
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We leave for future work the extension of our framework to support a more compo-
sitional verification methodology. In fact, we are currently only able to analyse systems
of services ‘as a whole’, i.e. we cannot analyse isolated services (e.g. a provider service
without a proper client). This is somewhat related to the original semantics of COWS
that follows a ‘reduction’ style; we are now defining an alternative operational seman-
tics that should permit to overcome this problem.

Acknowledgements. We thank the anonymous referees for their useful comments.
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