Research Article

Ring-Opening Polymerisation of rac-Lactide Using a Calix[4]arene-Based Titanium (IV) Complex

Marco Frediani,1 David Sémeril,2 Dominique Matt,2 Luca Rosi,1 Piero Frediani,1 Fabio Rizzolo,1,3 and Anna Maria Papini1,3

1 Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
2 Laboratoire de Chimie Inorganique Moléculaire et Catalyse, UMR 7177 CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
3 Laboratory of Peptide & Protein Chemistry & Biology, Scientific and Technological Park, University of Florence, 50019 Sesto Fiorentino, Italy

Correspondence should be addressed to Marco Frediani, marco.frediani@unifi.it

Received 21 December 2009; Accepted 10 February 2010

Academic Editor: Jose Ramon Leiza

Copyright © 2010 Marco Frediani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

cone-25,27-Dipropyloxy-26,28-dioxo-calix[4]arene titanium (IV) dichloride (1) has been assessed in the ring-opening polymerisation of rac-lactide (L,D-LA). The polymers formed (PLDA) turned out to display an isotactic stereoblock microstructure (determinated by NMR) despite the fact that the catalyst has \(C_{2v} \) symmetry. Two techniques were applied for initiating the polymerisation reaction, microwave irradiation, and conventional thermal treatment. The polymers obtained were all characterised by NMR, IR, HPLC-SEC, DSC, and MALDI-TOF analysis. The use of microwave irradiation, applied for the first time to calixarene-based catalysts in the presence of the rac-lactide monomer, increased the polymerisation rate compared with that obtained by the other method. On the other hand, standard thermal treatment enabled a slightly better control than microwave irradiation over the molecular weight and molecular weight distribution of the polylactides formed.

1. Introduction

Poly(lactic acids) (PLAs) are biocompatible and biodegradable materials with potential applications in medicine and agriculture, as well as packaging materials. The most efficient method for the synthesis of PLAs is the ring opening polymerisation (ROP) of lactide (LA), which possesses two chiral centers [1–4]. The stereochemistry of the polymer formed determines its physical and mechanical properties, as well as its rate of degradation, and it is therefore important to ensure stereocontrol of the polymerisation process [5–8].

Among the most used catalysts for the ring opening polymerisation of LA, notably in industry, are organotin compounds, for example, Sn(Oct)\(_2\) [9–12]. A major drawback in using these tin derivatives is their high toxicity. In this context, the development of new, performing catalysts based on non toxic metals (e.g., group IV transition metals) remains an important challenge [13–20].

Calix[4]arenes are macrocyclic molecules made of four phenol units linked via methylene bridges connected to the ortho positions of the phenol rings. The presence of four oxygen atoms at the lower rim of these conical molecules provides a valuable platform for the synthesis of poly(phenoxy) metal complexes. Recently, we have reported on a calix[4]arene titanium complex that was found to be active in the ROP of \(L\)-LA [21]. In this complex, the calix[4]arenyl moiety behaves as a small oxo surface, which confers a high thermal stability to the corresponding complexes [22–25].

In the present work, we describe the use of cone-25,27-dipropyloxy-26,28-dioxo-calix[4]arene titanium (IV) dichloride (1) in the ROP of rac-lactide (\(L,D\)-LA) under thermal activation. The polymerisation was also carried out...
under microwave irradiation, which is an emerging field of research in polymer chemistry [26–35] (see Scheme 1).

2. Experimental

2.1. General. The manipulations of air- and/or water-sensitive compounds were performed under a nitrogen atmosphere using either standard Schlenk techniques or a MBraun glove box. rac-Lactide (L,D-LA) was obtained from Aldrich (>98%) and purified. The cone-25,27-dipropoxy-26,28-dioxo-calix[4]arene titanium (IV) dichloride (1) was prepared using a method reported in the literature [36].

2.2. Polymerisation Experiments. L,D-LA polymerisation was carried out by charging the desired amount of monomer and the appropriate amount of complex (1) into a vial. The vial was either immersed into an oil bath at 130°C or introduced automatically into a microwave oven (Discover S-Class System, CEM). A maximal power of 200 W was applied for the specified time while the temperature was monitored by an IR sensor positioned below the vial.

2.3. Polymer Characterisation. 1H NMR and 13C NMR spectra were recorded on a Varian Mercury 400 apparatus using CDCl3 as the solvent (solution 0.2 w/w). Melting spectra were recorded on a Varian Mercury 400 apparatus using CDCl3 as the solvent (solution 0.2 w/w). Melting transitions of indium 156°C. The temperature scale was calibrated with an indium standard to calibrate the system [37]. The samples were prepared by dissolving 0.005–0.006 g of polymer in 2 mL of chloroform (corresponding to ca. 3 g·L−1). The WAXD analyses were done using a D8 Advance (Bruker) with a Solx solid state detector, using a Bragg-Brentano Geometry. All the samples were preventively heated at 120–130°C for three days before analysis. The samples were exposed to a Cu Kα X-ray source with a wave length (λ) of 1.541 Å. The angle of incidence was varied from 4° to 50° by steps of 0.02° for a period of 1.5 seconds. The periodical distances (d) of the main peaks were calculated according to Bragg’s equation (\(\lambda = 2d \sin \theta\)). MALDI-TOF analyses were carried out on a Ultraflex MALDI TOF/TOF from Bruker, with the following instrumental settings. In linear mode IS1 was set to 25 kV, IS2 to 23.70 kV, and delay time to 80 nano seconds. In reflectron mode IS1 was set to 25 kV, IS2 to 21.50, and delay time was 20 nano seconds.

3. Results and Discussion

As reported recently, the polymerisation of L-lactide with 1 under microwave conditions leads to isotactic PLLA (see Scheme 2).

In the present work the catalytic runs were carried out under solvent-free conditions, using either conventional heating or microwave irradiation. All analytical investigations (HPLC-SEC [36], DSC [37], NMR [38–41], MALDI-TOF [42, 43], and WAXD [44]) were consistent with the formation of PLLA polymers. The MALDI-TOF spectra unambiguously revealed that transesterification reactions had occurred during polymerisation.

We first investigated the influence of the monomer/catalyst ratio ([L,D-LA]/[Ti]) (Table 1). Applying a [L,D-LA]/[Ti] ratio of 200 led to a conversion of 96%, which corresponds to an activity of 9.2 kg(PLDA)·mol−1(Ti)·h−1 (Table 1, entry 1). Increasing the [L,D-LA]/[Ti] ratio to 1994 increased the catalyst activity, the latter reaching a value of 65.3 kg(PLDA)·mol−1(Ti)·h−1 (Table 1, entries 1-4). Within the 200–1500 range of [L,D-LA]/[Ti], a roughly linear dependence of the activity on the [L,D-LA]/[Ti] molar ratio was observed (Figure 1). It is noteworthy that the activity of the catalyst was slightly higher in the case of L,D-LA than when using L-LA [28].

Size exclusion chromatography analysis of the polymers formed revealed that, as expected, the molecular...
Scheme 2: Ring opening polymerisation of L-lactide under microwave irradiations.

Table 1: Thermally induced polymerisation of L,D-LA using complex (1)\(^{(a)}\).

<table>
<thead>
<tr>
<th>Entry</th>
<th>([L,D\text{-}LA]/[\text{Ti}]) Ratio</th>
<th>Conversion(^{(b)}) (%)</th>
<th>Activity(^{(c)})</th>
<th>(M_w)(^{(d)}) (g·mol(^{-1}))</th>
<th>(M_n)(^{(e)}) (g·mol(^{-1}))</th>
<th>MWD(^{(f)})</th>
<th>(T_g)(^{(g)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>96%</td>
<td>9.2</td>
<td>18400</td>
<td>15000</td>
<td>1.2</td>
<td>53.0</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>87%</td>
<td>21.0</td>
<td>19100</td>
<td>14900</td>
<td>1.3</td>
<td>52.1</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>88%</td>
<td>42.3</td>
<td>27600</td>
<td>22400</td>
<td>1.2</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>1994</td>
<td>67%</td>
<td>65.3</td>
<td>43200</td>
<td>36900</td>
<td>1.2</td>
<td>41.7</td>
</tr>
</tbody>
</table>

\(^{(a)}T = 130^\circ\text{C}, \text{time = 3h};\) \(^{(b)}\) determined by \(^1\text{H NMR};\) \(^{(c)}\) kg(PLDA)·mol(Ti)\(^{-1}\)·h\(^{-1}\); \(^{(d)}\) number average molar mass measured by HPLC-SEC; \(^{(e)}\) weight average molar mass measured by HPLC-SEC; \(^{(f)}\) molecular weight distribution; \(^{(g)}\) glass transition temperature as measured by DSC analysis.

Figure 1: Variation of the activity as a function of the monomer/catalyst ratio.

Figure 2: Variation of the molecular weight \((M_w)\) of PLDA as a function of the monomer/catalyst ratio.

Furthermore, the \(^1\text{H-NMR}\) spectrum of each sample revealed an unexpected microstructure (see an example in Figure 3). The spectrum shows two well-resolved peaks, of equal normalized intensity, at ca. 5.21 and 5.22 ppm representing hexad stereosequences of isisi and iiiii, respectively. According to pairwise Bernoullian statistics, an equal probability for isisi and iiiii stereosequences implies that the polymerisation process is random [38–41]. Considering that the calixarene complex becomes chiral after insertion of the first incoming lactide (be it L or D), it may be anticipated that for the following step a preferential insertion of one of the monomers (L-LA or D-LA) takes place. In fact, careful analysis of the \(^1\text{H NMR}\) spectrum revealed a higher intensity for the iii sequence (almost 4 times than each other peak). In keeping with the studies of Coates et al. [15, 16], this observation may be assigned to a partial is tactic-stereoblock structure. The relatively high proportion of isisi...
Table 2: Microwave-assisted polymerisation of L,D-LA using complex (1)\(^{(a)}\).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>Conversion(^{(b)}) (%)</th>
<th>Activity(^{(c)})</th>
<th>(M_w)(^{(d)}) (g·mol(^{-1}))</th>
<th>(M_n)(^{(e)}) (g·mol(^{-1}))</th>
<th>MWD(^{(f)})</th>
<th>(T_g)(^{(g)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>3%</td>
<td>2.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>38%</td>
<td>17.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>68%</td>
<td>19.4</td>
<td>22300</td>
<td>17400</td>
<td>1.3</td>
<td>46.0</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>88%</td>
<td>18.9</td>
<td>27100</td>
<td>20900</td>
<td>1.3</td>
<td>50.1</td>
</tr>
</tbody>
</table>

\(^{(a)}\) [L,D-LA]/[Ti] ca. 200, L,D-LA = 1 g, maximal power 200W; \(^{(b)}\) determined by \(^1\)H NMR; \(^{(c)}\) kg(PLDA)·mol(Ti)\(^{-1}\)·h\(^{-1}\); \(^{(d)}\) number average molar mass measured by HPLC-SEC; \(^{(e)}\) weight average molar mass measured by HPLC-SEC; \(^{(f)}\) molecular weight distribution; \(^{(g)}\) glass transition temperature as measured by DSC analysis.

FIGURE 3: Homonuclear decoupled \(^1\)H NMR spectrum of the methine region of PLDA obtained in Table 1, entry 1.

As a next step, the polymerisation reactions were carried out using microwave irradiation (MW). For these runs, summarized in Table 2, a [L,D-LA]/[Ti] ratio of 200 was used. As expected, the conversion increased with increasing reaction time, the conversion reaching 88% after 80 minutes (Table 2, entry 4). The maximum activity was obtained after 60 minutes (Table 2, entry 3), longer polymerisation time leading to some polymer decomposition (a brown colour and smell of aldehyde could be noticed). Careful analysis of the conversion versus time diagram (Figure 4) revealed that the polymerisation requires an activation time of about 20 minutes. Interestingly, we observed that in these polymerisation reactions carried out under MW conditions, lower \(M_w\) and \(M_n\) values were obtained than those obtained using the standard heating technique.

4. Conclusions

In conclusion, we have presented for the first time the use of a calixarene complex in the ring-opening polymerisation of L,D-LA using thermal or microwave heating. By comparison with experiments carried out with conventional thermal heating, the use of microwaves energy induced an increase of the polymerisation rate, the thermal method leading to a slightly better control of the molecular weight and molecular weight distribution. The most striking feature of the polymers formed is their partial isotactic-stereoblock microstructure, which is likely controlled by a chain end mechanism. Further studies are in progress which will concentrate on modified versions of the titanium complex with the aim of improving the activity as well as the stereochemical control of the polymerisation reaction.

Acknowledgments

The authors are grateful to the University of Florence, the Italian MIUR (PRIN 2008 project. 200898KCKY—Inorganic nanohybrids based on bio-polyster from renewable resources”), Regione Toscana (“Competitività regionale e occupazione” 2007–2013—project TeCon@BC, POR-FESR 2007–2013), and Ente Cassa di Risparmio di Firenze for the financial support.
References

