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Abstract

Background: Protein aggregation is linked to the onset of an increasing number of human nonneuropathic (either localized
or systemic) and neurodegenerative disorders. In particular, misfolding of native a-helical structures and their self-assembly
into nonnative intermolecular b-sheets has been proposed to trigger amyloid fibril formation in Alzheimer’s and Parkinson’s
diseases.

Methods: Here, we use a battery of biophysical techniques to elucidate the conformational conversion of native a-helices
into amyloid fibrils using an all-a FF domain as a model system.

Results: We show that under mild denaturing conditions at low pH this FF domain self-assembles into amyloid fibrils.
Theoretical and experimental dissection of the secondary structure elements in this domain indicates that the helix 1 at the
N-terminus has both the highest a-helical and amyloid propensities, controlling the transition between soluble and
aggregated states of the protein.

Conclusions: The data illustrates the overlap between the propensity to form native a-helices and amyloid structures in
protein segments.

Significance: The results presented contribute to explain why proteins cannot avoid the presence of aggregation-prone
regions and indeed use stable a-helices as a strategy to neutralize such potentially deleterious stretches.
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Introduction

The function of a large majority of polypeptides depends on the

attainment of a globular, compact and specific three-dimensional

structure after their synthesis at the ribosomes [1]. Only properly

folded globular proteins can interact specifically with their

molecular targets [2]. The protein quality machinery works to

minimize the accumulation of misfolded species, not only because

they are not functional, but also because these conformers often

display an intrinsic propensity to self-assemble into toxic aggre-

gates, provoking the impairment of essential cellular processes.

Accordingly, protein misfolding and aggregation lie behind an

increasing number of human diseases that include highly

debilitating disorders like Alzheimer’s or Parkinson’s disease [3].

Despite the polypeptides causing these pathologies are not related

in terms of sequence or structure, in many cases their aggregation

leads to the formation of amyloid fibrils, all sharing a common

cross-b motif [4]. Moreover, the adoption of amyloid-like

conformations is not restricted to disease-linked proteins and

might constitute a generic property of polypeptide chains [5,6,7],

likely because the non-covalent contacts that stabilize native

structures resemble those leading to the formation of amyloids [8].

It was initially thought that, for globular proteins, amyloid fibril

formation involved the docking of monomeric partially folded

states, which display pre-existent b-sheet structure. Nevertheless, it

was early shown that all-a proteins can also be induced to form

amyloids under strongly destabilizing conditions. In particular,

Dobson and co-workers demonstrated that in the case of

apomyoglobin, amyloid fibril formation correlates with environ-

ments in which the protein backbone is unfolded, rather than with

conditions that may allow population of partially structured states

enriched in b-sheet conformations [9,10]. Destabilization of

apomyoglobin by mutation of two highly conserved Trp residues

to Phe also results in the formation of amyloid fibrils, under

conditions close to physiological [11]. For this double mutant,

solution conditions that promote the population of the native a-

helical secondary structure abolish the polymerization of the

protein [11], illustrating a competition between folding and

aggregation. In the present work we use the FF domain to provide
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further insights into the mechanism of amyloid fibril formation by

a-helical proteins.

FF domains are small protein-protein interaction modules

consisting of ,50–70 residues often organized in tandem arrays

and characterized by the presence of two conserved Phe residues

at the N- and C-termini [12]. The three-dimensional structures of

several FF domains have been solved, showing that this fold

consists of three a-helices arranged as an orthogonal bundle with a

310 helix in the loop connecting the second and the third helix

[13,14,15]. They are involved in RNA splicing, signal transduction

and transcription processes [16,17]. These domains are present in

a variety of eukaryotic nuclear transcription and splicing factors as

well as in p190RhoGTPase-related proteins and their sequences

are well conserved from yeast to humans [12]. However, the

sequences of different FF domains are highly divergent. The loops

connecting the different a-helical regions display the highest

sequential variability, both in length and amino acidic composi-

tion. The main structural difference between divergent FF

domains is the orientation, and sequence, of the second helix,

which has been proposed as the structural element responsible for

ligand specificity.

The folding process of the FF domain from human HYPA/

FBP11 (HYPA/FBP11-FF) has being characterized in detail

[18,19,20,21]. This domain is receiving considerable attention,

especially because it forms early in the folding reaction an on-

pathway, short-lived and low populated intermediate state whose

structure has been solved at atomic resolution combining NMR

relaxation dispersion methods and computational techniques,

providing thus a molecular description of a transient folding

intermediate with unprecedented detail [22,23,24,25].

The aggregation properties of FF domains have not been

characterized yet. Here, we address this issue using the yeast

URN1 FF domain (URN1-FF) as a model system. This is the only

FF domain of the yeast URN1 protein, it consists of 59 residues

and adopts a canonical a12a223102a3 FF fold (Figure 1).

Relative to HYPA/FBP11-FF, the three a-helices are shorter in

the yeast domain. Also, helices 1 and 3 are closer and more

orthogonal in URN1-FF. We show here that URN1-FF forms

amyloid fibrils at low pH. Using a battery of biophysical

techniques to study the conformational, thermodynamic and

kinetic properties of soluble URN1-FF, the morphological,

structural and tinctorial properties of its aggregates as well as

dissecting this domain into its individual secondary structure

elements, we demonstrate that helix 1 at the N-terminus plays a

key role in controlling the conformation and solubility of this small

all-a protein.

Materials and Methods

Protein Expression and Purification
The URN1-FF domain corresponds to residues 212–266 of

yeast URN1 and was cloned into a pETM-30 vector as an N-

terminal fusion protein with a His tag followed by GST and a

TEV protease cleavage site [15]. For protein production, the

plasmid was transformed in BL21 (DE3) cells and after growing to

0.6 optical density they were induced with 1 mM IPTG at 298 K

overnight. As a first step of purification, a His-tag column was used

to isolate the GST-fused protein. Subsequently, a TEV cleavage

was performed and a final gel filtration HiLoadTM SuperdexTM 75

prepgrade (GE healthcare Life Sciences) was used to remove the

GST protein. The sample was dialyzed against water and

lyophilized. The purity of the samples was checked by SDS-

PAGE and MALDI-TOFF mass spectroscopy. Protein concen-

tration was determined by UV absorption using a e value of

1.948 mg21 ml cm21.

Sample Preparation for URN1-FF and Synthetic Peptides
Conformational Assays

Lyophilized URN1-FF protein was dissolved at 20 mM using the

following solutions: 50 mM potassium chloride at pH 1.5 and

1.75; 50 mM glycine at pH 2.0, 2.25, 2.5, 2.75 and 3.0; 50 mM

sodium acetate at pH 3.5, 4.0, 5.0, 5.5 and 5.7; and 50 mM MES

at pH 6.0 and 6.5. Protein solutions were filtered through a

0.22 mm filter and immediately analyzed at 298 K by Tryptophan

intrinsic fluorescence, far-UV CD, static light scattering and ANS

binding. Synthetic peptides were dissolved in 100 mM glycine at

pH 2.5 and sonicated during 10 minutes. In all the cases the final

concentration was 100 mM and different amounts of TFE were

added between 0 and 25% (v/v).

Figure 1. Structure of the URN1-FF domain. At the top, a ribbon
representation showing the a-helices in different colors: a-helix 1 in red;
a-helix 2 in green, helix 310 in magenta; and a-helix 3 in blue. At the
bottom, side chains of Trp 27 and Trp 56 are represented in black and
blue, respectively. The N- and C-termini are indicated. The Protein Data
Bank accession code for the structure is 2JUC. This figure was prepared
with PyMOL.
doi:10.1371/journal.pone.0058297.g001
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Sample Preparation for URN1-FF and Synthetic Peptides
Aggregation Assays

Lyophilized URN1-FF protein was dissolved at 140 mM in

different buffers and filtered through a 0.22 mm filter. Five

different pH conditions were chosen to check aggregation:

100 mM glycine at pH 2.0, 2.5 and 3.0; and 100 mM sodium

acetate at pH 4.0 and 5.7. Lyophilized synthetic peptides were

prepared at 500 mM in 100 mM glycine at pH 2.5 in the presence

of 0, 15 and 25% (v/v) of TFE and sonicated during 10 minutes.

In all cases, the samples were incubated under agitation at

400 rpm and 310 K during 7 days.

Aggregation Kinetics
URN1-FF protein was prepared at 140 mM in 100 mM glycine

at pH 2.5 in the presence of 25 mM of ThT. Immediately after

equilibrating the sample at 310 K during 5 minutes, ThT intrinsic

fluorescence and light scattering intensity were measured every 5

minutes during 2000 minutes. The sample was excited at 440 nm

and emission was recorded at 475 nm for ThT. For light

scattering, the excitation and emission wavelengths were 340

and 350 nm, respectively. Slit widths of 5 nm were used for both

excitation and emission in a CARY-100 Varian spectrophotom-

eter.

Electron Microscopy
Incubated samples were diluted tenfold with water and 10 ml

were placed on carbon-coated copper grids and left for 5 min. The

grids were then washed with distillated water and stained with 2%

(w/v) uranyl acetate for 1 min. The analysis was done using a

HITACHI H-7000 transmission electron microscope operating at

an accelerating voltage of 75 kV. For diameter determination 173

and 108 different fibrils were analyzed at pH 2.0 and 2.5,

respectively.

Binding to Amyloid Dyes
URN1-FF aggregates were diluted at 10 mM in phosphate

buffer pH 7.5 containing 25 mM of ThT. Synthetic peptides were

studied at 40 mM with the same amount of ThT. ThT was excited

at 440 nm and fluorescence emission was recorded between 460

and 600 nm, using excitation and emission slit widths of 10 nm.

Each trace was the average of 3 accumulated spectra at 298 K in a

CARY-100 Varian spectrophotometer.

To study the binding to CR, 30 ml of aggregated URN1-FF

were mixed with 220 ml of CR (20 mM) in 5 mM phosphate,

150 mM NaCl pH 7.4 buffer at 298 K. After 5 minutes of

equilibration, optical absorption spectra were acquired from 400

to 700 nm and accumulated for 3 times with a Jasco V-630

spectrophotometer (Tokyo, Japan). Solutions containing only

protein and only CR were analyzed to eliminate the protein

scattering and dye contribution.

ANS Binding Assay
Aggregated samples were diluted at 10 mM in phosphate buffer

pH 7.5 containing 25 mM of ANS. To study soluble URN1-FF

species, samples were prepared at 20 mM containing 25 mM of

ANS and analyzed immediately. The excitation wavelength was

370 nm and the emission spectra was recorded between 400 and

600 nm, using excitation and emission slit widths of 5 and 10 nm,

respectively. Three spectra were accumulated after 5 minutes of

equilibration at 298 K in a CARY-100 Varian spectrophotometer.

NMR Spectroscopy
Lyophilized protein was dissolved at 35 mM in water using a 9:1

H2O/D2O ratio, and adjusted at pH 2.5 and pH 5.7. One-

dimensional NMR spectra were acquired at 298 K on a Bruker

AVANCE 600-MHz spectrometer using solvent suppression

WATERGATE techniques.

Circular Dichroism, Intrinsic Tryptophan Fluorescence
and Static Light Scattering

Monomeric and aggregated URN1-FF species were prepared at

20 mM and measured immediately. Far-UV CD spectra were

measured in a Jasco-710 spectropolarimeter thermostated at

298 K. Spectra were recorded from 260 to 200 nm, at 0.2 nm

intervals, 1 nm bandwidth, and a scan speed of 50 nm/min.

Twenty accumulations were averaged for each spectrum. Both

monomeric and aggregated synthetic peptides were diluted to a

final concentration of 100 mM. Far-UV CD spectra were recorded

in a Jasco J-810 spectropolarimeter (Tokyo, Japan) thermostated at

298 K, using the same conditions described above.

Tryptophan intrinsic fluorescence was measured at 298 K in a

Cary-100 Varian spectrofluorometer using an excitation wave-

length of 280 nm and recording the emission from 300 to 400 nm.

Three averaged spectra were acquired and slit widths were

typically 5 nm for excitation and emission. Soluble URN1-FF

samples were measured in a PerkinElmer Life Sciences LS-55

fluorimeter (Wellesley, Massachusetts) equipped with a thermo-

stated cell compartment using the same parameters described

above. The represented values are the integral of the fluorescence

between 300 and 400 nm.

Static light scattering was recorded in a Jasco V-630 spectro-

photometer (Tokyo, Japan) at 298 K. Two accumulative spectra

were registered between 360 and 240 nm.

Thermal Denaturation
URN1-FF samples were dissolved at 20 mM and four different

pH conditions (2.0, 2.5, 3.0 and 5.7). Thermal stabilities were

studied by intrinsic fluorescence intensity and far-UV CD. The

samples were excited at 280 nm and the emission was recorded at

360 nm, using slit widths of 5 nm for excitation and emission in a

CARY-100 Varian spectrophotometer. The emission was regis-

tered each 0.25 K with a heating rate of 0.5 K/min. The molar

ellipticity at 222 nm was recorded each 0.2 K with a heating rate

of 0.5 K/min in a Jasco-710 spectropolarimeter.

Equilibrium Stability Measurements
Lyophilized protein was dissolved at 20 mM in different pH

buffers and molarities of urea, from 0 to 9 M and left to equilibrate

for at least 3 h. The samples were equilibrated during 10 minutes

at 310 K and analyzed by intrinsic fluorescence intensity and far-

UV CD. The excitation and emission wavelengths were 280 and

360 nm, respectively, using a CARY-100 Varian spectrophotom-

eter. Unfolding was also followed by far-UV CD at 222 nm in a

Jasco-710 spectropolarimeter.

Analysis of the Chemical Denaturation Curves
In chemical denaturations, experimental data were fitted using

the Kaleidagraph version 4.0 (Synergy Software) to equation 1

assuming two-state unfolding with DG
0

U{F equal to equation 2:

X~
aF zbF Tz aUzbU Tð Þe{ DG

0
U{F

Tð Þ
� �

=RT

1ze
{ DG

0
U{F

Tð Þ
h i

=RT

ð1Þ

a-Helices Amyloid Transition

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58297



DG
0
U{F ½U �ð Þ~DG

H2O

U{F zm½U � ð2Þ

DGH2O
U{F is the stability of the protein in the absence of

denaturant. [U] is the denaturant concentration and m is the urea

concentration at the midpoint of the curve. Fraction folded at a

given urea concentration was determined by using X, aF, bF, aU,

and bU. X is the ellipticity at 222 nm or fluorescence intensity at

360 nm; aF, bF, aU, and bU are parameters that define ellipticity or

fluorescence intensity of the folded (F) and unfolded states (U). aF

and aU are the axis intercepts and bF and bU are the slopes of the

pre- and post-transition baselines. T is temperature, and R is the

gas constant.

Folding Kinetics
Kinetics of unfolding and refolding reactions at 298 K and

310 K were followed in a Bio-Logic SFM-3 stopped-flow

instrument using excitation at 280 nm and a 320 nm fluorescence

cut-off filter. Unfolding reaction was promoted by dilution of the

protein in buffer with appropriate volumes of the same buffer

containing 9.5 M urea. For folding reactions, appropriate volumes

of buffer were added to an initial protein solution containing

9.5 M urea. To determine the unfolding rates at 8 M of urea,

protein and urea solutions were prepared at different pH and

unfolding kinetics were recorded at 310 K in a Bio-Logic SFM-3

device.

Observed rate constants were fitted to the equation describing

folding of a two-state protein, using the Kaleidagraph version 4.0

(Synergy Software). To determine the free energy, m and CM

values we used the following equations:

DG
H2O

U{F ~{RT ln (k
H2O

U =k
H2O

F )

mU{F ~RT(mF zmU )

DG
H2O

U{F

where kF and kU are the rate constants for folding and unfolding,

respectively, and the mF and mU values correspond to the slopes of

the respective folding and unfolding regions.

Prediction of the Aggregation-prone Regions and a-
helical Propensity of URN1-FF Domain

The primary sequence of URN1-FF was used as input to predict

the regions prone to aggregation. We used five different

algorithms: WALTZ [26], AGGRESCAN [27], BETASCAN

[28], FOLDAMYLOID [29], AMYLPRED [30], ZYGGREGA-

TOR [31] and PASTA [32]. The tendency of URN1-FF to adopt

a-helical structure was predicted using AGADIR (http://agadir.

crg.es/).

Pepsin Digestion
Limited proteolysis was carried out using pepsin in 50 mM

glycine buffer pH 2.5 and 35 mM of URN1-FF protein. The

digestion was performed at 310 K containing an E/S ratio of

1:200 (by weight) and the reactions were quenched after 0.5, 1 and

5 min by adding an appropriate volume of ammonia 2%. The

proteolytic mixtures were analyzed by Tricine-SDS/12% PAGE

and by MALDI-TOFF MS using an Ultraflex spectrometer

(Bruker) operating in linear mode under 20 kV. Samples were

prepared by mixing equal volumes of the protein solution and

matrix solution (10 mg/ml of sinapic acid dissolved in aqueous

30% acetonitrile with 0.1% TFA) and using the dried droplet

method. A mixture of proteins from Bruker (protein calibration

standard I; mass range = 3–25 kDa) was used as external mass

calibration standard. Peptide fragments were identified by mass

fingerprinting analysis.

Results

pH Dependence of URN1-FF Conformational Properties
In contrast to HYPA/FBP11-FF, which displays a basic pI of

9.9, the pI of URN1-FF is 4.4. We studied the conformational

properties of URN1-FF over the pH range 2.0–5.7 and at 298 K

by far-UV circular dichroism (CD), intrinsic fluorescence and 1-

anilinonaphtalene-8-sulfonate (ANS) binding at 20 mM protein

concentration (Figure 2).

The far-UV CD of URN1-FF at pH 5.7 is similar to that

reported for HYPA/FBP11-FF in the same conditions and, in

agreement with its solution NMR structure, it corresponds to that

of a canonical a-helical protein, displaying the characteristic

minima at 210 and 222 nm (Figure 2A). Analysis of the CD

spectra with the K2D3 algorithm predicts a secondary structure

content consisting of 95% of a-helix and 5% of random coil

without any significant b-sheet component. The far-UV CD

spectra of URN1-FF solutions at different acidic pHs (2.0, 2.5 and

3.0) all display an a-helical spectra similar to that under native

conditions at pH 5.7, despite exhibiting reduced ellipticity at

pH 2.0 (Figure 2A), suggesting that this domain retains a

significant amount of their native secondary structure at low pH.

K2D3 predicted an a-helix content of 95%, 95% and 93% at

pH 3.0, 2.5 and 2.0, respectively, without any significant

contributions of b-sheet signal. In contrast to the other conditions,

the protein solution becomes cloudy at pH 4.0. This was probably

because this pH is close to the URN1-FF pI, resulting in isoelectric

protein precipitation. Therefore this condition was not further

analyzed.

URN1-FF contains two buried Trp residues at positions 27 and

56. We monitored the pH-induced changes in the tertiary

structure of this domain following the variation in Trp emission.

A progressive increase in fluorescence intensity and a red shift of

the maximum emission wavelength was observed as pH decreases,

indicating an increase in the solvent exposure of these aromatic

residues (Figure 2B). Importantly, at the lowest pH value tested

here the emission maximum was shifted to ,335–340 nm,

indicating that the Trp residues are not fully solvent-exposed.

This suggested opening of the native conformation with the

concomitant partial exposure of hydrophobic clusters at low pH.

To test this possibility further, we analyzed the binding of URN1-

FF to ANS at the different pHs. At all pH values the protein was

found to increase the fluorescence of ANS and cause a blue-shift of

its emission maximum. However, a dramatic increase in ANS

fluorescence was observed at pH 2.0 and 2.5, with intermediate

and low ANS fluorescence increases at pH 3.0 and 5.7,

respectively (Figure 2C).

The structural features of the URN1-FF at pH 2.5 and 5.7 were

also evaluated by NMR spectroscopy. The one-dimensional NMR

(1H NMR) spectrum of the protein at pH 5.7 displayed a wide

dispersion of resonances at both low (amide and aromatic region)

and high (methyl region) fields, with good peak sharpness,

characteristic of folded molecules (Figure 2D). At pH 2.5, certain

peak collapse was observed. However, the signal dispersion is

a-Helices Amyloid Transition
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indicative of the retention of a significant number of URN1-FF

intramolecular contacts at this pH.

Overall, the structural features of URN1-FF at acidic pH and

298 K are compatible with the population of a molten globule-like

structure in these conditions. To assess the stability of the detected

URN1-FF species under these conditions of temperature and

protein concentration, we monitored the evolution of their

conformational properties in a wide range of pH, from 1.5 to

6.5 along time. In the 2.0–6.5 pH range no changes in tertiary

structure, as monitored by Trp fluorescence, and secondary

structure, as monitored by CD, were detectable upon 24 h

incubation (Figure S1). Accordingly, with the exception of pH 4.0,

no aggregation signs were visible by light scattering in this time

period and pH range (Figure S1), indicating that the conforma-

tional ensembles are at least metastable.

pH Dependence of URN1-FF Thermal and Chemical
Stability

The thermal stability of URN1-FF under native conditions

(pH 5.7) was analyzed following the changes in the far-UV CD

spectra at 222 nm and in intrinsic fluorescence at 350 nm

(Figure 3A and 3B). The two probes reported essentially identical

thermal transitions, with a melting temperature Tm of 340.960.3

and 341.460.1 K, by far-UV CD and intrinsic fluorescence,

respectively (Table 1). We then addressed the dependence of the

thermal stability of the domain on the pH. At all assayed pHs,

cooperative transitions were observed. Nevertheless, the thermal

stability of URN1-FF is drastically affected by the pH. The Tm

decreases with decreasing pH and is reduced by ,30 K from

pH 5.7 to 2.0 (Table 1). A good agreement between the Tm

calculated from CD and fluorescence data is observed at all pHs.

To analyze differences in the stability of the different URN1-FF

conformations, we studied the resistance of the protein at different

pH values against chemical denaturation with urea at 310 K by

monitoring the changes in molar ellipticity at 222 nm and in Trp

fluorescence intensity at 350 nm (Figure 3C and 3D). We selected

310 K because at this temperature the percentage of folded

URN1-FF strongly depends on the pH. As it will be seen in the

next sections, this will allow us to correlate the degrees of native

structure and aggregation. At pH 5.7 the FF domain unfolded in a

cooperative, two-state process. Accordingly, the thermodynamic

values obtained from fluorescence and CD measurements were

similar (Table 2). DGH2O
U{F of 5.3360.25 kcal/mol and

5.9460.18 kcal/mol were calculated by far-UV CD and intrinsic

fluorescence, respectively. A [urea]50% of 6.75 M was obtained for

both probes. This domain is significantly more stable than the

structurally homologous human HYPA/FBP11 FF domain, which

has a DGH2O
U{F of 3.6 kcal/mol and a [urea]50% of 3.1 M at the

same pH.

A dramatic decrease of URN1-FF thermodynamic stability was

observed at lower pHs. At pH 3.0 and 2.5 the protein exhibited a

complete cooperative transition. At pH 3.0, CD and fluorescence

analysis rendered similar thermodynamic parameters showing that

the protein is destabilized by ,3.6 kcal/mol (Table 2). At pH 2.5,

Figure 2. pH dependence of URN1-FF conformational proper-
ties. Protein samples were prepared at 20 mM and were immediately
measured by (a) far-UV CD, (b) tryptophan intrinsic fluorescence and (c)
ANS fluorescence at 298 K. The fluorescence emission spectrum of ANS
in the absence of protein is represented as a dotted line. URN1-FF
species were at pH 2.0 (squares), pH 2.5 (diamonds), pH 3.0 (circles),
and pH 5.7 (triangles). (d) One-dimensional NMR (1H-NMR) spectra of
URN1-FF were recorded at 298 K and 600 MHz, using a protein
concentration of 35 mM. Two different spectra were collected, at pH 5.7
(above) and pH 2.5 (below).
doi:10.1371/journal.pone.0058297.g002

a-Helices Amyloid Transition
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5–10% of the protein population appears to be already unfolded at

equilibrium in the absence of urea, being destabilized by

,4.4 kcal/mol. As expected, at pH 2.0 the domain is partially

unfolded and displays marginal stability since 310 K is close to the

Tm at this pH.

Folding and Unfolding Kinetics of the URN1-FF Domain
The kinetics of folding and unfolding of the URN1-FF domain

at pH 5.7 were determined by stopped-flow and fluorescence

detection under a wide range of denaturant conditions at 298 and

310 K. In both cases, the folding and unfolding traces by

fluorescence fit well into single exponential functions. Moreover,

the chevron plots appear to be linear in the complete range of urea

concentration studied (Figure 4A), indicating the lack of detectable

intermediates, according to a two-state model. The rate constants

for folding (kF) and unfolding (kU) and their dependence on

denaturant concentration (RTmF and RTmU) are shown in

Table 3. The thermodynamic data at 310 K obtained from kinetic

measurements are in good agreement with the equilibrium data at

this temperature using chemical denaturation. Increasing the

temperature from 298 to 310 K has a moderate effect on the

thermodynamic stability of URN1-FF (,0.3 kcal/mol), but it has

an important impact on the folding and unfolding rates, which

increase by 2.6 and 5.8 fold, respectively. The folding and

unfolding kinetics of the HYPA/FBP11 domain have been

characterized at 283 K. Unfortunately, URN1-FF could not be

studied at this temperature since at the high concentrations

required for unfolding reactions urea crystallizes, precluding direct

comparison of kinetic traces. However, it is worth mentioning that

even at 310 K the unfolding rate of URN1-FF is two fold slower

than that of HYPA/FBP11-FF at 283 K, suggesting that the

unfolding rate is a main contributor to the different thermody-

namic stabilities exhibited by these two FF domains.

The pH dependence of the unfolding rate at 8 M urea was

measured at 310 K over the pH range 3.5–6.5 (Figure 4B). Below

pH 3.5 the unfolding reaction was too fast to be monitored with

our equipment. As it happens with HYPA/FBP11-FF, lowering

the pH results in an increase in the kU value for URN1-FF. The

plot of ln (kU) versus pH allows the approximate determination of

the unfolding rate constants at pH 2.5 and pH 2.0, 8 M urea and

310 K by extrapolation. Then, assuming that mU is independent

Figure 3. Thermal and Chemical stabilities of URN1-FF at
different pHs. Thermal stabilities were studied monitoring the
changes by (a) far-UV CD at 222 nm and by (b) intrinsic fluorescence
at 350 nm. Equilibrium urea unfolding curves at 310 K were followed by
(c) far-UV CD at 222 nm and by (d) tryptophan intrinsic fluorescence at
350 nm. Protein samples are represented at pH 2.0 by squares; pH 2.5,
diamonds; pH 3.0, circles; and pH 5.7, triangles.
doi:10.1371/journal.pone.0058297.g003

Table 1. Melting temperatures of URN1-FF at different pHs.

Tm (K)

CD1 Intrinsic fluorescence2

pH 2.0 313.561.3 310.960.3

pH 2.5 321.560.1 318.960.1

pH 3.0 332.860.1 335.860.1

pH 5.7 340.960.3 341.460.1

1Changes in molar ellipticity were monitored at 222 nm. 2 Changes in intrinsic
fluorescence were monitored at 350 nm.
doi:10.1371/journal.pone.0058297.t001
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of pH, kU values of ,150 and ,360 s21 are calculated in the

absence of urea at 310 K at pH 2.5 and 2.0, respectively. This

indicates that the domain unfolding is very fast under these

conditions.

Effect of pH on the Aggregation of the URN1-FF Domain
Despite URN1-FF remains soluble at 20 mM at all pHs, with

the exception of pH 4, it might aggregate at higher protein

concentrations. To assess if the URN1-FF domain self-assembles

into macromolecular structures in a pH dependent manner, the

protein was therefore incubated at 140 mM and 310 K for 7 days

over the pH range 2.0–5.7. The presence and morphology of

protein aggregates was analyzed using Transmission Electron

Microscopy (TEM) (Figure 5A). Fibrillar species were observed at

both pH 2.0 and pH 2.5. The fibrils in both solutions were long

and unbranched and consist of linear or twisted fibrils. Linear

fibrils displayed a diameter of 7.0161.14 and 7.4861.5 nm at

pH 2.0 and 2.5, respectively. The diameter of twisted fibrils was

14.2964.33 nm at pH 2.0 and 16.1364.13 nm at pH 2.5. The

diameter of FF linear fibrils is consistent with that of the amyloids

formed by pathological proteins, which usually ranges between 4

and 10 nm [33]. The dimensions of twisted fibrils suggest that they

likely result from the association of two linear fibrils. At pH 3.0

only small protofibrillar-like aggregates were observable and at

pH 5.7 the solution was essentially devoid of aggregates.

Quantification of the amount of aggregated protein by sample

fractionation using sedimentation at 100,000 g for 1 hour is

consistent with the TEM analysis, showing that most of URN1-FF

is aggregated at pH 2.0, 2.5 and 3.0, with 97%, 99% and 100% of

the total protein being located in the insoluble fraction,

respectively. On the contrary, 93% of the protein remained in

the soluble fraction at pH 5.7. As expected, the protein solution

became immediately cloudy at pH 4.0. Accordingly, large and

amorphous aggregates were observed by TEM (Figure S2).

We used the amyloid-specific dyes thioflavin T (ThT) and

Congo red (CR) to analyze if the aggregates detected in the

different protein solutions exhibit amyloid-like features (Figure 5B

and 5C). In agreement with their fibrillar appearance, the

aggregates formed at pH 2.0 and 2.5 promoted the highest

increase in ThT fluorescence emission, followed by the pH 3.0

protofibrillar assemblies; little ThT binding was observed at

pH 5.7. With the exception of pH 5.7, incubation of URN1-FF at

all other pHs promoted binding of the protein to CR resulting in a

red-shift and an increase in the absorbance maximum of the dye,

thus confirming the presence of amyloid-like aggregates formed in

these conditions.

We then monitored the conformational properties of the

URN1-FF aggregates incubated in the different acidic conditions

Table 2. Thermodynamic characterization of URN1-FF at different pHs.

DGH2 O
U{F

1 (kcal mol21) m2 (kcal mol21 M21) [urea]50%
3 (M)

CD4
Intrinsic
fluorescence5 CD Intrinsic fluorescence CD Intrinsic fluorescence

pH 2.0 0.3660.04 0.05160.08 0.8360.04 0.460.1 0.460.1 0.260.8

pH 2.5 1.460.1 1.260.3 1.060.2 0.760.5 1.460.4 1.660.9

pH 3.0 2.260.3 1.860.6 1.160.1 0.860.1 2.060.3 2.360.9

pH 5.7 5.360.3 5.960.2 0.7960.04 0.8860.03 6.860.6 6.860.3

FBP116 3.6260.03 3.6060.02 1.18060.001 1.14060.001 3.0560.03 3.1660.03

1Gibbs energy of unfolding with urea determined from the equilibrium parameters.
2Dependence of the Gibbs energy of unfolding with urea.
3The urea concentration required to unfold 50% of the protein molecules.
4Parameters obtained by following changes in the molar ellipticity at 222 nm.
5Parameters obtained by following changes in the intrinsic fluorescence at 350 nm.
6The values of the FF domain of HYPA/FBP11 were previously reported at 283 K [18,19].
doi:10.1371/journal.pone.0058297.t002

Figure 4. Unfolding and refolding kinetics of URN1-FF. (a) The
kinetics of unfolding and refolding for URN1-FF at pH 5.7 were followed
by Trp intrinsic fluorescence. Stopped-flow experiments were per-
formed at 298 K (circles) and 310 K (triangles). (b) Unfolding rates in
8 M urea at pH ranging from 3.5 to 6.5 were recorded at 310 K. The rate
constants were measured under conditions of apparent two-state
folding.
doi:10.1371/journal.pone.0058297.g004
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using far-UV CD (Figure 5D). The protein incubated at 140 mM,

pH 5.7, 310 K for 7 days exhibited essentially the same native

spectrum as the freshly dissolved protein at 20 mM, displaying the

characteristic minima at 210 and 222 nm (Figure 5D). In contrast,

in FF domains incubated at pH 2.0, 2.5 and 3.0 the transition

towards a b-sheet enriched conformation was evident.

We also monitored the exposure of hydrophobic clusters to the

solvent in the aggregates attained at the different pHs with ANS

(Figure 5E). The fibrils formed at pH 2.0 exhibited the highest

ANS binding, suggesting conformational differences between these

assemblies and the fibrils formed at pH 2.5, in line with their

different binding to CR and b-sheet signal intensity in the CD

spectra.

Overall, the data converge to indicate that the URN1-FF

domain forms aggregates displaying different morphological and

conformational properties depending on the pH. In particular, the

aggregates at pH 2.0 and 2.5 have the morphology, structural and

tinctorial characteristics typical of amyloid fibrils.

The Aggregation Kinetics of the URN1-FF Domain at Low
pH

The time course of URN1-FF amyloid fibril formation at

140 mM, pH 2.5 and 310 K was monitored by light scattering and

ThT fluorescence. The kinetics of amyloid fibril formation usually

follows a sigmoidal curve that reflects a nucleation-dependent

Table 3. Kinetic parameters for URN1-FF at pH 5.7.

DGH2O
U{F

1

(kcal mol21)

mU-F
2

(kcal mol21

M21) Cm
3 (M) kF (s21) kU (s21)

RTmU

(kcal mol21 M21)
RTmF

(kcal mol21 M21)

298 K 5.5760.28 0.7860.04 7.1360.55 2741695 0.2360.11 0.1960.04 0.5960.01

310 K 5.2860.04 0.8160.04 6.5060.34 70226221 1.3360.06 0.2060.04 0.6160.01

FBP114 3.6460.05 1.1660.02 3.1460.07 2200690 3.6660.06 0.15460.003 1.0160.02

1Gibbs energy of unfolding with urea determined from the kinetic parameters.
2Dependence of the Gibbs energy of unfolding with urea.
3The urea concentration required to unfold 50% of the protein molecules.
4The values of the FF domain of HYPA/FBP11 were previously reported at 283 K [19].
doi:10.1371/journal.pone.0058297.t003

Figure 5. Morphological, structural and tinctorial properties of URN1-FF aggregates at different pHs. (a) Representative TEM images of
URN1-FF aggregates at 140 mM under different pH conditions incubated at 310 K for one week. From left to right: pH 2.0, pH 2.5, pH 3.0 and pH 5.7.
(b) Fluorescence emission spectra of ThT (25 mM) in the absence (dotted line) and in the presence of 10 mM of protein aggregates formed as in (a). (c)
Absorption spectra of CR (16 mM) in the absence (dotted line) and in the presence of 17 mM of URN1-FF aggregates formed as in (a). The inset shows
the difference spectra obtained by subtracting CR-phosphate buffer spectrum from protein in CR-phosphate buffer spectrum. (d) Far-UV CD spectra
of native URN1-FF (dotted line) and aggregates, using a final concentration of 20 mM. The aggregates were formed as in (a). (e) Fluorescence emission
spectra of ANS (25 mM) collected in the absence (dotted line) and in the presence of protein aggregates (10 mM) formed as in (a). In all the cases,
protein aggregates at pH 2.0 are represented as squares; pH 2.5, diamonds; pH 3.0, circles; and pH 5.7, triangles.
doi:10.1371/journal.pone.0058297.g005
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growth mechanism. The assembly of URN1-FF follows this kinetic

scheme but exhibits a short lag phase (Figure 6 and Table S1). The

kinetic traces, as well as the lag time and the elongation rate

constant for the aggregation reaction, followed by ThT binding

and light scattering were essentially identical, indicating that at

pH 2.5, the formation of amyloid-like intermolecular interactions

occurs rapidly in the aggregation process.

Prediction of URN1-FF Sequence Segments with a-helical
and Aggregation Propensities

It is now accepted that specific and continuous sequence

segments of a protein promote amyloid fibril formation and

participate to the establishment of the b-core of the mature fibrils

[34,35]. Different computational methods have been developed to

predict those sequential stretches [36,37]. The evidence that at low

pH URN1-FF forms amyloid fibrils indicates that this domain

should posses at least one amyloidogenic region. We have used a

number of the existing algorithms to identify the region of the

URN1-FF sequence that most likely promote amyloid fibril

formation of the protein. WALTZ detects the stretch spanning

residues 12–17 in helix 1 at pH 2.5. Consistently, PASTA detects

a single amyloidogenic region comprising residues 10–16. In

addition to helix 1, BETASCAN, AMYLPRED and FOLDA-

MYLOID algorithms predict a second sequence comprising

residues 25–29 at the end of loop 1 and beginning of helix 2.

Finally, in addition to these two stretches, AGGRESCAN and

ZYGGREGATOR suggest that residues 50–55 in helix 3 may also

display significant aggregation propensity (Figure 7A–F).

The predicted a-helical propensity of the URN1-FF sequence

was analyzed using AGADIR in the 2.4–5.8 pH range at 310 K.

The global a-helical propensity of the protein is predicted to

decrease with decreasing pH. At pH 5.7 the region of highest a-

helical propensity corresponds to residues 6–21, including the

complete helix 1 and the initial part of loop 1, the rest of residues

displaying low intrinsic a-helical propensity. Helix 1 is also the

region with the highest a-helical propensity at pH 2.5 but its

predicted a-helical propensity is two fold lower.

Conformational Properties of Synthetic URN1-FF
Peptides

To confirm the above conformational and aggregation predic-

tions we designed five peptides encompassing the entire URN1-FF

amino acid sequence (Figure 7G). The Nt peptide corresponds to

residues 1–7 at the N-terminus, which are devoid of any regular

secondary structure in the native protein. The H1 peptide

corresponds to the complete helix 1 (residues 8–20). The H2

peptide comprises the stretch 21–35 including loop 1 and helix 2.

The 310 peptide includes loop 2 and the 310 helix. These residues

(36–45) connect the helices 2 and 3 in the native structure. Finally,

the H3 peptide includes residues 46–59 at the C-terminal helix 3.

All peptides were prepared with both termini unprotected.

We first assessed the conformational properties of the URN1-FF

peptides using far-UV CD at 100 mM, in 100 mM glycine buffer

at pH 2.5 and 298 K (Figure 8A–E). In this condition all the

peptides exhibited an essentially unstructured conformation with

minima below 200 nm, in agreement with the general observation

that a-helices are only slightly stable in most short peptides in

aqueous solution [38,39]. Trifluoroethanol (TFE) has been

recurrently used to stabilize the a-helical structure in short

peptides [40,41,42]. Several proteins have been split into peptide

fragments, which showed a tendency to form a-helices in TFE,

even if they were unstructured in water. This propensity is

particularly strong for peptides corresponding to a-helical regions

in the intact protein [43].

Therefore, we tested the effect of TFE in the 5–25% (v/v)

concentration range on the CD spectra of URN1-FF peptides at

pH 2.5 (Figure 8A–E). In agreement with the poor secondary

structure content of the correspondent protein regions in the

native state, the Nt and 310 peptides did not show evidence of

secondary structure formation in any solvent condition. The H1

and H3 peptides exhibited a shift of the molar ellipticity minima

toward 210 at 222 nm at increasing TFE concentrations

indicating the adoption of an a-helical conformation, consistent

with these two segments being the largest a-helical regions in the

native URN1-FF structure. The molar ellipticity at 222 nm also

increases with TFE concentration in the H2 peptide, despite the

signal at 210 nm is not evident, indicating a certain propensity to

populate the a-helical state but clearly lower than in the case of the

H1 and H3 peptides. This is consistent with a smaller length of

helix 2 in the native state.

The plot of the increase in molar ellipticity at 222 nm versus

TFE concentration allows comparing the effect of the solvent on

the gain of a-helical conformation in the different peptides

(Figure 8F). The TFE effect is higher for H1, followed by H3 and

then H2, with no apparent structural induction in the Nt and 310

peptides. These results are in agreement with the highest a-helical

propensity predicted by AGADIR for helix 1 at pH 2.5.

Figure 6. URN1-FF aggregation kinetics at pH 2.5. Change of (a)
ThT fluorescence (25 mM) and (b) light scattering at 350 nm during
aggregation of URN1-FF at 140 mM, pH 2.5 and 310 K. The insets show
the same kinetic plots on an expanded time scale.
doi:10.1371/journal.pone.0058297.g006
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Figure 7. Prediction of aggregation-prone regions in URN1-FF and peptide design. Aggregation profiles were predicted using (a) WALTZ,
(b) PASTA, (c) FOLDAMYLOID, (d) BETASCAN, (e) AGGRESCAN and (f) ZYGGREGATOR algorithms. (g) Ribbon diagram of the URN1-FF domain
showing the designed peptides in different colours: Nt peptide in black, H1 peptide in red, H2 peptide in green, 310 peptide in orange and H3 peptide
in blue. The table contains the amino acid sequences corresponding to each peptide. The residues involved in the formation of a-helices in the native
structure are shown in bold.
doi:10.1371/journal.pone.0058297.g007

Figure 8. a-helical structure of synthetic URN1-FF peptides. Synthetic peptides were prepared at 100 mM and pH 2.5. Their far-UV CD spectra
were recorded at 298 K in the absence (black) and in the presence of different percentages (v/v) of TFE: 5% (v/v) (blue); 10% (v/v) (orange); 15% (v/v)
(green); 20% (v/v) (red); and 25% (v/v) (yellow). (a) Nt, (b) H1, (c) H2, (d) 310 and (e) H3 peptides. (f) Increase in the molar ellipticity at 222 nm versus
the TFE concentration for all the synthetic peptides: Nt (green); H1 (black); H2 (blue); 310 (orange) and H3 (red) peptides. The Y axis corresponds to the
difference between each value and the value at 0% of TFE, divided by the value in the absence of TFE for each peptide.
doi:10.1371/journal.pone.0058297.g008
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Aggregation Properties of Synthetic URN1-FF Peptides
As a next step, we analyzed the properties of the URN1-FF

peptides upon incubation under aggregation-promoting conditions

(500 mM, in 100 mM glycine buffer, pH 2.5 and 310 K) in the

absence and in the presence of 15% and 25% (v/v) of TFE using

far-UV CD and compared them with those exhibited by the

peptides under non-aggregating conditions (100 mM, 100 mM

glycine buffer, pH 2.5 and 298 K) (Figure 9A–E). A negative peak

at ,217 nm, indicative of b-sheet structure, was observed in the

CD spectrum of the H1 peptide in the absence of TFE (Figure 9B).

The b-sheet signature is still evident in the presence of 15% (v/v)

TFE. In contrast, when the H1 peptide was incubated in the

presence of 25% (v/v) TFE it adopted a random coil conformation

and the spectrum overlapped with the one of the peptide under

non-aggregating conditions in the absence of the alcohol. We

monitored the morphology and amyloid-like features of the

peptide aggregates by ThT fluorescence (Figure 9F) and TEM

binding (Figure 9G–K) in the absence and presence of 25% (v/v)

TFE. In the absence of TFE, fibrillar structures and a strong

binding to ThT were observed, compatible with an amyloid-like

structure (Figure 9F and 9H). The presence of TFE reduced

drastically the formation of aggregates and abolished ThT

binding.

The H3 peptide exhibited a significant loss of the far-UV CD

signal under aggregating conditions in the absence of TFE relative

to that observed under non-aggregating conditions (Figure 9E),

exhibited low binding to ThT (Figure 9F) and formed amorphous

aggregates as imaged by TEM (Figure 9K), In contrast to H1, the

presence of 25% (v/v) TFE promoted the appearance of a b-sheet

signal in the CD spectrum of H3, an increase in ThT fluorescence,

and the formation of smaller peptide aggregates, as observed by

TEM.

The Nt, H2 and 310 peptides exhibited predominantly random

coil structure under aggregating conditions in the absence of TFE

(Figure 9A, 9C and 9D). These three peptides were insensitive to

the presence of TFE: small changes were observed in their far-UV

CD spectra, little aggregation was visualized by TEM and no

significant binding to ThT was observed, indicating that they

remain essentially soluble even at high peptide concentration and

low pH.

Accessibility of a-helices in the URN1-FF Domain at Low
pH

The analysis carried out with the five peptides suggests that

helix 1 displays the highest a-helical and amyloid propensities at

low pH and that marked propensities are also displayed by the H3

peptide, albeit to a lower extent. We used limited proteolysis to test

if these two a-helices display detectable flexibility at 140 mM,

100 mM glycine buffer, pH 2.5 and 310 K in the complete

URN1-FF domain and can therefore be cleaved by proteases. The

domain was incubated with pepsin and the progress of the

digestion reaction was monitored by SDS-PAGE on Tricine gels

and by MALDI-TOF mass spectrometry (MS). A major band

appeared after 30 seconds of digestion (Figure 10A) with a

molecular weight of 4587 Da (Figure 10B), which could be

assigned to residues 16–52. After 1 minute, a main fragment of

3108 Da was detected. This fragment corresponds to residues 16–

40 and remains resistant to proteolytic attack even after prolonged

incubation. It results from an internal cleavage of the original 16–

52 segment. Accordingly, the appearance of the 3108 Da peak in

the MS spectrum is always associated with the presence of a

1495 Da peak that matches with the predicted mass of the 41–52

fragment. Therefore, the data are consistent with the first rapid

cleavages taking place inside helices 1 and 3 (Figure 10C),

suggesting that they display a high conformational flexibility and

low protection in the monomeric protein at low pH.

Discussion

It is now accepted that amyloid fibril formation constitutes a

generic property of polypeptide chains, including globular proteins

[1]. The native structure of a protein has evolved under natural

selection and is sustained by specific interactions between side-

chains, which determine the backbone conformation. By contrast,

repetitive backbone-backbone interactions dominate amyloid

fibrils, with side chains being accommodated in the most

favourable disposition compatible with the cross-b structure.

Nevertheless, side chain contacts are crucial determinants of the

initial transition of soluble proteins towards amyloid states,

modulating thus amyloid propensity [34]. Similarly, the propensity

of a polypeptide to form specific secondary structures is assumed to

depend largely on its primary sequence. The transition of native a-

helices to b-sheets of amyloid agregates illustrates how these

structural propensities might overlap and are modulated by the

structural and environmental context. a-helices and b-sheets

represent alternative ways of saturating all the hydrogen bond

donors and acceptors in a polypeptide backbone. Therefore,

fluctuations between these two types of secondary structures

involve the disruption and establishment of a significant number of

non-covalent interactions. Understanding the transition between

these two conformations is of interest since it has been suggested to

underlie aggregation of the Ab peptide and a-synuclein in

Alzheimer’s and Parkinson’s diseases, respectively [44,45].

Destabilization of the native state, either by solution conditions

or by mutations, is a usual requirement for amyloid fibril

formation in globular proteins. It usually promotes the population

of partially unfolded conformers that are otherwise thermody-

namically or kinetically inaccessible. Mild denaturation at low pH

has been used in different protein models to induce amyloid fibril

formation [46,47]. Here, we have studied the aggregation

propensity of the URN1-FF domain as a function of the pH.

We observed that for this all-a protein, the native state

destabilization occurring below pH 3.0 results into the formation

of b-sheet enriched amyloid fibrils at physiological temperature. A

variety of methodologies probing the conformational properties of

soluble and aggregated states of URN1-FF and its dissected

fragments have been employed to gain insights into the

mechanistic aspects of the process of amyloid fibril formation.

URN1-FF remained soluble at 20 mM, 298 K, in the pH range

2.0–6.5 for 24 h. Importantly, no significant population of b-sheet

structures was detected under these conditions of protein

concentration and temperature in this pH range. Thermal

denaturation at pH 2.0–3.0 render cooperative transitions with

similar Tm and traces for CD and fluorescence probes indicating

that despite the different secondary and tertiary structure content

in the conformational ensembles populated at the different acidic

pHs all them appear to unfold without the apparent population of

intermediate states. At pH 3.0 and 2.5 the protein keeps essentially

the same a-helical content than the native protein; however

thermal denaturation indicates that the protein is destabilized in

these conditions. At pH 2.0, the a-helical content decreases

slightly and the protein stability is significantly reduced. Overall,

the species populated at low pH have characteristics compatible

with molten globule-like conformations [48].

As in the case of other model globular proteins, solution

conditions promoting the aggregation of this a-helical domain

coincide with those destabilizing the native state, but still allowing

the presence of a significant amount of native secondary structure,
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since the types of interactions sustaining both types of structures

are essentially identical. As expected, the high stability of the

URN1-FF native structure at pH 5.7 prevents the protein from

aggregation in this condition. By contrast, the low stability of the

native state at pH 2.0–2.5 results in aggregation. Fitting of the

chemical denaturation data to a two-state folding model indicates

that, at pH 2.0 and 310 K, ,50% of the URN1-FF molecules are

unfolded at equilibrium. At pH 2.5 the unfolded population

decreases to 10%, whereas at pH 3.0 the protein is essentially in a

molten-globule state with native-like secondary structure. There-

fore, the population of a significant amount of unfolded species at

equilibrium is a requirement for URN1-FF aggregation into b-

sheet enriched aggregates.

At pH 2.5, the aggregation rate of URN1-FF is several orders of

magnitude lower than the rate for unfolding, suggesting that self-

association requires a significant destabilization of the protein and

at least partial unfolding of the native a-helical structure, likely

because the formation of ordered intermolecular hydrogen bonds

between b-strands is effectively competed by URN1-FF native

helices. This explains why ordered amyloid fibrils are observed at

pH 2.0 and 2.5 and not at pH 3.0, where the protein is more

stable.

The computational prediction of a-helical propensity carried

out with AGADIR indicates that helix 1 has the highest propensity

to form this secondary structure. This prediction is supported by

the experimental analysis, which also shows a good propensity for

helix 3, albeit lower than that of helix 1, and a small propensity for

helix 2. All computational predictions of aggregation propensity

also point out helix 1 as the stretch with the highest propensity to

form amyloid aggregates. In addition to this stretch, AGGRES-

CAN and ZYGGREGATOR predict that helix 3 also has a high

amyloid propensity. According to the experimental analysis

carried out with far-UV CD, ThT assay and TEM, the peptide

encompassing helix 1 forms amyloid fibrils, and the peptide

corresponding to helix 3 features some tendency to aggregate,

although it does not form bona fide amyloid fibrils. Overall, it

appears that helix 1, and to a lower extent helix 3, have a high

Figure 9. Aggregation properties of synthetic URN1-FF peptides. (a–e) URN1-FF peptides were prepared at 500 mM, pH 2.5, 310 K in the
absence and in the presence of TFE. Protein samples incubated for one week were diluted to a final concentration of 100 mM and their far-UV CD
spectra (solid lines) were compared with those of peptides under non-aggregating conditions (dashed lines). (a) Nt, (b) H1, (c) H2, (d) 310 and (e) H3
peptides in 0% (black), 15% (green) and 25% (red) (v/v) TFE. (f) Fluorescence emission spectra of ThT (25 mM) in the absence (black solid line) and in
the presence of 40 mM aggregated H1 (red) and H3 (blue) peptides. In the inset, we show aggregated Nt (green), H2 (orange) and 310 (grey) peptides.
In all cases, samples in the absence of TFE are represented as solid lines, and samples with 25% (v/v) TFE are indicated as dashed lines. (g–k) TEM
images of synthetic peptides are shown in the absence of TFE: (g) Nt, (h) H1, (i) H2, (j) 310 and (k) H3. The insets show the aggregated peptides in the
presence of 25% (v/v) TFE.
doi:10.1371/journal.pone.0058297.g009
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propensity to form both a-helical propensity and b-sheet

containing aggregates.

Thus, the FF domain illustrates how nature finds difficult to

avoid the presence of aggregation-prone regions in proteins

because, at least in certain cases, residues leading to the formation

of native structures are also able to trigger self-assembly since both

processes involve the development of similar inter-residues

interactions between transiently unfolded protein regions. In these

cases, it is the stability of the native conformation, and more

specifically the protection of the sequence stretches with the

highest aggregation propensities, that prevents the transition

towards amyloidogenic conformations. Accordingly, natural mu-

tations associated with familial forms of amyloidosis have been

shown to reduce the stability of the folded state [49,50]. As

illustrated here for the helix 1, stabilization of hydrogen bonds in

a-helical structures, in this case by adding TFE, reduces their

ability to self-assemble into b-sheets. Therefore, compounds that

target a-helical structure in disease-related proteins and reduce

their conformational fluctuation might become specific aggrega-

tion inhibitors. In fact, this approach has already proven successful

to reduce Ab peptide induced in vivo neurodegeneration [44] and

has been suggested as a promising strategy to tackle a-synuclein

aggregation in Parkinson’s disease, dementia with Lewy bodies

and other synucleinopathies [45]. In addition, further stabilization

of a-helical structure of protein segments that possess an

intrinsically high propensity to form this type of secondary

structure lead to significant inhibition of aggregation [51,52].

The data presented here reinforce the view that one of the

strategies used by evolution to neutralize amyloidogenic stretches

of proteins is to hide them into stable a-helical structures [53,54].

The yeast URN1-FF domain is significantly more stable that the

structurally homologous HYPA/FBP11-FF domain. Kinetic anal-

ysis indicates that URN1-FF also displays a much lower unfolding

rate than HYPA/FBP11-FF. Because both thermodynamic and

kinetic stabilities are important contributors to the aggregation

propensity of globular proteins [55], it would be very interesting to

address the aggregational properties of the HYPA/FBP11-FF

domain and how they compare with that of URN1-FF. Overall,

the FF domain emerges as a new and useful protein model to

dissect the molecular determinants accounting for the transition

between soluble and aggregated protein states.

Supporting Information

Figure S1 Evolution of the conformational properties of
soluble URN1-FF species with time. Protein samples were

prepared at low protein concentration (20 mM), at 298, K and at

pH ranging from 1.5 to 6.5. (a) Total tryptophan intrinsic

fluorescence was measured after 1.5 h (triangles), 6 h (squares) and

24 h (circles) of sample preparation. (b) Far-UV CD signals at

230 nm (empty symbols) and 215 nm (filled symbols) were

recorded after 3 h (triangles) and 24 h (circles) of protein

dissolution. (c) Light scattering was followed at 350 nm after

3 h (triangles) and 24 h (circles) of sample preparation. The low

scattering and CD signals at pH 4.0 result from the fact that a

fraction of the protein is isoelectrically precipitated at the bottom

of the tube, a phenomenon not observed at any other pH.

(TIF)

Figure S2 Conformational properties of URN1-FF ag-
gregates at pH 4.0. (a) Representative TEM image of URN1-

FF aggregate at 140 mM, pH 4.0 incubated at 310 K for one

week. (b) Fluorescence emission spectra of ANS (25 mM) collected

in the absence (dotted line) and presence of 10 mM of protein

aggregates (crosses).

(TIF)

Table S1 Aggregation kinetics of URN1-FF at pH 2.5.

(DOC)
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Figure 10. Limited proteolysis of URN1-FF at low pH. Pepsin
digestion was carried out at 310 K in 50 mM glycine, pH 2.5, and 35 mM
URN1-FF, using an E/S ratio of 1:200 (by weight). (a) Time course
proteolysis monitored by Tricine-SDS/12% (w/v) PAGE gel with
Comassie blue staining. The star indicates aprotinin (6.5 kDa). (b)
MALDI-TOFF MS before 0.5 min and 5 min after pepsin digestion. The
peptides observed with a statistically significant change in abundance
are denoted with their molecular weight. The star indicates a 3560 Da
peak, corresponding to half URN1-FF mass. (c) Amino acid sequence of
URN1-FF domain. The arrows indicate the pepsin cleavages inside the
H1 (residue 16) and H3 (residue 52) segments. Residues forming a-
helices are shown in bold. Secondary structure elements are
represented above and below the sequence.
doi:10.1371/journal.pone.0058297.g010
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