Collective Arousal When Reuniting After Temporary Separation in Tonkean Macaques

Arianna De Marco,1,2,3* Roberto Cozzolino,4 Francesco Dessi-Fulgheri,3 and Bernard Thierry2,5

1Parco Faunistico di Piano dell’Abatino, Poggio San Lorenzo, Italy
2Centre National de la Recherche Scientifique, Département Ecologie, Physiologie et Ethologie, Strasbourg, France
3Dipartimento di Biologia Evoluzionistica “Leo Pardi,” Università degli Studi di Firenze, Italy
4Ethoïkos, Radicondoli, Italy
5Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

ABSTRACT Celebrations and bursts of communal joy can occur spontaneously in human communities based on mechanisms of emotional contagion. Some examples of similar collective excitement have been reported in animals when they reunite or anticipate rewards, but little is known about the processes and meaning of these multiple interactions. We experimentally studied such collective arousals in two captive groups of Tonkean macaques (Macaca tonkeana) within the context of reunions following the temporary separation of two subgroups. We compared the behaviors of individuals after separation periods of 2 and 48 h with a control period with no separation. This study showed that it is possible to reproducibly induce bursts of friendly interactions in which groupmates run around over a period of several minutes, embracing and grasping one another while displaying numerous affiliative vocalizations and facial expressions. The longer the period of separation, the higher and longer-lasting the rates of affiliative interactions were. Individuals affiliated more frequently with groupmates from a previously separated subgroup than with those having stayed in their own subgroup. Collective arousal was followed by a quieter period characterized by high rates of contact-sitting and social grooming. These results point at the role of collective arousals in social cohesion; they could resolve social tension and renew social relationships. We propose that the emotional state experienced by Tonkean macaques during such events represents a disposition similar to that giving rise to what we humans call “shared joy.” Am J Phys Anthropol 146:457–464, 2011. © 2011 Wiley-Liss, Inc.

Collective celebration is common practice in human communities. Amongst various other social functions, it can be argued that it either has a role in social cohesiveness by renewing the bonds that hold society together, or that it provides individuals with occasional relief from hierarchies and social constraints (Ehrenreich, 2007). Whereas certain events such as dances, rituals, and ceremonies follow formalized rules and/or use techniques of ecstasy, others occur as spontaneous bursts of excitement where groups appear united by communal joy and exaltation, all individuals experiencing a similar emotional state (Ehrenreich, 2007). In the second case, social interactions mainly rely on nonverbal communication; individuals synchronize and mimic each other through vocalizations, facial expressions, postures and movements conveying emotional contagion (Hatfield et al., 1994).

There is no need to resort to cognitive empathy to account for emotional contagion. The ability to react to the feelings of others appears early in life (Hoffman, 1975; Hatfield et al., 1994), and its neurobiological substrates have been documented (Decety and Jackson, 2004; Rizzolatti et al., 2007). Moreover, it is widely known that nonhuman primates react to communication signals expressing emotions (Seyfarth and Cheney, 2003; de Waal, 2008), and synchronize by mirroring the behaviors of conspecifics (Anderson and Bayart, 1985; Ferrari et al., 2006; Meunier et al., 2008). In view of these facts, we may ask to what extent collective excitement based on common positive emotional states can occur in nonhuman primates and other mammals.

In several mammals, individuals call in chorus (howls in wolves and other group-living canids: Gese and Ruff, 1998; Harrington and Asa, 2003; roars in lions: McComb et al., 1994; rumbles in elephants: Leighty et al., 2008; loud calls in howler monkeys: Kitchen, 2004; pant hoots in chimpanzees: Wilson et al., 2001). Once an individual starts vocalizing, others join in chorus. Whatever their function, these long-distance contact calls involve social contagion and coordination. It should however be noted that these signals are not addressed to members of the community present at the same location, contrary to the affiliative interactions observed in bursts of collective excitement in humans.

Greetings occurring between group members are another cause for mutual excitement. In many species individuals display intense affiliative interactions when meeting after a period of separation. In fission–fusion communities groups split and gather regularly, then

*Correspondence to: A. De Marco, Parco Faunistico di Piano dell’Abatino, via Capofarfa 50, 02030 Poggio san Lorenzo (Ri), Italy. E-mail: ariannadem@yahoo.it

Received 3 January 2011; accepted 31 July 2011

DOI 10.1002/ajpa.21606

Published online 27 September 2011 in Wiley Online Library (wileyonlinelibrary.com).

©2011 WILEY-LISS, INC.
individuals engage in acts of welcoming, touching each other, and exchanging affiliative behaviors, for example in African elephants (Moss, 1988), spotted hyenas (East et al., 1993), spider monkeys (Aureli and Schaffner, 2007), and chimpanzees (Goodall, 1986; Okamoto et al., 2001). Reunion events are potentially risky situations, and agonistic interactions sometimes occur (e.g., Goodall, 1986; Muller, 2002; Aureli and Schaffner, 2007). It is likely that greeting rituals allow partners to overcome social tension and reaffirm social bonds (Smuts and Watanabe, 1990; Kutsukake et al., 2006). The same may be said for individuals kept in captivity when they are reunited after temporary separation. In nonhuman primates in particular, individuals greet each other by displaying intimate body contacts and multiple affiliative signals (e.g., Thierry, 1984; de Waal, 1996; Matheson et al., 1996; Lynch Alfaro, 2008). Although these behaviors are mutual and intense, it must be emphasized that authors usually report observing them between single pairs of individuals; as such they do not qualify as cases of collective behavior.

Instances of intense affiliation simultaneously involving more than two individuals have been described in a small number of species. Greeting rituals in canids represent a first case. In wolves, pack members surround the leader either spontaneously or after grouping and display active submission and appeasement, using nose-pushing and licking his muzzle (Mech, 1970). African wild dogs address similar noisy behaviors to welcome back any member of the pack during reunions following separations (Rütten and Fleissner, 2004). The rubbing behavior observed in white-faced capuchins is another type of collective behavior. Several individuals simultaneously anoint themselves with pungent plants. Whether they are in physical contact or not, one or several will start rubbing their own fur, drawing the attention of other group members, who then mimic the same behavior (Meunier et al., 2008).

Behaviors quite similar to the collective excitement observed in human beings have been described in elephants and chimpanzees. In African elephants, subgroups that know each other perform an intense greeting ceremony when they meet. All group members run together, raising their heads, flapping their ears, rumbling, chinking their tusks together, and entwining their trunks (Moss, 1988). During similar reunion episodes, wild chimpanzees show collective behaviors named “celebration” or “carnival.” They display mass excitement with multiple social interactions including charging, loud hooting, kissing, and embracing (Reynolds and Reynolds, 1965; Goodall, 1986). In captive chimpanzees this type of celebration also occurs when animals await an oncoming distribution of food, and it could reduce social competition (de Waal, 1992, 1996).

It must be underlined, however, that we lack quantitative data which would allow a clear differentiation between collective events and the greeting interactions reported in other species at the dyadic level. Additionally, both kinds of events mostly involve intense body contacts and communication signals aiming to resolve social tension; they differ qualitatively from the calmer bouts of social grooming and contact-sitting commonly observed in groups at rest, the function of which is held in particular to reinforce social bonds (Dunbar, 1988; Aureli and Yates, 2010). It is worth adding that the latter contacts usually follow the occurrence of more intense behaviors (e.g., clasp, mount) in the context of reconciliation at the first meeting (see Kummer, 1975; Demaria and Thierry, 2001; Arnold et al., 2011).

Some anecdotal reports describe the occurrence of a group excitement called “collective arousal” in a few monkey species. This may happen after reunion, before food distribution, or after a conflict involving a large number of individuals (Tonkean macaques: Thierry et al., 1989, 2000; moor macaques: Matsumura, 1991; Petit and Thierry, 1992; stump-tailed macaques: de Waal, 1996). On such occasions, all group members appear extremely excited, and display numerous affiliative signals and body contacts at the same time.

Studies about collective excitement in animals remain scarce, however, and little is known about the processes and meaning of these multiple interactions. The present study aims to investigate collective arousals in Tonkean macaques. These animals display a relaxed dominance style and a high level of social tolerance compared to other macaque species (Thierry, 2000, 2010). They show great propensity for appeasement and reconciliation of group members after conflict (Demaria and Thierry, 2001; Thierry et al., 2008). They are also characterized by complex polyadic interactions; when conflicts occur, third parties can stop aggression by addressing appeasement signals to adversaries (Petit and Thierry, 1994), and groupmates uninvolved in a conflict are more likely to affiliate with one another after witnessing it (De Marco et al., 2010).

We experimentally tested the following predictions regarding collective arousals in two groups of Tonkean macaques: 1) if they are triggered by the reunion of individuals familiar to each other following separation, we should be able to induce this behavior in a reproducible way using a separation/reunion procedure; 2) if the length of separation increases the need to overcome its effects, the longer the period of separation, the more intense and long-lasting the collective arousal should be; 3) if affiliative interactions are primarily addressed to newcomers, they should occur more frequently between previously separated groupmates than between nonseparated ones; 4) it may be expected that, following the initial burst of communication signals characterizing collective arousal, calmer interactions occur at higher rates.

METHODS

Subjects

We studied two captive groups of Tonkean macaques, A and B, located at the Parco Faunistico di Piano dell’Abatino Rescue Centre in Rieti, Italy. Each group was housed in an outdoor enclosure ~1,000 m² and 5-m high, connected to an indoor enclosure of 25 m². Group A was founded 4 years before this study and consisted of 10 individuals originating from a group maintained at the Primatology Center of Strasbourg, France. Group B originated from the division 6 months earlier, for management reasons, of a larger group founded 20-years ago at the Orangerie Zoo of Strasbourg, France; it was also composed of 10 individuals: four adult males, three adult females, one juvenile male, one juvenile female, and one infant. Group B originated from the division 6 months earlier, for management reasons, of a larger group founded 20-years ago at the Orangerie Zoo of Strasbourg, France; it was also composed of 10 individuals: four adult males, three adult females, one juvenile male, and two juvenile females. Social relationships remained stable during the research period, while three infants were born in Group A, and three in Group B. Juveniles were defined as individuals...
A First 3 adult males, 1 adult female, 1 adult male, 2 adult females, 1 juvenile male.

Group Combination Composition of the first subgroup Composition of the second subgroup

B First 2 adult males, 1 adult female,

<table>
<thead>
<tr>
<th>Group</th>
<th>Combination</th>
<th>Composition of the first subgroup</th>
<th>Composition of the second subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>First</td>
<td>3 adult males, 1 adult female</td>
<td>1 adult male, 2 adult females, 1 juvenile male, 1 juvenile female, 1 infant</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>3 adult males, 1 adult female, 1 juvenile female</td>
<td>1 adult male, 2 adult females, 1 juvenile male, 1 infant</td>
</tr>
<tr>
<td>B</td>
<td>First</td>
<td>2 adult males, 1 adult female, 1 juvenile female</td>
<td>2 adult males, 2 adult females, 1 juvenile male, 1 infant</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>2 adult males, 1 adult female, 1 juvenile male, 2 juvenile females</td>
<td>2 adult males, 2 adult females</td>
</tr>
</tbody>
</table>

American Journal of Physical Anthropology
bared-teeth display), affiliative interference (an individual approaches partners exchanging clasps or mounts and directs affiliative behaviors toward them), conflict (agonistic interaction involving lunge, slap, grab, vocal, or facial threat), and behaviors indicating anxiety (scratch, yawn). When directed at the same partner, behaviors repeated at intervals of less than 5 s were considered as a single event. We also measured the mean durations of time for long-lasting behaviors: expressive run (an individual runs away from a partner while displaying affiliative vocalizations then often returns toward the partner), social play, social grooming, and contact-sitting (see Thierry et al., 2000, for further information about behavior patterns). Because it was not possible to reliably identify which individuals had uttered a vocalization, for this variable we counted the total duration of vocalizations regardless of the emitter. To calculate frequencies and percentages of time, we used the duration of collective arousals for the 48- and 2-h separation conditions, and the 10 min of the videotaped phase in the control condition.

We calculated the percentage of contact-sitting and social grooming over the total number of scans for each condition of arousal and postarousal periods. With respect to the analysis of partner preferences, however, the number of scans occurring during collective arousal remained limited, so we relied on the exact durations measured from videotape footage.

To compare different conditions, and arousal and postarousal periods, we applied the Kruskal–Wallis, Mann–Whitney, and Wilcoxon signed-rank tests, exact procedure (Siegel and Castellan, 1988) using the SPSS software version 16 (SPSS, Chicago, IL). All probabilities were two-tailed. The significance level was set at 0.05.

RESULTS

Duration of collective arousal

Collective arousal systematically occurred in both groups after a 48-h separation. It also occurred in all cases in Group A and in seven out of eight cases in Group B after a 2-h separation. The number of individuals involved in affiliative interactions at each 10-s interval decreased during the 10-min recording period (see Fig. 2). No collective arousal was observed in the control period. Comparisons of the duration of collective arousal in the 48- and 2-h conditions showed that its mean duration was significantly longer following a 48-h separation both in Group A (Mann–Whitney test, \(n_1 = 8, n_2 = 8 \), \(U = 11.0, P = 0.026, 48 \) h: 8.5 min \(\pm 1.6, 2 \) h: 6.3 \(\pm 2.1 \)) and Group B (\(U = 10.5, n_1 = 8, n_2 = 8, P = 0.023, 48 \) h: 8.0 \(\pm 1.8, 2 \) h: 4.7 \(\pm 3.2 \)). It is worth noting that collective arousal periods usually began and ended quite abruptly (Supporting Information Fig. S1).

Social interactions occurring during collective arousal

We compared the mean rates per minute of behaviors between the three different conditions (Table 2). In both groups, rates significantly differed across conditions except for conflict and scratching in Group B, and yawn- ing in both groups; affiliative behaviors appeared more frequent in the separation–reunion conditions. We additionally performed pairwise tests to compare the effects of 2- and 48-h separation conditions. This showed that the second condition yielded higher rates for several behavior patterns (Kruskal–Wallis test, \(P < 0.05 \)): clasp, facial display, expressive run, social play, and conflict in...
We compared the mean rates per minute of affiliative interactions occurring during collective arousal in individuals belonging to previously separated subgroups and individuals remaining in the same subgroup (Table 3). After a 48-h separation, both groups showed higher rates of all behaviors between partners from different subgroups. After a 2-h separation, we found similar trends but differences were statistically significant only for clasps, mounts, and contact-sitting in Group B, and for clasps and social grooming in Group A. No significant partner preferences appeared in control periods.

We compared partner preferences during the postarousal period from the percentages of scans of social grooming and contact-sitting (Table 3). We did not find statistically significant preferences for contact-sitting between partners regardless of their subgroup membership, whereas individuals in both groups exchanged significantly more grooming with partners from which they had been separated for 48 h. The difference was also significant after a 2-h separation for Group B but not Group A. The comparison of partner preferences in the control period did not yield significant differences.

Contact behaviors occurring during arousal vs. postarousal periods

We compared the percentage scans of social grooming and contact-sitting which occurred during arousal and the hour following the 10-min videotaped period in the 48- and 2-h separation conditions (Table 4). In both groups, contact-sitting increased significantly during the postarousal period for the 48- and 2-h conditions. Levels of social grooming also rose during the postarousal period, except for the 48-h condition in Group A.

DISCUSSION

This is the first experimental study demonstrating that it is possible to reproducibly induce bursts of affiliative interactions in a monkey species, as stated in our first prediction. After a period of separation, Tonkean macaques welcome each other through collective arousal; all individuals run around, embrace or grasp one another, while displaying many affiliative facial expressions and uttering noisy vocalizations. Based on the proportion of group members engaged in affiliation per time unit, the event lasted between a few and ten minutes. Collective arousal should not however be reduced to this operational definition; for instance, it is also characterized by the occurrence of simultaneous affiliative interactions, including polyadic ones (see Supporting Information Video).
A single observation in the field testifies that wild Tonkean macaques experience collective arousals; a group was prevented from crossing a road for over an hour due to the presence of an observer unknown to the animals, then an episode of collective arousal followed once they had crossed the road (Thierry et al., 2000). The only

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Condition</th>
<th>Subgroup membership</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasp</td>
<td>48 h same</td>
<td>0.006</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>2 h same</td>
<td>0.004</td>
<td>0.003</td>
<td>1</td>
<td>0.004</td>
</tr>
<tr>
<td>control</td>
<td>same</td>
<td>0.0001</td>
<td>0.0003</td>
<td>7</td>
</tr>
<tr>
<td>Mount</td>
<td>48 h same</td>
<td>0.006</td>
<td>0.005</td>
<td>0</td>
</tr>
<tr>
<td>2 h same</td>
<td>0.005</td>
<td>0.004</td>
<td>18.5</td>
<td>0.389</td>
</tr>
<tr>
<td>control</td>
<td>same</td>
<td>0.0002</td>
<td>0.0003</td>
<td>250</td>
</tr>
<tr>
<td>Social play</td>
<td>48 h same</td>
<td>2.31</td>
<td>1.96</td>
<td>0</td>
</tr>
<tr>
<td>2 h same</td>
<td>2.51</td>
<td>2.82</td>
<td>16</td>
<td>0.275</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>0.24</td>
<td>0.32</td>
<td>0</td>
</tr>
<tr>
<td>Contact-sitting</td>
<td>48 h same</td>
<td>5.0</td>
<td>4.2</td>
<td>5</td>
</tr>
<tr>
<td>2 h same</td>
<td>10.0</td>
<td>7.5</td>
<td>9</td>
<td>0.064</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>14.4</td>
<td>16.7</td>
<td>11</td>
</tr>
<tr>
<td>Social grooming</td>
<td>48 h same</td>
<td>0.05</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>2 h same</td>
<td>10.0</td>
<td>11.1</td>
<td>20</td>
<td>0.479</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>2.23</td>
<td>3.09</td>
<td>0</td>
</tr>
<tr>
<td>Contact-sitting</td>
<td>48 h same</td>
<td>5.6</td>
<td>4.7</td>
<td>5</td>
</tr>
<tr>
<td>2 h same</td>
<td>3.4</td>
<td>3.4</td>
<td>9</td>
<td>0.064</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>20.0</td>
<td>8.4</td>
<td>20</td>
</tr>
<tr>
<td>Social grooming</td>
<td>48 h same</td>
<td>0.05</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>2 h same</td>
<td>10.0</td>
<td>11.1</td>
<td>20</td>
<td>0.479</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>2.23</td>
<td>3.09</td>
<td>0</td>
</tr>
<tr>
<td>Contact-sitting</td>
<td>48 h same</td>
<td>4.54</td>
<td>1.75</td>
<td>20</td>
</tr>
<tr>
<td>2 h same</td>
<td>3.4</td>
<td>4.7</td>
<td>9</td>
<td>0.064</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>14.4</td>
<td>16.7</td>
<td>11</td>
</tr>
<tr>
<td>Social grooming</td>
<td>48 h same</td>
<td>1.36</td>
<td>0.89</td>
<td>4.5</td>
</tr>
<tr>
<td>2 h same</td>
<td>3.17</td>
<td>1.76</td>
<td>19</td>
<td>0.432</td>
</tr>
<tr>
<td>control</td>
<td>different</td>
<td>1.28</td>
<td>0.82</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Wilcoxon test, n = 10.

* Means are given per test and per individual.

** Frequency per minute.

*** Duration in seconds per minute.

**** Percentage scans per partner.

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Condition</th>
<th>Period</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact-sitting</td>
<td>48 h arousal</td>
<td>6.1</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>2 h arousal</td>
<td>57.3</td>
<td>29.2</td>
<td>0</td>
<td>0.008</td>
</tr>
<tr>
<td>Social grooming</td>
<td>48 h arousal</td>
<td>5.8</td>
<td>6.3</td>
<td>9</td>
</tr>
<tr>
<td>2 h arousal</td>
<td>10.7</td>
<td>5.6</td>
<td>0</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Wilcoxon test, n = 8.

A single observation in the field testifies that wild Tonkean macaques experience collective arousals; a group was prevented from crossing a road for over an hour due to the presence of an observer unknown to the animals, then an episode of collective arousal followed once they had crossed the road (Thierry et al., 2000). The only

American Journal of Physical Anthropology
other event closely related to this behavior is the collective excitement described in chimpanzees and elephants (Goodall, 1986; Moss, 1988; de Waal, 1992). Such episodes differed in length and intensity from the greetings observed at a dyadic level in other species (see Introduction), but are nonetheless reminiscent of the friendly interactions involving several group members in white-faced capuchins (Meunier et al., 2008) and canids (Mech, 1970; Rüttten and Fleissner, 2004).

Our second prediction, namely that the intensity and duration of the collective arousals would be related to the length of the separation period, proved to be correct. When two subgroups of groupmates had not been in contact with one another for 2 days, not only did subgroups reunite using numerous friendly interactions that were not observed in a control situation, but several behaviors were seen to last longer or to be more frequent than when the separation lasted two hours. Similarly, Moss (1988) noted that greeting ceremonies in elephants were longer and more intense when the separation had lasted for a few days rather than a number of hours. It is known that the longer an individual has been removed from its home group, the more difficult its return will be (Watts and Meder, 1996). Meeting after separation being a potentially risky situation, it is understandable that uncertainty or social tension can be heightened. The study of nonhuman primates in captivity has shown that introducing individuals into an established group represents a stressful event which incurs significant risks of injury, even when reunited individuals are known to each other (Bernstein et al., 1974; Gust et al., 1993; Brent et al., 1997). In Tonkean macaques rates of scratching differed between separation conditions in Group A but not in Group B, and no significant effect was observed for yawning. These results could be related to the fact that challenges occurred between the two higher-ranking males of Group A before and during the study period (De Marco, unpublished data). Conflicts were also more likely to occur after 48-h separation compared to 2-h separation in this group, although their frequency remained quite low in all experimental conditions—on average no more than one conflict per 10 min during collective arousals in both groups. Collective arousals could serve to overcome tension and potential hostility, and/or to renew social relationships. This explanation is in agreement with the fact that in Tonkean macaques collective arousals can occur, albeit very rarely, after conflicts having involved many group members (Thierry et al., 2000). Emotional contagion can help individuals attain the same emotional state, as suggested by the collective arousals observed in the context of an ongoing food distribution.

Consistent with our third prediction, subjects affiliated more often with groupmates from the previously separated subgroup than with those who had remained in their own subgroup. Moreover, they continued to exchange most of their grooming interactions with members of the joining subgroup in the hour following collective arousal. Similar results have been found in chimpanzees (Okamoto et al., 2001). Such specific greetings again point at the role of collective arousals in renewing social relationships. As previously mentioned, and in accordance with our fourth expectation, the quiet period following collective arousal was characterized by high rates of contact-sitting and social grooming. While the exceptional frequency of interactions particular to the “hot” period had ended, the phenomenon was then prolonged by a “cooler” period of affiliative contacts. An emotional contagion leading individuals to high levels of excitement therefore appears as a main feature of the first period. Some authors have used the word “joy” and “euphoria” to describe such excitement (Moss, 1988; de Waal, 1996). As noted by Ehrenreich (2007) for humans, the thrill of a group united in joy and exaltation is difficult to objectivize. This is all the more so for nonhumans. However, it remains certain that the mutual and exuberant affiliative behaviors displayed by Tonkean macaques are underpinned by the internal states of individuals. The emotional state experienced by them during collective arousals could be a disposition similar to that giving rise to what we humans call “shared joy.” At this stage, however, we can only ask whether such emotional states have arisen independently through the evolutionary process as an outcome of certain kinds of sociality, or whether such mechanisms are the same in primates and elephants for instance, thus arguing for mammalian homology and raising the question of why they have not been reported in more taxa. The occurrence of collective arousals in Tonkean macaques may be promoted by the remarkably tolerant social relationships and the numerous conciliatory contacts which characterize them (Thierry et al., 1994; Thierry, 2007, 2010). Some macaque species display similar behaviors, and there are hints that they also display collective arousals (Sulawesi macaques: Thierry et al., 2000; stump-tailed macaques: de Waal, 1996). It would be worthwhile to compare different macaque species to establish whether there is a relation between the species-specific social style and the proneness of individuals to take part in collective arousals.

Transmitting emotion through positive behaviors enables individuals to quickly adapt to social situations. Collective arousal appears to enhance social cohesion this way. Future research should investigate whether the conclusions drawn from two captive groups are applicable to animals in the wild, and specify which factors are liable to promote the occurrence of collective arousals.

ACKNOWLEDGMENTS

The authors thank the managers and keepers of the Orangerie Zoo of Strasbourg and the Parco Faunistico di Piano dell’Abatino of Rieti for providing technical support. They are grateful to Cristina Sagnotti, Faye Abbiate, Andrea Sanna, and Lorenzo De Marco for their valuable assistance. They also thank Filippo Aureli, Alban Lemonass, reviewers, and associate editor for insightful comments.

LITERATURE CITED

